Diana Cholakova, Ph.D.
dc@lcpe.uni-sofia.bg
+359 2 8161 624
Interests
  • Phase transitions in disperse systems
  • Phase behavior of surfactants and oils
  • Emulsions, Nanoparticles
  • SAXS, DSC, Microscopy
Publications
Featured publications
Show Abstract

Triacylglycerols (TAGs) exhibit a monotropic polymorphism, forming three main polymorphic forms upon crystallization: α, β’ and β. The distinct physicochemical properties of these polymorphs, such as melting temperature, subcell lattice structure, mass density, etc., significantly impact the appearance, texture, and long-term stability of a wide range products in the food and cosmetics industries. Additionally, TAGs are also of special interest in the field of controlled drug delivery and sustained release in pharmaceuticals, being a key material in the preparation of solid lipid nanoparticles. The present article outlines our current understanding of TAG phase behavior in both bulk and emulsified systems. While our primary focus are investigations involving monoacid TAGs and their mixtures, we also include illustrative examples with natural TAG oils, highlighting the knowledge transfer from simple to intricate systems. Special attention is given to recent discoveries via X-ray scattering techniques. The main factors influencing TAG polymorphism are discussed, revealing that a higher occurrence of structural defects in the TAG structure always accelerates the rate of the α → β polymorphic transformation. Diverse approaches can be employed based on the specific system: incorporating foreign molecules or solid particles into bulk TAGs, reducing drop size in dispersed systems, or using surfactants that remain fluid during TAG particle crystallization, ensuring the necessary molecular mobility for the polymorphic transformation. Furthermore, we showcase the role of TAG polymorphism on a recently discovered phenomenon: the creation of nanoparticles as small as 20 nm from initial coarse emulsions without any mechanical energy input. This analysis underscores how the broader understanding of the TAG polymorphism can be effectively applied to comprehend and control previously unexplored processes of notable practical importance.

D. Cholakova, M. Lisicki, S. K. Smoukov, S. Tcholakova, E. E. Lin, J. Chen, D. C. G., E. Lauga, N. Denkov
Nat. Phys. 2021
17
1050 - 1055
Show Abstract

The design of artificial microswimmers is often inspired by the strategies of natural microorganisms. Many of these creatures exploit the fact that elasticity breaks the time-reversal symmetry of motion at low Reynolds numbers, but this principle has been notably absent from model systems of active, self-propelled microswimmers. Here we introduce a class of microswimmers that spontaneously self-assembles and swims without using external forces, driven instead by surface phase transitions induced by temperature variations. The swimmers are made from alkane droplets dispersed in an aqueous surfactant solution, which start to self-propel on cooling, pushed by rapidly growing thin elastic tails. When heated, the same droplets recharge by retracting their tails, swimming for up to tens of minutes in each cycle. Thermal oscillations of approximately 5 °C induce the swimmers to harness heat from the environment and recharge multiple times. We develop a detailed elasto-hydrodynamic model of these processes and highlight the molecular mechanisms involved. The system offers a convenient platform for examining symmetry breaking in the motion of swimmers exploiting flagellar elasticity. The mild conditions and biocompatible media render these microswimmers potential probes for studying biological propulsion and interactions between artificial and biological swimmers.

N. Denkov, S. Tcholakova, I. Lesov, D. Cholakova, S. K. Smoukov
Nature 2015
528
392 - 395
Show Abstract

Revealing the chemical and physical mechanisms underlying symmetry breaking and shape transformations is key to understanding morphogenesis. If we are to synthesize artificial structures with similar control and complexity to biological systems, we need energy- and material-efficient bottom-up processes to create building blocks of various shapes that can further assemble into hierarchical structures. Lithographic top-down processing allows a high level of structural control in microparticle production but at the expense of limited productivity. Conversely, bottom-up particle syntheses have higher material and energy efficiency, but are more limited in the shapes achievable. Linear hydrocarbons are known to pass through a series of metastable plastic rotator phases before freezing. Here we show that by using appropriate cooling protocols, we can harness these phase transitions to control the deformation of liquid hydrocarbon droplets and then freeze them into solid particles, permanently preserving their shape. Upon cooling, the droplets spontaneously break their shape symmetry several times, morphing through a series of complex regular shapes owing to the internal phase-transition processes. In this way we produce particles including micrometre-sized octahedra, various polygonal platelets, O-shapes, and fibres of submicrometre diameter, which can be selectively frozen into the corresponding solid particles. This mechanism offers insights into achieving complex morphogenesis from a system with a minimal number of molecular components.

Most recent publications
D. Cholakova, S. Tcholakova
Current Opinion in Colloid & Interface Science 2024
73
101832
Show Abstract

Sucrose esters (SEs), derived from sucrose and fatty acids, are biodegradable and non-toxic surfactants increasingly favored as substitutes for petrochemically synthesized ones in food, cosmetics, and pharmaceuticals. SEs provide versatile hydrophilic–lipophilic properties, determined by the degree of sucrose esterification ranging from one to eight. The length of the fatty acid residues further influences the phase behavior of SEs, allowing creation of tailored formulations for specific applications. This review provides insights about our current understanding of the SEs phase behavior, their aggregation in aqueous and oily solutions, and its correlation with formulation outcomes. Furthermore, an overview of recent studies investigating SEs in various colloidal systems, including emulsions, foams, oleogels, and others, is provided. Novel concepts are discussed alongside future research directions, emphasizing the SEs potential as sustainable, functional ingredients.

N. Pagureva, D. Cholakova, Z. Mitrinova, M. Hristova, N. Burdzhiev, S. Tcholakova
J. Colloid Interface Sci. 2024
674
209-224
Show Abstract

Hypothesis: Aqueous solutions of long-chain water-soluble sucrose ester surfactants exhibit non-trivial response to temperature variations, revealing a peak in viscosity around 40–50 ◦C. While previous investigations have explored the structures within sucrose stearate systems at various constant temperatures, a comprehensive understanding of the entire temperature dependence and the underlying molecular factors, contributing to this phenomenon is currently missing. Experiments: Temperature dependent properties and supramolecular structures formed in aqueous solutions of commercial sucrose palmitate were examined using SAXS/WAXS, DSC, optical microscopy, rheological measurements, NMR, and cryo-TEM. Findings: The underlying mechanism governing this unusual behavior is revealed and is shown to relate to the mono- to di-esters ratio in the solutions. Solutions primarily containing sucrose monoesters (monoesters molecules ≳ 98% of all surfactant molecules) exhibit behavior typical of nonionic surfactants, with minimal changes with temperature. In contrast, the coexistence of mono- and di-esters results in the formation of discrete monodisperse diester particles and a network of partially fused diester particles at low temperature. As the temperature approaches the diesters’ melting point, wormlike mixed micelles form, causing a viscosity peak. The height of this peak increases significantly with the diester concentration. Further temperature increase leads to fluidization of surfactant tails and formation of branched micelles, while excess diester molecules phase separate into distinct droplets.

Show Abstract

Triacylglycerols (TAGs) exhibit a monotropic polymorphism, forming three main polymorphic forms upon crystallization: α, β’ and β. The distinct physicochemical properties of these polymorphs, such as melting temperature, subcell lattice structure, mass density, etc., significantly impact the appearance, texture, and long-term stability of a wide range products in the food and cosmetics industries. Additionally, TAGs are also of special interest in the field of controlled drug delivery and sustained release in pharmaceuticals, being a key material in the preparation of solid lipid nanoparticles. The present article outlines our current understanding of TAG phase behavior in both bulk and emulsified systems. While our primary focus are investigations involving monoacid TAGs and their mixtures, we also include illustrative examples with natural TAG oils, highlighting the knowledge transfer from simple to intricate systems. Special attention is given to recent discoveries via X-ray scattering techniques. The main factors influencing TAG polymorphism are discussed, revealing that a higher occurrence of structural defects in the TAG structure always accelerates the rate of the α → β polymorphic transformation. Diverse approaches can be employed based on the specific system: incorporating foreign molecules or solid particles into bulk TAGs, reducing drop size in dispersed systems, or using surfactants that remain fluid during TAG particle crystallization, ensuring the necessary molecular mobility for the polymorphic transformation. Furthermore, we showcase the role of TAG polymorphism on a recently discovered phenomenon: the creation of nanoparticles as small as 20 nm from initial coarse emulsions without any mechanical energy input. This analysis underscores how the broader understanding of the TAG polymorphism can be effectively applied to comprehend and control previously unexplored processes of notable practical importance.

D. Cholakova, A. Biserova, S. Tcholakova, N. Denkov
Colloids Surf. A 2024
692
134037
Show Abstract

Small emulsion drops typically exhibit spherical shape at positive interfacial tension due to the energy minimization principle. However, in a series of studies (Denkov et al., Nature, 2015, 528, 392–395; Cholakova et al., Nature Phys., 2021, 17, 1050–1055) we showed that alkane droplets stabilized by appropriate saturated long-chain surfactants may spontaneously change their shape upon cooling, morphing into various polyhedra; hexagonal, tetragonal and triangular platelets; rod-like particles and even synthetic swimmers. These deformations are governed by the formation of thin plastic rotator phases adjacent to the drop surface. Although alkanes have numerous industrial applications, they cannot be used in food and pharma related products, in which most often triglyceride molecules are employed. The possibility for self-shaping of triglyceride drops has been demonstrated, but the detailed understanding of the process is currently missing. In the present study, we performed model experiments aimed to reveal the conditions under which the triglyceride emulsion drops may change their shape upon cooling. We show that most of the various non-spherical shapes known for alkanes can be reproduced with triglyceride droplets providing that the surfactant adsorption layer freezes before the nucleation of the oily molecules inside the drops. By comparing the behavior of triglyceride and alkane droplets, we draw unified picture and provide guiding principles which can be used for selection of appropriate surfactants enabling the spontaneous shape deformations upon cooling of oily drops of different chemical compositions.

D. Cholakova, M. Pantov, S. Tcholakova, N. Denkov
Crystal Growth Des. 2024
24
362 - 377
Show Abstract

Crystallization of alkane mixtures has been studied extensively for decades. However, the majority of the available data consider the behavior of alkanes with chain length of 21 C atoms or more. Furthermore, important information about the changes of the unit cell structure with the temperature is practically absent. In this work, the phase behavior of several pure alkanes CnH2n+2, with n ranging between 13 and 21, and their binary, ternary, or multicomponent equimolar mixtures are investigated by X-ray scattering techniques. Both bulk alkanes and oil-in-water emulsions of the same alkanes were studied. The obtained results show the formation of mixed rotator phases for all systems with chain length difference between the neighboring alkanes of Δn ≤ 3. Partial demixing is observed when Δn = 4, yet the main fraction of the alkane molecules arranges in a mixed rotator phase in these samples. This demixing is suppressed if an alkane with an intermediate chain length is added to the mixture. Interestingly, a steep temperature dependence of the interlamellar spacing in mixed rotator phases was observed upon cooling to temperatures down to 10 °C below the melting temperature of the mixture. The volumetric coefficient of thermal expansion of the rotator phases of mixed alkanes (αV ≈ 2 × 10-3 °C-1) is around 10 times bigger compared to that of the rotator phases of pure alkanes. The experiments performed with emulsion drops containing the same alkane mixture while stabilized by different surfactants showed that the surfactant template also affects the final lattice spacing which is observed at low temperatures. In contrast, no such dependence was observed for drops stabilized by the same surfactant while having different initial diameters; in this case, only the initial temperature of the crystallization onset was affected.

See all

Choose featured publications

Publications

Create a new publication