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A B S T R A C T

The shear rheology of linear wormlike micellar solutions (WMSs) is described by both Poisson renewal (PRM) 
and shuffling (SFM) models with different values of the model parameters. For low shear strains and rates of 
strains, the micellar solutions behave as a Maxwellian body with constant elasticity and viscosity. The excellent 
description of experimental data in the literature using PRM or SFM suggests that both models predict identical 
dependencies of the dynamic storage and loss moduli on the frequency of oscillations. It is shown in the liter
ature, that the PRM becomes equivalent to the SFM, when the breaking time is constant, τbr, and the charac
teristic reptation time, τrep, is equal to π2τd0, where τd0 is the reptation time evaluated with respect to the average 
length of the chain. Three independent rheological tests (apparent viscosity vs shear rate, stress vs strain at 
constant shear rates, strain oscillations at low amplitudes and different frequencies) are applied to low, medium, 
and high zero-shear viscosity WMSs to obtain the PRM and SFM model parameters (elasticity, viscosity, relax
ation, breaking, and reptation times). The known closed-form analytical expression for the Laplace image of the 
stress relaxation function and the respective infinite series for the complex modulus give possibility for the re
ported here precise systematic calculations of the storage and elastic moduli, the crossover frequency, and the 
elasticity for all values of ζbr = τbr/τrep ≤ 100. The predictions of the PRM length-dependent breaking-time 
versions are indistinguishable from those of the SFM for the obtained universal dependencies of the characteristic 
time, τB0, on ζbr. The applicability of the Vasquez–Cook–McKinley and the single-mode Oldroyd 8-constant 
models to describe the rheological behavior of WMSs is tested. The theoretical findings and conclusions are 
confirmed experimentally and illustrate the self-consistency of the used rheological regimes.

1. Introduction

At higher concentrations, the molecules in solutions of surface-active 
substances (surfactants) self-assemble to form giant wormlike and 
branched micelles [1]. Under certain conditions, the branched micelles 
assemble into a multiconnected micellar network that represents a su
pergiant micelle [2–5]. Micelle growth is accompanied with a significant 
increase of the viscosity of the solutions. Such concentrated surfactant 
solutions find wide applications in the formulations for personal care 
and house-hold detergency [6,7]. Examples are the shampoos, body 
washes, cosmetic formulations, liquid laundry detergents, formulations 
for dishwashing and home cleaning, etc. Similar micellar systems are 
used also in drug delivery, oilfield industry, and turbulent 
drag-reduction [8,9]. The competition between the 

companies-producers has led to the use of novel surfactant molecules 
and additives in order to improve the properties of the formulations with 
respect to their washing action, skin and eye irritation action, stability 
and durability, biodegradability, and tolerance to hard water.

The wormlike micelles growth is observed in a wide range of sys
tems: in nonionic surfactant solutions at higher concentrations and 
temperature [10,11]; in ionic surfactant solutions in the presence of 
salts, zwitterionic and nonionic co-surfactants, etc. [1,12–16]; in gemini 
surfactants, lipids, and biological surfactant systems [1]; block copol
ymer can also self-assemble into giant wormlike micelles [17]. For 
practical applications, the wormlike micellar solutions (WMSs) are 
convenient because their rheological properties (viscosity and elasticity) 
can be adjusted over a wide range by tunning the salt, co-surfactant, 
perfumes, etc. concentrations [18,19]. In industrial applications, the 
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rheological characteristics of detergents, cosmetics, and pharmaceuti
cals are of crucial importance for the quality of the final products. At low 
shear strains and rates of strains, the rheological parameters of WMSs 
are usually compared with the predictions of the Maxwell model of 
viscoelastic body with constant shear elasticity GM, zero-shear viscosity 
η0, and relaxation time τR = η0/GM. In the case of Maxwell model, the 
dynamic complex modulus, G* = G′+iG″, defined with respect to the 
dynamic storage, G′, and loss, G″, moduli and obtained from the oscil
latory experiments with frequency ω and low shear strain amplitudes 
obeys the following equation: 

G*(ω)

GM
=

iωτR

1 + iωτR
(1) 

The basic properties of the storage and loss moduli are: G′(ω) → GM 
and G″(ω) → 0 for large frequencies, ωτR ≫ 1; the G′(ω) and G″(ω) curves 
intersect in the crossover frequency, ω = 1/τR, where G′(1/τR) = G″(1/ 
τR) = GM/2; G″(ω) has a maximum at ω = 1/τR; G″(ω) plotted against G′ 
(ω) parametrically eliminating the frequency information is a perfect 
semicircle (Cole-Cole plot). Even at low shear strains, the rheological 
responses of WMSs can deviate (to different extent) from the pure 
Maxwellian behavior at high shear rates (large values of the frequency).

In the literature [20–26], the term "linear wormlike micellar solu
tions" is used to point out that the physical parameters of the respective 
rheological models (elasticity, viscosity, characteristic times, etc.) do 
not depend on the shear strain and on the rate of strain magnitudes. In 
the case of linear wormlike micelles, Cates and coauthors [20–26] 
developed statistical theory, which accounts for the curvilinear diffusion 
of linear molecules confined by their neighbors (reptation), the micelle 
reversible scission and end-interchange processes. The process of 
reptation is characterized by the reptation time, τrep, and the reaction of 
micelle reversible breakage and recombination is scaled with the mean 
breaking time, τbr. The reptation-reaction model predicts that for small 
ratios, ζbr = τbr/τrep, and not too high shear rates, the stress relaxation in 
the WMS is exponential with one relaxation time τR ∝ (τbrτrep)1/2. The 
practical application to experimental data across all frequencies was put 
forward by Granek and Cates [27] in their landmark Poisson renewal 
model (PRM). An inspection of the assumptions and approximations of 
the PRM suggests that the length-independent renewal time connects 
with a better physical interpretation of the true reversible scission pro
cess [28,29]. This reinterpretation of the PRM has been called the 
shuffling model (SFM). The extensions of PRM and SFM, including 
additional stress relaxation processes, are reported in the literature for 
contour length fluctuations, intra-tube Rose modes (flexible and 
semi-flexible), double reptation [27–31]. The rheological models for 
branched wormlike micelles are considered in Refs. [32–35].

In the literature [29], it is pointed out that: i) the PRM did not admit 
a closed-form solution; ii) the SFM gives a simple expression for the 
dynamic complex modulus, G*; iii) the expression given for the repta
tion time, τrep, drops the coefficient of π2, as it was done in the original 
PRM and SFM, but the pointer model [30,31] includes it. In many cases, 
the experimentalists obtain different values for τbr and τrep processing 
given experimental data for G*(ω) using these models. This problem 
appears because of typos in some publications related to the PRM and 
SFM. For example, the typos in Eq. (15) from Ref. [29] written for the 
PRM lead to the wrong predicted values for the shear modulus, Ge, and 
the reptation time, τrep. Here, we focus on the data processing of inde
pendent rheological measurements with an emphasis on the interpre
tation of the obtained rheological data on the basis of rheological 
models. In Section 2, the ingredients in the investigated WMSs and the 
used experimental methods are briefly described. Section 3 is dedicated 
to represent the available results for the closed-form solution of the PRM 
for constant breaking times, the exact infinite series for calculation of 
the complex modulus, G*, and the relationships between parameters 

used in PRM and SFM. These theoretical results are applied for precise 
calculations of both moduli, dimensionless crossover frequencies, ratios 
between the crossover dynamic modulus and the shear modulus, etc. for 
all values of τbr/τrep. ≤ 100. In Section 4, the experimental data obtained 
from three rheological tests applied to different wormlike micellar so
lutions are processed and the self-consistency of the obtained results is 
discussed. The applicability of the general form of the PRM, the Vas
quez–Cook–McKinley model [37–39], and the single-mode Oldroyd 
8-constant model [40], are discussed in Section 5. The main conclusions 
are summarized in Section 6. For the clarity of the main text, some 
experimental data are included and the main theoretical expressions 
corresponding to PRM and SFM are re-derived in the Supplementary 
material.

The paper could be useful for a broad audience of researchers, who 
use rheological data to characterize and compare the wormlike micellar 
solutions, and it shows the interrelationships between the studied 
rheological models.

2. Materials and methods

For the rheological experiments, we used mixed WMSs composed of 
different ionic and zwitterionic surfactants: i) anionic surfactants so
dium dodecyl sulfate (SDS), product of Sigma-Aldrich, active substance 
100 %, and palmitic sulfonated methyl ester (C16SME), product of KLK 
OLEO, purity of 96 %; ii) zwitterionic surfactants cocamidopropyl 
betaine (CAPB), product of Evonik, Essen, Germany, Tego Betain F 50, 
active substance 37.8 %, and N,N-dimethyldodecylamine N-oxide 
(DDAO), product of Sigma-Aldrich, active substance 30 %. These sam
ples were used in our experiments without any additional purification.

The aqueous solutions were prepared with deionized water purified 
by Elix 3 water purification system (Millipore). All experiments were 
carried out at a temperature of 25 ◦C. The studied 12 wt% mixed SDS +
CAPB and SDS + DDAO solutions of weight ratio 3:7 and 15 wt% 
C16SME + CAPB of weight ratio 1:3 contain linear wormlike micelles 
[19,41].

Rotational rheometer Discovery Hybrid Rheometer HR20 (TA In
struments, Delaware, USA) equipped with cone-plate geometry CP 2/40 
was used to measure the rheological response of the micellar solutions. 
The temperature, T = 25 ± 0.1 ◦C, was controlled by a Peltier element. 
The evaporation was suppressed by a solvent trap. To confirm the 
reproducibility of the data, each rheological experiment was repeated at 
least three times starting with newly prepared solutions. Three different 
rheological regimes were applied to characterize the shear rheology of 
the studied solutions. First, we measured the apparent viscosity, ηapp 
(the ratio between the steady shear stress and the rate of shear strain). 
The steady shear rate sweeps were performed in the shear rate range 
from 0.001 to 1000 s− 1, using a logarithmic profile with approximately 
25 data points per decade. The rheometer automatically adjusted the 
acquisition time at each point to ensure steady-state conditions, based 
on a torque stability criterion of 1 % deviation. The storage and loss 
moduli, G′ and G″, as functions of the angular frequency, ω, in the range 
from 0.06 to 300 rad/s at a small amplitude of the shear strain (0.02) 
were obtained using the frequency sweep oscillatory regime. We 
checked the linear rheological response of all micellar solutions – the 
obtained moduli were independent on the amplitude of the shear strain 
up to 0.1 over the studied frequency range.

To obtain the parameters of the Maxwell model (shear elasticity GM 
and viscosity η0), we measured the shear stress, σ(t), and the shear strain, 
γ(t), as functions of time, t, for all solutions at low constant shear rates, 
dγ/dt. Fig. 1 shows the respective dependencies in the case of 15 wt% 
(1:3) C16SME + CAPB micellar solution. The used rheometer produces a 
well-defined linear dependence of the shear strain on time with a rate of 
shear strain of 0.0979 ± 0.0001 s− 1 and a regression coefficient of 
0.9999 (Fig. 1). In the case of a constant shear rate, dγ/dt, the Maxwell 

K.D. Danov et al.                                                                                                                                                                                                                               JCIS Open 20 (2025) 100160 

2 



model predicts the following simple exponential dependence of the 
shear stress on time: 

σ(t)= η0
dγ
dt

[

1 − exp
(

−
GM

η0
t
)]

(2) 

The solid line in Fig. 1 represents the best fit of σ(t) according to Eq. 
(2). The obtained best fit parameters from this particular run are GM =

125 ± 0.5 Pa and η0 = 428 ± 0.4 Pa s with regression coefficient of 
0.9998.

More details regarding the data processing of all experimental data 
obtained with the use of the different rheological regimes are discussed 
in Sections 4 and 5.

3. Closed-form solution of the PRM and interrelationships 
between PRM and SFM

In the original PRM, the stress relaxation function, G(z,t), of polymer 
solution with shear modulus Ge, corresponding to a chain of length L 
scaled with the average chain length, La, is described by a multi- 
exponential decay of time t [42]: 

G(z, t)
Ge

=
8
π2

∑∞

p=odd

1
p2 exp

[

−
p2t

τd(z)

]

and z ≡
L
La

(3) 

Here the reptation time of the L-chain, τd(z), is related to the dimen
sionless chain length, z, and the reptation time, τd0, evaluated with 
respect to the average length of the chain, La, as follows: τd = τd0z3. The 
Laplace transform with respect to time t defines the relaxation of the 
irreversible system in the Laplace space: 

GL(z, s)≡
∫∞

0

G(z, t)
Ge

exp(− st)dt =
8
π2

∑∞

p=odd

τd

p2(p2 + τds)
(4) 

In the Supplementary material (S1), we alternatively prove the 
following exact closed-form expression for the series in the right-hand 
side of Eq. (4): 

GL(z, s)=
1
s
−

1
s

tanh(u)
u

and u ≡
z3/2

2
(
π2τd0s

)1/2 (5) 

The waiting time distribution for a renewal event to occur on a chain 
of length L is scaled by characteristic time τB(L). Different concrete de
pendencies of τB on z = L/La are discussed in the literature [27,29]: a) in 
the case of reversible scission rearrangements, the following expression 
for the characteristic time is defined: 

τB(z)=
3.3τB0

2 + z
(6a) 

b) if the linear wormlike micelles rearrange by the end attack pathway, 
one obtains:

τB(z)=
4.0τB0

1 + z
(6b) 

Here τB0 has a meaning of a characteristic breaking time. Finally, the 
dynamic complex modulus, G*, is calculated by the averaging over the 
equilibrium micellar length distribution, see Eqs. (S9) and (S10), to 
derive the following relationship [27]: 

G*(ω)

Ge
=

iω〈GL
(
z, iω + τ− 1

B
)
〉

1 − 〈τ− 1
B GL(z, iω + τ− 1

B )〉
(7) 

In the recent publication [29], the authors “argue that a constant τB 
(rather that the L-dependent one used in the original PRM) will provide a 
better approximation of the essential Cates mechanism, because it gives 
the true rate at which slow-relaxing interior segments are “renewed”, i. 
e., transformed to fast-relaxing end segments”. Thus, the PRM should be 
compared with the SFM using the characteristic breaking time, τB(z) =
τbr. In this case, Eq. (7) is simplified and it yields: 

G*(ω)

Ge
=

iωτbr(1 − F)
iωτbr + F

(8) 

Here the universal function, F(β), depends only on one complex 
parameter, β, expressed through the frequency, ω, the reptation time, 
τd0, evaluated with respect to the average chain length, and the constant 
breaking time, τbr. It is shown in the Supplementary material (S3), that 
the function, F, is given by the following series: 

F(β) =
2π1/2

β1/2 +
∑∞

m=0

bm

β(2+m)/3 and β ≡

(
π2τd0

τbr

)

(1+ iωτbr) (9) 

The exact numerical values of the coefficients, b0, b1, …, are calculated 
using Eq. (S19), see Ref. [36]. For convenience, we define function F(β) 
= 1 − βC(β), where C(β) is introduced in Ref. [36]. The series defined by 
Eq. (9) gives the possibility to calculate the values of the dynamic 
complex modulus with a relative precision of 10− 14 using the double 
precision definitions in Fortran for all values of the complex parameter, 
β. It is obvious from the definition of β, Eq. (9), and the asymptotic 
expression given by Eq. (S20b) that the larger the values of the dimen
sionless frequency, ωτbr, and/or the ratio, τd0/τbr, the faster the 
convergence of the series in Eq. (9) is. For large values of τbr/τd0, the 
number of terms in the series needed to calculate F(β) with a good 
precision considerably increases [36].

In the Supplementary material (S4), the main result from the SFM for 
the dynamic complex modulus, G*, is briefly discussed. The final 
conclusion is that: if the breaking time, τB(z), in the PRM is assumed to 
be a constant equal to the characteristic breaking time, τbr, and the 
characteristic reptation time, τrep, is defined to be τrep = π2τd0, where τd0 
is the reptation time evaluated with respect to the average chain length, 
La, then both PRM and SFM predict the same dependencies of the dy
namic modulus, G*, on the frequency, ω, the characteristic reptation, 
τrep, and the mean breaking, τbr, times. Moreover, for large values of |β| 
≫ 1 (small values of ζbr = τbr/τrep ≪ 1) and low frequencies, ωτbr ≪ 1, 
the leading order term of F(β) in Eq. (9) is equal to 2π1/2(τbr/τrep)1/2 ≪ 1 
and the leading order expansion of the expression for the dynamic 
modulus, Eq. (8), becomes: 

G*(ω)

Ge
=

iω
(
τbrτrep

)1/2/( 2π1/2
)

1 + iω
(
τbrτrep

)1/2/
(2π1/2)

(10) 

Fig. 1. Dependence of shear strain γ(t) and shear stress σ(t) on time t, measured 
for 15 wt% (1:3) C16SME + CAPB micellar solution.
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Note that Eq. (10) has the same form as Eq. (1), which corresponds to 
the Maxwell model with parameters GM = Ge and τR = (τbrτrep)1/2/(2π1/ 

2) = 0.282095(τbrτrep)1/2.
The numerical results for the dimensionless storage, G′/Ge, and loss, 

G″/Ge, moduli calculated from Eqs. (8) and (9) up to large values of ζbr ≤

100 are summarized in Fig. 2, see also Figs. 1 and 2 in Ref. [29]. The 
general properties of the PRM and SFM are well illustrated. As it should 
be: G′(ω) monotonically increases with the rise of the frequencies of 
oscillations and G′ → Ge at large values of ω; G″(ω) increases to its 
maximum and subsequently vanishes to zero for large frequencies of 
oscillations; the G′(ω) and G″(ω) curves intersect in the crossover fre
quency, ωc(τbr,τrep), which depends on the mean breaking and the 
characteristic reptation times. The dynamic modulus at ωc is denoted by 
Gc ≡ G′(ωc) = G″(ωc). Fig. 2 shows that the position of the dimensionless 
crossover frequency, ωcτbr, shifts to the right with the increase of the 
ratio between the breaking and reptation times, ζbr. It is important to 
note, that for ζbr < 1, G″(ω) has a maximum value of Gc exactly at ω = ωc, 
while for ζbr > 1, the maximum of G″(ω) is greater than Gc and it takes 
place for frequencies larger than ωc.

One possible representation of the experimental data is to use the 
Cole-Cole like plot thus eliminating the frequency information. In the 
case of Maxwell model, 2G″(ω)/GM vs 2G′(ω)/GM is a perfect semicircle 
and 2G″(1/τR)/GM = 2G′(1/τR)/GM = 1, see Eq. (1) and Fig. 3. For both 
PRM and SFM, the corresponding plot can be defined as G″(ω)/Gc vs G′ 
(ω)/Gc because of G″(ωc)/Gc = G′(ωc)/Gc = 1 (see Fig. 3). One sees that 
the curves for ζbr > 1 deviate considerably from the semicircle even for 
G′(ω)/Gc < 1 and the respective deviations become more pronounced 
with the increase of ζbr. In the opposite case, ζbr < 1, there are parts of 
the curves (at least for G′(ω)/Gc ≤ 1, that is for ω ≤ ωc) that practically 
lie on the semicircle. Thus, along these parts of the curves, the rheo
logical behavior of the studied WMS corresponds to the Maxwell model 
of viscoelastic body with an elasticity GM = 2Gc and a relaxation time τR 
= 1/ωc.

The values of the crossover frequency, ωc, the dynamic modulus, Gc, 
and the shear modulus, Ge, are related to the average micelle total 
contour length, the persistence and entanglement micellar lengths, and 
the mesh size of the formed network [43]. Thus, their precise experi
mental observation is important for characterization of the interrelation 
between the rheology and structure of linear WMSs. In the literature 
[20–30], the crossover frequency, ωc, is scaled as 1/ωc ∝ (τbrτrep)1/2, see 
Eq. (10). The obtained results (see Appendix S5), calculated numerically 
here with a relative precision of 10− 12, for the dependence of the 
dimensionless crossover frequency on ζbr ≤ 100 are summarized in 
Fig. 4a (dashed line).

On the other hand, having in mind the cases when one wishes to 
avoid extensive computational work, we interpolated the numerical 
data in Fig. 4a using the following empirical relationship: 

ωc

(
τbrτrep

)1/2

2π1/2 =ωcτrep
ζ1/2

br
2π1/2 =1 − 1.20025ζ1/6

br +0.563515ζ1/3
br

− 0.011221ζ1/2
br (11) 

The solid line in Fig. 4a is drawn using Eq. (11). The relative errors of 
the interpolated values are less than 1.3 % for all studied ratios between 
the mean breaking and the characteristic reptation times, ζbr. The 
respective calculations for the dimensionless dynamic moduli, 2Gc/Ge, 
vs ζbr are shown in Fig. 4b (dashed line). It is interesting that the curve 
has a sigmoidal form and the calculated data can be interpolated as 
follows: 

2Gc

Ge
=0.324679 +

[
1.47925 + 0.00152821 exp

(
7.61145ζ1/12

br

)]− 1

(12) 

The relative errors of the interpolated values are less than 1.4 % for 
ζbr ≤ 100 (solid line in Fig. 4b).

Тhe representation shown in Fig. 4c can be used for the express 
estimation of the value of ζbr from the experimental data. The dashed 
line therein corresponds to the high precision numerical results for ζbr ≤

100 and the solid line is calculated from the following interpolation 
formula: 

ζbr =
(1 − φ)2

φ − 0.321784

{

0.22272+1.63381

/[

1 + 1.738214
(φ − 0.321784)1.107085

(1 − φ)0.369025

]1.595659} (13) 

where φ ≡ 2Gc/Ge. The relative errors of the interpolated values of ζbr 
are less than 1.4 % for all values of the dimensionless dynamic moduli, 
2Gc/Ge, corresponding to ζbr ≤ 100. For example, one estimates the 
plateau value of the storage modulus at high frequencies of oscillations 
and the modulus at the crossover point in order to calculate the 
approximate value of φ = 2Gc/Ge. From interpolation formula, Eq. (13), 
one calculates the ratio between both characteristic times, ζbr. Subse
quently, the dimensionless crossover frequency corresponding to ζbr is 
calculated from Eq. (11). From ζbr and the experimental value of the 
crossover frequency, ωc, the approximate value of the reptation time is 
obtained. Note that the estimated parameters are not precise but they 
can be served as an initial guess for the numerical algorithms used to fit 
the experimental data from oscillatory rheological tests. From our 
knowledge, the dependencies illustrated in Fig. 4 for ζbr ≤ 100 are not 
published in the literature.

Note that the most experimentalists associate 2Gc with the Maxwell 
elasticity, GM, see Sections 4 and 5. The shear modulus of the WMS 
predicted by both PRM and SFM, Ge, is greater than GM. For example, 

Fig. 2. Dependencies of the dimensionless storage, G′/Ge, and loss, G″/Ge, moduli on the dimensionless frequency, ωτbr, for different values of ζbr: a) ζbr ≤ 1; b) 1 ≤
ζbr ≤ 100.
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Ge/(2Gc) = 1.82 for ζbr = 1 (Fig. 4b), and the effective Maxwell elas
ticity, GM = 2Gc, is about two times lower than Ge. Even for ζbr = 0.1, the 
calculated value is Ge/(2Gc) = 1.328 and the shear modulus, Ge, is more 
than 30 % higher than GM. The calculated dependencies shown in Fig. 4
are valid only in the framework of the considered versions of the PRM 
and SFM. The location of the crossover frequency will change if, for 
example, contour length fluctuations or end-attack processes are 
included in the models.

4. Comparison of the results from the data processing of 
rheological data for WMSs

Fig. 5 summarizes the experimental data for the apparent viscosity, 
ηapp (the steady shear stress divided by the rate of shear strain), vs the 
shear rate. At low shear rates, dγ/dt, the quasi-Newtonian rheological 
behavior with a constant zero-shear viscosity, η0, is observed for all 
WMSs. The larger the zero-shear viscosities, the lower the thresholds of 
the shear rates at which the shear thinning occurs are. At high shear 

rates, ηapp is inversely proportional to dγ/dt, which is typical for a shear 
thinning rheological behavior of the WMS [13,15,16,18,19,44].

The zero-shear viscosity increases about 100 times for 12 wt% WMS 
containing SDS if one replaces the zwitterionic surfactant DDAO with 
CAPB (Fig. 5). Even at higher surfactant concentrations, the replacement 
of SDS with C16SME in CAPB containing WMS leads to lower values of 
η0. The relative experimental errors of the measured zero-shear viscosity 
in each particular run were not higher than 1 %. The mean values of 
η0 listed in Table 1 were obtained from the particular values of the zero- 
shear viscosity measured at least three times starting with newly pre
pared solutions. Note, that the errors shown in Table 1 correspond to the 
reproducibility of the experiments. This steady-state rheological regime 
does not provide information on the elasticity of the micellar solutions.

One way to characterize elasticity GM and viscosity η0 of viscoelastic 
Maxwell bodies [43,45] is to apply shear deformations with constant 
rates of shear strains, dγ/dt (Figs. 1 and 6). The dependence of the shear 
stress, σ(t), on time t obeys the simple exponential law given by Eq. (1). 
The obtained parameters of the Maxwell model for 15 wt% (1:3) 

Fig. 3. Cole-Cole like plots: dependencies of the dimensionless loss moduli, G″/Gc, on the dimensionless storage moduli, G′/Gc, for different values of ζbr ≤ 100. The 
perfect semicircle corresponds to the Maxwell model, 2G″/GM vs 2G′/GM.

Fig. 4. Dependence of: a) the dimensionless crossover frequency on (ζbr)1/6; b) the dimensionless dynamic modulus, 2Gc/Ge, on (ζbr)1/12; c) ζbr vs 2Gc/Ge. The shown 
expressions interpolate the numerical values with relative precision lower than 1.4 % for all values of ζbr ≤ 100.
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C16SME + CAPB WMS are given in Section 2, where the relaxation time 
is τR = 3.42 s (Fig. 1). The respective results for the particular runs 
illustrated in Fig. 6 are: a) GM = 143 ± 0.5 Pa, η0 = 17.8 ± 0.4 Pa s, 
regression coefficient of 0.9995, dγ/dt = 0.0979 ± 0.0001 s− 1, and τR =

0.124 s for 12 wt% (3:7) SDS + DDAO WMS; b) GM = 199 ± 0.4 Pa, η0 =

1830 ± 5 Pa s, regression coefficient of 0.9997, dγ/dt = 0.0983 ±
0.0001 s− 1, and τR = 9.20 s for 12 wt% (3:7) SDS + CAPB WMS. It is 
obvious, that the relaxation of the shear stress is the fastest for SDS +
DDAO WMS (Fig. 6a) and the slowest for SDS + CAPB WMS (Fig. 6b) 
because of the about eighty times difference between the relaxation 
times. The respective parameters with their reproducibility errors listed 
in Table 1 show that the obtained viscosities, η0, from both rheological 
regimes coincide for each WMS in the frame of the experimental error.

The experimental data for the dynamic storage and loss moduli, G′ 
and G″, vs the frequencies of oscillations, ω, are summarized in Fig. 7
(symbols). The solid lines in Fig. 7 show the best fit results using Eqs. (7) 
and (8) with adjustable parameters Ge, τbr, and τrep = π2τd0. In all cases, 
the regression coefficients were larger than 0.9995 and the theoretical 

predictions excellently describe experimental data. The obtained best fit 
values of the parameters for 15 wt% (1:3) C16SME + CAPB WMS 
(Fig. 7a) are: Ge = 224 ± 1 Pa, τbr = 3.89 ± 0.02 s, τrep = 4.73 ± 0.03 s. 
Thus, ζbr = 0.822 < 1 and the rheological response for low frequencies 
should be close to that of the Maxwell model with GM = 2Gc and τR = 1/ 
ωc (see Fig. 3). Using the calculations shown in Fig. 4, one obtains GM =

127 Pa and τR = 3.36 s, so that η0 = 426 Pa⋅s (see dashed lines in Fig. 7a).
It is remarkable that the value of GMτR determined from the data in 

oscillatory regime is in excellent agreement with the values of η0 inde
pendently obtained from the plateau of the respective flow curve in 
Fig. 5. Such coincidence is sometimes cited as fulfillment of the Cox- 
Merz rule [46]. This agreement is an argument in favor of the correct
ness and self-consistence of the used procedure for comparison of theory 
and experiment. As can be expected, the deviations of the experimental 
data from the dashed lines are small below the crossover frequency and 
they are not negligible for ω > ωc. Note, that the elasticities and vis
cosities obtained from the all applied rheological regimes coincide in the 
frame of the reproducibility errors (Table 1). Nevertheless, the shear 
modulus of the WMS, Ge, is 1.76 times larger than elasticity GM.

The experimental data for G′ and G″ in the case of 12 wt% (3:7) SDS 
+ DDAO WMS are plotted in Fig. 7b. Because of the shorter relaxation 
time compared to that of 15 wt% (1:3) C16SME + CAPB WMS, the 
crossover frequency is shifted to the larger values. The respective pa
rameters of the best fit with both PRM and SFM are: Ge = 259 ± 2 Pa, τbr 
= 0.141 ± 0.003 s, τrep = 0.193 ± 0.002 s (solid lines in Fig. 7b). Note 
that shear modulus Ge and ζbr = 0.729 have close values to the previous 
WMS (Fig. 7a), but the mean breaking and characteristic reptation times 
are more than 25 times lower. As a result, GM = 149 Pa is close to that for 
15 wt% (1:3) C16SME + CAPB WMS but τR = 0.128 s and η0 = 19.1 Pa⋅s 
have considerably lower values. Again, GM is about 1.74 times lower 
than Ge. The dashed lines corresponding to the Maxwell model in Fig. 7b 
deviate from experiments at ω > ωc.

For 12 wt% (3:7) SDS + CAPB WMS, the best fit parameters of both 
PRM and SFM are: Ge = 231 ± 3 Pa, τbr = 1.89 ± 0.04 s, τrep = 145 ± 5 s 
(solid lines in Fig. 7c). As a result, ζbr = 1.30 × 10− 2 and the deviations 
from the Maxwell model with GM = 2Gc = 203 Pa, τR = 1/ωc = 8.54 s, 
and η0 = 2Gc/ωc = 1734 Pa⋅s take place for frequencies larger than 0.2 
rad/s (Fig. 7c). The difference between Ge and GM is less than 10 % 
because of the small values of ζbr. The applied three different rheological 
regimes give the same values for the respective rheological parameters 
in the range of reproducibility errors (Table 1).

Fig. 8a summarizes the plots of the experimental loss moduli vs 
storage moduli for all studied WMSs. This plot is quantitative but it is 
difficult to compare the different WMSs with respect to their Maxwellian 
rheological behavior. The Cole-Cole plots represent the dependencies of 
the dimensionless loss moduli, 2G″/GM, on the dimensionless storage 
moduli, 2G′/GM, where GM = 2Gc (Figs. 3 and 8b). The region in which 
the modeling of the WMS like an equivalent Maxwellian viscoelastic 
body is well illustrated (Fig. 8b) – the lower ζbr, the lower the deviations 
of experiments from the semicircle are.

In the literature [30,43,45,47], the mesh size of the wormlike 
micellar solutions, ξ, is related to the shear elasticity, Ge, through the 

Fig. 5. Dependencies of the apparent viscosity on the rate of shear strain, dγ/dt, 
measured for the studied WMSs.

Table 1 
Rheological parameters of the studied linear wormlike micellar solutions.

System η0
a (Pa⋅s) η0

b (Pa⋅s) η0
c (Pa⋅s) GM

b

(Pa)
2Gc

c

(Pa)

C16SME +
CAPB

423 ± 5 427 ± 5 425 ± 5 124 ± 4 128 ± 4

SDS + DDAO 18.5 ± 0.7 17.9 ± 0.6 18.9 ± 0.8 142 ± 6 148 ± 4
SDS + CAPB 1800 ± 50 1840 ± 50 1750 ± 60 198 ± 5 202 ± 5

a) Apparent viscosities vs shear rates experiments.
b) Shear stresses vs shear strains for constant rate of strain experiments.
c) Oscillatory regimes for small amplitudes of shear strains.

Fig. 6. Dependence of shear strain γ(t) and shear stress σ(t) on time t, measured for WMS: a) 12 wt% (3:7) SDS + DDAO; b) 12 wt% (3:7) SDS + CAPB.
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following expression, ξ = (AkBT/Ge)1/3, where kB is the Boltzmann 
constant, T is the absolute temperature, and the prefactor A is theoret
ically derived from correlations for entangled polymers to be equal to 
9.75. For the studied WMSs, the calculated values of the mesh size are: 
42 nm for 15 wt% (1:3) C16SME + CAPB; 40 nm for 12 wt% (3:7) SDS +
DDAO; 41 nm for 12 wt% (3:7) SDS + CAPB. These values are approx
imately equal (≈40 nm) because of the comparable micellar volume 

fractions. In contrast, if one uses the obtained values of GM (Table 1) 
instead of Ge, then one calculates 48 nm for SDS + DDAO and 43 nm for 
SDS + CAPB, which are different for equal micellar volume fractions.

These results show that if one wants to obtain the structural pa
rameters of the WMS (the average wormlike micelle length, the persis
tence and entanglement lengths, and the mesh size of the formed 
network), then one needs to process rheological data for the dynamic 

Fig. 7. Dependencies of the storage, G′, and loss, G″, moduli on the frequency of oscillations, ω, for the studied WMSs: a) 15 wt% (1:3) C16SME + CAPB; b) 12 wt% 
(3:7) SDS + DDAO; c) 12 wt% (3:7) SDS + CAPB. The symbols represent the experimental data, the solid lines show the best fit results from both PRM and SFM, and 
the dashed lines correspond to the Maxwell model with parameters calculated at the crossover points.

Fig. 8. a) Dependencies of loss moduli G″ on storage moduli G′ for the studied WMSs; b) Cole-Cole plots – dependencies of the dimensionless loss moduli, 2G″/GM, on 
the dimensionless storage moduli, 2G′/GM, where GM = 2Gc. The solid lines are the best theoretical fits according to Eqs. (7) and (8), the symbols show the 
experimental data.
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moduli using the PRM or the SFM in order to calculate precisely the 
physical elasticity, Ge, the mean breaking, τbr, and the characteristic 
reptation, τrep, times.

5. Discussions on the rheological models

In the original PRM [27], the breaking time, τB(z), depends on the 
length of wormlike micelles, see Eqs. (6a) and (6b), and there are no 
closed-form analytical expressions for G′ and G″. The simpler SFM and 
PRM with constant breaking time τB(z) = τbr excellently describe the 
experimental data. It is important to show the possibility to use rheo
logical experiments to distinguish the length-dependence PRM models 
with the SFM. For that reason, we fixed the values of the shear elastic 
moduli, Ge, and the characteristic reptation times, τrep, obtained from 
the SFM (see Table 2) and varied only the characteristic breaking time, 
τB0, appearing in Eqs. (6a) and (6b). The storage and loss moduli, G′ and 
G″, were calculated from the general relationship, Eq. (7), using the 
respective complex numerical integrations, see Eqs. (S9) and (S10), 
applying a high precision numerical algorithm.

The obtained parameters from the best fits with one adjustable 
parameter, τB0, are listed in Table 2 for the particular cases of WMSs. In 
all cases, the regression coefficients were greater than 0.9995. Fig. S2
summarizes the dependencies of the dimensionless storage, G′/Ge, and 
loss, G″/Ge, moduli on the frequency of oscillations, ω, calculated using 
the rheological parameters given in Table 2. It is impressive, that the 
models with constant τbr and length-dependent τB(z) predict practically 
the same dependencies of the dynamic moduli on frequency ω. Thus, the 
breaking time models cannot be distinguished based on the concrete 
experimental data. The differences are only in the values of the mean, 
τbr, and the characteristic, τB0, breaking times.

To check the generality of this conclusion, we have chosen the 
following strategy. First, one calculates the value of the crossover fre
quency, ωc(τbr,τrep), predicted from the SFM, for given breaking and 
reptation times, τbr and τrep. Second, one varies τB0 in the general PRM 
with length-dependent τB(z) to obtain the same crossover frequency, 
ωc(τbr,τrep), for the same reptation time, τrep. Thus, the ratio between the 
obtained characteristic breaking times, τB0/τbr, becomes a universal 
function only of ζbr.

Fig. 9a and S1 show the comparisons between the PRM using the 

constant value of the breaking time, τbr, and τB(z) calculated from Eqs. 
(6a) and (6b) for different ratios ζbr from 0.01 to 100. Solid lines 
correspond to the numerical solution from the PRM with constant τB(z) 
= τbr; circles show the results from the PRM in the case of reversible 
scission rearrangements, τB(z) is calculated from Eq. (6a); stars – when 
the linear wormlike micelles rearrange by the end attack pathway, τB(z) 
is given by Eq. (6b). One sees that the models with constant τbr and 
length-dependent τB(z) predict practically the same dependencies of the 
dimensionless storage, G′/Ge, and loss, G″/Ge, moduli on the dimen
sionless frequency, ωτbr.

The dashed lines in Fig. 9b show the obtained dependencies of τB0/τbr 
on ζbr calculated from both length-dependent variants of the PRM. One 
sees that 1.41 < τB0/τbr < 2.02 in the case of reversible scission rear
rangements and 0.891 < τB0/τbr < 1.41 when the wormlike micelles 
rearrange by the end attack pathway. In both cases, τB0/τbr mono
tonically increases with the increase of ζbr. The universal curves in 
Fig. 9b have sigmoidal forms and for express calculations, these de
pendencies can be interpolated as follows: 

a) for reversible scission rearrangements, τB(z) is defined by Eq. (6a)
and the interpolation formula reads:

τB0

τbr
=1.4113 +

[
1.6502 + 8031.2 exp

(
− 8.9990ζ1/12

br

)]− 1
(14a) 

b) when the linear wormlike micelles rearrange by the end attack 
pathway, τB(z) is given by Eq. (6b) and the interpolation expression 
is:

τB0

τbr
=0.89127 +

[
1.9094 + 8982.5 exp

(
− 8.9700ζ1/12

br

)]− 1
(14b) 

The relative errors of both interpolation formulae (solid lines in 
Fig. 9b) are less than 1 % for ζbr ≤ 100. Thus, one can process rheological 
experimental data using the exact expressions for the simpler SFM, Eqs. 
(7) and (8), to obtain Ge, τbr, and τrep, and subsequently to calculate τB0 
from the interpolation formulae, Eq. (14a) or Eq. (14b). Using this 
approach, the numerical problems with the integration of functions of 
complex variables and the precision of the numerical procedures are 
avoided and the time of calculation is considerably accelerated.

Table 2 
Rheological parameters obtained from the PRM for the studied linear wormlike micellar solutions.

System Ge (Pa) τrep (s) τbr (s) τB0
a (s) τB0

b (s)

C16SME + CAPB 224 ± 1 4.73 ± 0.03 3.89 ± 0.02 6.89 ± 0.03 4.67 ± 0.02
SDS + DDAO 259 ± 2 0.193 ± 0.002 0.141 ± 0.003 0.247 ± 0.004 0.168 ± 0.003
SDS + CAPB 231 ± 3 145 ± 5 1.89 ± 0.04 2.77 ± 0.05 1.78 ± 0.04

a) Eq. (6a) is used for the dependence of τB on τB0 and z.
b) τB(z) is calculated from Eq. (6b).

Fig. 9. a) Dependencies of the dimensionless storage, G′/Ge, and loss, G″/Ge, moduli on the dimensionless frequency, ωτbr, for ζbr = 1. Solid lines correspond to the 
numerical solution from the PRM with constant τB(z) = τbr; circles show the results from the PRM with τB(z) calculated from Eq. (6a) for τB0/τbr = 1.788; stars – the 
results from the PRM with τB(z) calculated from Eq. (6b) for τB0/τbr = 1.217. b) τB0/τbr vs ζbr – dashed lines show the numerical results and solid lines correspond to 
the interpolation formulae given by Eqs. (14a)–(14b).
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Both PRM and SFM have a clear physicochemical meaning and allow 
relating the WMS rheology and bulk structure. Nevertheless, they are 
not applicable for engineering calculations: there is not a known cor
responding theoretical relationship between the total stress tensor, 
strain tensor and their rates, which represents the general rheological 
constitutive relationship in the non-Newtonian hydrodynamic of com
plex fluids. Peterson and Cates [48] have shown that additional ap
proximations must be made with respect to reptation and constraint 
release in order to facilitate applications in computational fluid dy
namics. As a result, it is not possible to model the flows in tubes and 
reservoirs, hydrodynamic resistances, filling and pumping, etc. of WMSs 
with the use of the PRM and SFM predictions. For that reason, recent 
rheological models having tensorial representations and postulating 
hydrodynamic constitutive rheological relationships are developed in 
the literature. The most popular are: a) the Vasquez–Cook–McKinley 
model [37–39]; b) different versions of the Oldroyd 8-constant model 
[40].

The two species Vasquez–Cook–McKinley model (VCM model) 
[37–39] considers two elastically active Hookean species: long chains 
which can break to form two short chains, which can themselves 
recombine to form a long chain. In the linear viscoelastic regime, the 
VCM model expressions for the storage and loss moduli are given by Eqs. 
(S38a) and (S38b). The best theoretical lines calculated using the VCM 
model are shown in Fig. 10a and S3 and the values of the best fit model 
parameters are listed in Table S1. For all studied WMSs the regression 
coefficients are larger than 0.9996 and the description of the experi
mental data is good. Тhe calculated best fit values of the elastic moduli 
at high frequencies, G′(∞), and the viscosity al low shear rates, η(0), are 
listed in Table 3. Note, that η(0) has a meaning of the zero-shear vis
cosity, η0, and G′(∞) – of the shear modulus, Ge, of the WMSs. It is 
obvious, that the VCM model predicts the zero-shear viscosity with 
better precision (c.f. Tables 1 and 3) compared to the shear modulus (c.f. 
Tables 2 and 3).

For the single-mode Oldroyd 8-constant framework, the de
pendencies of the complex, η*, loss, η′ ≡ G″/ω, and storage, η″ ≡ G′/ω, 
viscosities on frequency ω are calculated from Eq. (S41). Fig. 10b and S4
show that the best theoretical lines (dashed lines), calculated with pa
rameters given in Table S2, describe well all experimental data with the 

values of the regression coefficients greater than 0.998. As should be, the 
predicted values of the viscosity at low shear rates, η(0), are close to the 
zero-shear viscosity, η0, see Tables 1 and 3. It is important to note, that 
the best fit values of the limiting elasticity, G′(∞), given in Table 3 are 
systematically lower than the shear modulus, Ge, of all studied WMSs: G′ 
(∞) are close to the elasticities corresponding to the Maxwell model 
summarized in Table 1.

6. Conclusions

The shear rheology of linear wormlike micellar solutions (WMSs) at 
low and intermediate rates of shear strains is well described by both 
Poisson renewal (PRM) [27] and shuffling (SFM) [29,36] models using 
the system parameters: shear elasticity, Ge; characteristic reptation time, 
τrep; mean breaking time, τbr. At low values of the shear strains and their 
rates, the linear WMSs behave as a Maxwellian viscoelastic body with 
constant elasticity GM and zero-shear viscosity η0. The relationships 
between both sets of experimentally observed parameters ({Ge, τrep, τbr} 
and {GM, η0}) are not well described in the literature.

If the breaking time in the PRM is a constant and the reptation time, 
τd0, evaluated with respect to the average chain length is used to define 
the characteristic reptation time, τrep = π2τd0, then both PRM and SFM 
predict identical dependencies of the dynamic modulus, G*, vs fre
quency of oscillations ω, Eqs. (9) and (10). The closed analytical form for 
the Laplace image of the stress relaxation function and the respective 
infinite series for the complex modulus [36] give possibility for fast and 
precise calculations and express rheological data processing. The stor
age, G′(ω), and loss, G″(ω), moduli have equal values at the crossover 
frequency, ωc, where Gc = G′(ωc) = G″(ωc). The reported here de
pendencies of the dimensionless crossover frequency and the ratio be
tween Gc and the shear modulus of solution, Ge, on the ratio ζbr =

τbr/τrep, see Fig. 4 and Eqs. (11)–(13), provide information on the 
parameter of the Maxwell rheological model, GM = 2Gc and η0 = 2Gc/ωc, 
and are used to construct the respective normalized Cole-Cole plots, see 
Figs. 3 and 8b, for all values of ζbr ≤ 100. Eqs. (11) and (13) can be used 
for the calculation of the approximate values of τbr and τrep from 
experimental data obtained in oscillatory rheological tests. From the 
viewpoint of experimental data for G′(ω) and G″(ω), the 
micellar-length-dependent breaking-time version of the PRM [27], Eqs. 
(6a) and (6b), become indistinguishable for the dependencies of τB0/τbr 
on ζbr shown in Fig. 9b for all ratios between the mean breaking and 
characteristic relaxation times (ζbr ≤ 100). Thus, one can process 
experimental data for G′(ω) and G″(ω) using the simpler SFM to obtain 
Ge, τbr, and τrep, and subsequently to calculate τB0 from the interpolation 
formulae, Eq. (14a) or Eq. (14b), avoiding the complex numerical 
problems with the integration of functions of complex variables.

The experimental data from independent static and dynamic rheo
logical regimes (apparent viscosity vs shear rate, stress vs strain at 
constant shear rates, strain oscillations at low amplitudes and a wide 

Fig. 10. a) Dependencies of the storage, G′, and loss, G″, moduli on the frequency, ω, for 15 wt% (1:3) C16SME + CAPB WMS. Dashed lines correspond to the best fit 
results using the VCM model with parameters listed in Table S1 b) Dependencies of the loss, η′, and storage, η″, viscosities on the frequency, ω, for 15 wt% (1:3) 
C16SME + CAPB WMS. Dashed lines correspond to the best fit results using the single-mode Oldroyd 8-constant model with parameters listed in Table S2.

Table 3 
Limiting elasticity, G′(∞), and viscosity al low shear rates, η(0), predicted from 
the VCM and the single-mode Oldroyd 8-constant models for studied WMSs.

System VCM model [37–39] Oldroyd 8-constant model [40]

G′(∞) (Pa) η(0) (Pa⋅s) G′(∞) (Pa) η(0) (Pa⋅s)

C16SME + CAPB 186 ± 10 469 ± 5 143 ± 6 479 ± 4
SDS + DDAO 197 ± 8 21.0 ± 0.3 144 ± 4 21.7 ± 0.3
SDS + CAPB 217 ± 12 1840 ± 40 208 ± 8 1840 ± 50
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range of frequencies) applied to low, medium, and high zero-shear vis
cosity WMSs are described excellently by the theoretical models (Section 
4). They demonstrate the self-consistency of the applied models and 
point that GM can be about two times lower than the physical shear 
elasticity, Ge, for comparable values of the breaking and reptation times.

The physicochemical interpretation of both PRM and SFM allows 
relating the rheology to the parameters of the wormlike micellar struc
tures but both PRM and SFM have no general tensorial representations 
and cannot be used for hydrodynamic modeling of non-Newtonian 
complex fluids. The hydrodynamic constitutive rheological relation
ships are obtained in the framework of the Vasquez–Cook–McKinley 
model (VCM) [37–39] and the 8-constant Oldroyd model [40]. These 
models describe well the viscosity of linear WMSs (Fig. 10, S3, and S4) 
but the predicted elasticities are systematically lower than the respective 
shear elasticities, Ge. Regardless of the VCM and the 8-constant Oldroyd 
models applicability for engineering calculations, they do not provide 
information on the micellar structures.

The results are useful for a wide auditorium of experimentalists for 
express and precise interpretation of rheological experiments with 
WMSs. They put a light on the similarity of both PRM and SFM and the 
relationships between the physical parameters of the theoretical rheo
logical models.
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List of symbols and notations

C16SME palmitic sulfonated methyl ester
CAPB cocamidopropyl betaine
DDAO N,N-dimethyldodecylamine N-oxide
G′ dynamic storage modulus
G″ dynamic loss modulus
G* = G′ + iG″ dynamic complex modulus
G(z,t) stress relaxation function
Gc = G′(ωc) = G″(ωc) dynamic modulus calculated at ωc
Ge shear modulus of solution
GL Laplace image of G with respect to time
GM shear elasticity in the Maxwell model of viscoelastic body
L chain length
La average chain length
PRM Poisson renewal model for wormlike micellar solutions
SDS sodium dodecyl sulfate
SFM shuffling model for wormlike micellar solutions
T temperature
VCM Vasquez–Cook–McKinley model [37–39].

WMS wormlike micellar solution
dγ/dt rate of shear strain
kB Boltzmann constant
t time
z = L/La dimensionless chain length
γ(t) shear strain
η′ = G″/ω loss viscosity
η″ = G′/ω storage viscosity
η* = η′ + iη″ complex viscosity
η0 zero-shear viscosity and viscosity in the Maxwell model of 

viscoelastic body
φ = 2Gc/Ge ratio between dynamic moduli
σ(t) shear stress
τB0 characteristic breaking time defined in the length-dependence 

original version PRM
τB(z) breaking time defined in the length-dependence original 

version of PRM
τbr mean breaking time
τd(z) reptation time of the L-chain
τd0 reptation time evaluated with respect to the average chain 

length
τR = η0/GM relaxation time in the Maxwell model of viscoelastic body
τrep characteristic reptation time
ω frequency of oscillations
ωc(τbr,τrep) crossover frequency
ξ mesh size of the wormlike micellar solution
ζbr = τbr/τrep ratio between the mean breaking and the characteristic 

reptation times
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