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The shear rheology of linear wormlike micellar solutions (WMSs) is described by both Poisson renewal (PRM)
and shuffling (SFM) models with different values of the model parameters. For low shear strains and rates of
strains, the micellar solutions behave as a Maxwellian body with constant elasticity and viscosity. The excellent
description of experimental data in the literature using PRM or SFM suggests that both models predict identical
dependencies of the dynamic storage and loss moduli on the frequency of oscillations. It is shown in the liter-
ature, that the PRM becomes equivalent to the SFM, when the breaking time is constant, 7y, and the charac-
teristic reptation time, 7yep, is equal to 72740, where 74 is the reptation time evaluated with respect to the average
length of the chain. Three independent rheological tests (apparent viscosity vs shear rate, stress vs strain at
constant shear rates, strain oscillations at low amplitudes and different frequencies) are applied to low, medium,
and high zero-shear viscosity WMSs to obtain the PRM and SFM model parameters (elasticity, viscosity, relax-
ation, breaking, and reptation times). The known closed-form analytical expression for the Laplace image of the
stress relaxation function and the respective infinite series for the complex modulus give possibility for the re-
ported here precise systematic calculations of the storage and elastic moduli, the crossover frequency, and the
elasticity for all values of {r = 7br/7rep < 100. The predictions of the PRM length-dependent breaking-time
versions are indistinguishable from those of the SFM for the obtained universal dependencies of the characteristic
time, g, on (pr. The applicability of the Vasquez—Cook-McKinley and the single-mode Oldroyd 8-constant
models to describe the rheological behavior of WMSs is tested. The theoretical findings and conclusions are
confirmed experimentally and illustrate the self-consistency of the used rheological regimes.

companies-producers has led to the use of novel surfactant molecules
and additives in order to improve the properties of the formulations with

1. Introduction

At higher concentrations, the molecules in solutions of surface-active
substances (surfactants) self-assemble to form giant wormlike and
branched micelles [1]. Under certain conditions, the branched micelles
assemble into a multiconnected micellar network that represents a su-
pergiant micelle [2-5]. Micelle growth is accompanied with a significant
increase of the viscosity of the solutions. Such concentrated surfactant
solutions find wide applications in the formulations for personal care
and house-hold detergency [6,7]. Examples are the shampoos, body
washes, cosmetic formulations, liquid laundry detergents, formulations
for dishwashing and home cleaning, etc. Similar micellar systems are
used also in drug delivery, oilfield industry, and turbulent
drag-reduction [8,9]. The competition between the

respect to their washing action, skin and eye irritation action, stability
and durability, biodegradability, and tolerance to hard water.

The wormlike micelles growth is observed in a wide range of sys-
tems: in nonionic surfactant solutions at higher concentrations and
temperature [10,11]; in ionic surfactant solutions in the presence of
salts, zwitterionic and nonionic co-surfactants, etc. [1,12-16]; in gemini
surfactants, lipids, and biological surfactant systems [1]; block copol-
ymer can also self-assemble into giant wormlike micelles [17]. For
practical applications, the wormlike micellar solutions (WMSs) are
convenient because their rheological properties (viscosity and elasticity)
can be adjusted over a wide range by tunning the salt, co-surfactant,
perfumes, etc. concentrations [18,19]. In industrial applications, the
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rheological characteristics of detergents, cosmetics, and pharmaceuti-
cals are of crucial importance for the quality of the final products. At low
shear strains and rates of strains, the rheological parameters of WMSs
are usually compared with the predictions of the Maxwell model of
viscoelastic body with constant shear elasticity Gy, zero-shear viscosity
no, and relaxation time 7g = 79/Gum. In the case of Maxwell model, the
dynamic complex modulus, G* = G'+iG", defined with respect to the
dynamic storage, G, and loss, G", moduli and obtained from the oscil-
latory experiments with frequency w and low shear strain amplitudes
obeys the following equation:

G*(w) ioTg

= R_ 1
Gu 1+iwtg 1)

The basic properties of the storage and loss moduli are: G'(w) - Gy
and G'(w) — O for large frequencies, wrg > 1; the G'(w) and G'(w) curves
intersect in the crossover frequency, @ = 1/7g, where G'(1/7g) = G'(1/
1R) = Gm/2; G'(w) has a maximum at = 1/7g; G'(w) plotted against G’
(w) parametrically eliminating the frequency information is a perfect
semicircle (Cole-Cole plot). Even at low shear strains, the rheological
responses of WMSs can deviate (to different extent) from the pure
Maxwellian behavior at high shear rates (large values of the frequency).

In the literature [20-26], the term "linear wormlike micellar solu-
tions" is used to point out that the physical parameters of the respective
rheological models (elasticity, viscosity, characteristic times, etc.) do
not depend on the shear strain and on the rate of strain magnitudes. In
the case of linear wormlike micelles, Cates and coauthors [20-26]
developed statistical theory, which accounts for the curvilinear diffusion
of linear molecules confined by their neighbors (reptation), the micelle
reversible scission and end-interchange processes. The process of
reptation is characterized by the reptation time, 7rep, and the reaction of
micelle reversible breakage and recombination is scaled with the mean
breaking time, 7p,,. The reptation-reaction model predicts that for small
ratios, {br = Tbr/Trep, and not too high shear rates, the stress relaxation in
the WMS is exponential with one relaxation time 7g o (TbrTrep)l/ 2. The
practical application to experimental data across all frequencies was put
forward by Granek and Cates [27] in their landmark Poisson renewal
model (PRM). An inspection of the assumptions and approximations of
the PRM suggests that the length-independent renewal time connects
with a better physical interpretation of the true reversible scission pro-
cess [28,29]. This reinterpretation of the PRM has been called the
shuffling model (SFM). The extensions of PRM and SFM, including
additional stress relaxation processes, are reported in the literature for
contour length fluctuations, intra-tube Rose modes (flexible and
semi-flexible), double reptation [27-31]. The rheological models for
branched wormlike micelles are considered in Refs. [32-35].

In the literature [29], it is pointed out that: i) the PRM did not admit
a closed-form solution; ii) the SFM gives a simple expression for the
dynamic complex modulus, G*; iii) the expression given for the repta-
tion time, 7rep, drops the coefficient of 7%, as it was done in the original
PRM and SFM, but the pointer model [30,31] includes it. In many cases,
the experimentalists obtain different values for 7y, and 7yep processing
given experimental data for G*(w) using these models. This problem
appears because of typos in some publications related to the PRM and
SFM. For example, the typos in Eq. (15) from Ref. [29] written for the
PRM lead to the wrong predicted values for the shear modulus, G, and
the reptation time, 7.ep. Here, we focus on the data processing of inde-
pendent rheological measurements with an emphasis on the interpre-
tation of the obtained rheological data on the basis of rheological
models. In Section 2, the ingredients in the investigated WMSs and the
used experimental methods are briefly described. Section 3 is dedicated
to represent the available results for the closed-form solution of the PRM
for constant breaking times, the exact infinite series for calculation of
the complex modulus, G*, and the relationships between parameters
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used in PRM and SFM. These theoretical results are applied for precise
calculations of both moduli, dimensionless crossover frequencies, ratios
between the crossover dynamic modulus and the shear modulus, etc. for
all values of 7p;/7rep. < 100. In Section 4, the experimental data obtained
from three rheological tests applied to different wormlike micellar so-
lutions are processed and the self-consistency of the obtained results is
discussed. The applicability of the general form of the PRM, the Vas-
quez—Cook-McKinley model [37-39], and the single-mode Oldroyd
8-constant model [40], are discussed in Section 5. The main conclusions
are summarized in Section 6. For the clarity of the main text, some
experimental data are included and the main theoretical expressions
corresponding to PRM and SFM are re-derived in the Supplementary
material.

The paper could be useful for a broad audience of researchers, who
use rheological data to characterize and compare the wormlike micellar
solutions, and it shows the interrelationships between the studied
rheological models.

2. Materials and methods

For the rheological experiments, we used mixed WMSs composed of
different ionic and zwitterionic surfactants: i) anionic surfactants so-
dium dodecyl sulfate (SDS), product of Sigma-Aldrich, active substance
100 %, and palmitic sulfonated methyl ester (C;,SME), product of KLK
OLEO, purity of 96 %; ii) zwitterionic surfactants cocamidopropyl
betaine (CAPB), product of Evonik, Essen, Germany, Tego Betain F 50,
active substance 37.8 %, and N,N-dimethyldodecylamine N-oxide
(DDAO), product of Sigma-Aldrich, active substance 30 %. These sam-
ples were used in our experiments without any additional purification.

The aqueous solutions were prepared with deionized water purified
by Elix 3 water purification system (Millipore). All experiments were
carried out at a temperature of 25 °C. The studied 12 wt% mixed SDS +
CAPB and SDS + DDAO solutions of weight ratio 3:7 and 15 wt%
C16SME + CAPB of weight ratio 1:3 contain linear wormlike micelles
[19,41].

Rotational rheometer Discovery Hybrid Rheometer HR20 (TA In-
struments, Delaware, USA) equipped with cone-plate geometry CP 2/40
was used to measure the rheological response of the micellar solutions.
The temperature, T = 25 + 0.1 °C, was controlled by a Peltier element.
The evaporation was suppressed by a solvent trap. To confirm the
reproducibility of the data, each rheological experiment was repeated at
least three times starting with newly prepared solutions. Three different
rheological regimes were applied to characterize the shear rheology of
the studied solutions. First, we measured the apparent viscosity, 7app
(the ratio between the steady shear stress and the rate of shear strain).
The steady shear rate sweeps were performed in the shear rate range
from 0.001 to 1000 s}, using a logarithmic profile with approximately
25 data points per decade. The rheometer automatically adjusted the
acquisition time at each point to ensure steady-state conditions, based
on a torque stability criterion of 1 % deviation. The storage and loss
moduli, G' and G’, as functions of the angular frequency, w, in the range
from 0.06 to 300 rad/s at a small amplitude of the shear strain (0.02)
were obtained using the frequency sweep oscillatory regime. We
checked the linear rheological response of all micellar solutions — the
obtained moduli were independent on the amplitude of the shear strain
up to 0.1 over the studied frequency range.

To obtain the parameters of the Maxwell model (shear elasticity Gy
and viscosity 79), we measured the shear stress, o(t), and the shear strain,
y(t), as functions of time, t, for all solutions at low constant shear rates,
dy/dt. Fig. 1 shows the respective dependencies in the case of 15 wt%
(1:3) C16SME + CAPB micellar solution. The used rheometer produces a
well-defined linear dependence of the shear strain on time with a rate of
shear strain of 0.0979 + 0.0001 s~ and a regression coefficient of
0.9999 (Fig. 1). In the case of a constant shear rate, dy/dt, the Maxwell
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Fig. 1. Dependence of shear strain y(t) and shear stress o(t) on time t, measured
for 15 wt% (1:3) C1¢SME + CAPB micellar solution.

model predicts the following simple exponential dependence of the
shear stress on time:

o(t) :’70% {1 —exp <7%’[t>} (2)

The solid line in Fig. 1 represents the best fit of 6(t) according to Eq.
(2). The obtained best fit parameters from this particular run are Gy =
125 + 0.5 Pa and 779 = 428 + 0.4 Pa s with regression coefficient of
0.9998.

More details regarding the data processing of all experimental data
obtained with the use of the different rheological regimes are discussed
in Sections 4 and 5.

3. Closed-form solution of the PRM and interrelationships
between PRM and SFM

In the original PRM, the stress relaxation function, G(z,t), of polymer
solution with shear modulus Ge, corresponding to a chain of length L
scaled with the average chain length, L,, is described by a multi-
exponential decay of time t [42]:

Gz,t) 8 X1 Pt
G. = Zﬁexp{ffd(z) and z

p=odd

3

L
L,

Here the reptation time of the L-chain, 74(2), is related to the dimen-
sionless chain length, z, and the reptation time, 749, evaluated with
respect to the average length of the chain, L,, as follows: 7q = 7d0%°>. The
Laplace transform with respect to time t defines the relaxation of the
irreversible system in the Laplace space:

1G(z1t) 8 & 74
Gi(z,s z/ exp(—st)dt=— _— 4)
(2,8) / G. p(—st) 2 p:ZOddpz(pz + 745)
In the Supplementary material (S1), we alternatively prove the
following exact closed-form expression for the series in the right-hand
side of Eq. (4):

s S

1 1 h 3/2
= tanh(u) and uE%(ﬂszos)l/ 2 5)

GL(2,s)

The waiting time distribution for a renewal event to occur on a chain
of length L is scaled by characteristic time 7p(L). Different concrete de-
pendencies of 7 on 2z = L/L, are discussed in the literature [27,29]: a) in
the case of reversible scission rearrangements, the following expression
for the characteristic time is defined:
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(6a)

b) if the linear wormlike micelles rearrange by the end attack pathway,
one obtains:

_ 440730

T 14z (6b)

B (Z)
Here 7pp has a meaning of a characteristic breaking time. Finally, the
dynamic complex modulus, G*, is calculated by the averaging over the
equilibrium micellar length distribution, see Egs. (S9) and (S10), to
derive the following relationship [27]:

G*(w)  iw(GL(z,i0+75"))
Ge 1—(13'Gi(z,iw +131))

()

In the recent publication [29], the authors “argue that a constant 7p
(rather that the L-dependent one used in the original PRM) will provide a
better approximation of the essential Cates mechanism, because it gives
the true rate at which slow-relaxing interior segments are “renewed”, i.
e., transformed to fast-relaxing end segments”. Thus, the PRM should be
compared with the SFM using the characteristic breaking time, 7p(2) =
7pr. In this case, Eq. (7) is simplified and it yields:

G*(w) oty (1 —F)

G.  iwt,+F ®

Here the universal function, F(§), depends only on one complex
parameter, f, expressed through the frequency, w, the reptation time,
740, €valuated with respect to the average chain length, and the constant
breaking time, 7. It is shown in the Supplementary material (S3), that
the function, F, is given by the following series:

2740

2712 S\ by
F(p)= + Zﬁ(zm)/s and f= (
m=0

e ) (1 +iwy) (C)]

Tbr

The exact numerical values of the coefficients, by, by, ..., are calculated
using Eq. (S19), see Ref. [36]. For convenience, we define function F()
=1 — BC(p), where C(p) is introduced in Ref. [36]. The series defined by
Eq. (9) gives the possibility to calculate the values of the dynamic
complex modulus with a relative precision of 10™'* using the double
precision definitions in Fortran for all values of the complex parameter,
p. It is obvious from the definition of g, Eq. (9), and the asymptotic
expression given by Eq. (520b) that the larger the values of the dimen-
sionless frequency, wry, and/or the ratio, 74qo/7pr, the faster the
convergence of the series in Eq. (9) is. For large values of 7y,,/7q¢, the
number of terms in the series needed to calculate F(8) with a good
precision considerably increases [36].

In the Supplementary material (S4), the main result from the SFM for
the dynamic complex modulus, G*, is briefly discussed. The final
conclusion is that: if the breaking time, 75(2), in the PRM is assumed to
be a constant equal to the characteristic breaking time, 7},;, and the
characteristic reptation time, e, is defined to be 7y, = 72740, where 740
is the reptation time evaluated with respect to the average chain length,
Lo, then both PRM and SFM predict the same dependencies of the dy-
namic modulus, G*, on the frequency, w, the characteristic reptation,
Trep, and the mean breaking, 7y, times. Moreover, for large values of 18]
> 1 (small values of {pr = 7pr/Trep < 1) and low frequencies, oty < 1,
the leading order term of F(f) in Eq. (9) is equal to 271/ 2(rb,/rmp)l/ 2«1
and the leading order expansion of the expression for the dynamic
modulus, Eq. (8), becomes:

GHw)  io(tutep) ) (2012)

= (10)
Ge 1+ io(titep)’*/(201/2)
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Fig. 2. Dependencies of the dimensionless storage, G/G., and loss, G'/G., moduli on the dimensionless frequency, wry,, for different values of (i @) {pr < 1;b) 1 <

$br < 100.

Note that Eq. (10) has the same form as Eq. (1), which corresponds to
the Maxwell model with parameters Gy; = G, and g = (Thrrrep)l/ 2/2xY
%) = 0.282095(pyrep)

The numerical results for the dimensionless storage, G'/Ge, and loss,
G"/Ge, moduli calculated from Egs. (8) and (9) up to large values of (b, <
100 are summarized in Fig. 2, see also Figs. 1 and 2 in Ref. [29]. The
general properties of the PRM and SFM are well illustrated. As it should
be: G'(w) monotonically increases with the rise of the frequencies of
oscillations and G — G, at large values of w; G'(w) increases to its
maximum and subsequently vanishes to zero for large frequencies of
oscillations; the G'(w) and G'(w) curves intersect in the crossover fre-
quency, @c(Tbr,Trep), Which depends on the mean breaking and the
characteristic reptation times. The dynamic modulus at . is denoted by
G = G(wc) = G'(w,). Fig. 2 shows that the position of the dimensionless
crossover frequency, w7y, shifts to the right with the increase of the
ratio between the breaking and reptation times, (. It is important to
note, that for {,; < 1, G'(w) has a maximum value of G. exactly at w = @,
while for {p; > 1, the maximum of G'(w) is greater than G. and it takes
place for frequencies larger than w..

One possible representation of the experimental data is to use the
Cole-Cole like plot thus eliminating the frequency information. In the
case of Maxwell model, 2G"(w)/Gy vs 2G'(w)/Gy is a perfect semicircle
and 2G"(1/7R)/Gy = 2G'(1/7R)/Gy = 1, see Eq. (1) and Fig. 3. For both
PRM and SFM, the corresponding plot can be defined as G"(w)/G. vs G
()/G. because of G'(w.)/G. = G(w.)/G. = 1 (see Fig. 3). One sees that
the curves for {p; > 1 deviate considerably from the semicircle even for
G'(w)/G. < 1 and the respective deviations become more pronounced
with the increase of (. In the opposite case, {pr < 1, there are parts of
the curves (at least for G'(w)/G. < 1, that is for w < w,) that practically
lie on the semicircle. Thus, along these parts of the curves, the rheo-
logical behavior of the studied WMS corresponds to the Maxwell model
of viscoelastic body with an elasticity Gy = 2G. and a relaxation time 7g
=1/w.

The values of the crossover frequency, @, the dynamic modulus, G,
and the shear modulus, G, are related to the average micelle total
contour length, the persistence and entanglement micellar lengths, and
the mesh size of the formed network [43]. Thus, their precise experi-
mental observation is important for characterization of the interrelation
between the rheology and structure of linear WMSs. In the literature
[20-30], the crossover frequency, w, is scaled as 1/w, « (rbrrrep)l/ 2, see
Eq. (10). The obtained results (see Appendix S5), calculated numerically
here with a relative precision of 10712, for the dependence of the
dimensionless crossover frequency on (p; < 100 are summarized in
Fig. 4a (dashed line).

On the other hand, having in mind the cases when one wishes to
avoid extensive computational work, we interpolated the numerical
data in Fig. 4a using the following empirical relationship:

1/2 1/2
(TbrTr ) 1/6 1/3
Tf/z = WcTrep 27‘;; m=1-1 20025¢}/° +0.563515¢/

-0.011221¢}/? amn

The solid line in Fig. 4a is drawn using Eq. (11). The relative errors of
the interpolated values are less than 1.3 % for all studied ratios between
the mean breaking and the characteristic reptation times, {p;. The
respective calculations for the dimensionless dynamic moduli, 2G./G.,
vs {pr are shown in Fig. 4b (dashed line). It is interesting that the curve
has a sigmoidal form and the calculated data can be interpolated as
follows:

2G.

e

1/12 -1
=0.324679 + [1.47925 + 0.00152821 exp (761145(br )]
12)

The relative errors of the interpolated values are less than 1.4 % for
&br < 100 (solid line in Fig. 4b).

The representation shown in Fig. 4c can be used for the express
estimation of the value of {},; from the experimental data. The dashed
line therein corresponds to the high precision numerical results for ¢, <
100 and the solid line is calculated from the following interpolation
formula:

(-9
0321784

1.595659
(¢ — 0.321784)1170%5
/ {1 +1.738214 (1 = )05

Cor {0.22272 +1.63381

13)

where ¢ = 2G./G.. The relative errors of the interpolated values of ¢,
are less than 1.4 % for all values of the dimensionless dynamic moduli,
2G./G., corresponding to {p, < 100. For example, one estimates the
plateau value of the storage modulus at high frequencies of oscillations
and the modulus at the crossover point in order to calculate the
approximate value of ¢ = 2G./Ge. From interpolation formula, Eq. (13),
one calculates the ratio between both characteristic times, {p,,. Subse-
quently, the dimensionless crossover frequency corresponding to (py is
calculated from Eq. (11). From (},, and the experimental value of the
crossover frequency, w,, the approximate value of the reptation time is
obtained. Note that the estimated parameters are not precise but they
can be served as an initial guess for the numerical algorithms used to fit
the experimental data from oscillatory rheological tests. From our
knowledge, the dependencies illustrated in Fig. 4 for {},; < 100 are not
published in the literature.

Note that the most experimentalists associate 2G. with the Maxwell
elasticity, Gy, see Sections 4 and 5. The shear modulus of the WMS
predicted by both PRM and SFM, G, is greater than Gy For example,
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Fig. 3. Cole-Cole like plots: dependencies of the dimensionless loss moduli, G'/G,, on the dimensionless storage moduli, G/G., for different values of ¢, < 100. The
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expressions interpolate the numerical values with relative precision lower than 1.4 % for all values of ¢y, < 100.

G./(2G.) = 1.82 for {p,r = 1 (Fig. 4b), and the effective Maxwell elas-
ticity, Gy = 2G,, is about two times lower than G.. Even for {p,; = 0.1, the
calculated value is G¢/(2G.) = 1.328 and the shear modulus, G, is more
than 30 % higher than Gy;. The calculated dependencies shown in Fig. 4
are valid only in the framework of the considered versions of the PRM
and SFM. The location of the crossover frequency will change if, for
example, contour length fluctuations or end-attack processes are
included in the models.

4. Comparison of the results from the data processing of
rheological data for WMSs

Fig. 5 summarizes the experimental data for the apparent viscosity,
Napp (the steady shear stress divided by the rate of shear strain), vs the
shear rate. At low shear rates, dy/dt, the quasi-Newtonian rheological
behavior with a constant zero-shear viscosity, 79, is observed for all
WMSs. The larger the zero-shear viscosities, the lower the thresholds of
the shear rates at which the shear thinning occurs are. At high shear

rates, #]app is inversely proportional to dy/dt, which is typical for a shear
thinning rheological behavior of the WMS [13,15,16,18,19,44].

The zero-shear viscosity increases about 100 times for 12 wt% WMS
containing SDS if one replaces the zwitterionic surfactant DDAO with
CAPB (Fig. 5). Even at higher surfactant concentrations, the replacement
of SDS with C;6SME in CAPB containing WMS leads to lower values of
no. The relative experimental errors of the measured zero-shear viscosity
in each particular run were not higher than 1 %. The mean values of
1o listed in Table 1 were obtained from the particular values of the zero-
shear viscosity measured at least three times starting with newly pre-
pared solutions. Note, that the errors shown in Table 1 correspond to the
reproducibility of the experiments. This steady-state rheological regime
does not provide information on the elasticity of the micellar solutions.

One way to characterize elasticity Gy and viscosity 5 of viscoelastic
Maxwell bodies [43,45] is to apply shear deformations with constant
rates of shear strains, dy/dt (Figs. 1 and 6). The dependence of the shear
stress, o(t), on time t obeys the simple exponential law given by Eq. (1).
The obtained parameters of the Maxwell model for 15 wt% (1:3)
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Fig. 5. Dependencies of the apparent viscosity on the rate of shear strain, dy/dt,
measured for the studied WMSs.

Table 1
Rheological parameters of the studied linear wormlike micellar solutions.
System 0" (Pa-s) o (Pa-s) no° (Pa-s) G’ 2G¢
(Pa) (Pa)
C16SME + 423 +5 427 £ 5 425+ 5 124 £ 4 128 + 4
CAPB
SDS + DDAO 18.5 + 0.7 17.9 £ 0.6 189+0.8 142+6 148 + 4
SDS + CAPB 1800 + 50 1840 + 50 1750 + 60 198 + 5 202 +5

@) Apparent viscosities vs shear rates experiments.
) Shear stresses vs shear strains for constant rate of strain experiments.
9 Oscillatory regimes for small amplitudes of shear strains.

C16SME + CAPB WMS are given in Section 2, where the relaxation time
is tr = 3.42 s (Fig. 1). The respective results for the particular runs
illustrated in Fig. 6 are: a) Gy = 143 + 0.5 Pa, o = 17.8 + 0.4 Pa s,
regression coefficient of 0.9995, dy/dt = 0.0979 + 0.0001 s’l, and 7g =
0.124 s for 12 wt% (3:7) SDS + DDAO WMS; b) Gy = 199 + 0.4 Pa, g =
1830 + 5 Pa s, regression coefficient of 0.9997, dy/dt = 0.0983 +
0.0001 s_l, and 7g = 9.20 s for 12 wt% (3:7) SDS + CAPB WMS. It is
obvious, that the relaxation of the shear stress is the fastest for SDS +
DDAO WMS (Fig. 6a) and the slowest for SDS + CAPB WMS (Fig. 6b)
because of the about eighty times difference between the relaxation
times. The respective parameters with their reproducibility errors listed
in Table 1 show that the obtained viscosities, 70, from both rheological
regimes coincide for each WMS in the frame of the experimental error.

The experimental data for the dynamic storage and loss moduli, G
and G, vs the frequencies of oscillations, w, are summarized in Fig. 7
(symbols). The solid lines in Fig. 7 show the best fit results using Egs. (7)
and (8) with adjustable parameters Ge, Tpr, and 7ep = 7%740. In all cases,
the regression coefficients were larger than 0.9995 and the theoretical
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predictions excellently describe experimental data. The obtained best fit
values of the parameters for 15 wt% (1:3) C;4SME + CAPB WMS
(Fig. 7a) are: Ge = 224 + 1 Pa, 7 = 3.89 £ 0.02 5, 7yep = 4.73 + 0.03 5.
Thus, ¢ = 0.822 < 1 and the rheological response for low frequencies
should be close to that of the Maxwell model with Gy; = 2G. and 7g = 1/
. (see Fig. 3). Using the calculations shown in Fig. 4, one obtains Gy =
127 Pa and 7g = 3.36 s, so that 5y = 426 Pa-s (see dashed lines in Fig. 7a).

It is remarkable that the value of Gyrg determined from the data in
oscillatory regime is in excellent agreement with the values of 7( inde-
pendently obtained from the plateau of the respective flow curve in
Fig. 5. Such coincidence is sometimes cited as fulfillment of the Cox-
Merz rule [46]. This agreement is an argument in favor of the correct-
ness and self-consistence of the used procedure for comparison of theory
and experiment. As can be expected, the deviations of the experimental
data from the dashed lines are small below the crossover frequency and
they are not negligible for > w.. Note, that the elasticities and vis-
cosities obtained from the all applied rheological regimes coincide in the
frame of the reproducibility errors (Table 1). Nevertheless, the shear
modulus of the WMS, G, is 1.76 times larger than elasticity Gy.

The experimental data for G' and G” in the case of 12 wt% (3:7) SDS
+ DDAO WMS are plotted in Fig. 7b. Because of the shorter relaxation
time compared to that of 15 wt% (1:3) C14SME + CAPB WMS, the
crossover frequency is shifted to the larger values. The respective pa-
rameters of the best fit with both PRM and SFM are: Ge = 259 + 2 Pa, 7},
= 0.141 £ 0.003 s, 71ep = 0.193 £ 0.002 s (solid lines in Fig. 7b). Note
that shear modulus G, and {p, = 0.729 have close values to the previous
WMS (Fig. 7a), but the mean breaking and characteristic reptation times
are more than 25 times lower. As a result, Gy; = 149 Pa is close to that for
15 wt% (1:3) C16SME + CAPB WMS but g = 0.128 s and 179 = 19.1 Pa-s
have considerably lower values. Again, Gy is about 1.74 times lower
than Ge. The dashed lines corresponding to the Maxwell model in Fig. 7b
deviate from experiments at ® > ®..

For 12 wt% (3:7) SDS + CAPB WMS, the best fit parameters of both
PRM and SFM are: G, = 231 + 3 Pa, 7, = 1.89 £ 0.04 s, 74y = 145+ 55
(solid lines in Fig. 7c). As a result, {pr = 1.30 x 1072 and the deviations
from the Maxwell model with Gy = 2G. = 203 Pa, 7g = 1/w. = 8.54 s,
and 79 = 2G./w. = 1734 Pa:s take place for frequencies larger than 0.2
rad/s (Fig. 7c). The difference between G, and Gy is less than 10 %
because of the small values of {1,,. The applied three different rheological
regimes give the same values for the respective rheological parameters
in the range of reproducibility errors (Table 1).

Fig. 8a summarizes the plots of the experimental loss moduli vs
storage moduli for all studied WMSs. This plot is quantitative but it is
difficult to compare the different WMSs with respect to their Maxwellian
rheological behavior. The Cole-Cole plots represent the dependencies of
the dimensionless loss moduli, 2G"/Gy;, on the dimensionless storage
moduli, 2G'/Gy;, where Gy = 2G, (Figs. 3 and 8b). The region in which
the modeling of the WMS like an equivalent Maxwellian viscoelastic
body is well illustrated (Fig. 8b) — the lower (1, the lower the deviations
of experiments from the semicircle are.

In the literature [30,43,45,47], the mesh size of the wormlike
micellar solutions, ¢, is related to the shear elasticity, G, through the

140 1 12 wt% (3:7) SDS+CAPB T 1.6
— 120 114
& 12 N
T 100 c g
; 10§
g w g
= 08 [
2 60 06 3
3 * 5
£ 40 0.4
® Gy =199+0.4 Pa -

20 7,=1830+5 Pas 0.2

[ 0.0

0 2 4 6 8 10 12

Time, t(s)

14

(b)

Fig. 6. Dependence of shear strain y(t) and shear stress o(t) on time t, measured for WMS: a) 12 wt% (3:7) SDS + DDAO; b) 12 wt% (3:7) SDS + CAPB.
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following expression, £ = (AkBT/Ge)l/ 3, where kg is the Boltzmann
constant, T is the absolute temperature, and the prefactor A is theoret-
ically derived from correlations for entangled polymers to be equal to
9.75. For the studied WMSs, the calculated values of the mesh size are:
42 nm for 15 wt% (1:3) C16SME + CAPB; 40 nm for 12 wt% (3:7) SDS +
DDAO; 41 nm for 12 wt% (3:7) SDS + CAPB. These values are approx-
imately equal (=40 nm) because of the comparable micellar volume

fractions. In contrast, if one uses the obtained values of Gy (Table 1)
instead of Ge, then one calculates 48 nm for SDS + DDAO and 43 nm for
SDS + CAPB, which are different for equal micellar volume fractions.
These results show that if one wants to obtain the structural pa-
rameters of the WMS (the average wormlike micelle length, the persis-
tence and entanglement lengths, and the mesh size of the formed
network), then one needs to process rheological data for the dynamic
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Table 2

Rheological parameters obtained from the PRM for the studied linear wormlike micellar solutions.
System G, (Pa) Trep (5) T (5) 780" (5) 780" (5)
C16SME + CAPB 224 +1 4.73 £ 0.03 3.89 £ 0.02 6.89 + 0.03 4.67 £ 0.02
SDS + DDAO 259 + 2 0.193 + 0.002 0.141 + 0.003 0.247 + 0.004 0.168 + 0.003
SDS + CAPB 231+ 3 145+ 5 1.89 + 0.04 2.77 £ 0.05 1.78 + 0.04

¥ Eq. (6a) is used for the dependence of 75 on 7 and z.
Y 73(2) is calculated from Eq. (6b).

moduli using the PRM or the SFM in order to calculate precisely the
physical elasticity, Ge, the mean breaking, 71, and the characteristic
reptation, 7yep, times.

5. Discussions on the rheological models

In the original PRM [27], the breaking time, 75(z), depends on the
length of wormlike micelles, see Egs. (6a) and (6b), and there are no
closed-form analytical expressions for G' and G". The simpler SFM and
PRM with constant breaking time 7p(z) = 7p; excellently describe the
experimental data. It is important to show the possibility to use rheo-
logical experiments to distinguish the length-dependence PRM models
with the SFM. For that reason, we fixed the values of the shear elastic
moduli, G, and the characteristic reptation times, 7.ep, obtained from
the SFM (see Table 2) and varied only the characteristic breaking time,
70, appearing in Egs. (6a) and (6b). The storage and loss moduli, G’ and
G', were calculated from the general relationship, Eq. (7), using the
respective complex numerical integrations, see Egs. (S9) and (S10),
applying a high precision numerical algorithm.

The obtained parameters from the best fits with one adjustable
parameter, 7pg, are listed in Table 2 for the particular cases of WMSs. In
all cases, the regression coefficients were greater than 0.9995. Fig. 52
summarizes the dependencies of the dimensionless storage, G/Ge, and
loss, G"/G., moduli on the frequency of oscillations, w, calculated using
the rheological parameters given in Table 2. It is impressive, that the
models with constant 7y, and length-dependent 75(2) predict practically
the same dependencies of the dynamic moduli on frequency w. Thus, the
breaking time models cannot be distinguished based on the concrete
experimental data. The differences are only in the values of the mean,
Tpr, and the characteristic, g, breaking times.

To check the generality of this conclusion, we have chosen the
following strategy. First, one calculates the value of the crossover fre-
quency, @c(Tbr,Trep), predicted from the SFM, for given breaking and
reptation times, 7,; and 7.ep. Second, one varies 7pg in the general PRM
with length-dependent 7p(2) to obtain the same crossover frequency,
@c(Tpr,Trep), for the same reptation time, 7yep. Thus, the ratio between the
obtained characteristic breaking times, 7go/7p;, becomes a universal
function only of (.

Fig. 9a and S1 show the comparisons between the PRM using the

o L
10 ;br=1

Tao/ %,y = 1.788, see Eq. (6a)

Taof Tr = 1.217, see Eq. (6b) |

Dynamic moduli, GG, and G"IG,

10+

102 107 10° 10! 102 10°

(a) Dimensionless frequency, @7,

constant value of the breaking time, 7y, and 7p(2) calculated from Egs.
(6a) and (6b) for different ratios ¢, from 0.01 to 100. Solid lines
correspond to the numerical solution from the PRM with constant 75(2)
= Tpy; circles show the results from the PRM in the case of reversible
scission rearrangements, 7p(2) is calculated from Eq. (6a); stars — when
the linear wormlike micelles rearrange by the end attack pathway, 75(2)
is given by Eq. (6b). One sees that the models with constant 7, and
length-dependent 7g(2) predict practically the same dependencies of the
dimensionless storage, G'/G., and loss, G'/Ge, moduli on the dimen-
sionless frequency, @tp;.

The dashed lines in Fig. 9b show the obtained dependencies of 7p(/7py
on (p, calculated from both length-dependent variants of the PRM. One
sees that 1.41 < 7po/7pr < 2.02 in the case of reversible scission rear-
rangements and 0.891 < 7py/7py < 1.41 when the wormlike micelles
rearrange by the end attack pathway. In both cases, 7go/7p; mono-
tonically increases with the increase of (.. The universal curves in
Fig. 9b have sigmoidal forms and for express calculations, these de-
pendencies can be interpolated as follows:

a) for reversible scission rearrangements, 7p(2) is defined by Eq. (6a)
and the interpolation formula reads:

-1
80 _ 14113 + [1.6502 + 8031.2 exp<78.9990g“1/12)] (14a)

br
Tor

b) when the linear wormlike micelles rearrange by the end attack
pathway, 7p(2) is given by Eq. (6b) and the interpolation expression
is:

TB0

To=089127 + [1.9094 + 8982.5 exp(~8.9700¢;/ ) | )

(14b)

The relative errors of both interpolation formulae (solid lines in
Fig. 9b) are less than 1 % for ¢y, < 100. Thus, one can process rheological
experimental data using the exact expressions for the simpler SFM, Egs.
(7) and (8), to obtain Ge, Tpr, and 7yep, and subsequently to calculate 7o
from the interpolation formulae, Eq. (14a) or Eq. (14b). Using this
approach, the numerical problems with the integration of functions of
complex variables and the precision of the numerical procedures are
avoided and the time of calculation is considerably accelerated.

2.0
73(2) from Eq. (6a)
18 1
v 1.6 T
55
S 14 1
&
12} \
15(z) from Eq. (6b)
10l 5(2) q. (6b)
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112
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Fig. 9. a) Dependencies of the dimensionless storage, G'/G., and loss, G'/G., moduli on the dimensionless frequency, @y, for {y; = 1. Solid lines correspond to the
numerical solution from the PRM with constant 7p(2) = 7,; circles show the results from the PRM with 75(2) calculated from Eq. (6a) for zpo/7p = 1.788; stars — the
results from the PRM with 7p(2) calculated from Eq. (6b) for 7po/7py = 1.217. b) 7po/7br VS {br — dashed lines show the numerical results and solid lines correspond to

the interpolation formulae given by Egs. (14a)-(14b).
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Table 3
Limiting elasticity, G'(c0), and viscosity al low shear rates, (0), predicted from
the VCM and the single-mode Oldroyd 8-constant models for studied WMSs.

System VCM model [37-39] Oldroyd 8-constant model [40]
G'(c0) (Pa)  5(0) (Pas) G(c) (Pa)  7(0) (Pa-s)

C16SME + CAPB 186 +£ 10 469 + 5 143 +£ 6 479 + 4

SDS + DDAO 197 + 8 21.0 £ 0.3 144 £ 4 21.7 £ 0.3

SDS + CAPB 217 £ 12 1840 + 40 208 + 8 1840 + 50

Both PRM and SFM have a clear physicochemical meaning and allow
relating the WMS rheology and bulk structure. Nevertheless, they are
not applicable for engineering calculations: there is not a known cor-
responding theoretical relationship between the total stress tensor,
strain tensor and their rates, which represents the general rheological
constitutive relationship in the non-Newtonian hydrodynamic of com-
plex fluids. Peterson and Cates [48] have shown that additional ap-
proximations must be made with respect to reptation and constraint
release in order to facilitate applications in computational fluid dy-
namics. As a result, it is not possible to model the flows in tubes and
reservoirs, hydrodynamic resistances, filling and pumping, etc. of WMSs
with the use of the PRM and SFM predictions. For that reason, recent
rheological models having tensorial representations and postulating
hydrodynamic constitutive rheological relationships are developed in
the literature. The most popular are: a) the Vasquez-Cook-McKinley
model [37-39]; b) different versions of the Oldroyd 8-constant model
[401.

The two species Vasquez-Cook-McKinley model (VCM model)
[37-39] considers two elastically active Hookean species: long chains
which can break to form two short chains, which can themselves
recombine to form a long chain. In the linear viscoelastic regime, the
VCM model expressions for the storage and loss moduli are given by Eqgs.
(S38a) and (S38b). The best theoretical lines calculated using the VCM
model are shown in Fig. 10a and S3 and the values of the best fit model
parameters are listed in Table S1. For all studied WMSs the regression
coefficients are larger than 0.9996 and the description of the experi-
mental data is good. The calculated best fit values of the elastic moduli
at high frequencies, G'(c), and the viscosity al low shear rates, 7(0), are
listed in Table 3. Note, that #(0) has a meaning of the zero-shear vis-
cosity, 19, and G'(c0) — of the shear modulus, Ge, of the WMSs. It is
obvious, that the VCM model predicts the zero-shear viscosity with
better precision (c.f. Tables 1 and 3) compared to the shear modulus (c.f.
Tables 2 and 3).

For the single-mode Oldroyd 8-constant framework, the de-
pendencies of the complex, *, loss, ' = G'/w, and storage, ' = G'/w,
viscosities on frequency w are calculated from Eq. (§41). Fig. 10b and S4
show that the best theoretical lines (dashed lines), calculated with pa-
rameters given in Table S2, describe well all experimental data with the

values of the regression coefficients greater than 0.998. As should be, the
predicted values of the viscosity at low shear rates, #(0), are close to the
zero-shear viscosity, 7o, see Tables 1 and 3. It is important to note, that
the best fit values of the limiting elasticity, G'(c0), given in Table 3 are
systematically lower than the shear modulus, G, of all studied WMSs: G’
(o0) are close to the elasticities corresponding to the Maxwell model
summarized in Table 1.

6. Conclusions

The shear rheology of linear wormlike micellar solutions (WMSs) at
low and intermediate rates of shear strains is well described by both
Poisson renewal (PRM) [27] and shuffling (SFM) [29,36] models using
the system parameters: shear elasticity, Ge; characteristic reptation time,
Trep; Mean breaking time, 7. At low values of the shear strains and their
rates, the linear WMSs behave as a Maxwellian viscoelastic body with
constant elasticity Gy and zero-shear viscosity 7o. The relationships
between both sets of experimentally observed parameters ({Ge, Trep, Tbr}
and {Gy, 10}) are not well described in the literature.

If the breaking time in the PRM is a constant and the reptation time,
740, evaluated with respect to the average chain length is used to define
the characteristic reptation time, 7ep = %740, then both PRM and SFM
predict identical dependencies of the dynamic modulus, G*, vs fre-
quency of oscillations w, Egs. (9) and (10). The closed analytical form for
the Laplace image of the stress relaxation function and the respective
infinite series for the complex modulus [36] give possibility for fast and
precise calculations and express rheological data processing. The stor-
age, G'(w), and loss, G'(w), moduli have equal values at the crossover
frequency, ., where G. = G'(w.) = G'(w.). The reported here de-
pendencies of the dimensionless crossover frequency and the ratio be-
tween G. and the shear modulus of solution, Ge, on the ratio {p, =
Tor/Treps Se€ Fig. 4 and Egs. (11)-(13), provide information on the
parameter of the Maxwell rheological model, Gy = 2G. and 9 = 2G./w.,
and are used to construct the respective normalized Cole-Cole plots, see
Figs. 3 and 8b, for all values of ¢,y < 100. Egs. (11) and (13) can be used
for the calculation of the approximate values of 7 and 7ep from
experimental data obtained in oscillatory rheological tests. From the
viewpoint of experimental data for G(w) and G'(w), the
micellar-length-dependent breaking-time version of the PRM [27], Egs.
(6a) and (6b), become indistinguishable for the dependencies of 7/ 7p,
on {py shown in Fig. 9b for all ratios between the mean breaking and
characteristic relaxation times ({p; < 100). Thus, one can process
experimental data for G'(w) and G'(w) using the simpler SFM to obtain
Ge, Tbr, and 7rep, and subsequently to calculate 7o from the interpolation
formulae, Eq. (14a) or Eq. (14b), avoiding the complex numerical
problems with the integration of functions of complex variables.

The experimental data from independent static and dynamic rheo-
logical regimes (apparent viscosity vs shear rate, stress vs strain at
constant shear rates, strain oscillations at low amplitudes and a wide
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range of frequencies) applied to low, medium, and high zero-shear vis-
cosity WMSs are described excellently by the theoretical models (Section
4). They demonstrate the self-consistency of the applied models and
point that Gy can be about two times lower than the physical shear
elasticity, Ge, for comparable values of the breaking and reptation times.

The physicochemical interpretation of both PRM and SFM allows
relating the rheology to the parameters of the wormlike micellar struc-
tures but both PRM and SFM have no general tensorial representations
and cannot be used for hydrodynamic modeling of non-Newtonian
complex fluids. The hydrodynamic constitutive rheological relation-
ships are obtained in the framework of the Vasquez-Cook-McKinley
model (VCM) [37-39] and the 8-constant Oldroyd model [40]. These
models describe well the viscosity of linear WMSs (Fig. 10, S3, and S4)
but the predicted elasticities are systematically lower than the respective
shear elasticities, G. Regardless of the VCM and the 8-constant Oldroyd
models applicability for engineering calculations, they do not provide
information on the micellar structures.

The results are useful for a wide auditorium of experimentalists for
express and precise interpretation of rheological experiments with
WMSs. They put a light on the similarity of both PRM and SFM and the
relationships between the physical parameters of the theoretical rheo-
logical models.
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List of symbols and notations

C16SME palmitic sulfonated methyl ester
CAPB cocamidopropyl betaine

DDAO  N,N-dimethyldodecylamine N-oxide
G dynamic storage modulus

G dynamic loss modulus

G* = G +iG" dynamic complex modulus
G(z,t) stress relaxation function
G. = G(w.) = G'(w.) dynamic modulus calculated at o,

Ge shear modulus of solution
GL Laplace image of G with respect to time
Gm shear elasticity in the Maxwell model of viscoelastic body

L chain length

L, average chain length

PRM Poisson renewal model for wormlike micellar solutions
SDS sodium dodecyl sulfate

SFM shuffling model for wormlike micellar solutions

T temperature
VCM Vasquez-Cook-McKinley model [37-39].
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WMS wormlike micellar solution
dy/dt rate of shear strain
kg Boltzmann constant

t time

z = L/L, dimensionless chain length

y(t) shear strain

' = G'/w loss viscosity

7" = G'/w storage viscosity

n* =1 + iy’ complex viscosity

Mo zero-shear viscosity and viscosity in the Maxwell model of
viscoelastic body

¢ = 2G./G. ratio between dynamic moduli

o(t) shear stress

B0 characteristic breaking time defined in the length-dependence
original version PRM

78(2) breaking time defined in the length-dependence original
version of PRM

Thr mean breaking time

74(2) reptation time of the L-chain

7do reptation time evaluated with respect to the average chain

length
TR = o/Gm relaxation time in the Maxwell model of viscoelastic body

Trep characteristic reptation time

® frequency of oscillations

@c(Tpr,Trep) crossover frequency

& mesh size of the wormlike micellar solution

br = The/Trep ratio between the mean breaking and the characteristic
p g
reptation times

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
0rg/10.1016/j.jcis0.2025.100160.

Data availability
Data will be made available on request.
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