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A B S T R A C T

The role of intraluminal enzymes for the hydrolysis of active pharmaceutical ingredients (API), prodrugs and pharmaceutical excipients will be reviewed. Car-
boxylesterases may hydrolyze ester-based API, prodrugs and ester-bond containing polymer excipients, whereas lipases digest lipid formulation excipients, such as 
mono-, di- and triglycerides. To clarify the conditions that should be mimicked when designing in vitro studies, we briefly review the upper gastrointestinal phys-
iology and provide new data on the inter-individual variability of enzyme activities in human intestinal fluids. Afterwards, the methodology for studying enzymatic 
hydrolysis of API, prodrugs, lipid and polymeric excipients, as well as the main results that have been obtained, are summarized. In vitro digestion models used to 
characterize lipid formulations are well described, but data about the hydrolysis of lipid excipients (including surfactants) has been scarce and contradictory. Data on 
API and prodrug hydrolysis by esterases is available; however, inconsistent use of enzyme types and concentrations limits structure-stability relationships. Hydrolysis 
of polymer excipients in the lumen has not been significantly explored, with only qualitative data available for cellulose derivates, polyesters, starches, etc. 
Harmonization of the methodology is required in order to curate larger enzymatic hydrolysis datasets, which will enable mechanistic understanding and theoretical 
prediction.

1. Introduction

The gastrointestinal tract (GIT) is designed for enzymatic digestion of 
ingested nutrients, and secretes enzymes for hydrolysis of e.g. proteins, 
lipids and starch (Sensoy, 2021). However, components in oral drug 
products are also substrates for some of these hydrolytic enzymes, which 
can have implications for the stability of the active pharmaceutical 
ingredient (API) (Vinarov et al., 2024), but also of the excipients and the 
formulation itself (Zöller et al., 2022). Intestinal fluids are characterized 
by an abundance of enzymes that can hydrolyze ester bond-containing 
API, glyceride-based lipids and even some polymeric excipients 
(Vinarov et al., 2021).

Hydrolysis-induced changes in the chemical structure of the API can 
reduce the amount available for absorption (Benet et al., 1996), alter 
permeability of API or prodrugs by changing lipophilicity (Ohura et al., 
2012; Van Gelder et al., 2000), or elicit toxic effects, dependent on the 
structures formed (Ogiso et al., 1996; Alimonti et al., 2004). Hydrolysis 
of excipients can affect API dissolution by altering API solubility and 

may further impact supersaturation and precipitation in enabling oral 
formulations (Khan et al., 2016; Thomas et al., 2012; Koehl et al., 2020). 
Hence, pharmacokinetics, and consequently safety and efficacy, may be 
compromised.

Although the described intraluminal hydrolytic processes are rele-
vant to medicinal chemistry, formulation technology, biopharmaceutics 
and pharmacokinetics, their potential impact on the final performance 
of a drug product is often overlooked.

In the current review, we aim to describe the general aspects of 
intraluminal enzymatic hydrolysis, thus aiding the pharmaceutical sci-
entist in considering and rationalizing its influence on the properties of 
the drug product. A brief review of GIT physiology will set the stage for 
three main sections, where the hydrolysis of lipids (in the context of lipid 
formulations), polymers (amorphous solid dispersions and others) and 
prodrugs and API in the upper GIT will be discussed. Colonic (Vertzoni 
et al., 2018; Hammar et al., 2023) and peptide stability (Wang et al., 
2015) are not covered in the current review. The state-of-the-art in terms 
of methodology will be summarized, followed with a short review of the 
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main findings, while outlining knowledge gaps. Finally, an outlook for 
future studies will be presented.

2. GIT physiological conditions

2.1. Enzyme concentrations vs. Activity

One of the critical aspects of studying the enzymatic hydrolysis of 
API and excipients in the GIT is the activity of the relevant enzymes. 
However, in contrast to enzymes from bacterial or fungal origin (van 
Eunen et al., 2010), the activity of digestive enzymes in the different 
compartments of the GIT is not well characterized. Most studies on 
luminal enzyme activities are old (Armand et al., 1995; DiPalma et al., 
1991; Carriere et al., 1993; Carrière et al., 2000), and the experimental 
conditions used, such as the assay temperature, are not always reported. 
Digestive enzymes levels are sometimes expressed as concentrations (µg 
or mg/L), however, this might lead to a bias since not all of the present 
enzyme is always active. Therefore, expressing digestive enzymes as 
activities is more appropriate, but this requires a precise definition and a 
harmonization of the conditions to use (type of substrate, temperature of 
the assay, pH, calculation of the data etc.) (van Eunen et al., 2010). In 
this context, the interplay between pH and enzyme activity must be 
specifically outlined (Sams et al., 2016; Isaksson et al., 1982; Sky-Peck 
and Thuvasethakul, 1977). If a study reports the enzymatic activity at 
a specific pH, the value may be more representative for the enzyme 
concentration, rather than the biorelevant activity of the enzyme, the 
reason being that the variation of pH in human GIT fluids (Vinarov et al., 
2021) can lead to a similar activity of different levels of enzymes (e.g. 
lower concentration of enzyme near the pH optimum, compared to a 
higher enzyme concentration at different pH). Hence, ideally, enzymatic 
activity should be measured at the pH of the respective GIT fluid sample, 
in order to provide information on the biorelevant enzyme activity. 
However, this is especially difficult for human intestinal fluid samples, 
in which the pH can change quickly after collecting the fluids due to the 
innate properties of bicarbonate buffer (Litou et al., 2020).

In addition, the activity of the same enzyme can be assessed by 
several methods using different substrates and the correspondence be-
tween the different units is not always established (Hayakawa et al., 
1980). For example, trypsin activity is assessed using the p-Toluene- 
sulfonyl-L Arginine Methyl Ester (TAME) or the Nα-Benzoyl-L-Arginine 
Ethyl Ester hydrochloride (BAEE) as substrate (Schwert and Takenaka, 
1955; Haverback et al., 1963). In this case, the relation between the two 
assays has been established (100 TAME U = 5560 BAEE U), but this is 
not the case for other enzyme assays. Hence, in the following, the level of 
enzymes in the GIT will be presented in terms of activity, by using 
substrates and conditions that are currently accepted in the scientific 
community.

2.2. Stomach

Digestion of lipids and proteins is initiated in the stomach with 
secretion of gastric lipase and pepsinogen from the chief cells in the 
gastric glands. Pepsinogen is activated to pepsin by gastric acid, also 
secreted from the gastric glands. In the fasted state, only around 50 mL 
of gastric fluid is present in the stomach (Mudie et al., 2014) with a pH 
between 1 and 4 (Evans et al., 1988; Lindahl et al., 1997). The rheo-
logical behavior of gastric fluid is non-Newtonian, with shear-thinning 
properties, due to the presence of mucins from the gastric mucus 
(Pedersen et al., 2013).

Another important parameter in GIT physiology is the residence time 
of an API or formulation in the different segments. In the fasted state, a 
glass of water (240 mL) which is recommended to aid drug ingestion, 
will be emptied from the stomach with a half-emptying time of 11 min 
(Vinarov et al., 2021). The emptying of API to the duodenum will 
depend on its state in the stomach: dissolved API and excipients will 
follow the water, whereas larger non-disintegrating dosage forms may 

remain in the stomach until the housekeeper wave occurs (Vinarov 
et al., 2021).

In the fed state, the effect of food on API absorption is studied by 
following a standard clinical protocol such as the one recommended by 
FDA: the dosage form is taken 30 min after ingestion of the “FDA 
breakfast”, a high-fat and high-calorie meal composed of approximately 
150, 250, and 500–600 calories from protein, carbohydrate, and fat, 
respectively (FDA, 2002). Right after food ingestion, the gastric pH is 
close to the pH of the food (which can be near neutral), but as gastric 
acid is secreted, the pH gradually decreases to fasted state values 
(Pedersen et al., 2013).

Depending on the dosage form and the time for its disintegration, the 
gastric emptying half-life of Biopharmaceutics Classification System 
(BCS) class I and II API in the fed state is estimated to be around 40 min 
for solutions and suspensions (Pentafragka et al., 2020). However, the 
variation can be very large, with the gastric emptying half-life of dis-
integrating tablet formulations ranging from 10 min to more than one 
hour (Kelly et al., 2003; Kelly et al., 2003; Weitschies et al., 2008) and to 
more than four hours for non-disintegrating formulations (Koziolek 
et al., 2016).

Pepsin has optimum activity around pH 2 (Campos and Sancho, 
2003), and thus will primarily digest proteins after secretion of enough 
gastric acid to reduce the pH of the digesting food bolus. After arrival in 
the duodenum, pepsin will be inactivated due to the higher pH. Pepsin 
primarily hydrolyzes peptide bonds involving aromatic amino acids, 
such as phenylalanine, tryptophane, and tyrosine. The pepsin content in 
the stomach exhibits high inter-individual variation and tends to in-
crease upon digestion (Kalantzi et al., 2006). Values found in the liter-
ature show large variation partly due to different assays and calculation 
procedures used. Recently, a consensus on using haemoglobin as a 
substrate and expressing pepsin activity as “Sigma” or “Anson” units 
(Anson, 1938; Anson and Mirsky, 1932) has been reached. In vivo data 
showed pepsin activity (measured with haemoglobin) of 1692 U/mL for 
males and 1534 U/mL for females (Hirschowitz, 1991). A slightly higher 
activity of 2000 U/mL is used in the final digestion mixtures for static in 
vitro digestion experiments (Minekus et al., 2014). However, new data 
obtained on human gastric aspirates with more standardized assays 
which accounts also for intra- and inter-individual variability would be 
needed to confirm whether the proposed level of pepsin is indeed 
representative.

Gastric lipase has optimum activity at pH 4.0–5.4 (Sams et al., 2016) 
and is secreted continuously from the gastric glands. Gastric lipase hy-
drolyzes the ester bonds in triacylglycerides, with preference for me-
dium chain triacylglycerides (Sassene et al., 2016). The consensus is to 
determine the gastric lipase activity using the tributyrin assay (TBU) 
(Grundy et al., 2021). In gastric fluids from fasted volunteers, the ac-
tivity of gastric lipase was found to be 7.4 ± 4.0 TBU/mL, meaning that 
partial digestion of lipid-based formulations will occur even in the fasted 
state (Pedersen et al., 2013). It is estimated that gastric lipase accounts 
for the hydrolysis of 5–40 % of dietary triglycerides as well as an 
additional 7.5 % lipolysis in the duodenum (Armand et al., 1999).

2.3. Small intestine

The small intestine is classically divided into three main zones: the 
duodenum (from the Latin duodecim, i.e. twelve fingers long) which 
extends from the pylorus to the ligament of Treitz, the jejunum (from the 
Latin ieiunium, fasting, as it is often empty at autopsy) which corre-
sponds to approximately the first two proximal thirds and the ileum 
(from the Latin ileus, intestinal obstruction, as it is often full at autopsy).

The duodenum secretes bicarbonate to neutralize gastric acid and 
provides an appropriate pH for further enzymatic digestion to occur, 
with median values in the duodenum and proximal jejunum of 6.1 to 7.0 
in the fasted state and 4.8 to 6.5 in the fed state (Vertzoni et al., 2019). 
The duodenum receives secretions of enzymes and bile from the 
pancreas and gallbladder, respectively (Vasavid et al., 2014). In 
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response to food ingestion, the exocrine pancreas secretes pancreatic 
juice containing bicarbonate and diverse enzymes such as lipases, pro-
teases and amylases. Some of these enzymes, like trypsin, are secreted in 
an inactive form and are activated once delivered into the duodenal 
lumen (Chandra and Liddle, 2014). Trypsin activity in adults has been 
found to range between 20 and 50 U/mL (in TAME units) (Bozkurt et al., 
1988; Braganza et al., 1978) and even up to 120 U/mL (Dukehart et al., 
1989), with a pH optimum of 9 (Gong et al., 2015). Studies reporting 
chymotrypsin quantification (N-benzoyl-L-tyrosine ethyl ester (BTEE) 
units) in pancreatic secretions are scarce. Nevertheless, the mean 
chymotrypsin activity in human intestinal fluid is considered to be 
around 25 U/mL (Goldberg and Wormsley, 1970), with a slightly lower 
pH optimum of pH = 8 (Ásgeirsson and Bjarnason, 1991), compared to 
trypsin.

Bile is produced in the liver, stored in the gallbladder and released 
into the duodenum. It is a complex mixture of bile acids, cholesterol, 
pigments, lecithin and mineral salts. In the small intestine, bile acids 
assist in the emulsification and absorption of fatty acids. They also 
stimulate lipolysis by emulsifying fats and oils, thus increasing their 
surface area and increasing the rate of interfacial hydrolysis of the tri-
glycerides by the co-lipase anchored pancreatic lipase (Chandra and 
Liddle, 2014; Golding and Wooster, 2010).

In healthy adults, pancreatic lipase activity has been shown to fluc-
tuate greatly between 80 and 7000 TBU/mL with a median value around 
200 TBU/mL (Carriere et al., 1993; Carriere et al., 2005; Laugier et al., 
1991). Its activity is dependent on the protein cofactor colipase that is 
also secreted from the pancreas (Lowe, 2002). The pH optimum of the 
pancreatic lipase at biorelevant conditions is around 6.5, due to the ef-
fect of bile salts (Borgstrom, 1954), whereas it is higher when measured 
in vitro in the absence of bile salts (7.5 to 8.5) (Borgstrom et al., 1957). 

Around 40–70 % of the lipolysis of dietary lipids is achieved by 
pancreatic lipase activity in the small intestine (Armand et al., 1999). 
Pancreatic lipase is hydrolyzing the ester bond in the 1 and 3 position in 
acyl glyceride from the surface of lipid droplets and has a higher affinity 
towards shorter chain acyl glycerides (Benito-Gallo et al., 2015).

2.4. New data on the interindividual variability of lipase, trypsin and 
chymotrypsin activities in duodenal fluids

The activity of pancreatic lipase, trypsin and chymotrypsin was 
determined in fasted and fed state duodenal fluids, collected from 11 
healthy volunteers. The details of the protocol for fluid collection are 
described in Goovaerts et al. (Goovaerts et al., 2024) and are briefly 
summarized in the Appendix (section A1), along with the protocols for 
determination of enzyme activities (section A2).

Fig. 1 shows the evolution of the pancreatic enzyme activities and pH 
from 30 to 110 min postprandially. All the enzymes showed relatively 
stable activities over the time period during which samples were 
collected (differences were not statistically significant). Duodenal fluid 
samples showed a median pH value of 6.4, with a large dispersion of 
values between pH 4 and 7, with one sample showing pH of 3.1. A trend 
of the median pH decreasing with time could be observed, however, the 
differences from 40 to 110 min were not statistically significant. Sig-
nificant differences were determined only when comparing the initial 
pH (at 30 min) with the decreased pH at 70th and 110th min. However, 
these differences should be interpreted with caution, as they are due to 
the unusually small dispersion of the pH values at 30 min. The bigger 
variation of pH which is typically observed (see all other time points) 
would render the observed changes in pH insignificant.

Trypsin activities (TAME units), measured in duodenal fluids ranged 

Fig. 1. Trypsin (TAME units), chymotrypsin (BTEE units), lipase (TBU) activities and pH as measured in duodenal fluids from 11 volunteers in the fed state, as a 
function of time after ingestion of the liquid meal. Statistical significance of the results (p ≤ 0.05) was tested using ANOVA. Data analyses were performed using the R 
software, version 4.2.2.
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from 12.0 to 180.3 U/mL with an overall median value of 63 U/mL. 
These values were measured at the physiological temperature of 37 ◦C, 
whereas in the literature, trypsin assays are usually performed at 25 ◦C 
(Brodkorb et al., 2019), decreasing significantly (e.g. by a factor of two, 
if the Q10 temperature coefficient or the empirical rule of Van’t Hoff is 
followed) the activities measured. This is in relatively good agreement 
with the range between 20 and 50 U/mL (in TAME units) (Bozkurt et al., 
1988; Braganza et al., 1978) and even up to 120 U/mL (Dukehart et al., 
1989) found in clinical samples. Therefore, the mean value of the trypsin 
activity measured in intestinal fluids appears to be lower than the one 
recommended by the INFOGEST network method (100 U/mL) 
(Brodkorb et al., 2019).

Chymotrypsin activities measured at 37 ◦C, using BTEE as a sub-
strate, ranged from 1.7 to 12.5 U/mL with an overall median value of 6.1 
U/mL. The median value obtained in the present study is thus much 
lower than the value of 25 U/mL found in human duodenal aspirates 
(Goldberg and Wormsley, 1970), which is also proposed for in vitro 
digestion models such as the INFOGEST model, especially considering 
that here it was determined at 37 ◦C, compared to 25 ◦C in standard 
assays (Brodkorb et al., 2019).

Finally, pancreatic lipase activities (TBU), ranged from 125 to 3221 
U/mL with an overall median value of 808 U/mL. Hence, the activities 
measured are in coherence with previously reported activities deter-
mined in fed state duodenal fluids that ranged from 80 to 7000 U/mL 
(Carriere et al., 2005; Armand, 2007). The lipase activity recommended 
in the INFOGEST in vitro digestion protocol (2000 U/mL) is at the higher 
range of the determined values and thus appears to represent the more 
pronounced enzyme secretions observed in the intestinal fluids of some 
human volunteers (Minekus et al., 2014; Brodkorb et al., 2019).

Fig. 2 shows the mean values of trypsin, chymotrypsin and lipase 
activities and the pH measured in the duodenal fluid collected in fed or 

fasted state averaged from all 11 volunteers. As no time effect was 
observed in the fed state, average values (n = 2, 5, 7, 8 or 9, as specified 
in the legend of Fig. 2) were used in Fig. 2. Overall, no effect of the 
dietary state was observed on the pH or the enzyme activities, except 
that lipase activity was significantly higher in fed than fasted state (P <
0.01) (1093 vs 457 TBU/mL respectively).

The enzymes described above are frequently considered when 
studying enzymatic hydrolysis in the context of food or pharmaceuticals. 
In the next section, a family of enzymes which can significantly impact 
API concentrations in the intestinal lumen, but is sometimes overlooked, 
is discussed.

2.5. Carboxylesterase characteristics

Carboxylesterases (CES) have essential physiological functions 
linked to the hydrolysis of xenobiotics containing ester bonds. CES are 
part of the serine hydrolase superfamily of enzymes and metabolize 
various API, such as ACE inhibitors, anticoagulants, psychoactives, an-
tivirals etc (Wang et al., 2018). Although CES may play a significant role 
in the enzymatic hydrolysis of API, their role is frequently overlooked 
and awareness about their structure and function appears to be limited, 
in comparison to the well-known GIT enzymes such as pepsin, pancre-
atic lipase, trypsin etc. Hence, a more detailed overview of CES will be 
presented below.

The two main isoforms are CES1 and CES2, with CES1 being 
expressed mainly in the liver and adipocytes, whereas CES2 is mainly 
expressed in the pancreas and secreted to the duodenum from there 
(Junge et al., 1979; Wang and Kloer, 1983). CES2 is found in the small 
intestine and colon (Wang et al., 2018; Hosokawa, 2008). The structure 
of CES1 has been solved by X-ray crystallography with several ligands 
(Fig. 3): it consist of a central catalytic domain, an αβ domain, and an 

Fig. 2. Trypsin (TAME units), chymotrypsin (BTEE units), lipase (TBU) activities, and pH as measured in duodenal fluids from 11 volunteers in fed (only median +
SD is shown) and fasted state. Only one sample was available for each volunteer in the fasted state. For the fed state, n = 2 for volunteer #5, n = 5 for volunteers #1, 
2, 3, 4 and 6, n = 7 for volunteer #10, n = 8 for volunteer #8 and n = 9 for volunteers 7, 9 and 11. Statistical significance of the results (p ≤ 0.05) was tested using a 
paired t-test. Data analyses were performed using the R software, version 4.2.2.
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adjacent regulatory domain which contains the low-affinity surface 
ligand-binding Z-site (Bencharit et al., 2003; Kim et al., 1997; Fleming 
et al., 2007). According to this crystallographic data, CES1 exists as a 
monomer, trimer, or hexamer with substrate-dependent equilibrium of 
homooligomer formation.

Although the structure of CES2 has not been determined yet, it has 
been established that in contrast to CES1, it only exists as monomers. 
Recent studies on the structure of a potential mouse ortholog of CES2 
(mCES2c (Eisner et al., 2022) showed significant differences in the cap, 
the flexible lid, and the regulatory domain, compared to human CES1, 
which could explain the experimentally observed differences in sub-
strate specificity. CES1 metabolizes ester substrates with small alcohol 
groups and a bulky acyl group (like clopidogrel, oseltamivir, heroin, 
cocaine, enalapril). CES2 has the opposite preference – it hydrolyzes 
esters with large alcohol groups and small acyl moieties (like prasugel, 
flutamide, irinotecan). However, it was recently shown that CES2 can 
also hydrolyze mono- and diglycerides (Chalhoub et al., 2021).

Similarly to all hydrolases, CES enzymes are also characterized by a 
pH-dependent activity. The pH optimum of CES2, which operates in the 
small intestine, is reported to be in the range of 7.5–8.0 (Wang et al., 
2018), which is significantly higher than the small intestinal pH (6.1–7.0 
and 5.3–6.3, for fasted and fed state conditions, respectively (Vinarov 
et al., 2021). This mismatch between CES2 pH optimum and intestinal 
onditions (which is also present for other enzymes such as trypsin and 
chymotrypsin) must be considered when designing and interpreting 
results from in vitro studies on esterase-mediated API degradation.

A crucial parameter is the activity of CES enzymes in human intes-
tinal environment. Unfortunately, data on CES activity in the small in-
testine is not yet available and standardized methods for activity 
determination have not been used consistently in the literature. The 
latter is critical, as CES activities vary significantly depending on the 
substrate. For example, an activity of 1543 ± 759 nmol/min/mg protein 
was determined for the hydrolysis of p-nitrophenylacetate (PNPA, used 
as a standard substrate), compared to 66 ± 15 nmol/min/mg protein for 
O-valeryl propranolol when human jejunal S9 fractions were used as an 
esterase source (Taketani et al., 2007). Data relevant for the human 
small intestine was reported by van Gelder et al., who showed that 
PNPA-measured CES activity in intestinal tissue homogenates decreases 
along the duodenum, ileum and colon with values of 870 ± 600, 600 ±
390 and 414 ± 90 nmol/min/mg protein, respectively (Van Gelder 
et al., 2000).

3. Methods for studying intraluminal enzymatic hydrolysis

3.1. In vitro food digestion methods

The fate of food in the GIT is a key topic in food science and has 
prompted development of various static and dynamic in vitro digestion 

models. Since these models represent the GI environment, they can also 
be used to answer questions relevant to oral drug delivery and bio-
pharmaceutics. For example, the dynamic TNO Gastro-Intestinal Model 
(TIM) (Minekus et al., 1995), and the Dynamic Gastric Model (DGM) 
developed by the Institute of Food research (UK) (Mercuri, 2009; 
Wickham et al., 2005), both of which were originally applied mainly in 
food science research, have currently been adopted in pharmaceutical 
development.

Dynamic systems are either mono-compartmental (simulating one 
compartment of the GIT) or multi-compartmental (several compart-
ments). The different systems available have been described (Guerra 
et al., 2012) and what they are able to mimic was reviewed recently 
(Dupont et al., 2019). The multi-compartmental models consist of a 
series of bioreactors (stomach, small intestine) that are interconnected 
with pumps allowing to simulate the transit of food, regulate the pH and 
inject the digestive enzymes and bile salts in real time. More recently, a 
new generation of simulators equipped with in-silicone organs (Morlock 
et al., 2021; Peng et al., 2021) has been developed, as well as organ-on-a- 
chip models (de Haan et al., 2021), which open new perspectives for 
getting closer to a nearly-real human GIT. Although such dynamic 
models offer very good representation of the in vivo reality in the GI 
tract, their low throughput and considerable initial investment create 
space for the application of other, more simple models.

Static in vitro digestion methods are particularly popular because 
they are easy to use, cheap and do not require specific equipment. 
Basically, they consist of one compartment where the conditions of the 
mouth, stomach and small intestine are consecutively simulated by 
changing pH, adding enzymes etc. By reproducing the enzymatic and 
physicochemical conditions in the different compartments of the 
digestive tract, such models can be used in oral biopharmaceutics to 
monitor disintegration, dissolution and permeation (when a permeation 
barrier is included). However, a huge number of protocols differing in 
the experimental conditions (pH and duration of the different steps, 
amount of digestive enzymes and bile, etc) have been proposed making 
the comparison of results between studies impossible (Hur et al., 2011). 
In 2014, the EU COST Action INFOGEST, after more than 2 years of 
intense discussions, proposed a “harmonized” static food digestion 
model based on parameters that were taken from published clinical 
studies (Minekus et al., 2014). The model was validated towards clinical 
data (Egger et al., 2017; Egger et al., 2019; Sanchon et al., 2018), was 
optimized few years later (Brodkorb et al., 2019), and is now used all 
over the world while in the process of being recognized as an ISO 
standard. As new data on enzyme activities is being obtained (some of 
which is presented in the current study), further fine-tuning of the model 
might be required.

However, static in vitro digestion models are a simplistic represen-
tation of the physiological reality and cannot answer all research ques-
tions. Their advantages, but more importantly their limitations, have 

Fig. 3. (A) The scheme for CES2 hydrolysis of ester groups; (B) The 3D structure of CES1. The catalytic triad including Ser221, Glu354 and His468 are colored in red, 
yellow and blue, respectively. Reprinted from (Wang et al., 2018) under CC BY-NC-ND 4.0 Deed license, https://creativecommons.org/licenses/by-nc-nd/4.0/.
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recently been reviewed (Bohn et al., 2018). Overall, they are relevant as 
screening tools to compare the digestion of different food or food in-
gredients in identical conditions and have also been successfully used to 
assess end-points values such as the glycaemic index (Monro and Mishra, 
2010) or protein digestibility (Ariëns et al., 2021; Sousa et al., 2023). 
The model has been extended to simulate the GIT conditions found in 
infants (Menard et al., 2018) and in elderly (Menard et al., 2023). When 
static in vitro digestion models are too simple to answer more complex 
research questions, the dynamic in vitro digestion models can be a 
relevant alternative, which has been recently reviewed (Singh, 2024).

3.2. Lipid formulation digestion methods

Lipid-based formulations, and especially self-(nano)emulsifying drug 
delivery systems (S(N)EDDS), have long been shown to increase the 
absorption of poorly water-soluble API (Mu et al., 2013). SNEDDS are 
isotropic mixtures of oils, lipophilic and hydrophilic surfactants and co- 
solvents that form (nano)emulsion droplets upon dispersion in aqueous 
media, e.g. GIT fluids. The mechanism for API absorption from nano-
emulsions is not fully understood, but as many excipients used in lipid- 
based formulations are substrate for lipases in the GIT, the digestion of 
the lipids will inevitably take place.

As a consequence, in vitro digestion models, often termed in vitro 
lipolysis models, are used during the development of lipid-based for-
mulations, and are most often carried out in simulated fasted state 
conditions, i.e. with regard to bile salt concentration. The majority of the 
described and applied models are static models, focusing on intestinal 
digestion. In short, the lipid formulation is added to a simulated intes-
tinal medium, containing relevant levels of bile salts and phospholipids. 
Then the source of pancreatic lipase is added, to initiate the lipolysis. 
The digestion is run in a thermostated vessel (37 ◦C) placed in a pH-stat. 
The pH is kept constant at a relevant pH, often between 6.5 and 7, by 
titration of NaOH. The NaOH is titrating the free fatty acids generated 
during hydrolysis of tri- and diglycerides and other digestible excipients 
in the formulation. As not all fatty acids are protonated at pH 6.5, a back 
titration to pH 9 is needed to determine the total amount of fatty acids 
released (Gargouri et al., 1986; Helbig et al., 2012). Calcium chloride is 
added to the model, either continuously or as an initial concentration. 
This leads to formation of calcium soaps with the free fatty acids, and 
thereby they cannot inhibit lipolysis by accumulating on the surface of 
the digesting lipid droplet (Zangenberg et al., 2001). During digestion, 
the products formed generate colloidal structures, which can influence 
the solubilization of the API, and potentially lead to API precipitation. 
As a measure of the fraction of API available for absorption, the solu-
bilized API is quantified at selected timepoints during digestion (Mu 
et al., 2013; Feeney et al., 2016).

The activity of pancreatic lipase in the in vitro intestinal lipolysis 
models has generally been around 800 and 1200 U/mL, measured as 
TBU/mL. Unfortunately, different assays have been used to determine 
the lipase activity over the years. United States Pharmacopeia (USP) 
recommend the use of olive oil emulsified by gum arabic as a substrate 
(USP, 2024), whereas the INFOGEST model applies the TBU assay which 
uses tributyrin as substrate (Brodkorb et al., 2019).

Most often porcine pancreatin extract is added as source of pancre-
atic lipase and also provides the colipase, as well as other pancreatic 
enzymes, including proteases, amylase and carboxyl esterase. For in vitro 
digestion of lipid formulations, where primarily lipase is important, the 
possibility of using microbial lipases has been assessed. This would 
simplify the process and enable direct UV measurements, as microbial 
lipases provide clear solutions, whereas the pancreatic extract forms 
turbid solutions. Further, when combining in vitro lipolysis with 
permeation through CaCo-2 cell cultures, it is necessary to apply a 
different kind of lipase, as the CaCo-2 cells are not compatible with 
pancreatin extract. In this case, an immobilized microbial lipase has 
been applied and enabled combined in vitro lipolysis and permeation 
through CaCo-2 cells (Keemink et al., 2019). The rate and extent of 

lipolysis using different microbial lipases on different lipid formulations 
have recently been compared (Ejskjær et al., 2024). The presently 
available immobilized lipase has a much lower digestion compared to 
pancreatic lipase, probably because of lack of specificity. In contrast, 
some liquid microbial lipases provided almost the same degree of 
digestion of some lipid formulations, and also same drug solubilization 
for one model drug. However, more studies are needed to assess whether 
the microbial lipase has the same affinity towards different fatty acid 
chain lengths and esters, before recommending to generally use micro-
bial lipases for in vitro lipolysis.

Recently, in vitro gastric digestion has been added to the intestinal in 
vitro lipolysis models (Bakala-N’Goma et al., 2015; Klitgaard et al., 
2020). However, an inherent problem here is the lack of commercial 
human gastric lipase, or a lipase with the same activity and pH profile. A 
recombinant human gastric lipase has been used in a few papers 
(Sassene et al., 2016; Heerup et al., 2021) but is presently not 
commercially available. Most often, a microbial lipase is used, but 
recently, a rabbit gastric lipase has become available and is recom-
mended for use in the INFOGEST model (Brodkorb et al., 2019); how-
ever, it has not been used for assessment of lipid formulations yet. 
Gastrointestinal in vitro digestion models have primarily been static i.e. 
conducted in the same vessel, but transfer, or dynamic, models have also 
been applied (Siqueira Jorgensen et al., 2018; Klitgaard et al., 2017). In 
these models, the gastric medium is gradually transferred to the intes-
tinal compartment during digestion.

There has been focus on standardizing the in vitro lipolysis models 
used for development of lipid formulations. In the early 2010s, the Lipid 
Formulation Classification Scheme (LFCS) Consortium, composed of 
both industry and academia, aimed at standardizing the in vitro lipolysis 
model as a tool for characterizing different kinds of lipid formulations 
(Williams et al., 2012). These attempts have not yet led to a standardized 
in vitro lipolysis model for evaluating lipid formulations. This is also 
because there often is a lack of in vivo in vitro correlation (IVIVC) be-
tween the API solubilisation during in vitro lipolysis and the in vivo 
performance (Berthelsen et al., 2019). Several attempts have been made 
to develop in vitro lipolysis models that can display IVIVC. This includes 
implementing a permeation step in the lipolysis model using different 
permeation barriers, including both cell cultures such as CaCo-2 and 
MDCK cells and artificial membranes, as well as phospholipid-based 
membranes (Permeapad® and PVPA) (Keemink et al., 2019; Falavigna 
et al., 2021; Keemink et al., 2022; Klitgaard et al., 2021). Another means 
to obtain IVIVC using in vitro lipolysis is to implement a gastric digestion 
step and/or to simulate the GI physiology of the preclinical species that 
were used for the in vivo study (Berthelsen et al., 2019). Accordingly, 
simulating the rat GIT, including higher bile salt levels and decreased 
lipase activity has led to a better correlation with in vivo data (Siqueira 
Jørgensen et al., 2018).

3.3. Methods for studying API hydrolysis by carboxylesterases

Standard methodology for studying API hydrolysis by CES has not 
yet been established. Hence, studies have been (and continue to be) 
performed at various conditions. The variety starts at the design of the 
study, in respect to the degree of biorelevance of the media and the 
source of the enzymes: (1) human or animal intestinal fluids (highly 
biorelevant medium and enzymes), (2) cell-based assays and tissue ho-
mogenates, in which the medium is usually less biorelevant and enzymes 
represent not only CES action but CYP metabolism as well, and (3) 
aqueous-based media combined with commercially available pancreatin 
or CES enzymes, in which the medium can be biorelevant, depending on 
inclusion of bile salts and phospholipids, whereas the selection of the 
enzymes depends on commercial availability.

When considering the choice of assay, one has to take into account 
several limitations. For example, tissue homogenates will have CYP 
activity, thus confounding drug hydrolysis by the luminal CES2 with the 
activity of CES1 which can be present in some of the tissue cells. In 
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respect to using commercial enzyme sources, one should be careful 
when selecting pancreatin, as the API may be a substrate of enzymes 
other than CES (e.g. pancreatic lipase).

Another aspect of designing an in vitro luminal esterase degradation 
study, which should not be overlooked, is the concentration of solubi-
lizing species such as bile salts and phospholipids. A large body of evi-
dence obtained at various conditions indicates that API solubilization 
can effectively decrease the rate of hydrolysis by esterase enzymes 
(Vinarov et al., 2024; Hammad and Muller, 1999; Hoppe and Szni-
towska, 2014; Bali et al., 2016; Fayed et al., 2016). This underlines the 
importance of correctly mimicking the composition of fasted- or fed- 
state human intestinal fluids, especially when the hydrolysis-sensitive 
API, which are prone to solubilization are considered.

4. Enzymatic hydrolysis of lipids, API and polymeric excipients: 
Examples

4.1. API hydrolysis by carboxylesterases

Data for the enzymatic hydrolysis of 14 API at intestinal conditions 
has been collected from the literature (Table 1). However, due to the 
lack of standardized methodology, direct comparison of literature data 
is currently not possible. This issue prevents the drawing of any general 
conclusion about enzyme-substrate specificity or rate of hydrolysis and 
limits interpretation to a rather descriptive level. In addition, as many of 
the studies were performed with a cocktail of enzymes (pancreatic 
extract), rather than purified enzymes, it should be mentioned that other 
than CES, pancreatic lipase and related enzymes can also contribute to 
the hydrolysis of some of the API.

The hydrolysis half-lives of some drugs are in the order of several to 
tens of minutes, which indicates that the hydrolysis product(s) will be 

Table 1 
Summary of esterase-mediated luminal API degradation studies.

API Simulated intestinal conditions Reference conditions API hydrolysis, D Ref.

pH Bile salts Enzymes

Abiraterone acetate 7.5 FaSSIF 20 IU/mL esterase 
(porcine)

FaHIF, rat perfusion t1/2 (FaHIF) < 20 min (Stappaerts 
et al., 2015)

Abiraterone acetate 6.5 FaSSIF, 
FeSSIF, 
FeSSIF +
lipids

80 IU/mL 
esterase, 
0.83 mg/mL 
pancreatin 
(porcine, 8x USP)

rat perfusion D120min (FeSSiF-esterase) ≈ 67 % 
D120min (FeSSiF-pancreatin) ≈ 15 %

(Braeckmans 
et al., 2022)

Candesartan cilexetil 5.0–6.5 FaSSIF, 
FeSSIF

0.1–0.5 % 
Pancreatin 
(porcine, 4x)

FaHIF, FeHIF t1/2(FaHIF6.5) = 80 min 
t1/2(FeHIF5.0) = 137 min

(Vinarov et al., 
2024)

Candesartan cilexetil 5.5–7.5 FaSSIF 1–4 % Pancreatin HIF, DIF t1/2(5–60 min) 
DIF 43.0 ± 2.8 min 
HIF 49.2 ± 0.5 min

(Borde et al., 
2012)

Chloramphenicol 
succinate

5.5–7.5 FaSSIF 1–4 % Pancreatin HIF, DIF D60 min < 10 % (Borde et al., 
2012)

Cortisone acetate 5.0–6.5 FaSSIF, 
FeSSIF

0.1–0.5 % 
Pancreatin 
(porcine, 4x)

FaHIF, FeHIF t1/2(FaHIF6.5) = 121 min 
t1/2(FeHIF5.0) = 54 min

(Vinarov et al., 
2024)

Danazol 6.8 None 1 % Pancreatin 
(porcine, 3x)

none t½ = 36.5 h (Gadkariem 
et al., 2003)

Desmopressin rat jejunal fluid and rat jejunal homogenate t1/2 (rat jejunal fluid) ¼ 31 h 
t1/2 (rat jejunal homogenate) ¼ 5h

(Lepist et al., 
1999)

Diloxanide furoate 6.8 None 1 % Pancreatin 
(porcine, 3x)

none t1/2 = 20 min (Gadkariem 
et al., 2004)

Dipropionate ester of 
DHPG

rat and monkey intestinal homogenates t1/2 (rat intestinal homogenate) ¼ 21 min (Benjamin 
et al., 1987)

Enalapril 5.5–7.5 FaSSIF 1–4 % Pancreatin HIF, DIF D60 min < 10 % (Borde et al., 
2012)

Ganciclovir prodrugs Monkey intestinal homogenates Compound 3, t1/2 = 4.076*10-4 min 
Compound 4, t1/2 = 3.01*10-5 min

(Powell et al., 
1991)

Lamivudine 
derivatives

6.8 None Pancreatin 
(porcine)

none t1/2(SIF) = 2.04–––19.4 h  (Gualdesi et al., 
2013)

Propranolol prodrugs 7.4 None Esterase none t1/2 (esterase): 0.00035 – 0.072 min (Irwin and 
Belaid, 1988)

Prednisolone acetate 5.0–6.5 FaSSIF, 
FeSSIF

0.1–0.5 % 
Pancreatin 
(porcine, 4x)

FaHIF, FeHIF t1/2(FaHIF6.5) = 110 min 
t1/2(FeHIF5.0) = 32 min

(Vinarov et al., 
2024)

Tenofovir disoproxil 
fumarate

6.8–11.0 FaSSIF 480 U/mL 
pancreatin lipase

Human and mouse intestinal S9 
fractions, Caco2- and MDCK-cell 
permeability, rat pharmacokinetic

t1/2 (FaSSIF + PL) = 2.0 ± 2.3 min 
t1/2 (Human Intestinal Extract) = 0.62 ±
1.29 min 
t1/2 (Rat Intestinal Extracts) = 0.58 ±
1.75 min

(Watkins et al., 
2017)

Tenofovir disoproxil 
fumarate

5.0–6.5 FaSSIF, 
FeSSIF

0.1–0.5 % 
Pancreatin 
(porcine, 4x)

FaHIF, FeHIF t1/2(FaHIF6.5) = 17 min 
t1/2(FeHIF5.0) = 37 min

(Vinarov et al., 
2024)

Tenofovir disoproxil 
fumarate, PNPA

Caco2-cell homogenate Intestinal homogenates from rat, pig 
and man

Degradation rate of tenofovir disoproxil in 
homogenates from Caco-2 monolayers 
amounted to 0.016 ± 0.003 nmol s− 1 mg 
protein− 1

(Van Gelder 
et al., 2000)

*HIF = human intestinal fluids, FaHIF = fasted HIF, FeHIF = fed HIF, DIF = dog intestinal fluids, SIF = simulated intestinal fluids, FaSSIF = fasted state SIF, FeSSIF =
fed state SIF, t1/2 = half-life, D = degree of API hydrolysis, DHPG = Dihydroxyphenylglycine, PNPA = p-nitrophenyl acetate.
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subjected to intestinal absorption, potentially influencing oral pharma-
cokinetics. Such compounds are abiraterone acetate (Stappaerts et al., 
2015), candesartan cilexetil (Vinarov et al., 2024; Borde et al., 2012), 
diloxanide furoate (Gadkariem et al., 2004), dihydroxyphenylglycine 
dipropionate ester (Benjamin et al., 1987), ganciclovir prodrugs (Powell 
et al., 1991), propranolol prodrugs (Irwin and Belaid, 1988) and teno-
fovir disoproxil fumarate (Vinarov et al., 2024; Van Gelder et al., 2000; 
Watkins et al., 2017). However, depending on the properties of the 
prodrug and the hydrolysis products, the prodrug might still play a 
major role for absorption (Vinarov et al., 2024; Van Gelder et al., 2000; 
Watkins et al., 2017): this is the case for tenofovir disoproxil fumarate, 
where the prodrug is the main determinant of intestinal uptake, due to 
the very poor permeability of the hydrolyzed species. For other API, 
where hydrolysis kinetics are in the scale of hours, it is expected that 
hydrolysis will not significantly influence intestinal absorption, espe-
cially if the API are highly permeable compounds.

4.2. Lipid excipient hydrolysis

GIT lipases and especially pancreatic lipase are able to hydrolyze 
excipients used in lipid-based formulations. As mentioned above, me-
dium chain tri- and diacylglycerides are hydrolysed faster than their 
long-chain counterparts by both gastric and pancreatic lipase (Jandacek 
et al., 1987; Sek et al., 2001; Sek et al., 2002). Monoacylglycerides are 
often used as lipophilic cosurfactants in lipid-based formulations, such 
as SNEDDS (Tran et al., 2016) and are also substrates for pancreatic 
lipase. For example, Capmul MCM EP (Mono/diglycerides of caprylic 
acid) was digested up to 20 % after 60 min incubation with lipase from 
porcine pancreas (Leonaviciute et al., 2016). While some fatty acid 
ester-based surfactants such as the polysorbates can also be hydrolyzed 
by pancreatic lipase and CES enzymes (Glucklich et al., 2021; Rasmus-
sen et al., 2024; Christiansen et al., 2010), this is not always the case, as 
shown for sucrose laurate and tocopheryl polyethylene glycol succinate 
(TPGS) (Christiansen et al., 2010). The situation is similarly ambiguous 
when propylene- or PEG-based surfactants used in lipid-based formu-
lations are considered: of the ethoxylated castor oil surfactants, Kolli-
phor RH40 is not digested, whereas Kolliphor EL is, which is most likely 
due to Kolliphor RH40 being hydroxylated (Berthelsen et al., 2015; 
Cuine et al., 2007). However, some studies indicate that Kolliphor RH40 
may also be digested, although to a very low extent (<10 %) 
(Christiansen et al., 2010). A further complication for the assessment of 
digestion of many pharmaceutical surfactants is that they are not pure, i. 
e. often contain tri- di- and monoacylglycerides, which are a usual 
starting point for their synthesis. This includes Labrasol®, where the 
present tri and di acylglycerides are digested by pancreatic lipase, 
whereas the PEG-esters and monoglycerides are mainly hydrolyzed by 
the synergistic action of CES enzymes and pancreatic lipase-related 
protein 2 (PLRP2) (Fernandez et al., 2007). The extent of enzymatic 
hydrolysis of lipid excipients and surfactants was recently compared by 
Zöller et al. (Zöller et al., 2022), who showed highest hydrolysis of 
medium chain glycerides, followed by long chain glycerides and sur-
factants. Hydrolysis of surfactants decreased in the following order: 
glycerol monostearate > polyoxyethylene (20) sorbitan monostearate >
PEG-35 castor oil > sorbitan monostearate.

4.3. Polymeric excipient hydrolysis by intestinal enzymes

Polymers are an important class of oral formulation excipients. The 
GI environment exposes polymers to different stress conditions, 
including, pH, thermal, enzymatic and mechanical processing. This can 
lead to the degradation of polymers with susceptible chemical groups 
(Azevedo and Reis, 2005), unless the respective groups are protected as 
in the case of cyclodextrins (Buedenbender and Schulz, 2009; Flourié 
et al., 1993). While the digestion of lipids and proteins in food and 
pharmaceuticals is extensively studied, this is not the case for the GI 
digestion of polymeric excipients. The scarce data which is available for 

the degradation of some pharmaceutically relevant polymers in the GIT 
is discussed below (see also Table A1 in the Appendix).

4.3.1. Cellulose derivatives
Cellulose and its derivatives were among the first polymers to be 

used in drug delivery. The conventional nonionic derivatives, for 
example hydroxypropyl methylcellulose (HPMC), methylcellulose (MC), 
hydroxypropyl cellulose (HPC) have good chemical stability and pro-
vide protection against the strong acidic nature and digestive enzymes in 
the stomach. However, some cellulose derivatives such as hydrox-
ypropyl methylcellulose acetate succinate (HPMCAS), hydroxypropyl 
methylcellulose phthalate (HPMCP), and other cellulose esters can un-
dergo chemical or enzymatic hydrolysis, resulting in reaction products 
such as cellulose, carboxylic acids and glucose (Edgar et al., 2001; Liu 
et al., 2015).

HPMCAS is a pH-responsive enteric cellulose ester commonly used 
for coating and as a matrix in amorphous solid dispersions (ASD). In the 
stomach at low pH (1–3), it is insoluble, but it is ionized in the small 
intestine at higher pH (5.5–7) (Liu et al., 2015). Different grades of 
HPMCAS (LF, MF or HF) are designed to trigger API release, depending 
on their percentage of the substituted contents which includes ester 
(acetate and succinate) and ether (methyl and hydroxypropyl) moieties. 
Among these, the ester linkages (highest percentage in HPMCAS-LF) can 
be enzymatically hydrolyzed, in contrast to the ether bonds (highest 
percentage in HPMCAS-HF). However, currently there is no direct 
experimental data on the extent of HPMCAS enzymatic hydrolysis at 
biorelevant conditions.

The situation is similar with hydroxypropylmethyl cellulose phtha-
late (HPMCP). The stability of HPMCP was assessed indirectly, by 
studying the protective and stabilizing behavior of HPMCP coating 
against digestion of catechin in an in vitro digestion model. While 
HPMCP coating of different thickness was found to increase GI stability 
of the active, the coating was observed to slightly rupture in the presence 
of pancreatin, suggesting a possible role of enzymatic hydrolysis of the 
polymer (Chung et al., 2014).

4.3.2. Polyesters
Poly (lactic acid) (PLA), poly (glycolic acid) (PGA) and their copol-

ymer PLGA are widely used pharmaceutical excipients. Usually, CES are 
responsible for degradation of PLGA in the intestine by hydrolysis of the 
ester bonds (Williams and Zhong, 1994). However, a PLA matrix was 
shown to undergo a rapid degradation in intestinal fluids, under the 
influence of lipases, indicating that enzymes other than CES may play a 
role (Landry et al., 1997). According to an in vivo study by Chang et al. in 
rats (Chang et al., 2017), PCL polyester films degraded more via surface 
erosion, by the action of enzymes in slightly alkaline environment with a 
significant weight loss of the polymer in intestine when compared to the 
stomach.

PCL and Poly(l-lactide-co-ε-caprolactone) (PLCL) meshes showed 
differences in mechanical properties when degraded in phosphate buffer 
or small intestinal fluids obtained as aspirates collected from patients 
(Peerlinck et al., 2023). Also, it is noticed that PCL undergoes faster 
surface degradation under in vivo intestinal conditions, which could be 
attributed to the action of lipase (Bartnikowski et al., 2019).

A pure poly butylene succinate film was found to be less resistant to 
attack by pancreatic lipase in the intestine as compared to a composite 
prepared with poly (vinylidene fluoride). This was evidenced by in vivo 
degradation of the pure polymer film implanted in the ratś duodenum as 
shown by weight loss of the film and by the appearance of pores and 
grooves on its surface by erosion governed by pancreatic enzymes 
(Jeffrey Kuo et al., 2020).

4.3.3. Starch
Generally, starch digestion is initiated in the mouth by saliva 

amylase, and hydrolysis is continued by pancreatic amylase which is the 
main enzyme for starch digestion in the GIT. The starch oligomers are 
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further hydrolyzed into glucose and oligosaccharides by maltase and 
sucrase. (Boldrini, 2023; Dona et al., 2010).

It has been determined that hydrolysis by α-amylase controls API 
release from a terpolymeric semi-interpenetrating network composed of 
starch and polyethylene glycol (Bajpai et al., 2006). According to an in 
vitro release study (Carbinatto et al., 2016) of two different amylose- 
drug complexes (nimesulide and praziquantel), pancreatin extract was 
observed to cause a burst-release effect under 30 min of administration, 
which confirmed the role of the enzymatic degradation in comparison to 
the control with no pancreatin extract added (Thoma and Bechtold, 
1999).

5. Summary and future perspectives

Current understanding and parametrization of GIT physiology has 
facilitated the development of in vitro models of varying complexity 
which are used for studying enzymatic hydrolysis. However, an impor-
tant variable, which can severely affect the quantitative results of any 
study, is the concentration or activity of the used enzymes. The review 
presents new data on enzyme activity after intake of a liquid meal using 
standardized analytical methods, however, considering the limited 
previous data available, and the high interindividual (and possibly even 
intraindividual) variability, the frequent approach of selecting a single 
enzyme level is still questionable. In addition, standardization of the 
methods for studying the enzymatic hydrolysis of API and polymeric 
excipients is an issue and the INFOGEST model (established for simu-
lating food digestion) is seldom used for lipid formulation hydrolysis 
where fasted state is the standard reference condition. Hence, the lack of 
a standard method for studying API or excipient enzymatic hydrolysis in 
both the fasted and fed state, combined with scarce data available and 
the frequent use of cocktail of enzymes (obscuring the identity of the 
active enzyme), hampers mechanistic understanding. As a result, 
structure-stability relationships of API hydrolysis remain elusive and 
even less is known about polymer hydrolysis due to lack of data. Un-
derstanding of lipid digestion is more advanced, as it has been shown 
that shorter chain-length glycerides are hydrolyzed faster than their 

longer-chain counterparts. Therefore, systematic studies of API 
(including PROTACS and peptides) and polymer hydrolysis at stan-
dardized, physiologically relevant conditions are needed to generate a 
database, that can lead to an increased understanding of how the 
structure of API and excipients impacts their stability towards enzymatic 
hydrolysis in the small intestine. In addition, the impact of intra- 
individual variability, regional differences and how to translate these 
in vitro results to in vivo drug exposure via physiologically-based bio-
pharmaceutics modelling (PBBM) is of considerable interest.
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Appendix A 

A1. Protocol for collection of human intestinal fluids

Human intestinal fluids were collected at UZ Leuven as part of a study which was approved by the Ethics Committee Research UZ/KU Leuven, 
Belgium (S53791). The details of the protocol are described in Goovaerts et al. (Goovaerts et al., 2024). The volunteers did not have a history of GIT 
diseases and did not take any oral medication for two days before participating in the study. The enzyme assays used in the present study for lipase, 
trypsin and chymotrypsin determination were based on Brodkorb et al. (Brodkorb et al., 2019) and are described in the following section.

The protocol for collection of intestinal fluids via a naso-duodenal catheter is summarized in Fig. A1 below. The “fasted” conditions corresponded 
to the ingestion of 240 mL of (still) water. For the fed state, volunteers ingested 400 mL of Ensure Plus vanilla (600 kcal), followed by 240 mL of water 
20 min later. For each volunteer (n = 11), enzyme activities were determined in one fasted state sample (collected between 30 and 60 min after water 
intake) and in 2–9 fed state samples (collected between 30 and 110 min after meal intake). For lipase determination, protease activities were blocked 
with Pefabloc (final concentration 5 mM); samples were diluted 1:1 with glycerol in order to preserve enzyme activities during freezing (Roman et al., 
2007). For trypsin and chymotrypsin determination, lipolytic activities were blocked by adding 4-bromophenyl boronic acid (final concentration of 5 
mM); samples were diluted 1:1 with glycerol before being stored at − 20 ◦C until the analysis.

Fig. A1. Experimental design for collecting duodenal fluids in fed and fasted state conditions.
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A2. Enzyme assays used for characterization of human intestinal fluids

The digestive enzyme assay protocols are detailed in the supplementary information of Brodkorb et al. (Brodkorb et al., 2019) and differ only in the 
temperature of the assays as all the enzyme activities were measured at 37 ◦C.

Unless otherwise stated, chemicals were from Sigma-Aldrich (Saint-Louis, USA).
Trypsin activity was assessed by using p-toluene-sulfonyl-L-arginine methyl ester (TAME, ref T4624) as a substrate. TAME plus H2O produces p- 

toluene-sulfonyl-L-arginine plus methanol when trypsin is added. One unit of trypsin hydrolyzes 1 µmol of TAME per min at pH 8.1 and 37 ◦C. TAME 
was diluted at 5 mM in milli-Q water. Then, 1.3 mL of 46 mM Tris–HCl buffer (pH 8.1) was mixed with 150 µL of substrate and incubated in a 
spectrophotometer (SAFAS UVmc2, Monaco) at 37 ◦C at least 5 min to achieve temperature equilibration before adding 50 µL of the human intestinal 
fluids diluted in cold 1 mM HCl. The increase in absorbance was recorded at 247 nm over 10 min and the slope of the linear part of the curve was 
calculated.

Chymotrypsin activity was based on the use of N-benzoyl-L-tyrosine ethyl ester (BTEE, ref B6125) as a substrate: one unit of chymotrypsin hy-
drolyses 1.0 µmol of BTEE per min at pH 7.8 at 37 ◦C. The substrate, BTEE was dissolved at a concentration of 1.18 mM in methanol/milli-Q water 
(63.4/36.6: v/v). Then, 0.75 mL of buffer (0.08 M Tris HCl with 0.1 M CaCl2 adjusted to pH 7.8) was mixed with 0.7 mL of BTEE and incubated in a 
spectrophotometer (SAFAS UVmc2, Monaco) at 37 ◦C for at least 5 min to achieve temperature equilibration before the addition of 50 µL of the human 
intestinal fluids diluted in cold 1 mM HCl. The increase in absorbance at 256 nm was recorded over 10 min and the slope of the linear part of the curve 
was calculated.

Finally, lipase activity was determined using a pH-stat technique (Titrando 842, Metrohm, Villebon-sur-Yvette, France) with tributyrin (TBU, ref 
T8626) as a substrate (purity ≥ 99 %). The pancreatic lipase assay was defined as the release of 1 µmol of butyric acid per min at 37 ◦C and pH 8.0. The 
free fatty acids released by the lipase was titrated by 0.1 N NaOH at a constant pH (8.0) using 0.1 N NaoH. The buffer contained 2 mM of CaCl2, 0.3 mM 
of Tris-HCl, 4 mM of sodium taurodeoxycholate and 150 mM NaCl. The buffer (24 ml) was mixed with TBU (0.828 mL) and equilibrated at 37 ◦C in the 
pH-stat vessel. Then,12 µL of duodenal effluent was added and the rate of 0.1 N NaOH was monitored to maintain pH 8 for 8 min.

Table A1 
Polymer degradation summary.

Polymer Gastro-intestinal conditions In vitro Validation Notes Ref

pH Medium Enzymes

Hydroxypropyl 
methylcellulose 
acetate 
succinate.

HPMCAS-MF 
(Aqoat®) and 
HPMCAS-MG

6.8 
7.0

 Pancreatin Storage: 
28 months at 26 ◦C in closed 
packaging

Aqueous coating 
remained with 50 % 
Acetyl content

(Thoma and 
Bechtold, 
1999)

DAB 10 grade 
reagents

Automatic titration 
apparatus

Residual lipase 
activity: 
Aqueous coating: 13 
to 23 % 
Organic film 
coating: 5 %

HPMCAS-LF with 
silicon nanoparticles, 
(Psi) and Acorbyl 
palmitate (AP) 
hydrogel.

6.8
Continuous 
gradient pH 
media,  

Milli-Q water

Thermomyces 
lanuginosus lipase 
(100 U/mL)

Normal conditions: 
Shaking at 150  rpm.  

Inflamed conditions: 
Supernatant from human 
macrophages cultured with 
lipopolysaccharide

API release 
80 % for 2 h 
100 % for 5 h    

0.5 µg/mL for 4 h 
0.8 µg/mL for 24 h

(Li et al., 
2018)

 Polymer degradation 
not measured, 
focuses on vehicle 
efficiency for API 
delivery.

HPMCAS (Aqoat® 
AS-LF)

 human small intestinal fluids none Viability: 
small intestine 2200 
CFU/mm2  

Intestinal fluids: 
4100 in CFU/mm2

(Park et al., 
2016)

Polymer degradation 
not measured, 
focuses on survival 
rate of viable 
bacteria in 
Probiotics

Hydroxypropyl 
methylcellulose phthalate (HP 55, HP 55- 
AF and − UF)

6.8  Pancreatin Storage: 
11 months at 26 ◦C in closed 
packaging Aqueous coating left 

with 70–80 % 
phtalyl content.  

(Thoma and 
Bechtold, 
1999)

(continued on next page)
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Table A1 (continued )

Polymer Gastro-intestinal conditions In vitro Validation Notes Ref

pH Medium Enzymes

DAB 10 grade 
reagents

Automatic titration 
apparatus

Residual lipase 
activity: 
90 % after 120 min

Hydroxypropyl methyl cellulose phthalate 
(HPMCP)

7.0 0.1 M NaOH and 
20 mM phosphate 
buffer

Porcine 
lipase and pancreatin

Shaking water bath − 150 
rpm

L-HPMCP (size >
500 µm) 43.8 %,S- 
HPMCP  
(size < 500 µm) 
33.73 %  

(Chung et al., 
2014)

Polymer degradation 
not measured, 
focuses on digestive 
stability and 
intestinal transport 
for the catechin.

Starch (Contramid) with Hydroxypropyl 
methylcellulose (HPMC) or Poly 
(vinylalcohol)  
(PVAL)

6.8 phosphate buffer 
(50 mM)

α-Amylase from 
Bacillus species

USP type III dissolution 
apparatus with phosphate 
buffer

Starch hydrolysis 
erosion: 
20 % HPMC 
15 % after 120 min  

20 % PVAL 
25 % after 120 min

(Rahmouni 
et al., 2001)

Phthalate esters and Bisphenol A in low- 
density polyethylene (LDPE) and polyvinyl 
chloride (PVC)

6.3 Simulated 
duodenal juice

Pancreatin, Lipase In-vitro digestion models 
with GIT fluids  

Fed:  
(Versantvoort et al., 2005) 
Fasted:  
(BARGE—INERIS, 2011)

Hydrolysis of DMP 
and DEP: 
LDPE 
(7.2 %, 3.4 
%-Fasted) (7 %, 1.6 
%-Fed)  

PVC 
(6 %, 2.4 %-Fasted) 
(1.7 %, 0.5 % − Fed)

(Lopez- 
Vazquez et al., 
2022)

Dibutyl phthalate (DBP) and di(2-ethylhexyl) 
phthalate (DEHP)

7.4 50 mM phosphate 
buffer

Recombinant human 
CESs

Pooled microsomes and 
cytosol of human derived 
small intestine

DBP hydrolysis 
Microsomes − 57 % 
Cytosol − 84 %  

DEHP hydrolysis 
microsomes − 2,120 
pmol/min/mg 
protein 
cytosol- 909 pmol/ 
min/mg protein 
CES2 activity: 1490 
pmol/min/mg 
protein

(Isobe et al., 
2023)

Dimethyl phthalate (DMP), DBP and DEHP. 7.4 0.1 M K,Na- 
phosphate buffer

Lipase from porcine 
pancreas  

Rat cells expressing 
carboxylesterase 
isoform

In a suspension of the rat 
derived small intestine 
microsomes, with incubation 
time of 
5 min in DBP and DMP, and 
20 min for DEHP

DEHPLipase  
(2.5 nmol/min/mg 
of monoalkyl 
protein)  

DBP-lipase  
(5.5 nmol/min/mg 
of monoalkyl 
protein)

(S.K. Ozaki H, 
Watanabe Y, , 
2017)

Prodan® containing poly(D, L-lactic acid) 
nanoparticles.

7.5 phosphate buffer Pancreatin simulated intestinal fluid 
under continuous stirring

Lactate formation: 
Albumin-coated 
PLA50 nanoparticles 
60 % after 480 min.  

PVA-coated PLA50 
nanoparticles  

2.2 % after 480 min

(Landry et al., 
1997)

Poly(ε-caprolactone), Poly(l-lactide-co- 
ε-caprolactone) (PLCL)

6.5 25 mM MES-buffer Lipase Small intestinal fluids are 
freshly collected from 
patients with (post 
operative) intestinal probes 
inside the incubation tubes.

Mechanical 
degradation: 
Yield stress-40 % in 
70 days & elongation 
at break  

Elastic modulus and 
viscoelastic 
coefficients 
− unchanged

(Peerlinck 
et al., 2023)

(continued on next page)
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Table A1 (continued )

Polymer Gastro-intestinal conditions In vitro Validation Notes Ref

pH Medium Enzymes

Polymer degradation 
not measured, 
focuses on the 
mechanical 
degradation of 
polymers.

Starch and Poly(s-caprolactone) (PCL) blend 7.45.5 Phosphate buffer 
saline solution 
(0.01 M) 
Acetate buffer 
solution  
(0.1 M)

− Lipase from 
Thermomyces 
Lanuginosus.  

− α-amylase from 
Bacillus 
amyloliquefaciens  

− α-amylase from a 
genetically modified 
Bacillus 
lichenoformis.

constant shaking at 60 rpm 
for 6 weeks. Hydrolysis: 

5 % enzyme − 100 % 
(7 days) 
weight loss-50 %

(Azevedo and 
Rui, 2005)

Poly (ε-caprolactone) − Implants in small 
intestine of rats

− − Degradation 
Weight loss − ~5mg 
(28 days) 
Crystallinity-7 %, 
Molecular weight- 
73 %

(Chang et al., 
2017)

Poly (vinylidene fluoride) (PVDF), 
Polybutylene 
Succinate

 Implants in the 
duodenum

Pancreatic lipase  Degradation 
(1 month)  

Weight loss-2.51 % 
Tensile strength loss- 
21.52 % 
Release of acidic by- 
products

(Jeffrey Kuo 
et al., 2020) 

Poly(ε-caprolactone) (PCL) and cellulose 
acetate (CA

6.0 
7.4

0.05 M phosphate 
buffer  

0.05 M acetate 
buffer

Lipase The vials were incubated in a 
thermostatted oven 

Degradation (250 h) 
Pure PCL 
mass retention 50 % 
Pure CA 
mass retention 105 
%

(Gan et al., 
1997) 

α-amylase The vials were placed in a 
water bath

Degradation (250 h) 
Pure PCL 
mass retention 100 
% 
Pure CA 
mass retention 108 
%

Starch crosslinked with other polymers. 6.8 phosphatebuffer α-amylase 
fromBacillus Subtilis

Flow throughdiffusion cell, 
under constant stirring at 50 
rpm

Degradation 
(10 h)  

Released sugar – 
125 µmol (g gel)− 1

(Bajpai et al., 
2006)

Starch (70 % amylose, 30 % amylopectin) 6.9 Phosphate buffer Pancreatin paddle apparatus(USP II) 
at 50 rpm

API release 100 % in 
120 min & for few at 
240 min.  

Polymer complex 
degradation not 
measured, focuses 
on accelerated API 
release rates.

(Carbinatto 
et al., 2016)

High amylose starch 6.8 phosphate buffer 
solution

Pancreatinfrom 
porcine pancreas

In simulated medium of the 
smallintestine under slow 
stirring 
(50 rpm)

Hydrolysis 
(120 min)  

Amylose complexes- 
100 % 
High amylose 
complex-80 %

(Yang et al., 
2013)

Starch 8.1 Duodenal-bile 
juice

α-amylase Simulated duodenal juice Degradation 
Number of pores 
~8.5 (16 h), ~13 
(20 h). 
Amylose content 
27.38 % (16 h) 
28.66 % (20 h)

(Leyva-López 
et al., 2019)
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Data availability
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