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ABSTRACT   

Shape-anisotropic polymeric micro- and nanoparticles are of significant interest for the 

development of novel composite materials, lock-and-key assemblies, and drug carriers. 

Currently, syntheses require external confinement in microfluidic devices or lithographic 

techniques associated with significant infrastructure and low productivity, so new methods are 

necessary to scale-up such production efficiently. Here we report bottom-up polymerization of 

regular shape-anisotropic particles (polygonal platelets with different numbers of edges, with and 

without protruding asperities, and fibrilar particles with controllable aspect ratios), with size 

control over 4 orders of magnitude (~50 nm – 1 mm). Polymerization also enables the study of 

much smaller shapes than could previously be studied in water suspensions and we study the 

fundamental limits of the self-shaping transition process driving these transformations for 

monomer oil droplets of stearyl methacrylate (SMA) monomer oil. We show the method is 

compatible with a variety of polymerizing monomers and functional modifications of the 

particles (e.g., composites with magnetic nanoparticles, oil soluble additives, etc). We also 

describe post-synthetic surface modifications that lead to hierarchical superstructures. The 

synthesis procedure has great potential in efficient nano-manufacturing as it can achieve scalable 

production of the above shapes in a wide range of sizes, with minimum infrastructure and 

process requirements, and little maintenance of the equipment.  
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INTRODUCTION 

Synthesis of shape-anisotropic polymeric nano and micro-particles has been of utmost interest 

for the development of new functional materials,
1-10

 drug carriers,
2-3

 as well as for various 

applications in coating, paint production, and building industries.
4
 In spite of the high cost and 

low throughput for many current methods, such particles have demonstrated superior properties 

that promise creation of suspensions for inkjet printing that don’t suffer from the coffee ring 

segregation effects,
11

 as well as better inhalation powder drugs (shape is important for 

aerodynamic properties and counterfeiting, whereas size uniformity for better dose delivery) 

which have currently reached stage 3 clinical trials.
12

 Non-spherical particles deliver not only 

higher surface areas, but better release of active agents contained in them, as well as better 

assembly and adhesion to flat or cylindrical surfaces. This makes them desirable for formulation 

of particle based additives into cosmetics and consumer products such as detergents and 

shampoos.
13-14

 We start by providing a brief overview of current production techniques and their 

relative advantages and challenges. 

There are several major techniques for the synthesis of shape-anisotropic particles.
1-31

 Probably 

the most common method among them is the emulsion polymerization technique coupled with 

phase separation.
15-17

 The method is based on emulsification of a monomer or  monomers 

mixture and their subsequent polymerization. Based on well-designed phase transitions, one 

could obtain various morphological modifications ranging from indented spheres to raspberry-

like particles
15

 or even crescent-shaped particles.
16-17

 

Alteration of crystal growth in supersaturated solutions could be used for the growth of cubic, 

pyramidal, spherical, ellipsoidal, rod-like, platelet-like particles.
18-22

 This method however, is 

predominantly used for inorganic particles, and can barely contribute to the shaping of polymeric 
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ones. For example, the few cases available in the literature of these techniques applied to 

particles of organic molecules are related to the crystallization of dyes or other complex 

structures, rather than direct synthesis of polymers.
23-24

 A much more popular modification of 

this method is the directed precipitation of dissolved polymers via evaporation
25-26 

or more 

recently, by means of a directed flow gradient.
27-28

 Commonly, this modification of the method 

leads to the formation of polymeric fibers with different aspect ratios. 

More complex shapes could be obtained via assembly of colloidal particles
29-31 

and physically 

connecting these assemblies via sintering or growth of an outer shell.
30

 Virtually any shape could 

be obtained upon elaborate planning, provided the Brownian motion of the colloids is 

negligible.
31 

These techniques need either non-scalable manual manipulation, or templates to 

achieve complex shapes.
31

 

State-of-the-art techniques for control over both particles shape and dimensions, were 

developed by means of microfluidic devices
1,6,7

 and various lithography techniques.
1,8-10

 They all 

provide exceptional control, but unfortunately, include drawbacks which hinder their 

commercialization: (very) low productivity, demanding maintenance procedures and/or high 

infrastructure and production costs.
6-10 

There is clearly a need for the development of 

economically scalable and high throughput methods to make such particles that would open not 

only the currently envisioned but many other applications where cost has prohibited the 

innovative imagination. 

 Here, we describe a method for bottom-up synthesis of shape-anisotropic, polymeric particles 

with controlled shape and size. The method is based on monomer drops, which self-shape upon 

mild cooling
32-34

 and polymerize upon UV radiation. Since the process is driven by an internal 
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phase transition, it requires very little infrastructure to guide the shape of the droplets. It is 

scalable with the volume of the emulsion used and compatible with continuous process 

implementations. The self-shaping allows the deformation of spherical drops into liquid 

polyhedra; platelets with three, four and six sides; particles with protruding asperities; and fibrils 

with different aspect ratios (see Figure 1).
32,33

 The following UV irradiation in the presence of an 

initiator permanently fixes the particle shape, which allows us to obtain a palette of anisotropic 

polymeric particles with regular shape. Here, by regular we mean that the lateral projection of 

the platelets presents a regular polygon (triangle, tetragon or hexagon). 

The currently debated mechanism of self-shaping
32-37

 most probably includes the combined 

effect of surfactant surface freezing
32-37

 and subsequent templating of a sub-surface rotator 

phase.
32-33,35,37-38

 Upon cooling, a series of selected surfactants can undergo a two dimensional 

surface transition or surface freezing.
32-37

 This freezing initiates the formation of sub-surface 

rotator phase which in turn deforms the liquid drop.
32-33,35,37

 The monomer molecules in the 

rotator phase (aka plastic crystal) have positional order while maintaining rotational freedom 

around at least one axis.
38

 A requirement for the surface freezing and templating of this rotator 

phase is that the surfactant’s hydrophobic tail is to have the same or longer length, compared to 

that of the oil, or up to 3 hydrocarbon units shorter.
33

 

So far the rotator phase transition has been identified in: alkanes,
32,33 

alkenes,
33

 cycloalkanes,
33

 

alcohols,
33

 light-responsive amines,
39

 triglycerides,
33

 and a wide range of multicomponent 

mixtures.
35 

Mixtures might include two or more components, that both yield rotator phases or a 

combination of one substance that forms a rotator phase and one that does not. The main 

requirement for the selection of mixtures is that the substance with higher melting temperature is 

more than 15 vol.% and forms a rotator phase.
35 
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The method allows scalable and efficient bottom-up production of these shapes in batch and 

continuous modes, with minimum equipment requirements and maintenance.
32,33

 Major benefits 

of the method include the lack of external constraints to create a shape and utilization of all the 

material in a droplet.  

EXPERIMENTAL SECTION 

Materials: All chemicals used in this study were purchased from Sigma-Aldrich. In most 

experiments, we used stearyl methacrylate (SMA) for preparation of emulsions and 

polymerization. SMA has purity of ≥89.5%, and up to 10.5 % hexadecyl methacrylate admixture. 

In a separate series of experiments, we used a series of alkyl acrylates with 14, 16 and 18 carbon 

atoms in the alkyl chain as the main phase in the polymerizing drops.  Tetradecyl and hexadecyl 

acrylate were purchased from TCI and had >95% and >90% purity respectively, whereas stearyl 

acrylate was purchased from Sigma-Aldrich and had > 97 % purity.  

The nonionic surfactants Tween 40 and Tween 60 were used for stabilization of the emulsions 

and to assist the droplet self-shaping. According to the manufacturer, Tween 40 has a 

polyoxyethylene (20) sorbitan head with a mixture of C16 palmitic ~ 90%) and C18 stearic tails 

(~ 10 %), whereas Tween 60 has 40-60% stearic acid tails and a total concentration of stearic and 

palmitic acid, ≥ 90%.  Both Tweens were dissolved (at e.g. 1.5 wt%) in deionized water (Elix 

module 5, Millipore).  

α-Ketoglutaric acid, ≥ 99.0% was used for а photoinitiation of the monomer polymerization in 

the emulsion drops. Iron oxide, Fe3O4, magnetic nanoparticles solution with 20 nm average 

particle size and concentration of 5 mg/mL in toluene was purchased from Sigma-Aldrich (CAS 

700304) and used for magnetic functionalization of the particles.  
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Emulsion preparation: Micron-sized monodisperse emulsions were prepared using an Internal 

Pressure Microkit in buoyancy operated mode (SPG Technology Co., Ltd., Japan, 

http://www.spg-techno.co.jp/english/product/internal.shtml). We used hydrophilic cylindrical 

glass membranes with pore sizes of 1, 3 and 10 μm for preparation of drops with average 

diameters 3, 10 and 33 µm, respectively. We dissolved 1.5 wt% surfactant in the water phase, 

and started generating oil drops at the lowest transmembrane pressure (at which drop generation 

started) to yield monodisperse drops. Since we generated relatively large drops (which creamed) 

and since we did not need many drops for the capillaries, we generated emulsions with at least 1 

vol.% oil (SMA).  

Submicron-emulsion droplets were prepared with high pressure homogenizer (PandaPLUS 2000, 

GEA). 1.5 g SMA was dispersed in 148.5 g of 1.5 wt% Tween 40 solution. The emulsion was 

passed 5 times through the high pressure homogenizer at 100 bar. The drop size distribution by 

volume and number is provided in SI section 6. 

All emulsions were used within 2-3 weeks of their preparation and stored at temperatures 

around 20°C. 

Shape formation and polymerization. In a 1.5 mL Eppendorf tube, we mixed 0.9 mL of KGA 

(2.5 wt%), 0.1 mL surfactant solution (1.5 wt%) and 0.05 mL pre-made SMA emulsion (1 vol.% 

or more). This premix was placed in a rectangular capillary, in an isothermally adjusted chamber 

with precise temperature control (±0.2°C).
[11] 

Drop deformations were observed via optical 

microscopy in transmitted, cross-polarized white light (Axioplan, Zeiss, Germany). After self-

shaping of the particles in the desired shapes, the initiator was activated via UV diode 

illumination (LTPL-C034UVH365, Liteon), set at ≈ 600 mW. The illumination was held for 30 

or 120 minutes.  
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Surface modification of the particles. To enable the surface modification of the particles, we used 

the following procedure: In an Eppendorf tube, 1.5 mL, we mixed 0.5 mL 5 wt.% KGA, 0.5 mL 

10 wt% Tween 40 solution, and 0.05 mL pre-made SMA emulsion (1 vol.% or more). 

Afterwards, we polymerized the particles with UV-irradiation and left them at a constant 

temperature for several hours. 

Composite particles formation: 0.5 g suspension of Fe3O4-in-toluene was dispersed in 2.1 g 

SMA. Afterwards, toluene was evaporated yielding 0.12 wt% iron oxide, dispersed in the SMA. 

The Fe3O4-in-oil suspension was emulsified via membrane emulsification or ultrasound 

homogenization and then used for self-shaping and polymerization. The ultrasound 

homogenization was made in the following way: 20 mL emulsion, containing 1 vol.% SMA in 

1.5 wt% Tween 40 was prepared via handshaking. This premix was then homogenized for 10 s at 

400 W, using ultrasound homogenizer (SKL650-IIDN, Ningbo Haishu Sklon Development Co). 

Dynamic Light Scattering (DLS): The sizes of the sub-micrometer liquid drops and a reference 

sample of fibrilar particles was determined by using Malvern Zetasizer Nano ZS. The 

measurements were performed with λ = 633 nm laser in back-scattering mode, at 173° scattering 

angle. The equipment was set to fully automated mode for measuring the hydrodynamic radius 

of the nanoemulsion drops, whereas the measurement time was set manually to 10 s per 

measurement for the fibrilar particles and 16 measurements were performed per point. The 

apparent diffusion coefficient was measured and the size of the rods was calculated as explained 

in SI section 6.
 
 

Electron microscopy: Scanning electron microscopy (SEM, Tescan Lyra3, Czech Republic) was 

used for imaging the polymeric particles larger than 300 nm. Transmission Electron Microscopy 

(Jeol JEM-2100, USA) was used for measuring the particle sizes below 300 nm and to visualize 
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the dispersed Fe3O4 particles in micron-sized fibrils. In both cases, the polymerized suspensions 

were processed for imaging immediately after their preparation. For SEM imaging we blew out 

the polymerized suspensions from the capillaries onto porous, cellulose filters (with nominal 

pore size 400 nm). The surfactant and some of the smaller particles were absorbed within the 

filter pores, whereas larger particles remained on top of the filters. Afterwards, the particles were 

rinsed with a few drops of deionized water to remove the excess of surfactant. In the end, the 

particles were left to dry for at least 24 hours on the cellulose filters (in a clean closed box to 

avoid contamination with dust). 

Samples for SEM were sputter-coated with 5-10 nm gold layer for imaging, whereas samples for 

TEM were prepared via scratching the porous filters with a spatula over a carbon-taped grid.  

 

RESULTS AND DISCUSSION 

We first demonstrate the shaping and polymerization reaction with monodisperse emulsions of 

stearyl methacrylate (SMA) in an aqueous solution of Tween 40 surfactant, also containing α-

ketoglutaric acid as a photoinitiator. The cooling cell was connected to a cryo-thermostate and 

the temperature was set to 18.9°C. After the temperature of the cooling chamber was stabilized at 

18.9°C, the glass capillary containing the emulsion sample was carefully inserted into the 

cooling cell. Thus, the emulsion was subjected to a rapid cooling from room temperature down 

to 18.9 °C without temperature overshooting, and it was maintained at this temperature for a long 

period, during which the droplets undergo shape changes (see schematics in Figure 1 and 

supplementary video SV1).  

First, the spherical droplets deformed to polyhedra, and then to hexagonal platelets. 

Afterwards, they gradually changed their shape into a mixture of triangular platelets, tetragonal 
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platelets, and rods or long fibers, the relative ratio of which could be controlled by the waiting 

time at the transformation temperature. For example, after 2 min of maintaining 18.9 °C, we 

obtained predominantly hexagonal particles, after 15 min – triangular particles, and after 1 hour 

– fibrils. To polymerize the desired shape, we switched on a UV LED (365 nm), which triggered 

the reaction in the drop. Representative images of polymerized particles are shown (Figure 1, 

Stage 3). The shapes and yield of polymerized SMA particles could be controlled via changing 

the surfactant for the emulsion and the size of the initial drops (SI section 1).  

The temperature of transformation, at which the emulsions are held was selected to ensure self-

shaping of more than 90 % of the drops in the emulsion at relatively low rate, thus allowing us to 

polymerize them in the desired shape along their evolution. At lower temperatures (e.g. 18°C) 

the self-shaping process is faster and more polydisperse shapes are obtained for the platelets, but 

the transition to fibers is reached in just a few minutes. At even lower temperatures, e.g. 16°C, 

some of the drops freeze before we can polymerize them. 

To demonstrate the versatility of the method we show that we can control not only the shape 

but also particle size and chemical composition. Polymer shapes were obtained from three other 

polymerizable monomers (tetra-, hexa- and octadecyl acrylates). We found conditions where in 

the presence of Tween 60 surfactant and temperatures near the melting point of the oil, the 

droplets easily evolve in shape (e.g. SI section 2). We discuss the effects of monomer differences 

in the polymerization process. 

  



 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Stages of polymeric particles synthesis. 1) Prepare monodisperse emulsion drops, 2) 

cool down to reach the desired shape by self-shaping and 3) fix by UV-initiated polymerization. 

Horizontal bars in stage 3 are 20 µm. Emulsions contain 0.05 vol.% SMA drops, 2.25 wt% 

KGA, and 0.15 wt% Tween 40. 
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Figure 2. (a) Preparation of poly(SMA)–Fe3O4 composite particles via self-shaping and 

polymerization. The figure contains SEM micrograph of a magnetic platelet, and TEM 

micrograph of 2 magnetic rods (the dark black spot in the image is probably a dust particle). 

Emulsions contain 0.05 vol.% SMA drops, 2.25 wt% KGA, 0.15 wt% Tween 40 and 0.12 wt% 

Fe3O4.(b) Experimentally determined size of SMA and poly(SMA) fibrils, as a function of the 

initial size of the drops. The error bars for the monomer drops represent the standard deviation of 

the initial droplet size, used for the preparation of the fibrils. The error bars for the polymeric 

fibrils are due to standard deviation in thickness determination along the whole length of the 

fibril. The tilted grey lines represent a geometrical estimate of the fibers thickness, assuming 

sphere-to-cylinder transition and volume conservation upon polymerization (i.e. negligible 

shrinkage). The SEM micrographs (Figure 2bii and 2biii) are digitally enhanced, as explained in 

SI section 3. Figure 2bi is a TEM micrograph. 

 

 

In addition to changing the polymer chemistry, we found that the drop self-shaping method is 

compatible with the incorporation of nanoparticles in the oil phase. This greatly extends the 

opportunities for synthesis of multi-functional composite micro and nanoparticles with controlled 
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shape (Figure 2). We show that by adding 0.12 wt% 20 nm Fe3O4 particles to SMA before 

emulsion preparation we can follow the same procedure for self-shaping pure SMA and obtain 

composite polymer particles with various shapes (Figure 2a). TEM images show the 

incorporation of the particles throughout the composites, and we also demonstrate the 

magnetization and movement of hexagonal platelets in an external magnetic field 

(Supplementary video SV2). Based on our recent work with multicomponent oil droplets (see 

ref.35), we expect the process would allow for incorporation of other oils, mixed with the 

polymerizable monomer. Indeed, we successfully incorporated a wide range of oily additives (as 

shown in the SI section 4), demonstrating great potential to tune multiple chemical 

functionalities for applications, such as encapsulation, drug delivery, bio and mechanical 

sensing, and mechanical reinforcement. The compounds tested here are mainly oil-miscible 

monomers that could copolymerize with SMA (methacrylic acid, vinyl acetate, 2-ethylhexyl 

methacrylate), crosslinking agents (trimethylolpropane methacrylate, divinylbenzene) which give 

rise to polymer networks, as well as oil-soluble initiator (dicumyl peroxide). Components that 

were initially dissolved in the oil phase, but subsequently partition between oil and water were 

also used for particle modification - methacrylic acid was co-polymerized with SMA, and 

ethylene glycol diacrylate was grafted on the surface of SA particles. The latter made the 

particles more rigid during heating at short time polymerizations due to crosslinking, wherein the 

core of the droplets remained liquid. The sizes of polymer particles fabricated by this method 

range from ~ 50 nm to ~ 1 mm scales, with various elongation ratios, L/2R (L being the longest 

path along the particle, see Fig. 2A). For hexagons L/2R is between 2 to 4, for triangles - 2.5 to 5, 

and for fibers with initial radius 5 µm between 3 and 80 (Figure 2b). The average thickness of 

the platelets could be calculated based on the elongation of the drops, when volume conservation 
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is assumed (e.g. negligible shrinkage and no breakage during deformation and polymerization). 

Thickness was estimated to be 1.56 ± 0.5 µm for hexagonal platelets, 1.5 ± 0.25 µm for the 

triangular platelets and around 1.0 µm for fibers, upon longer elongation times. Therefore, the 

average ratios between the longest length  height for drops with R = 5 µm are approximately: 

23 µm  1.6 µm for hexagons, 28 µm  1.5 µm for triangular platelets and between 16 µm  7 

µm and 800  1 µm for fibers, depending on the waiting time (larger aspect ratios are obtained at 

longer times).  

The initial droplet size was previously shown to influence the kinetics and distribution of 

shapes obtained from a particular oil.
33

 Previous optical measurements had also given some 

evidence near the diffraction limit that smaller droplets gave rise to smaller fiber diameters. 

Having polymerization allowed us to study this effect using electron microscopy.  

To clarify these effects for stearyl methacrylate (SMA) and to test the ultimate limits of the 

self-shaping method, we prepared a series of emulsions with drop radii ranging between 50 nm 

and 5 µm and polymerized them (see SI section S7). We studied quantitatively the sphere-to-

fiber transition for drops of initial radius R. Figure 2a shows their elongation (with correspondent 

thinning due to volume conservation) up to very long times, into cylindrical fiber structures of 

length, L and diameter 2r (aspect ratio L/2r). The shapes could be fixed and isolated at any stage 

by starting UV polymerization, and the fibril length could be controlled over more than 3 orders 

of magnitude (~ 250 nm  800 µm). Indeed, we find that smaller initial drops produced 

somewhat smaller in diameter fibers, but also the diameter 2r (50  1000 nm) continues to 

decrease (aspect ratio increase) with time spent in cooling deformation before polymerization. 
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The sharp edges of the ends of the thinnest fibrils obtained show they are likely fragments of a 

longer polymer fiber. 

The  50 nm diameter of the fiber, observed in Figure 2bi, sets experimentally the lower limit 

for the thickness of the rotator phase. Note that this thickness is somewhat smaller than the 

initially anticipated one and could depend significantly on the specific system studied.
32

   

We investigated several other effects and processes that shed light on potential ways to control 

and improve such bottom-up polymerization of particle shapes. The method is sensitive to 

molecular rearrangements during polymerization, and we observe differences between 

polymerizations of different monomers. For example, SMA emulsions yielded regular polymer 

particles, whereas acrylates yielded similar shape changes at first, but during polymerization, 

they exhibited various degrees of distortion. This is likely due to the coupling of volumetric 

shrinkage stresses developed along the polymerization and the much thinner plate geometries in 

the acrylate samples. Among the three acrylates, the faster rotational diffusion and reorientation 

ability of the smallest molecules (tetradecyl acrylate) resulted in the best preservation of the 

shapes in particles, as illustrated in Figure S3 in SI section 2, pointing out a potential route for 

optimization of regular shapes, by utilizing a series of monomers. Due to the elastic stresses, all 

the particles developed surface wrinkles during polymerization,
15

 perturbing the (initially 

smooth) particle surface.  

Highly corrugated particles are sometimes desirable for adjusting rheological, adsorption and 

adhesion properties in colloids.
40-42

 We found we could achieve another level of structural 

hierarchy by controlling a post-synthetic separate process for modifying the surface, which as to 

our knowledge has not been observed until now, see Figure 3. 
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Figure 3. (a) Morphological modification of particles surface: (a) Case of single anisotropic 

particle and hypothetical mechanism. Scale bars are 5 µm.(b) Kinetics of spikes growth in 

presence of higher surfactant concentration and spherical particles, 5 wt% Tween 40, 2.5 wt% 

ketoglutaric acid and 0.05 wt% SMA. The scale bars are 20 µm. 

 

A “crown” of spikes was observed to gradually grow on the particle surface when particles 

were left to polymerize for a long time (Figure 3a). The spike length and surface density 

increased with time until the whole surface of the particles was covered by a dense layer of 

micrometer long asperities. We hypothesized this behavior may be related to surfactant-

monomer aggregates (mixed micelles) formed in the aqueous phase. The monomers polymerize 

in the interior of the micelles, forming nanoclusters of poly-SMA, and later attach to the already 

polymerized micrometer particles. We tested this hypothesis by increasing the concentration of 

Tween 40 surfactant in the aqueous phase to 5 and 10 wt %, to increase the amount of monomers 

solubilized in micelles. Afterwards, we polymerized the emulsion drops at 33°C. As a result of 
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the small size of the poly-SMA clusters formed in the micelles (e.g. in the range between 3 and 

12 nm, see SI section 5), these clusters started self-assembling into large spikes upon 

supercooling to 18.9°C. The size of the spikes increased with the increase of surfactant 

concentration, and their growth was faster at higher surfactant concentrations (see Figure 3b and 

SI section 5). The latter trends support our hypothesis that the spikes are formed by self-

assembly of nano-clusters of poly-SMA, formed inside the surfactant micelles.  

 

CONCLUSIONS 

We have introduced a novel bottom-up method for synthesizing nanometer to millimeter size 

particles of a variety of regular anisotropic shapes, sizes, and chemical compositions. Drops of 

reactive monomers were shaped into desired structures and polymerized to fix the shape 

permanently by UV irradiation. We outline the factors for controlling the yield of different 

shapes (emulsion surfactant, initial droplet size, and time in cooling stage). Regularly shaped 

hexagonal and triangular platelets, and fibrilar particles were produced from droplets as small as 

50 nm, and with control over size from 50 nm to 1 mm in at least one of their dimensions.  

Functional composite particles were obtained by incorporation of (e.g. magnetic) nanoparticles 

in the monomer oil droplets, and by co-polymerizing mixtures of reactive oil monomers (e.g. 

with cross-linking agents), allowing chemical customization of the shaped particles. Post-

synthetic modification of the particles surface could also be attained via the reported self-

assembly of nano-crystallites or by the classical methods of polymer and/or surfactant 

adsorption. Such modifications could be used to tune the particle interactions with other 



 18 

particle/surfaces, opening the prospect for self-assembly of larger, macroscopic hierarchical 

structures. 
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