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Hypothesis: Particle/water/oil three-phase capillary suspensions possess the remarkable property to
solidify upon the addition of minimal amount of the second (dispersed) liquid. The hardening of these
suspensions is due to capillary bridges, which interconnect the particles (pendular state). Electrostatic
repulsion across the oily phase, where Debye screening by electrolyte is missing, could also influence
the hardness of these suspensions.
Experiments: We present data for oil-continuous suspensions with aqueous capillary bridges between
hydrophilic SiO2 particles at particle volume fractions 35–45%. The hardness is characterized by the yield
stress Y for two different oils: mineral (hexadecane) and vegetable (soybean oil).
Findings and modelling: The comparison of data for the ‘‘mirror” systems of water- and oil-continuous
capillary suspensions shows that Y is lower for the oil-continuous ones. The theoretical model of yield
stress is upgraded by including a contribution from electrostatic repulsion, which partially counterbal-
ances the capillary-bridge attraction and renders the suspensions softer. The particle charge density
determined from data fits is close to that obtained in experiments with monolayers from charged colloid
particles at oil/water interfaces. The results could contribute for better understanding, quantitative pre-
diction and control of the mechanical properties of solid/liquid/liquid capillary suspensions.
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1. Introduction

Here, we investigate three-phase suspensions, in which solid
colloid particles are dispersed together with two immiscible liq-
uids, water and oil (liquid hydrocarbon). One of the two liquids
serves as continuous phase. A remarkable property of such suspen-
sions is that the addition of even minimal amounts of the second
(dispersed) liquid, called the inner liquid, leads to hardening of dis-
persion [1–6]. Hardening may happen in the cases of both acute
and obtuse three-phase contact angles, a. In the former case
(a < 90�), the inner liquid forms capillary bridges (pendular rings)
[7,8] that interconnect the solid particles. The respective dispersion
morphology is known as the pendular state. In the latter case
(a > 90�), the capillary bridges are unstable [9], but the inner liquid
fills the gaps between the particles, which are interconnected by
the formed oil/water capillary menisci; the respective morphology
is known as the capillary state of dispersion [1–4]. At comparable
volume fractions of the two liquids, dispersion with two bicontin-
uous liquid phases, termed bijel, could be formed [10–13].

These three-phase dispersions, called capillary suspensions,
could find various applications, such as the preparation of novel
food products [14,15]; slurries for printable electronics or genera-
tion of energy [16–19]; improved polymer blends [20–22]; precur-
sors for glass or ceramic filters of high porosity [23–25], and
thermal interfacial materials [26]. Additional information could
be found in recent review articles [4,6,27].

Our study is focused on the mechanical properties of capillary
suspensions in the pendular state, in which the particles are inter-
connected by capillary bridges. Such suspensions could be water-
continuous, if hydrophobic particles are dispersed in water together
with small amounts of oil, which forms capillary bridges (Fig. 1a).
In the ‘‘mirror” system (Fig. 1b), the dispersion is oil-continuous;
the particles are hydrophilic and the inner liquid is water. The sat-
uration of the dispersion with the inner liquid can be characterized
by the relative volume fraction of this liquid with respect to the
total volume of the liquid phases:

Si ¼ /i

/w þ /oil
; i ¼ w; oil ð1Þ

Here, /w and /oil are, respectively, the volume fractions of water
and oil in the dispersion; /w + /oil + /p = 1, where /p is the volume
fraction of particles in the dispersion. For capillary suspensions in
the pendular state, the content of inner liquid is usually in the range
0.001 � Si � 0.1. What concerns the particle volume fraction, /p,
uniform suspensions from monodisperse spherical particles (with-
out voids comparable with, or larger than, the particle size) can
be formed for 0.34 � /p � 0.74 [27]. The upper limit, /p = 0.74, cor-
responds to close packing of colloidal spheres with n = 12 pendular
rings formed in the contact zones of the neighboring particles. The
lower limit, /p = 0.34, corresponds to the lattice structure of dia-
mond with n = 4 closest neighbors and four capillary bridges per
(a)
water-continuous suspension with 

hydrophobic particles and oily
capillary bridges

(b)
oil-continuous suspension with 
hydrophilic particles and water 

capillary bridges

Fig. 1. Sketch of three-phase suspensions with capillary bridges: (a) water-
continuous and (b) oil-continuous dispersion.
particle. In capillary suspensions, the mean number of capillary
bridges per particle (the coordination number), n, can vary contin-
uously with the rise of the particle volume fraction, /p. A simple
relation for estimation of n was obtained [27]:

n � 11:67/p for /p 6 0:68 ð2Þ
It should be noted that hardening of capillary suspensions can

be observed also for /p < 0.34. In this case, particles interconnected
by capillary menisci may form networks (with big voids) that span
the whole space occupied by the dispersion [4,28].

If a capillary suspension is subjected to shear stress, it initially
undergoes a quasi-elastic deformation, followed by a transition
to viscoelastic flow. This transition happens at the elastic limit
characterized by the yield stress, Y. It was demonstrated that the
projection of the capillary-bridge force on the shear plane has a
maximal value. The capillary bridge cannot withstand an applied
external force that exceeds this maximal value, which is related
to the elastic limit and the yield stress. The following expression
for the yield stress, Y, was obtained [27]:

Y ¼ 2r
a

cg/
2=3
p f cap;maxðU;aÞ ð3Þ

Y increases with the rise of the interfacial tension, r, and with the
decrease of the particle radius, a; the term cg/p

2/3 is proportional
to the number of bridges per unit area of the shear plane; the geo-
metrical coefficient cg may depend not only on geometrical factors,
but also on dynamic factors related to the bridge formation during
the stirring/preparation of the suspension; U is the volume of the
capillary bridge scaled with the volumes of the two adjacent parti-
cles; a is the three-phase contact angle measured across the bridge
phase; fcap,max(U,a) is a dimensionless universal function that has
been computed using the exact theory of capillary bridges and tab-
ulated in Ref. [27]. Therein, for fast estimates of fcap,max(U,a) an
approximate equation (of accuracy better than 0.6%) was obtained:

f cap;maxðU;aÞ � ð0:1763þ 0:0912/þ 0:0165/2Þ cosa for a 6 a0

a0ðdegÞ ¼ 51:5� 19:5u� 2:5u2; u ¼ log10Uð%Þ
ð4Þ

0.01% �U � 10%; see Appendix B for details. U is related to Si
by the relation

Si ¼ nU
1=/p � 1

() U ¼ 1� /p

n/p
Si ði ¼ w;oilÞ ð5Þ

where n is given by Eq. (2).
In our previous study [27], Eq. (3) and the developed theoretical

model of yield stress was verified against data for water-
continuous suspensions and very good agreement was obtained.
Here, our goal is to extend this study to oil-continuous suspen-
sions. First of all, experimental data for the yield stress, Y, vs. the
relative fraction of inner (water) phase, Sw, are obtained for two
oil phases of different interfacial tensions and viscosities (hexade-
cane and soybean oil). Comparison of results for Y, first, for the two
different oil phases; second, for the two mirror systems (see Fig. 1)
and, third, between the theoretical predictions and experimental
data is carried out. The results indicate that in oil-continuous dis-
persions the attractive capillary-bridge force between the particles
is partially counterbalanced by electrostatic repulsion across the
oil phase, where there is no Debye screening of the electric field.
The theory is generalized with the addition of electrostatic contri-
bution to the interparticle force and the obtained model is verified
against experimental data.
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2. Materials and methods

2.1. Materials and procedures

All experiments were carried out at a room temperature of
25 ± 1 �C. Soybean oil (SBO) and hexadecane (C16) were used as
oily phases. The soybean oil (SBO) from a local producer was
purified by passing through a column filled with Silica gel
(Merck, Germany) and activated magnesium silicate (Florisil,
Sigma-Aldrich, Germany). The measured value of the SBO/water
interfacial tension was r = 30 mN/m and it did not decrease by
more than 0.2 mN/m within 60 min. The measured viscosity of
the purified SBO was 50 mPa s.

The hexadecane (Merck) has a density of 773 g/L and viscosity
3.0 mPa s. Before the experiments, the hexadecane was purified
by passing it three times through a glass column filled with Silica
gel and Florisil adsorbent. The measured interfacial tension of the
purified C16 was r = 52 mN/m. According to literature data [29],
the relative dielectric constants of the two oils are eoil = 2.05 and
2.8 for the C16 and SBO, respectively.

The aqueous phase was deionized water (Elix purification sys-
tem, Millipore) with dissolved 0.5 M NaCl (Merck), which was
added to suppress the electrostatic interparticle repulsion across
the water. No surfactants have been used in the aqueous phase.

In our experiments, we used hydrophilic silica particles Excelica
UF320 produced by Tokuyama Corp., Japan, by melting of synthetic
SiO2 (density 2.2 g/cm3). The particles were spherical, polydisperse,
with low surface roughness and average particle diameter 3.8 lm;
see Refs. [30–32]. To ensure high surface hydrophilicity, the follow-
ing procedure for particle cleaning and activationwas applied. First,
the particles were stirred for 30 min, in aqueous solution of 1 wt%
sodium hydroxide (NaOH). Then they were rinsed at least six times
with deionized water to remove the NaOH. For this goal, laboratory
centrifuge Sigma 3-16PK (for 4 min at 4000g) was used with
removal of the supernatant. After that, the particles were spread
as a thin layer in a Petri dish and dried at 120 �C for two hours.
The dried particles were kept in a closed vessel to avoid condensa-
tion of water on their surfaces from the atmospheric air. To check
the hydrophilicity of the particles thus prepared, a portion of them
was sprinkled on the surface of the liquid in a cuvette containing an
upper layer of oil (SBO or C16) and a lower layer of water. Under the
action of their weight, the particles crossed the oil phase and the oil/
water interface, and sank in the aqueous phase. This behavior indi-
cates that the particle contact angle is a = 0�. (In the case of finite
contact angle, the particles would attach to the oil/water interface.)
As already mentioned, such hydrophilic particles were used in oil-
continuous suspensions with water capillary bridges.

In comparative experiments [27], we preparedwater-continuous
suspensions with hydrophobic particles and oily capillary bridges.
For this goal, silica particles of the same kind were hydrophobized
with hexamethyldisilazane (HMDS, 99%, Sigma Aldrich). First, the
particles were heated to 800 �C for 30 min. After annealing in a des-
iccator with reduced humidity, the particles were brought into con-
tact with vapors of HMDS under permanent stirring for 16 h. As a
result of this pre-treatment, the silica particles become so
hydrophobic that they do not enter the aqueous phase when placed
on the air/water interface and subjected to agitation. If the particles
and oil are simultaneously placed on the air/water interface, then it
is possible to bring them into the aqueous phase by agitation. The
contact angles of the hydrophobized particles were 168� and 110�
across the water, respectively, in the cases of SBO and C16.

2.2. Experimental methods

The oil/water interfacial tensions were measured by using a
pendant-drop tensiometer (instrument DSA30, Krüss GmbH,
Germany). The three-phase contact angles of the hydrophobized
particles were measured with bigger glass particles of radius
200–300 lm, hydrophobized in the same manner. The particles
were floating on the oil/water interface and the contact angle
was determined goniometrically, by side-view observations
[33,34]. The suspensions were homogenized by using a propeller
stirrer (Proxxon FBS 12/EF) with blending element from frappé
mixer. The homogenization was performed at a rotation speed of
5000 rpm for 5 min. The rotation speed of such homogenizer does
not depend on the hardness of the investigated capillary
suspensions.

The rheological measurements were carried out using a rota-
tional rheometer Bohlin Gemini, Malvern, UK, with geometry of
two parallel disks. The upper disk is rotating, whereas the lower
disk is immobile. Sheets of sandpaper of average particle diameter
�12.6 lm were glued to both disks to prevent the appearance of
wall slip. In the case of oil-continuous (water-continuous) suspen-
sion, the sandpaper was hydrophobized (hydrophilic). The disk
radius was R = 20 mm. The investigated suspension was sand-
wiched between the two disks at a gap distance of 2 mm. The rota-
tional rheometer measures the moment of force (torque) M acting
on the rotating disk. Next, the average shear stress (force per unit
area) acting on the rotating disk is calculated from the equation
s = 3M/(2pR3); see Ref. [27] for more details.
3. Experimental results

3.1. Results for oil-continuous capillary suspensions

The rheological behavior of the capillary suspensions was stud-
ied using the stress-control regime of the rotational rheometer. In
this regime, for each fixed value of the applied shear stress, s, the
strain characterized by the rotation angle, w, was measured; see
Fig. 2. As seen in Fig. 2a, at the lower s values the rotation angle
w gradually increases. In double-logarithmic scale this dependence
is linear, which implies that s is a power function of w, viz. s / wm.
The average power for the four experiments shown in Fig. 2a is
m = 0.824 ± 0.022. Because m– 1, in Ref. [27] this regime was called
quasi-elastic and was explained with the extension of capillary
bridges upon shearing deformation.

At a certain value of s, the angle w abruptly increases because
the elastic limit has been reached. This value, s = Y, is identified
with the yield stress. The respective value of the rotation angle,
wY, represents the yield strain. In our experiments, Y was measured
as a function of the relative volume fraction of the inner liquid (in
this case – water), Sw, at different particle volume fractions, /p. The
yield stress Y can be determined more accurately if the data are
plotted in linear scale; see Fig. 2b.

Fig. 3 shows our data for Y vs. Sw for continuous phase of soy-
bean oil (SBO) at /p = 35%, 40% and 45%. (At /p = 50%, the disper-
sion was too hard and inappropriate for investigation with the
used rheometer.) Each point is average from at least three mea-
surements, which have been carried out with separately prepared
suspension samples of the same Sw and /p. The data indicate that
the yield stress, Y, increases with the rise of both Sw and /p. For
example, at Sw = 3% we have Y = 1295, 2460 and 4398 Pa for
/p = 35%, 40% and 45%, respectively. Such increase of Y with /p is
typical for jammed suspensions [35]. The error bars in Fig. 3
illustrate the reproducibility of these experiments, which is in
the range from 5% to 10%.

In Fig. 3, at the greatest experimental values of Sw, the depen-
dence of Y on Sw becomes irregular, which can be interpreted as
a transition from the pendular to the funicular state due to overlap
of neighboring capillary bridges [2,4,27]. At Sw � 20%, phase sepa-
ration is observed: the dispersion is decomposed to aqueous and



Fig. 2. Experimental data for the displacement angle, w, vs. the applied stress, s, for four different values of Sw. (a) In double-logarithmic scale, one sees the power-law
dependence between w and s in the quasi-elastic regime. (b) In linear scale, the yield stress, Y, can be more accurately determined from the onset of steep rise of the
experimental curve.
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oil phases; the hydrophilic particles are located in the aqueous
phase. At that, the system becomes fluid and Y = 0. Analogous
behavior, with transition to funicular state and phase separation
has been observed in the inverse system (water-continuous sus-
pensions with hydrophobic particles and oily capillary bridges),
with the only difference that after the phase separation the
hydrophobic particles remain in the oily phase [27].

Fig. 4 shows analogous data, but for a continuous phase of C16
(instead of SBO). The data for C16 and SBO are compared in the
same graph. Because the experiments are much time and labor
consuming, in the case of C16 we carried out only one experiment
for each Sw and /p. (The reproducibility of this type of experiments
has been already estimated in Fig. 3.) The experiment shows that
the yield stress Y is considerably greater for C16 as compared to
SBO. Because for both systems the contact angle is the same, a =
0�, this difference is mostly due to the different interfacial tensions
of the two oils against water: 52 mN/m for C16 versus 30 mN/m for
SBO. (More detailed discussion can be found in Section 5.2 in rela-
tion to the different values of the geometrical coefficient cg for C16
and SBO.)

3.2. Comparison of results for oil- and water-continuous suspensions

In Fig. 5 we compare data for Y vs. Si for water capillary bridges
in oil from the present study with analogous data for oily capillary
bridges in water from our previous paper [27]. One could expect
that the values of Y for these two ‘‘mirror” system should coincide
insofar as the interfacial tension r is the same irrespective of
whether the water or oil phase is inside or outside the capillary
bridge. However, the data in Fig. 5 indicate significant differences.
For example, for the suspensions with C16, the yield stress Y is
greater for the water capillary bridges (Fig. 5a, b), whereas for
the suspensions with SBO, Y is greater for the oily capillary bridges
(Fig. 5c, d).

The interpretation of these (at a first glance, contradictory)
results demands analysis based on a quantitative theory, which
is developed in the next section. Here, we give only a preliminary
discussion and qualitative interpretation, whereas the quantitative
explanation will be given in Section 5.

The computer calculations [27], show that the maximal projec-
tion of the capillary-bridge force on the shear plane, fcap,max(U,a),
which determines the yields stress Y, see Eq. (3), essentially
decreases with the rise of contact angle, a, measured across the liq-
uid in the bridge. The decrease of fcap,max is small for 0 < a < 20�, but
fcap,max fast decreases for a > 20�; see Eq. (4) and Fig. S2a in
Appendix B. Hence, the differences between the experimental
curves in Fig. 5a, b can be due mostly to the differences between
the contact angles: a = 0� for water capillary bridges between
hydrophilic particles in C16 vs. a = 70� for capillary bridges of
C16 between hydrophobic particles in water.

However, the effect of a on fcap,max could not explain the data in
Fig. 5c, d, because for the hydrophilic particles on the SBO/water
interface the contact angle is a = 0� across the water, whereas for
the hydrophobic particles on the SBO/water interface a = 12�
across the oil was measured. In this range of relatively small a,
the effect of contact angle on fmax is small (see Fig. S2a in Appendix
B) and could not explain why the oil-continuous dispersions with
water capillary bridges are softer (with smaller Y) than the
water-continuous dispersions with oily capillary bridges. A possi-
ble source of this difference could be the different viscosities of
the continuous and disperse (bridge) phases, viz. 50 mPa s for
SBO vs. 0.89 mPa s for water. In general, the formation of a greater
number of smaller droplets upon stirring should facilitate the for-
mation of more capillary bridges, which would lead to greater yield
stress Y. From the theory and experiment on emulsification in tur-
bulent regime, it is known that the diameter of the formed drops
decreases with the rise of viscosity of the continuous phase; see
Fig. 10 in Ref. [36]. Hence, we could expect smaller droplets and
greater Y in the case of water capillary bridges in SBO-
continuous emulsions. However, the data for Y in Fig. 5c, d show
exactly the opposite trend. Thus, we arrive at the hypothesis for
electrostatic interaction across the oil phase as a possible explana-
tion of the observed effect.

In previous measurements with hydrophobized SiO2 particles,
it was established that negative charges are present at the parti-
cle/oil interface [37–39], as well as at the particle/air interface
[30–32]. In such a case, the lower values of the yield stress Y for
the oil-continuous suspensions (Fig. 5c, d) could be explained
with electrostatic repulsion between the neighboring particles
across the oil phase, in which the electrostatic interactions are
not screened because of the absence of electrolyte in the oil.
(We recall that in our experiments the aqueous phase contains
0.5 M NaCl, so that electrostatic interactions across the water
are not expected.) The electrostatic repulsion opposes the attrac-
tive capillary-bridge force between the particles. Thus, the magni-
tude of the net attractive force (capillary attraction minus
electrostatic repulsion) is smaller, which leads to lowering of
the yield stress Y. In Section 4.3, the theoretical model is upgraded
by taking into account the effect of electrostatic repulsion
between the particles.



Fig. 3. Suspension with water capillary bridges in soybean oil (SBO): Plot of the
measured yield stress, Y, vs. the relative volume fraction of water, Sw, for
hydrophilic silica particles of volume fraction (a) /p = 35%; (b) /p = 40%, and (c)
/p = 45%. The average number of capillary bridges per particle, n, is estimated from
Eq. (2). The solid lines are fits by means of the theoretical model. The geometrical
coefficient, cg, is determined from the fit (details in the text).

Fig. 4. Comparison of data for suspension with water capillary bridges in
hexadecane (C16) and soybean oil (SBO): Plot of the measured yield stress, Y, vs.
the relative volume fraction of water, Sw, for hydrophilic silica particles of volume
fraction (a) /p = 35%; (b) /p = 40%, and (c) /p = 45%. The average number of capillary
bridges per particle, n, is estimated from Eq. (2). The solid lines are fits by means of
the theoretical model. The geometrical coefficient, cg, is determined from the fit
(details in the text).
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4. Theoretical model

4.1. Capillary bridges and capillary force between particles

To calculate the shape of the capillary bridge and the capillary-
bridge force between two equally-sized spherical particles, we
used the same equations and computational procedures as in our
previous paper [27]. For reader’s convenience, the equations and
procedures are described in Appendix A.

Fig. 6a shows a spherical particle and the half of the capillary
bridge that connects it with another particle of the same size; a
and Vp are the particle radius and volume; r and z are cylindrical
coordinates; rc and zc are the coordinate of the three-phase contact
line on the particle surface; uc is the respective central angle
(sinuc = rc/a); as before, a is the contact angle measured across
the bridge phase; hc = uc + a is the meniscus slope angle at the
contact line; r0 is the radius of the ‘‘neck” of the bridge; h is the
surface-to-surface distance between the two particles. The
dimensionless bridge volume (defined as the bridge volume scaled
with the volume of the two adjacent particles) is:

U ¼ Vbridge

2Vp
¼ V i

Vp
ð6Þ

where Vi = Vbridge/2 is the volume of the ‘‘inner liquid” in the half-
bridge (Fig. 6a). U is related to the experimental relative volume
fraction of the inner phase, Si, by Eq. (5).

The computational procedure based on the exact theory of cap-
illary bridges (Appendix A) allows one to calculate the meniscus
profile z(r) at given values of three parameters, which can be (i)
rc, h, and a, or (ii) h, U and a. Illustrative meniscus profiles z(r) at



Fig. 5. Comparison of experimental data for the two inverse capillary suspensions with aqueous and oily capillary bridges at the same particle volume fraction /p:
dependences of the yield stress, Y, on the relative volume fraction of the inner (bridge) phase, Si, for: (a) /p = 35% and continuous phase of C16; (b) /p = 45% and continuous
phase of C16; (c) /p = 35% and continuous phase of SBO, and (d) /p = 45% and continuous phase of SBO. The solid lines are fits by means of the theoretical model (details in the
text).
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various rc values and fixed a = 0� and h = 0 (pendular rings) are
shown in Fig. S1 in Appendix B. Meniscus profiles z(r) at various
h values and fixed U = 0.25 and a = 0�, are shown in Fig. 6b. We
recall that a = 0� is the contact angle of our hydrophilized silica
particles at the SBO/water and C16/water interfaces; see Section 3.
Fig. 6b illustrates the variation of the meniscus profile upon exten-
sion of the capillary bridge (characterized by h) at fixed bridge vol-
ume (fixedU). In the initial state (h = 0, pendular ring between two
particles in contact), the meniscus shape is cylindrical. Upon the
increase of h (bridge extension), the bridge profile becomes more
concave (the ‘‘neck” radius r0 decreases) and the position of the
contact line, (rc,zc), moves along the particle surface. For surface-
to-surface distances that are greater than the ‘‘critical” value
h/(2a) = 0.7546, the system of equations (Appendix A) has no
solution for the given U = 0.25. In other words, for greater values
of h/(2a) no equilibrium profile of the capillary bridge exists for
the given volume.

Fig. 6c shows plots of the dimensionless capillary force, fcap, vs.

the dimensionless surface-to-surface distance, ~h, between two

equal-sized particles; fcap and ~h are defined as follows:

f cap ¼ Fcap

2par
; ~h ¼ h

2a
ð7Þ
where as usual, r is the interfacial tension of the oil/water interface.
The dimensionless capillary-bridge force, is an universal function,

which depends on three parameters: fcap = f capð~h,U,a). In Fig. 6c,
the contact angle is fixed, a = 0�, whereas the dimensionless bridge
volume, U, takes different fixed values for the different curves. It is

interesting to note that at small values of ~h the capillary force fcap
decreases with the rise of U, whereas at larger ~h values the ten-
dency is exactly the opposite. In Fig. 6c, each curve ends in a critical

point; for greater values of ~h, the system of equations (Appendix A)
has no solution and equilibrium capillary bridge does not exist for
the given U.

4.2. Theoretical modeling of the yield stress

In Ref. [27], a general approach to the theoretical description of
the yield stress was proposed and applied to capillary-bridge forces
between the particles in a capillary suspension. Here, we briefly
outline this approach and specify it for the case of counteracting
capillary-bridge and electrostatic forces.

Let us consider two neighboring particles, A and B, in the sus-
pension that interact via central force, F, which could be electro-
static, van-der-Waals and/or capillary-bridge force (Fig. 7a). A



Fig. 6. (a) Capillary bridge between two equal-sized particles; half of the bridge is
shown; h is the closest particle surface-to-surface distance; a is the three-phase
contact angle measured across the bridge phase; rc and zc are the coordinates of the
three-phase contact line; uc is the respective central angle; hc = a + uc is the
meniscus slope at the contact line; Vp is the particle volume; Vi is the volume of the
‘‘inner liquid” in the half-bridge; U = Vi/Vp is the dimensionless bridge volume. (b)
Calculated profiles of a capillary bridge of fixed volume (U = 0.25) at different
degrees of extension (at different h) for a = 0�. (c) Calculated dependences of the
dimensionless capillary force, fcap = Fcap/(2par), on the dimensionless surface-to-
surface distance between the particles, ~h = h/(2a), at a = 0� and different U values.

Fig. 7. Sketch of suspension from spherical particles of radius a connected by
capillary bridges; (a) the initial state; (b) after a shear deformation at displacement
Dy along the y-axis; L is the distance between two layers of particles; c is the
shearing angle; h0 and h are the lengths of the capillary bridge before and after the
shearing; F is the force of interaction between the particles A and B; Fsh = Fsinc is
the projection of F on the shear plane.
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small shear deformation of the suspension along the y-axis results
in a displacement Dy of the particle B (Fig. 7b). The displacement
leads to increase of the surface-to-surface distance between the
particles A and B from h0 to h. After the displacement, the central
force F has non-zero projection on the shear plane:

Fsh � FðhÞ sin c ¼ FðhÞ e
ð1þ e2Þ1=2

ð8Þ

where e = Dy/L = tanc (Fig. 7b). Using series expansions for small e,
we obtain:

h ¼ ½L2 þ ðDyÞ2�1=2 � 2a ¼ Lð1þ e2Þ1=2 � 2a

¼ h0 þ 1
2
Le2 þ Oðe4Þ ð9Þ
FðhÞ ¼ Fðh0Þ � 1
2
jF 0

hjLe2 þ Oðe4Þ; F 0
h ¼

dF
dh

����
h¼h0

ð10Þ

where it has been assumed that the derivative F 0
h is negative (i.e.

that the magnitude of the net attractive force decrease with the dis-
tance h). In view of Eqs. (9) and (10), for small e Eq. (8) acquires the
form:

FshðeÞ � Fðh0Þe� 1
2
½Fðh0Þ þ jF 0

hjL�e3 ð11Þ

The function Fsh(e) has a maximum at e = em, which is deter-
mined from the relation [27]:

em ¼ ð2=3Þ1=2
½1þ jF 0

hjL=Fðh0Þ�1=2
ð12Þ

Fsh;max � 2
3
Fðh0Þem ð13Þ

For Fsh < Fsh,max, the system can counterbalance the applied
external shear stress, i.e. we are dealing with quasi-elastic regime;
see Fig. 2a. The value Fsh,max corresponds to the elastic limit and is
related to the yield stress. Note, that in the stress-control regime
(used in our experiments), the yield stress is related to the maxi-
mum of Fsh(e), rather than to the stability limit of an extended cap-
illary bridge. The yield stress Y can be expressed in the form [27]:

Y ¼ cg/
2=3
p

Fsh;max

pa2
ð14Þ

where cg is a geometrical coefficient, which accounts for the num-
ber of capillary bridges per particle and their orientation relative
to the shear plane. In general, cg could depend on /p. In capillary
suspensions, cg could depend on dynamic factors that influence
the average number of capillary bridges per particle formed as a
result of the stirring (homogenization) of the three-phase suspen-
sion [27].

For the investigated oil-continuous capillary suspensions, we
assume that the force of interaction between two neighboring par-
ticles is a superposition of capillary-bridge attraction of magnitude
Fcap and electrostatic repulsion of magnitude Fel. Then, in view of
Eq. (8) we obtain:

Fsh ¼ ðFcap � FelÞ sin c ð15Þ



Fig. 8. (a) The surface charges at the particle/oil interface and their counterions in
the water capillary bridge induce electric field, which is close to the field of two
antiparallel effective dipoles (the size of the aqueous bridge is exaggerated). (b) In
the proposed model, the effective dipoles are located at a distance b/2 from the
particle surface and the characteristic dipole length is s.
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where we have taken into account that the capillary and electro-
static forces are acting in the opposite directions.

The approximate expression for Fsh,max in Eq. (13) is a result of
series expansion, which is not always accurate. For this reason, in
this article Y has been calculated from Eq. (14) along with Eq.
(15), where Fcap has been computed using the exact theory of cap-
illary bridges described in Appendix A. Fel has been calculated from
an expression derived in Section 4.3. The maximum value Fsh,max

has been computed numerically.

4.3. Electrostatic repulsion across the oil phase

As already mentioned, the presence of 0.5 mMNaCl in the water
suppresses the electrostatic interactions across the aqueous phase.
In contrast, Debye screening is absent in the oil phase, so that the
presence of electric charges (even at a low surface density) at the
particle/oil interface gives rise to a strong electrostatic particle-
particle repulsion across the oil phase. Such electrostatic repulsion
across the nonpolar fluid (oil, air) leads to the formation of non-
densely packed particle monolayers of hexagonal lattice on both
oil/water and air/water interfaces [33,37–42]. It was established
that the asymptotic electrostatic force, Fel, between two particles
at the water/nonpolar fluid interface corresponds to repulsion
between two parallel dipoles, for which Fel / 1/L4 for L?1, with L
being the interparticle center-to-center distance [32,33,37,38,43].
The surface pressure of interfacial monolayers from charged
particles has been also investigated and described theoretically
[30–33,40].

In our experiments with oil-continuous suspensions and water
capillary bridges, the volume fraction of water is between 0.1% and
10% relative to the total volume of the liquid phase (see Sw in
Fig. 4), so that the volume fraction of oil is in the range between
90% and 99.9%. In such a case, electrostatic interparticle repulsion
across the prevailing oil phase are very probable. As illustrated in
Fig. 8a, this repulsion originates from electric charges located at
the particle/oil interface; see e.g. Ref. [32]. Because the suspension
is electroneutral and the charge density in the oil phase is
practically zero, the counterions of the aforementioned surface
charges have to be located in the water phase, i.e. at the surface
of the capillary bridges where the force lines of electric field close.
In first approximation, electric field of such geometry can be
modelled as the field of two antiparallel dipoles interacting across
the oil phase (Fig. 8). The force of repulsion between such two
dipoles is:

Fel ¼ 3p2
d

2pe0eoilðbþ hÞ4
ð16Þ

where pd is an effective dipole moment; e0 is the vacuum permittiv-
ity; eoil is the dielectric constant of the oil phase; (b + h) is the dis-
tance between the two dipoles where b/2 is the distance between
the effective dipole and particle surface, and (as before) h is the
surface-to-surface distance between the two particles (Fig. 8b).
Note that the repulsive force between two antiparallel dipoles is
four times stronger that between two parallel dipoles separated at
the same distance; see e.g. Eq. (4.5) in Ref. [44].

In our calculations, Eq. (16) has been used to estimate the elec-
tric force, Fel, in Eq. (15). It is convenient to introduce the following
dimensionless variables:

f sh ¼ Fsh

2par
¼ ðf cap � f elÞ sin c ð17Þ

where fcap is defined by Eq. (7) and

f el ¼
Fel

2par ¼ 3p2
d

4p2e0eoilb
4ar

1þ h
b

� ��4

ð18Þ
The effective dipole moment pd can be estimated as follows:

pd ¼ 4pa2qel

n
s ð19Þ

Here, qel is the electric charge density at the particle/oil interface;
the term 4pa2qel/n represents the particle surface charge per bridge,
and s is a characteristic dipole length (Fig. 8b). To reduce the number
of adjustable parameters, we will assume that b and s are inversely
proportional to the mean number of capillary bridges per particle, n:

s ¼ s1
n
; b ¼ b1

n
ð20Þ

Substituting Eqs. (19) and (20) in Eq. (18), we obtain:

f el ¼
12a3 qels1ð Þ2
e0eoilb

4
1r

ð1þ n
h
b1
Þ
�4

ð21Þ

In view of Eqs. (14) and (17), the yield stress is given by the
expression:

Y ¼ 2r
a

cg/
2=3
p fmax ð22Þ

The latter equation is analogous to Eq. (3), but in Eq. (22) fmax

contains contributions from both capillary-bridge and electrostatic
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forces; fmax is the maximal value of the shear response force fsh
defined by Eq. (17), where fcap is to be calculated as explained in
Appendix A and fel is given by Eq. (21). In the latter equation, b1
and qels1 can be determined as adjustable parameters from the
fit of experimental data. These two parameters do not depend on
n and on the particle volume fraction /p. Hence, one could simul-
taneously fit all six experimental curves in Fig. 4 with the same val-
ues of b1 and qels1 (see below).

5. Numerical data and discussion

5.1. Comparison of theory and experiment

As illustrated in Fig. 7, the shear deformation leads to extension
of capillary bridges, i.e. to increase of h. The relation between
~h ¼ h=ð2aÞ and the shearing angle c is [27]:

tan c ¼ ½ð~hþ 1Þ2 � 1�
1=2

ð23Þ
where it has been assumed that h = 0 at c = 0 (i.e. h0 = 0); see also
Eq. (A.17) in Appendix A. The maximal shear-response force, fmax,
has been determined numerically, as the maximum of the depen-
dence of fsh on c at a given value of U; the latter is calculated from
Eq. (5), along with Eq. (2), from the values of Sw and /p.

The theoretical curves in Figs. 3 and 4 have been drawn in the
following way. For the curve for SBO-continuous suspension with
water capillary bridges at /p = 45 %, the value cg = 2.0 is used,
which is the same as for water-continuous dispersion with SBO
bridges [27]. The following two parameters were determined from
the fit:

~b1 � b1

2a
¼ 2:52� 0:01; qels1 ¼ 1:45	 10�8 C=m ð24Þ

Furthermore, all other theoretical curves in Figs. 3 and 4 were
drawn using the parameter values in Eq. (24), by variation of a sin-
gle parameter, cg. The values of cg corresponding to the theoretical
curves are compared in Table 1. In the same table, the values of n
calculated from Eq. (2) and of b/(2a) calculated from Eq. (20) with
b1/(2a) from Eq. (24) are also shown.

The theoretical curves for the C16-continuous suspensions in
Fig. 4 were drawn by using cg values predicted by the empirical
expression

cg ¼ 5/p � 0:25 ð25Þ
which was obtained in Ref. [27]. In fact, good agreement between
the experimental data and the theoretical curves for C16 was
obtained without variation of any adjustable parameters.

In Table 1, the values of cg are smaller for SBO in comparison
with C16 (especially at /p = 0.35 and 0.40). A possible explanation
of this result could be that the viscosity of SBO is considerably
higher than that of water (and of C16), which could have led to
detachment of a part of the water capillary bridges from the parti-
cles during the stirring/preparation of the SBO-continuous
dispersions.

The values of b/(2a) in Table 1 indicate that the effective dipole
is located near the middle of the distance between the particle
Table 1
Comparison of parameter values corresponding to the theoretical curves in
Figs. 3 and 4.

/p n b/(2a) cg

SBO C16

0.35 4.08 0.618 0.56 1.50
0.40 4.67 0.540 1.05 1.75
0.45 5.25 0.480 2.00 2.00
center and surface (Fig. 8b), which is a physically reasonable result.
With the increase of the number of bridges per particle, n, the
dipole comes closer to the capillary bridge; b/(2a) decreases, which
reflects the fact that a smaller part of the particle surface (with its
surface charges) contributes to the effective dipole moment.

To estimate the surface charge density at the particle/oil
interface, qel, we could assume that the dipole length is s � b/2;
see Fig. 8b. In view of Eqs. (20) and (24), this means that
s1 � b1/2 = 4.84 lm (in our experiments the mean particle radius
is a = 1.92 lm). In view of Eq. (24), the obtained value of s1 leads
to qel = 0.30 lC/cm2. This value is close to the values obtained by
Petkov et al. [30–32] for silica particles, and by Aveyard et al.
[33] and Vermant et al. [40] for latex particles.

5.2. Theoretical predictions and discussion

Having determined the parameters of the system, we can esti-
mate the interparticle forces, which determine the hardness of
the capillary suspension and the yield stress, Y. First, let us consider
the capillary component of the dimensionless shear-response force
of the capillary suspension fcapsinc. Fig. 9a shows plots of fcapsinc
vs. the shearing angle (strain) c. The different curves correspond
to different fixed values of the dimensionless bridge volume, U,
and the rise of c induces extension of the capillary bridge. One sees
that for each given U, the calculated curves have a maximum of
height that increases with the rise of U. It should be noted that
fcap(c) is a monotonically decreasing curve (see Fig. 6c and Eq.
(22)), so that the maxima in Fig. 9a are due to the second multi-
plier, sinc. As mentioned above, each theoretical curve has an
end-point. At values of c that are to the right of end-point, the sys-
tem of equations in Appendix A has no physical solution for the
givenU. In such a case, equilibrium capillary bridge does not exist.

Fig. 9b illustrates the effect of the electrostatic repulsion on the
fsh vs. c dependence; fel is calculated from Eq. (21) with parameter
values from Eq. (23) and n = 5.25. As seen in the figure, the electro-
static repulsion between the particles significantly decreases fmax

and the related yield stress, Y; see Eq. (22). Moreover, Fig. S3 in
Appendix B illustrates that with the increase of the bridge volume,
U, the magnitude of the capillary component in fsh increases, so
that the relative contribution of the electrostatic interparticle repul-
sion to fmax and Y decreases.

Fig. 9c illustrates the dependence of the geometric coefficient cg
on the particle volume fraction, /p; see also Table 1. As already
mentioned, the different cg(/p) dependencies for SBO and C16
could be explained with dynamic effects related to the higher vis-
cosity of SBO as compared to C16 (50 vs. 3 mPa s). The viscosity dif-
ference gives rise to two effects that are acting in opposite
directions. First, if the outer liquid (e.g. SBO) has a higher viscosity
than the inner liquid (e.g. water), then it is possible the friction
forces during stirring to detach (to scrap away) capillary bridges
from the particle surfaces, which would lead to decrease of cg. Sec-
ond, the higher viscosity of the outer liquid leads to splitting of the
inner liquid to a greater number of smaller droplets [36]. This
increases the probability for particle-droplet collision and capillary
bridge formation, which tends to increase cg. The first effect seems
to prevail at lower /p, whereas the second – at higher /p. This
could give an explanation of the stronger dependence of cg on /p

for SBO (Fig. 9c).
Finally, let us discuss the deviations of the experimental data

from the theoretical curves at the higher Sw values; see Figs. 3
and 4. As mentioned above, these deviations could be explained
with a transition from pendular to funicular state [2,27]. Physically,
the onset of this transition is related to the overlap and merging of
capillary bridges on the particle surface. In the case of simple cubic
lattice with 6 bridges per particle (Fig. 7), two neighboring bridges
do not overlap if the following relation is satisfied [27]:



Fig. 9. (a) Calculated plots of the dimensionless capillary-bridge component of the
shear response force, fcapsinc, vs. the shearing angle c at contact angle a = 0� and
various values of the dimensionless bridge volume, U. (b) Comparison of plots of
the shear-response force, fsh, vs. c without and with electrostatic repulsion; the
other parameter values (n, eoil, r and a) correspond to Fig. 3c. (c) Comparison of
plots of the geometrical coefficient, cg, vs. the particle volume fraction, /p, for the
theoretical curves in Fig. 4.
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cþucðhÞ þucð0Þ <
p
2

ð26Þ

See Fig. S4 in Appendix B for the derivation of Eq. (26). In Fig. S5
therein, it is demonstrated that at themaximumof the fsh-vs.-c curve
Eq. (26) is satisfied for U = 0.25% and 1%, but Eq. (26) is violated for
U = 4%. In other words, for U = 4% the suspension is expected to be
in the funicular state. To compare this theoretical prediction with
the experimental results in Fig. 3, we calculated the values of Sw
corresponding toU = 4%. For this goal, we used the equation

Sw ¼ 11:67/2
p

1� /p
U ð27Þ
which follows from Eqs. (2) and (5). From Eq. (27) with U = 4%, we
estimate that deviations from the pendular state for /p = 0.35, 0.40
and 0.45 should appear, respectively, at Sw = 8.8%, 12.5% and 17.2%,
which is in agreement with the data in Fig. 3.

The effect of contact-angle hysteresis, which is present for both
rough and molecularly smooth solid surfaces [45–47], also
deserves discussion. The magnitude of contact angle, a, affects (i)
the value of yield stress, Y, and (ii) the overlap of capillary bridges
on particle surface, which determines the transition from pendular
to funicular state. Under the dynamic conditions of suspension
preparation by stirring, capillary bridges are continuously formed,
expanded and broken. During such a process, it is more likely that
the contact angle (established after the end of stirring) is closer to
the receding angle across the bridge phase. So, better agreement
between theory and experiment is to be expected if the value of
receding angle is substituted for a. For the considered hydrophilic
particles in oil-continuous dispersions, we have a = 0 across water.
As seen in Fig. S2a in Appendix B, for small contact angles the cal-
culated effect of a on fmax is very small. For this reason, we do not
expect a considerable effect of contact angle variation (hysteresis)
on the values of Y for the oil-continuous dispersions with water
capillary bridges, investigated in the present article. In addition,
for a � 0 any hysteresis would lead to greater contact angles,
weaker bridge overlap, and broader interval of Sw values for the
pendular state.

Another effect that should be discussed is the influence of elec-
trolyte concentration in the aqueous phase on the hardness of cap-
illary suspensions. In the case of water-continuous suspensions
investigated in Ref. [27], the absence of electrolyte in the aqueous
phase led to softer suspensions and to less reproducible data for Y,
as compared to the case with 0.5 M NaCl in the water. For this rea-
son, in our systematic experiments we worked with aqueous phase
that contains 0.5 M NaCl. The effect of NaCl in the case of water-
continuous suspensions could be attributed to the suppression of
electrostatic barriers that hinder the contact of particles and oil
droplets and the formation of capillary bridges. In the case of oil-
continuous dispersions, we have worked only with aqueous phase
that contains 0.5 M NaCl. The study of the effect of electrolyte con-
centration on the hardness of oil-continuous capillary suspensions
(if such effect exists) could be a subject of a separate study.

The dielectric constant of the oil phase, eoil, could also influence
the yield stress, Y, through the electrostatic force, Fel; see Eq. (16).
Greater eoil would lead to smaller value of Fel and to harder suspen-
sions. However, the data in Fig. 4 show exactly the opposite ten-
dency – Y is greater for the suspensions with C16, despite the
lower eoil of C16 (as compared to SBO). In this case, the effect of
interfacial tension on the capillary-bridge force is predominant –
the greater Y for the suspensions with C16 is due to the higher
interfacial tension: r = 52 mN/m for C16 vs. 30 mN/m for SBO.
Quantitatively, the electrostatic contribution to Y is characterized
by Eq. (18), where the product eoilr appears in the denominator.
6. Conclusions

The particle/oil/water three-phase capillary suspensions pos-
sess the remarkable property to solidify upon the addition of min-
imal amount of the inner (dispersed) liquid. Most of the previous
works on such suspensions investigate the 10–30 vol% range of
particle concentrations, where particles and capillary menisci form
networks with large voids that are free of particles [4,6]. In a recent
study [27], we investigated uniform capillary suspensions (without
voids) in the relatively weakly studied concentration range of 30–
55 vol% particles. The hardening of these suspensions was due to
the formation of capillary bridges (pendular rings), which connect
the particles. Theoretical model of the yield stress was developed,
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which is in good agreement with experimental data for water-
continuous dispersions with hydrophobic particles and oily capil-
lary bridges (pendular state).

In the present article, the main novelties are (i) that the study
from Ref. [27] is extended to the ‘‘mirror” system of oil-
continuous suspension with hydrophilic particles and water capil-
lary bridges, and (ii) that the effect of electrostatic particle-particle
repulsion across the oily phase is described theoretically and taken
into account for data interpretation. (The electrostatic repulsion
across the aqueous phase is suppressed because of the presence
of 0.5 M NaCl.) The mechanical strength of dispersions is character-
ized by the yield stress Y, which is measured as a function of the
volume fraction of the aqueous phase at various particle volume
fractions. Experiments with two different oils, mineral (hexade-
cane) and vegetable (soybean oil), have been carried out. It is
established that the yield stress (and the suspension’s hardness)
increases with the rise of the volume fractions of capillary bridges,
Sw, and particles, /p.

For the studied oil-continuous suspensions, it is established that
the yield stress Y is higher for the suspensions with hexadecane in
comparison with those with soybean oil, all other conditions being
the same (Fig. 4). This can be explained with a predominant effect
from the higher hexadecane/water interfacial tension.

For the capillary suspensions with hexadecane, the comparison
of the ‘‘mirror” systems of water- and oil-continuous dispersions
shows that Y is higher for the oil-continuous suspensions, which
could be explained with a predominant effect from the contact-
angle difference, 0� vs. 70� (Fig. 5a, b).

In contrast, for the capillary suspensions with soybean oil, the
comparison of the ‘‘mirror” systems of water- and oil-continuous
dispersions shows that Y is lower for the oil-continuous suspen-
sions, which cannot be explained with contact-angle differences
(Fig. 5c, d). A possible explanation of this result is the existence
of interparticle electrostatic repulsion across the oil phase,
where there is no Debye screening of the electric field. Such
repulsion across the oil phase has been observed in monolayers
of silica and latex particles spread on the oil-water interface
[33–35,37–40].

To verify this hypothesis, we upgraded the theoretical model
from Ref. [27] by taking into account the contribution from electro-
static repulsion, which partially counterbalances the capillary-
bridge attraction and renders the capillary suspensions softer.
The particle charge density determined from fits of experimental
data for Y is close to the values obtained by other authors [30–
33,40]. This fact supports the hypothesis for the essential effect
of electrostatic interactions on the hardness of oil-continuous cap-
illary suspensions. The results of the present study could con-
tribute for a better understanding, quantitative prediction and
control of the mechanical properties of solid/liquid/liquid three-
phase suspensions.
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Appendix A. System of equations and computational procedure 

1. Basic equations 

 The computational procedure used in this paper is a slightly modified and upgraded 

version of the procedure developed in Ref. [27]. For the computations, it is convenient to 

scale all quantities with dimension of length using the particle radius, a; the dimensionless 

quantities will be denoted by tilde: 

a

b
b

a

h
h

a

r
r

a

r
z

a

r
r

a

z
z

a

r
r

2

~
,

2

~
,~,~,~,~,~ 1

1
0

0cc   (A.1) 

For the meaning of the geometrical parameters, see Figs. 6a, 8b and Eq. (20) in the main text.  

Here, our goals are to compute (i) the profile of the capillary bridges; (ii) the 

dimensionless capillary-bridge force,  fcap = fcap(,,); (iii) the dimensionless electrostatic 

force, fel = fel(), the dimensionless shear-response force, fsh() = fcap()  fel(), and the 

maximum value of fsh with respect to , fmax = fsh,max. As in the main text, h is the surface-to-

surface distance between the two spherical particles connected by the capillary bridge;  = 

Vi/Vp is the dimensionless bridge volume, see Fig. 6a in the main text;  is the three-phase 

contact angle measured across the bridge phase, and  is the shearing angle (Fig. 7b). 

 As demonstrated in Ref. [27], the dimensionless bridge profile )(~ xz  can be calculated 

using the equations: 
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The dimensionless bridge pressure, p, and capillary-bridge force, fcap, are given by the 

expressions [27]: 
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At the contact line on the particle surface, (r, z) = (rc, zc), Eqs. (A.2)–(A.3) acquire the form: 
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The volume confined between the surface of the capillary bridge and the two horizontal 

planes z = 0 and z = zc (see Fig. 6a), is:  
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Likewise, the area of the capillary meniscus of the bridge is: 
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Next, we introduce dimensionless variables in accordance with Eq. (A.1), express the 

derivative xz d/~d  from Eq. (A.3). Thus, we obtain: 
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From Fig. 6a, we find the following relations between the geometrical parameters: 

cccccc    , cos
2

   , sin   aa
h

zar  (A.12) 

In view of Eq. (A.1), the dimensionless form of Eq. (A.12) is: 

cccccc    , cos1
~~   , sin~   hzr  (A.13) 

The volume of the liquid in the upper part of the capillary bridge, Vi, is equal to the difference 

between Vc and the respective part of the particle volume (Fig. 6a): 
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Then, the dimensionless bridge volume, , can be expressed in the form: 
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What concerns the shear deformation we will assume that in the initial state the surfaces of 

the two particles touch each other (Fig. 7). Then, Eq. (9) in the main text with L = 2a and 

 = tan acquires the form: 

aah 2)tan1(2 2/12    (A.16) 

From Eq. (A.16) we obtain an expression for determining : 

2/12 ]1)1
~

[(tan  h  (A.17) 

which is Eq. (23) in the main text. In accordance with Eq. (17), (21) and (A.5), we have 
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2. Computational procedure for the bridge profile 

In this case, our goal is to compute the function )~(~~ rzz   for a capillary bridge that 

connects two spherical particles of radius a, separated at a surface-to-surface distance h. The 

input parameters are hr
~

,~
c  and . The steps of the computational procedure are as follows: 

1) From Eq. (A.13), we calculate c, c
~z and c. 

2) We give a tentative value to 0
~r  to start a procedure for determining 0

~r  by the 

bisection method. 

3) From Eqs. (A.4) and (A.6), we determine p and xc. 

4) With the value of c
~z  from point 1, we determine 0

~r  by solving Eq. (A.7) 

numerically using the bisection method. The integral in Eq. (A.7) is calculated numerically 

using the Simpson method. 

5) With the determined value of 0
~r , the meniscus profile )~(~~ rzz   is computed from 

Eq. (A.3), using the Simpson method to calculate the integral numerically. 

 

3. Computational procedure for fcap(),  fsh()  and  fmax 

To calculate fcap(), the input parameters are ,
~
h  and . The steps of the 

computational procedure are as follows: 

1) We give a tentative value to c
~r  to start a procedure for determining c

~r  by the 

bisection method. 

2) From Eq. (A.13), we calculate c, c
~z and c. 

3) We give a tentative value to 0
~r  to start a procedure for determining 0

~r  by the 

bisection method. 

4) From Eqs. (A.4) and (A.6), we determine p and xc. 
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5) With the value of c
~z  from point 1, we determine 0

~r  by solving Eq. (A.7) 

numerically using the bisection method. The integral in Eq. (A.7) is calculated numerically 

using the Simpson method. 

6) With the determined value of 0
~r , we calculate c

~
V  from Eq. (A.10). 

7) For each given , we determine c
~r  by solving Eq. (A.15) numerically using the 

bisection method. 

8) The dimensionless capillary force fcap is calculated from Eq. (A.5). 

9) The shearing angle  and the dimensionless shear-response force fsh are calculated 

from Eqs. (A.17) and (A.18). For this goal, we need also the values of additional parameters 

that enter Eq. (A.18), viz. 0, oil, a, , 1
~
b , (els1), and n.  

10) fmax is determined as the maximal value of fsh.  

 

 

Appendix B. Additional experimental and computational results 

 

   

Fig. S1. Calculated profiles of capillary bridges, z(r), for increasing bridge volume; the 

contact angle is fixed,  = 0º, whereas the position of the contact line, characterized by its 
radius, rc, varies; r and z are cylindrical coordinates; the bridge connects two identical 
spherical particles of radius a, which are in a contact, h = 0. All profiles do not possess 
inflection points. For all of them, the capillary-bridge force, Fcap, is attractive.  
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. S2. Plots of the computed maximal projection of the dimensionless capillary-bridge force 
on the shear plane, fcap,max(,), (a) versus the contact angle  and (b) versus cos, for 
various values of the dimensionless bridge volume, . Here, fcap,max does not contain 
contribution from the electrostatic interparticle repulsion. 
 

 In the regions where the solid lines can be approximated with the dashed straight lines 

in Fig. S2, fcap,max (,) can be estimated from the formula (accuracy better than 0.6%) [27]: 

(%)log,5.25.195.51(deg)

forcos)0165.00912.01763.0(),(

10
2

0

0
2

maxcap,







f
 (B.1) 

0.01% ≤  ≤ 10%, where  = (1p)Si/(11.67p
2)100% and Si = i/(w + oil), i = w, oil. 

fcap,max(,) given by Eq. (B.1) contains a contribution only from the capillary-bridge force, 

but does not contain contribution from the electrostatic interparticle repulsion, if any.  
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Fig. S3. Comparison of plots of the shear-response force, fsh, vs.  without and with 

electrostatic repulsion for  = 0o and for (a)  = 1 % and (b)  = 4 %. The other parameter 

values (n, oil,  and a) correspond to Fig. 3c in the main text; 1
~
b  and (els1) are given by Eq. 

(24) therein. The graph illustrates that with the increase of the bridge volume , the 
contribution of the electrostatic force (relative to the contribution of the capillary-bridge 
force) decreases. 

 Fig. S4 illustrates the fact that if the two capillary bridges do not overlap, the 

following relationship is satisfied: 

2
)0()( cc

  h  (B.2) 

which is Eq. (26) in the main text.  
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Fig. S4. Illustration of the fact that if 2/)0()( cc   h , the two capillary bridges do not 

overlap. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. S5. Dependence of the dimensionless shear-response force, fsh, on the shearing angle, , 
for contact angle  = 0o and for three different values of the dimensionless bridge volume, ; 

the other parameter values (n, oil,  and a) correspond to Fig. 3c in the main text; 1
~
b  and 

(els1) are given by Eq. (24) therein; six bridges per particle have been assumed. The dotted 

lines correspond to overlapping of capillary bridges, for which Eq. (B.2) is violated. For  = 

0.25% all equilibrium capillary bridges are not overlapping. For  = 1 %, bridge overlapping 

could happen only at the greatest  values, which are to the right of the maximum and do not 

affect the yields stress, Y. For  = 4 %, the bridges overlap for all values of .  
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