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a b s t r a c t

After a brief analysis of the three most widely used equations of state and adsorption isotherms, (those
of van der Waals, Frumkin and Helfand–Frisch–Lebowitz with second virial coefficient) we analyze the
definitions and the values of the main adsorption parameters (adsorption constant Ks, minimum area per
molecule ˛ and interaction constant ˇ) and derive new expressions for some of them. Since it turned out
that all three adsorption isotherms perform rather poorly, when used to interpret adsorption data, we
applied also three more general equations—one was derived for localized adsorption long ago, but we
had to derive two new equations for non-localized adsorption. We subject all 6 equations—the simple
ones and the three generalized, to rigorous numerical analysis and discussion of the results. Our overall
conclusion is that in some cases all equations can describe qualitatively the observed phenomena, but
only the new equation of state, proposed by us for non-localized adsorption on fluid interface (and the
respective adsorption isotherm), lead to correct quantitative description of the adsorption and the related
parameters. In Appendix A we analyze the shortcomings and the source of errors in the fitting procedures.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The non-ionic surfactants are important ingredients in many
industrial products—the most trivial example are soaps, but they
play important role also in many other technological and bio-
logical processes. Besides, depending on the conditions, they can
acquire charge and then they become ionic/non-ionic mixtures,
very complicated and difficult for analysis. On the other hand, they
serve also as raw products for synthesis of important ionic sur-
factants and it is difficult sometimes to understand the behavior
of the latter without good understanding of their non-ionic skele-
ton. Last, but not least, because of the low repulsion between their
hydrophilic heads, the simple non-ionic surfactants had strong ten-
dency to aggregate not only as micelles, but also to form several
bulk and surface phases and various surface aggregates, which are
interesting not only because they change the surface behavior but
often simply from esthetic view point like in the Vollhardt arti-
cles related to chirality (see e.g. [1]). Of course, the experts in the
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area are not only admiring the beautiful pictures, but are apply-
ing sophisticated experimental and theoretical tools to explain and
use them. D. Vollhardt has also published numerous theories of
such complicated phenomena. As examples we will cite only two
subjects, to some extent related to the present article: phase tran-
sition between condensed phases of different compressibility [2]
and mixed monolayers of fatty acids [3]. (An extensive review of
complex phenomena, involving surfactants can be found in [4].)
However, very often some theories are based on or are modifi-
cations of several simple adsorption equations, the most widely
used being those of Langmuir [5] (and its modification by Frumkin
[6]) and that of Volmer [7], which has been extended by adding an
attractive term to become two-dimensional (2D) analog of the 3D
equation of van der Waals. For reasons, which will become clear
later, we will consider also another, less popular equation, that of
Helfand, Frisch and Lebowitz (HFL)—in order to be able to compare
it with the equations of van der Waals and Frumkin we added also
an attraction term similar to that in Eq. (6), see Eq. (15) below. All
these equations suppose that the adsorbed layer consists of rigid
circular discs (possibly interacting through van der Waals forces)
lying in a plane coinciding with or parallel to the interface, i.e. they
are 2D analogs of the 3D equations of state of a fluid of spherical
molecules. About the effect of the thermal motion normal to the
interface see Section 3.1.

0927-7757/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.colsurfa.2009.11.031
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Table 1
Parameters from the fit with three equations of the data for adsorption of sodium
dodecyl sulfate at interfaces Air/Water and Ol/Water.

Boundary Air/water Oil/water Oil/water, ˇ = 0

K ˛, Å2 ˇ K ˛, Å2 ˇ K ˛, Å2

Frumkin 147 31.2 0.4 321 36.6 −1.8 186 45.2
van der Waals 137 22.9 1.2 299 26.8 −1.7 206 30.8
HFL 131 15.8 2.9 284 18.5 −1.4 237 20.3

These models have physical basis and describe and/or explain
the basic features of the studied phenomena. However, they con-
tain usually at least three free parameters and in more complicated
systems it is sometimes hard to imagine from the obtained data
how are the adsorption parameters related and how they depend
on the other properties of the system. Another problem with the
multi-parameter fits, which we will demonstrate below, is that the
adsorption parameters may combine in such a way that the exper-
imental data are fitted perfectly, but the calculated values of the
parameters may change significantly, depending on the theoretical
model used. We are not the only ones to point out on these prob-
lems (see e.g. [8]). In a paper, devoted to ionic surfactants [9], we
analyzed some of these problems, but at that time could often find
solution only to part of them. In the present paper we continue and
extend our previous analysis, but deal only with non-ionic surfac-
tants with the hope that they are simpler and easier for thorough
understanding. With respect to the previous paper [9] we hope to
have succeeded to find explanations of a few more unclear issues.

Our goal is not to look for explanation of complicated phenom-
ena. We realize that when somebody is working on a complicated
subject, very often it is impossible to carry out deep analysis and
one is forced often to use intuition, rather than rigorous approaches.
We believe however that more rigorous understanding of the sim-
ple processes and systems can help work on complicated subject
at least by showing to the respective researchers which hypothesis
and speculations are permissible and which ones are not. That is
why we are looking mainly for qualitative physical insight on the
adsorption process and the structure of the adsorbed layer. Toward
this aim we selected very simple experimental systems and consid-
erably simplified the theory in the hope that this will permit more
thorough analysis of the theory and the experimental data and will
shed more light on the meaning of the adsorption parameters and
the factors affecting them.

To make our point, we will begin by experimental verification
and comparison of the above cited equations of van der Waals,
Frumkin and Helfand–Frisch–Lebowitz (HFL). We obtained at that
some surprising results. Although in this article we will be deal-
ing only with non-ionic surfactants, we will demonstrate some
of them on the example of an ionic surfactant, the sodium dode-
cyl sulfate (SDS). The reason is that the non-ionic surfactants are
soluble in oils, but the presence of the oil phase allows shed-
ding additional light on some effects, which are also important
for non-ionic surfactants. We will treat the data for SDS by using
the ionic counterparts of the above equations, derived in [9]—see
the respective Eqs. (2.22) and (2.23) therein. In fact the relation
between the isotherms for the two types of surfactant is rather
direct. The appropriate variables for the fit in the case of ionic sur-
factants are the adsorption � and C2/3

s , where Cs is the surfactant
concentration. The adsorption constant K and Ks for ionics and non-
ionics are related: K ∝ K1/3

s . The results for SDS are presented in
Fig. 1 and Table 1 (for the interface air/water we used the results
of Hines [10] and for hexadecane/water we determined experi-
mentally the adsorption isotherm). It is noteworthy that the fits
were perfect, with the exception of the Langmuir fit with ˇ = 0, and
they had regression coefficients 0.999. Nonetheless the determined
adsorption parameters vary very much from model to model, but

Fig. 1. Adsorption isotherms of SDS (sodium dodecyl sufate) at the interface
air/water [10] (�) and hexadecane/water (�).

systematically—for example the values of the minimum areas per
molecule ˛ are always in the order Langmuir > Volmer > HFL and
those for the interaction constant ˇ follow the opposite trend.
This dependence of the parameter’s values confirms our opin-
ion in [9] that the good fit is by no means a criterion for correct
results.

Another strange result is the large negative values of ˇ for O/W,
which should be in fact zero, because of the similarity between the
hydrophobic surfactant tails and the oil [11]. As a matter of fact
at least for HFL model we obtained for O/W perfect fits by setting
ˇ = 0 and the value of ˛ so obtained (last column) is close to the one,
which we will show in our subsequent article by using more refined
equations. Another surprise was that the extended HFL equation
(with account for the attraction), which we believed to be the best,
gave the worst results for the interface air/water.

The overall conclusion we reached from this analysis is that the
three models, presented above, lead to inconsistent results for the
adsorption parameters. This confirms L. D. Landau opinion that “The
experimental data can be fitted by any not too wild theory, provided
that it contains enough undetermined constants”. In order to find the
reason for this we decided to analyze as thoroughly as possible both
the structure of the equations and the meaning and the role of the
parameters. In fact, attempt for such analysis was already done in
[9], but it was not always complete. Hence, we will present briefly
again part of this analysis (in some cases extended) for convenience
of the reader, the more so that we will need the results for the
present analysis as well. We will present also some new results,
which we hope explain some of these paradoxes and help removing
them.

The paper is organized as follows. In Section 2 we present and
briefly analyze the equations of state and adsorption isotherms
of van der Waals, Frumkin and Helfand–Frisch–Lebowitz. Since
detailed analysis is impossible without deeper understanding of
the theoretical expressions and the values of the main adsorption
parameters (adsorption constant Ks, minimum area per molecule
˛ and interaction constant ˇ), Section 3 is devoted to their anal-
ysis and derivation of some new expressions for them. It turned
out that the poor performance of all three adsorption isotherms,
when applied to adsorption data could not be explained only
by defects of the adsorption parameters. Hence, in Section 4 we
decided to deal with more general equations—one was derived
for localized adsorption long ago, but we had to derive two new
equations for non-localized adsorption. After describing shortly the
method of data processing in Section 5, in Section 6 we subject all 6
equations—the three simple and the three generalized, to rigorous
numerical analysis and discussion of the results. The article termi-
nates by conclusion and Appendix A, analyzing the shortcomings
and the source of errors in the fitting procedures.
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2. Simple equations of state and adsorption isotherms

We will begin by presenting and analyzing the two most widely
used surface equation of state (EOS), which are often used as basis
for generalizations or extensions: the equations of Frumkin and
van der Waals. Since they differ only by their hard core parts, which
were suggested by Langmuir and Volmer respectively, we will often
call them equations (or models) of Langmuir or Volmer.

2.1. Equation of van der Waals

To make our viewpoint more clear, we will modify for a 2D-
system the derivation of Landau and Lifshits (Chapter 7 in [12]) of
the original 3D van der Waals equation, which is the most transpar-
ent physically. Let us take the virial expansion for the free energy F
of a 2D fluid of area A consisting of Na circular discs each of diameter
d:

F = NaF0(T) + NakT ln
(

Na

A

)
+ kTB2

N2
a

A
;

B2 = �

∞∫
0

[
1 − exp

(
− u

kT

)]
r dr (1)

where kT is the thermal energy, B2 is the second virial coefficient
and u(r) is the interaction energy between two discs at a distance
r. It is assumed further that at r < d the molecules interact like rigid
bodies with energy +∞ and at r > d the energy is small, |u/(kT)| � 1.
Then

B2 = ˛V − b; ˛V = �d2

2
= 2˛; b = − �

kT

∫ ∞

d

u(r)r dr ≈ ˛V

2
w

kT
(2)

where ˛ is the true area of the disc, w is the interaction energy at
contact and by ˛V we have denoted the contribution to B2 from the
repulsive energy (the subscript “V” denotes that the respective val-
ues pertain to the Volmer model). If one assumes that u < 0 for any
r > d, the constant b will be positive. If u(r) is described by London’s
equation, the integral can be solved with the result shown in Eq.
(2). The ratio w/(kT) will be denoted hereafter by ˇ. If the surface
layer is not dense, Na˛V/A � 1, one can use the relation

ln(A − Na˛V) ≈ lnA − Na˛V

A
(3)

to eliminate ln A from Eq. (1) and to obtain

F = NaF0(T) − NakT ln
(

A − Na˛V

Na

)
− kTˇ

N2
a ˛V

2A
(4)

By using the fundamental equation for an isothermal one-
component 2D system with chemical potential � and surface
pressure ��:

dF = −�� dA + � dNa (5)

one obtains with Eq. (4) the 2D equation of state (EOS):

��

kT
= �

1 − ˛V�
− ˛Vˇ

2
� 2 (6)

where � = Na/A is the adsorption.
The above derivation shows the limitations of the van der Waals

EOS: it is valid only for small interaction energy (small ˇ) and low
surface coverage ˛V� � 1, when only double collisions play a role
(only B2 was accounted for). Landau and Lifshits [12] warned that
“the constant b (in the 3D van der Waals equation) can by no means be
regarded as fourfold “volume of the molecule” even for one-molecular
gas”. Similar conclusion should be true of course for the constant
˛V in the 2D van der Waals equation, Eq. (6).

The adsorption isotherm can be obtained by integrating Gibbs
equation, which for isothermal one-component adsorbed layer
with surfactant bulk concentration (or activity) Cs reads:

d(��) = kT� d(lnCs) (7)

By substituting here �� from Eq. (6) and integrating one finds:

KsCs = �

1 − ˛V�
exp
(

˛V�

1 − ˛V�
− ˇ˛V�

)
(8)

where

Ks = ıs exp
(

EA

kT

)
(9)

is the adsorption constant, EA is the free adsorption energy (i.e. the
free energy for bringing the surfactant molecule from the bulk solu-
tion into the adsorbed layer) and ıs has the meaning of “thickness
of the adsorbed layer”. These quantities are discussed later.

Another useful equation is related to the Gibbs elasticity, EG,
which is defined as

EG = d(��)
d ln�

(10)

In dimensionless form, with � = ˛V� , Eqs. (6) and (10) yield

˛VEG

kT
= �

(1 − �)2
− ˇ�2 (11)

There are several experimental methods for measurement of EG,
providing possibility for additional checking the adsorption model
and parameters but this is beyond the scope of this study.

2.2. Equation of Frumkin

It is based on the Langmuir EOS. The latter is a rigorous equation
for adsorption on a 2D lattice of adsorption centers if the following
conditions hold [13]: (i) each center can be occupied only by one
molecule; (ii) the adsorbed molecules cannot interact with each
other neither by attractive nor by repulsive forces – this means
that the area occupied by the adsorbed molecule must be equal or
smaller than the area pertaining to the center; (iii) the combinato-
rial formula the derivation is based upon describes the distribution
of Na undistinguishable molecules over M numbered centers – this
means that the molecules cannot exchange positions over the sur-
face and jump from center to center even if there are non-occupied
centers. The combination of these conditions cannot be realized
with a fluid adsorbed layer. Belton and Evans [14] succeeded to
derive Langmuir EOS for liquid mixtures but only on the condition
that the solvent and the solute have exactly the same size—in this
case removing one solvent molecule from the interface in fact cre-
ates a center for adsorption of a solute molecule and vice versa. They
showed that small difference in sizes leads to considerable errors.

Nonetheless from its very derivation the EOS of Langmuir has
been widely applied to adsorbed fluid layers. One possible reason is
the fact that its integration by means of Gibbs adsorption isotherm
to eliminate � leads exactly to the empirical Szyszkowski equation,
which was shown to describe well the dependence of the surface
tension � on the surfactant concentration Cs for low molecular sur-
factants. This is not so surprising since the size of the hydrophilic
groups of these substances is not much different from that of water.

However, attempts to treat the adsorption of other molecules
by using Langmuir equation failed. Frumkin [6] attributed it to the
intermolecular interaction and suggested, by analogy with van der
Waals equation of fluids, to add a term accounting for this effect
through ˇ (the first term in the right is Langmuir’s equation):

��

kT
= − 1

˛L
ln(1 − ˛L� ) − ˛Lˇ� 2; ˇ = wL

kT
(12)
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Fig. 2. Schematic presentation of the process of adsorption and the related energy u. (a) Molecules in the water phase and in adsorbed state. (b) Adsorbed and partially
immersed molecule. (c) Energy u of a molecule immersed at a distance z from the interface.

In fact, the equation of Frumkin is analogous to the equation
of Bragg and Williams [see e.g. reference [13], Chapter 14], who
introduced in the model of Langmuir interaction between closest
neighbors. Their equation differs from that of Frumkin only by the
attractive term which they found to be zn˛Lˇ� 2/2, where zn is the
number of closest neighbors (usually 4 or 6) and wL in ˇ is replaced
by the interaction energy w1 with one neighbor only. Frumkin equa-
tion is obtained by setting zn = 2, which corresponds to adsorption
on a line. However, Frumkin equation does not coincide with the
exact EOS for adsorption on a line (see Eq. 14.16 in [13]).

The respective adsorption isotherm is obtained again by inte-
grating Gibbs equation along with the EOS:

KsCs = �

1 − ˛L�
exp(−2ˇ˛L� ) (13)

and the relation for the Gibbs elasticity is (with � = ˛L� )

˛LEG

kT
= �

1 − �
− 2ˇ�2 (14)

2.3. Equation of Helfand–Frisch–Lebowitz (HFL)

Reiss et al. [15] developed a very astute procedure, (which they
called “Scaled Particle Theory”) for treating systems of hard core
particles. Unfortunately nobody has succeeded to apply it to parti-
cles with attraction. They solved exactly several problems, related
to hard particles, but it turned out that the 2D case (hard discs at
interfaces) has in principle no exact solution. Nevertheless, Helfand
et al. [16] succeeded to derive an almost exact simple 2D EOS. It
is impossible to present in a concise manner their theory and we
refer the interested reader to the original paper. In order to be able
to compare the theory with the equations of van der Waals and
Frumkin we added to their (hard core) result an attraction term as
in Eq. (6) but in order to keep the definition of ˇ = w/(kT) unchanged,
we substituted there 2˛ for ˛V, see Eq. (2). Thus the modified HFL
equation became:

��

kT
= �

(1 − ˛� )2
− ˛ˇ� 2 (15)

The respective adsorption isotherm is:

KsCs = �

1 − ˛�
exp

[
˛� (3 − 2˛� )

(1 − ˛� )2
− 2ˇ˛�

]
(16)

and the Gibbs elasticity (with � = ˛� )

˛EG

kT
= �(1 + �)

(1 − �)3
− 2ˇ�2 (17)

3. Analysis of the adsorption parameters

3.1. Adsorption constant and thickness of the adsorbed layer

According to Eq. (9) the adsorption energy, EA, is the major factor
determining the value of the adsorption constant, Ks. It can be cal-
culated by finding the change in free energy involved in the transfer
of a molecule from the water phase to the upper hydrophobic
phase (oil, in Fig. 2). We will consider a surfactant with a paraffinic
chain with nc carbon atoms, length per –CH2– group l1 ≈ 0.126 nm,
cross-sectional area ˛c ≈ 0.20nm2, and lateral area (along the chain)
pertaining to one –CH2– group ˛l ≈ 0.21 nm2 (all data are based on
the geometrical parameters of the paraffinic chain as determined
by Tanford [17]). Let wc be the energy of transfer of one –CH2–
group. The energy of transfer of the top –CH3 group, is larger than
wc because of its larger area, but since there are no precise data
for this energy for the interface air/water we will account for this
approximately by adding an additional term wc as for one more
methyl group.

An effect, usually neglected (and we added it), is the displace-
ment of an area ˛c from the interface when the surfactant tail is
adsorbed. The polar head remains immersed in the water phase and
it should not contribute much to the adsorption energy when only
short range interactions are effective. The situation could be differ-
ent with the electrostatic interaction of the head with the interface
for ionic surfactants or if there is change of hydration of the polar
head. Hence, we will add a term Eh to account for this effect.

On the other side, one must account also for the partial immer-
sion of the hydrophobic chain, due to the fact that the adsorption
energy of a –CH2– unit is of the order of kT. If one assumes that
the surfactant molecules is perpendicular to the interface as shown
in Fig. 2b, its energy u(z) will vary with the immersion depth as
depicted in Fig. 2c and can be written as

u = −EA + wlz (18)

where wl is the immersion energy per unit length and EA is the
adsorption energy. Then the average immersion depth zimm of the
aliphatic chain will be:

zimm =
∫ l

0

exp(−bz) dz ≈ 1
b

= kT

wc
l1 (19)

where b = wl/(kT) = wc/(kTl1). And since kT ≈ wc, one must conclude
that zimm ≈ l1, i.e. that the first –CH2– group will be entirely in the
water phase and its contribution to the adsorption energy EA will
be negligible. This effect will cancel the additional contribution of
the terminal –CH3 group, which was assumed above equal to wc.

Thus, the overall balance of energy leads to:

EA = Eh + wcnc + �OW˛c = E0 + wcnc (20)
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where E0 ≡ Eh + �OW˛c is that part of the adsorption energy, which
is independent of the chain length. Equation similar to the sec-
ond Eq. (20) was postulated by Davies and Rideal [19] based on
experimental data. However, unlike us, they ascribed E0 only to
the adsorption energy of the polar head.

The result, Eq. (20), was used by us to derive an explicit equation
for the “thickness of the adsorbed layer” [9] and the adsorption
constant Ks. From Eq. (18), Boltzmann equation and Gibbs definition
of � one can write:

� =
∫ l

0

[Cs(z) − Cs] dz ≈ kT

wl
exp
(

EA

kT

)
Cs = KsCs (21)

The comparison with Eq. (9) shows that ıs = kT/wl. For air/water
interface ıs = 1.16 Å [9]. This result will be checked below. The effect
of the term �OW˛c will be checked separately in a subsequent paper
by using adsorption data obtained with several oil phases with
different interfacial tension.

When deriving Eqs. (19) and (21) it was tacitly assumed that all
surfactant molecules are fluctuating synchronically, that is they all
remain in the same plane which is moving up and down. In real-
ity, their motion is not coordinated so that the collision between
the molecules might occur when the immersion of the colliding
molecules is different which should affect the minimum area ˛.
This effect was investigated in [18], where a general theory was
developed and it was shown that in most cases it is small. The sit-
uation might be different if the transfer energy wl is small, which
will be so if there are double bonds close to the hydrophilic head.

3.2. Minimum (proper) area of a molecule ˛

We used a simple method to find the dependence of ˛ on � for
Langmuir and Volmer equations, based on the fact, that ˛ in the HFL
equation of state, Eq. (15), is the true area per molecule ˛ = �d2/4. To
avoid confusion we will denote here the latter by ˛H and ˛H� H by
�H, and will use the notations �L and ˛L, �V and ˛V for the equations
of state of Langmuir and Volmer, respectively. All three EOS (with
ˇ = 0) can be written as [see Eqs. (6), (12) and (15)]:

��

kT�
= fM(�M) (22)

where fM is a function of �M different for the models of Langmuir,
Volmer or HFL (hence the subscript M, indicating that the function
is model dependent). Since the left hand sides of these equations
do not depend on the model, the right hand sides must be equal.
This leads to the equations:

− 1
�L

ln(1 − �L) = 1
1 − �V

= 1

(1 − �H)2
(23)

For small � one can expand the above expressions in series and
by keeping only the linear terms in the expansions one finds

˛L = 2˛V = 4˛H; at � → 0 (24)

The second equation in Eq. (23) can be solved easily and leads
to the exact relationship for the Volmer model:

˛V

˛H
= 2 − �H (25)

The exact relation between �L and �H from Eq. (23) can be found
only numerically and the obtained dependence of ˛L/˛H vs. �H
is shown in Fig. 3. Its asymptotic behavior at �H → 0 or �H → 1 is
respectively

�L

˛H
= 4 − 14

3
�H at �H → 0 and

˛L

˛H
= 2 − �H at �H → 1 (26)

Fig. 3. Theoretical dependence of the minimum area per molecule ˛/˛H (relative to
the value ˛H of the isotherm HFL) for three models as a function of the degree of
surface coverage �H = ˛H� .

The second equation coincides with Eq. (25). This fact explains
why the exact solutions for ˛V/˛H and ˛L/˛H in Fig. 3 merge already
around �H = 0.7–0.8.

Russanov [20] had ideas similar to ours about the dependence
of the minimum area per molecule ˛ on the adsorption � . By using
a different approach from ours he also found for Langmuir model
the limiting values 4 and 1 at �H → 0 and �H → 1, respectively. For
the initial slope at �H → 0 he obtained however −6.616 instead of
our value −14/3, see Eq. (26).

To check the reliability and applicability of the results for ˛ for
the three models we performed numerical comparison between the
results they lead to. The hard core part of HFL equation has been
checked numerically by Monte Carlo and dynamical calculations
(see Fig. 4, adapted by us from [16] by adding the data for Volmer
and Langmuir models) and showed excellent agreement with these
data almost up to complete coverage. At the same figure are plotted
the data, obtained from the models of Langmuir and Volmer [the
hard core parts of Eqs. (6) and (12), respectively]—the differences
are obvious.

Fig. 4. Comparison of the hard core parts of three two-dimensional equations of
state: solid line-Eq. (15) of HFL; �: Monte Carlo calculations of Wood; 	: dynami-
cal calculations of Alder and Wainwright; – – – –: Lennard–Jones–Devonshire cell
theory; �: Volmer Eq. (6); ×: Langmuir Eq. (12).
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Such differences are revealed also by the virial expansions of the
hard core parts of the three equations. The expansion of the hard
core part of the HFL Eq. (15) is:

��

kT�
= 1 + 2� + 3�2 + 4�3 + 5�4 + · · · (27)

to be compared with the exact result [16]:

��

kT�
= 1 + 2� + 3.128�2 + 4.262�3 + 4.95�4 + · · · (28)

The respective expansions for Langmuir and Volmer models are:

��

kT�
= 1 + �

2
+ �2

3
+ �3

4
+ �4

5
+ · · · (29)

��

kT�
= 1 + � + �2 + �3 + �4 + · · · (30)

The large discrepancy with the exact result for HFL should not
be surprising for the model of Langmuir, which was developed for a
very different (localized) monolayer, but the Volmer model is sup-
posed to work just as HFL model for a fluid monolayer. The results
from this section lead to the important conclusion that the area
per molecule, determined by using a model isotherm (not based on
HFL), may not be a true physical constant, but may depend on the
model used and the adsorption, � . The other, even more impor-
tant, conclusion is that it is not enough to use the correct hard core
part (that of HFL) to obtain correct EOS. Indeed, the results shown
in Table 1, obtained by the modified HFL Eq. (15), are by no means
better than the ones obtained by Frumkin and van der Waals equa-
tions. On the other hand, when the same data are treated for O/W
by setting ˇ = 0, the result for HFL is quite reasonable. This shows
that the blame must be put also on ˇ and one must find a more
correct way to account for the intermolecular interaction.

As already pointed out all three considered models are based
on the assumption that the surfactant molecules are hard inter-
acting discs, analogously to most of the bulk model EOS, where
the molecules are considered as hard interacting spheres. We
accounted in part for the role of the surfactant tails (which we
considered as solid rods) in the adsorption constant, Ks, both by
the adsorption energy and the immersion of the tails, determining
the thickness of the adsorbed layer ıs. However, the tails are by
no means rigid rods, because even simple tails, like the aliphatic
chains, can perform (hindered) rotation around the C–C bonds
and can therefore change conformation. As a result if the chain is
long enough it will behave like a polymer and form coils, which
might be larger than the hydrophilic group and will determine the
minimum area per molecule, ˛. The shorter chains may remain
approximately linear, but have the freedom to be inclined or even
to lye flat on the interface. Which one of these possibilities will
take place depends on the relative contribution of the respective
process to the free energy of the system. Many researchers account
in one way or another for some of these complications in order to
explain some experimental observations. However, we formulated
as our goal the understanding of the very basic effects and dealing
with these complications is beyond the scope of this article, the
more so that their rigorous treatment usually requires special
techniques—the interested reader can find detailed discussion of
some of these effects in ref. [4]. We will return to the discussion of
the simplest case—rigid rods perpendicular to the interface later,
in Sections 3.3 and 6.

3.3. The interaction constant, ˇ

This is the most controversial and the most difficult for deter-
mination constant. The error of its determination is very rarely as
small as 10%. It is usually 20–25% but can be even higher than
100% (for more detailed discussion see Appendix A). That is why

we decided to derive an approximate expression for ˇ just to have
some benchmark for comparison of the results of the different
fits.

In fact constant ˇ is part of the second virial coefficients B2 and
enters in it always as a product with ˛, see Eqs. (6), (12) and (15).

The interaction part of the second virial coefficient, B2, is defined
as [13]

B2,int = �

∫ ∞

d

[
[1 − exp

(
−uint

kT

)
r dr
]

(31)

where uint is the interaction energy between two surfactant
molecules, r is the separation between them and d = (4˛/�)1/2 is the
closest distance. We will suppose that the molecules are perpen-
dicular to the interface. The integral accounts for the contribution
from the long range (usually attractive) interactions.

We will assume that |uint| � kT so that the integrand in the right-
hand side of Eq. (31) can be expanded in series with respect of
uint/(kT). The most common case is the attractive London interac-
tion. In this case one can model the tails of the surfactant molecules
as a line with uniform linear molecular density, �t = 1/l1 each with
constant of interaction with another –CH2– group L = 3˛pI0/4 where
˛p is polarizability and I0 is the ionization potential [11]. In this case
the interaction energy is calculated as

uint(r) = −�2
t L

∫ l

0

∫ l

0

[r2 + (z2 − z1)2]
−3

dz1 dz2 (32)

where z1 and z2 are the vertical coordinates of the interacting –CH2–
groups.

Performing the integration of Eq. (32), substituting the result in
Eq. (31) and having in mind Eq. (15) one finds:

B2,int = − ��2
t L

4d2kT

l

d
arctan

(
l

d

)
= −˛ˇ (33)

Therefore, one can use the second virial coefficient for the cal-
culation of ˇ if ˛ is known. In the case l 
 d one can write:

B2,int = − ��2
t L

4d2kT

[
�

2
l

d
− 1 + 1

3
(
d

l
)
2

− 1
5

(
d

l
)
4

+ · · ·
]

(34)

Then one can use the following asymptotic expression for esti-
mation of ˇ:

B2,int ≈ −�2�2
t Ll

8d3kT
= −˛ˇ (35)

4. Generalized equations for interacting surfactants

4.1. Localized adsorption (Langmuir model)

We will try now to use more general analogs of the equations of
Frumkin, Eq. (12), van der Waals, Eq. (6), and the extended equation
of HFL, Eq. (15), by accounting more correctly for the effect of the
intermolecular interaction. We will begin by Langmuir model, since
a generalized equation, much more precise than Fumkin equation,
is known. It was derived first by Bethe and later by Guggenheim
(see [13], Chapter 14) who called it quasi-chemical approximation.
The reason for this title is that the basic equation is in fact the equi-
librium constant between the pairs 0–0, 0–1 and 1–1 (0 stands for
an empty and 1 stands for an occupied center) with free energy w.
The resulting EOS is (see also [9]):

˛L ��

kT
= −ln(1 − �) − zn

2
ln

[
ˇn + 1 − 2�

(ˇn + 1)(1 − �)

]
;

ˇn ≡ [1 + 4ˇ�(1 − �)]1/2 (36)
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Fig. 5. Sketch of “sticky potential” of width 	d and depth E for a molecule of length
(or diameter) d.

The adsorption isotherm is

KsCs = �

1 − �

[
1

1 + ˇ

1 + ˇn + 2ˇ(1 − �)
1 + ˇn + 2ˇ�

]zn/2

(37)

and the Gibbs elasticity:

˛LEG

kT
= �

1 − �
− 2znˇ�2

ˇn(ˇn + 1)
(38)

In order to compare Eqs. (36) and (12), we expanded the inter-
action term, that is the second term in the right-hand side in Eq.
(36), in series:

˛L ��

kT
= −ln(1 − �) − znˇ

2
�2 + znˇ2�3 − 3 + 10ˇ

4
znˇ2�4 + · · ·

(39)

This result suggests three important conclusions: (i) the hard
core part of the Langmuir equation (the first term in the right) is
correct; (ii) the Frumkin equation, Eq. (12), accounts accurately for
the interaction up to the second virial coefficient (the term with
�2); (iii) more importantly, only in the second virial coefficient the
interaction contribution is proportional to ˇ, whereas in the third
virial coefficient it is proportional to ˇ2, and so on. This means that
if ˇ � 1, it is legitimate even for large � to keep only the term with
the second virial coefficient (proportional to ˇ) from the interaction
contributions. Hence, the Langmuir–Frumkin equation is exact if
ˇ � 1, provided that the adsorption is really localized.

4.2. Non-localized 1D adsorption (Volmer model)

This problem can be solved exactly if one uses the approach
of the “sticky potential” developed by Baxter [21]. It is based on
the fact that in many cases the width of the interaction well is very
small and the attraction between the particles becomes sizable only
when they almost touch each other. The assumed potential distri-
bution is sketched in Fig. 5 by dashed line. Up to the minimum
distance d between the particles the potential energy u is +∞, then
in the potential well between d and d + 	d it remains constant and
equal to −E, after which it becomes zero. When the particles are
approaching each other, 	 → 0, but E → −∞ in such a way that the
product 	E remains equal to the interaction energy at contact w.
Briefly, this means that the interaction energy is represented by a
ı-function of Dirac.

Fig. 6. Scheme of one-dimensional adsorption: sticks of zero thickness and length
d strung on a thread.

The system we will consider (see Fig. 6) represents a set of Na

sticks each of length d strung on a thread of total length L1 which is
analog for this case to the area A of 2D systems. The moving particles
in direction r exert a 1D pressure ��.

The convenient thermodynamic potential for this problem is the
isothermic-isobaric potential Na� ([13], Chapter 1):

Na� = F + L1 ��; d(Na�) = L1 d(��) + � dNa (40)

with partition function 
p:

Na� = −kT ln
p (41)


p =
∫ ∞

0

Z exp
(

− L1 ��

kT

)
d
(

L1 ��

kT

)
; Z = Zhc exp

(
− u

kT

)
(42)

where Z is the configurational integral. Its hard core part Zhc can be
found by substituting the first term in the right-hand side of Eq. (6)
in Eq. (5) (both written for one dimension with Na = constant) and
integrating. The result is:

Fhc = −kT lnZhc = −kT ln(L1 − Nad) (43)

The adsorption isotherm is obtained from the second Eq. (40)
along with Eq. (41):

1
�

= − kT

Na

[
∂ ln
p

∂(��)

]∣∣∣∣
Na

; � ≡ Na

L1
(44)

By introducing the dimensionless variables

x ≡ r
Na ��

kT
; x0 ≡ d

Na ��

kT
(45)

we can put Eq. (42) in a simpler form:


p = kT

��

∫ ∞

x0

(x − x0) exp
[
−x − u(x)

kT

]
dx (46)

The integral splits into two parts, which are easily solvable: (i)
x0 < x < (1 + 	)x0, where u is constant (u = −E) and (ii) (1 + 	)x0 < x < ∞
where u = 0. In the result one must use the sticky approximation,
which means to set exp[E/(kT)] = w/(	kT) = ˇ/	. Upon inserting the
result in Eq. (46) and expanding the appearing exponential function
of 	 → 0 in series up to the linear term, one obtains a quadratic
equation with respect of ��/(kT� ), whose solution is the sought
for 1D EOS1:

��

kT
= �

2˛ˇ

[
−1 +

(
1 + 4ˇ

˛�

1 − ˛�

)1/2
]

(47)

where ˛ ≡ d. This result can be rationalized to acquire more conve-
nient and transparent form:

��

kT
= �

1 − ˛�

2

1 + R1
ˇ

; R1
ˇ ≡
(

1 + 4ˇ
˛�

1 − ˛�

)1/2

; ˇ = w

kT

(48)

1 This result was first obtained in [22] by using a somewhat different approach.
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Fig. 7. Comparison of the exact E (Eq. (48)) and approximate A (Eq. (6)) equations
of Volmer. The numbers indicate the values of ˇ = 2 and ˇ = 10, respectively.

In view of further discussions we will expand the result in series
with respect to ˇ:

��

kT
= �

1 − ˛�

2

1 + R1
ˇ

≈ �

1 − ˛�

×
[

1 − ˇ
˛�

1 − ˛�
+ 2ˇ2(

˛�

1 − ˛�
)
2

− · · ·
]

(49)

The respective adsorption isotherm is obtained as usual by inte-
grating Gibbs equation along with Eq. (48):

KsCs = �

1 − �

(
2

1 + R1
ˇ

)2

exp

[
2�

(1 + R1
ˇ

)(1 − �)

]
(50)

Some obvious conclusions follow from this result: (i) the com-
parison with Eq. (6) (with ˇ = 0) reveals that Volmer equation for
hard particles is rigorous only in one dimension; (ii) the van der
Waals term ˛ˇ� 2 is obtained if in Eq. (49) one sets ˇ2, ˇ3 etc.
equal to zero and if in the denominator of the term, linear in ˇ,
one neglects ˛� —but then, why should one keep ˛� in the main
term, multiplying the square brackets? The expansion in series of
the attractive terms leads to the same conclusion:

��

kT
= �

1 − ˛�

2

1 + R1
ˇ

≈ �

1 − ˛�

×
[
1 − ˇ� − (ˇ − 2ˇ2)�2 − (ˇ − 4ˇ2 + 5ˇ3)�3 + · · ·

]
(51)

One sees that unlike the case of localized adsorption, see Eq.
(39), all virial coefficients contain terms linear in ˇ, so that it is not
obvious if one can keep only the term ˇ� as it is done in van der
Waals equation, Eq. (6).

In Fig. 7 we carried out numerical comparison for two values of
ˇ of van der Waals equation, Eq. (6), and the exact Eq. (48). One sees
that for small values of ˇ = 2 and � the van der Waals equation is rea-
sonably close to the exact solution. They diverge however strongly
for large ˇ = 10 even when � is small. Worst of all, at large values of
ˇ van der Waals equation exhibits phase transition, although phase
transitions in one-dimensional systems are forbidden [12].

4.3. Non-localized 2D adsorption (HFL model)

It has been rigorously shown [21] that exact solution for the 2D
case is impossible even for hard particles. The exact solution with
sticky potential of Baxter is difficult even in the 3D case and the
result is very complicated and not very convenient for use. That is
why we decided to use a heuristic approach in the hope that it will

lead to an EOS more rigorous than the equations for non-localized
adsorption presented in Section 2.

The starting point for us was a procedure developed by Hemmer
and Stell [23] for deriving equations for 3D systems, which are exact
up to terms linear in ˇ. We modified their basic equation to make
it applicable to 2D systems:

�� = (��)hc −
(

B

Bhc
− 1
)[

(��)hc − �
∂(��)hc

∂�

]
(52)

where the subscript “hc” denotes “hard core” both for the
second virial coefficient B and the surface pressure (
�)hc =
(kT/˛)�/(1 − �)2, see Eq. (15). For hard discs B/Bhc − 1 = −ˇ. By
inserting this and the expression for (��)hc in the right-hand side
of Eq. (52), we obtain a more general form of the HFL equation:

��

kT
= �

(1 − ˛� )2

(
1 − 4ˇ

˛�

1 − ˛�

)
(53)

A comparison with Eq. (49) reveals that the two equations have
the same structure: the respective hard core factor is multiplied
by expressions differing only by the numerical coefficient. It is not
difficult to realize that if instead of Eq. (48) one uses

��

kT
= �

(1 − ˛� )2

2
1 + Rˇ

; R1
ˇ ≡
(

1 + 16ˇ
˛�

1 − ˛�

)1/2

(54)

we will obtain an expansion in series of ˇ which is identical to Eq.
(53) up to the linear term in ˇ and looks like Eq. (49) (with different
numerical coefficients):

��

kT
≈ �

(1 − ˛� )2

[
1 − 4ˇ

˛�

1 − ˛�
+ 32ˇ2(

˛�

1 − ˛�
)
2

− · · ·
]

(55)

The adsorption isotherm, following from Eq. (54), is:

KsCs = �

1 − �

(
2

1 + Rˇ

)((1+8ˇ)/4ˇ)

exp

[
2�(4 − 3�)

(1 + Rˇ)(1 − �)2

]
(56)

and the Gibbs elasticity:

˛EG

kT
= �

(1 + Rˇ)(1 − �)3

(
1 + 2� + 1

Rˇ

)
(57)

We tried to check at least approximately the reliability of Eq.
(55) by two methods: (i) calculation of the third virial coefficient B3
by the method of Kihara [24] and (ii) by solving Kirkwood integral
equation (see e.g. [25]). Both methods involve very complicated and
lengthy calculations, which will be published in a separate paper.
Here we will give only an idea how they were done and will present
the final results.

The virial expansion is

��

kT�
= 1 + B2� + B3� 2 + B4� 3 + · · · (58)

The method of Kihara for B3 for spheres represent integra-
tion over the overlapping volumes of three spheres weighted by
the respective energies of interaction, represented by square well.
We modified it for three discs on a surface and applied to the
final results the sticky approximation instead of square well. The
expansion of Eq. (54) in terms of � gives B3 = 3˛2(1 − 4ˇ + 3ˇ2)
and the obtained theoretical value by the method of Kihara was
B3 = 3˛2(1 − 4ˇ + 1.33ˇ2 − 0.62ˇ3). Therefore, Eq. (54) gives for
B3 exactly the linear term in ˇ, reasonably well ˇ2, but ˇ3 comes
only from the next term of the expansion. These differences will be
important at rather large values of ˇ and �, but as we will see later
such values are rarely encountered with most simple surfactants.
Besides, Kihara himself pointed out that the third virial coefficient
is very sensitive to the shape of the potential, so that one can hardly
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expect exact results from approximate potentials like “square well”
or “sticky potential”.

The 2D analog of the integral equation of Kirkwood

−kT ln[g(r12)] = u(r12) + �

∫
(A)

u(r13)g(r13)[g(r13) − 1] dA3 (59)

accounts through the correlation function g for the fluid structure,
multiple collisions and interaction energy and can be used to derive
the EOS. As it is usual when solving such problems we used sev-
eral approximations, the most important ones being the use of the
sticky potential and expansion of the correlation function in series
up to linear terms in ˇ (in ref. [25] the same approximation was
used):

g(r) = ghc(r) + w

kT
g1(r) + · · · (60)

We succeeded to obtain an EOS which confirmed the coefficients
4ˇ and 32ˇ2 in Eq. (55) for small and moderate �’s.

5. Data processing

The experimental data for � = �(Cs) were processed by numer-
ical simultaneous solution of the equations of the adsorption
isotherm and the equation of state. They are obtained experimen-
tally as a set of values �exp(ck) for k = 1, 2, . . ., N, where N is the
number of experimental points. The value of the interfacial ten-
sion of pure solvent, �p, is known and therefore, the input data
for the numerical procedure are the values of the surface pres-
sure ��exp(ck) for k = 1, 2, . . ., N. If we choose some trial values
for the model parameters (˛, ˇ and Ks), then for each concentra-
tion, ck, we can calculate the adsorption, � th(ck), predicted from the
adsorption isotherm. The adsorption isotherms are represented by
monotonic functions (except for the cases of phase transition). For
that reason we use the simplest bisection method for numerical
solution of the transcendental equations describing the adsorp-
tion isotherms. Substituting the calculated value of � th(ck) into
the equation of state we calculate the prediction for the surface
pressure ��th(ck). Such procedures has a useful “bi-product”—it
gives as intermediate result the dependence � (Cs), which can be
used for calculation of the EOS �� vs � and the Gibbs elastic-
ity.

The adjustable parameters (˛, ˇ and Ks) are determined by
means of the least-squares method, that is, by numerical minimiza-
tion of the merit function

�2(˛, ˇ, Ks) = 1
N

N∑
k=1

[��exp(ck) − ��th(ck; ˛, ˇ, Ks)]
2

(61)

assuming that all experimental points have equal errors. The mini-
mization algorithm is simple. We define relative steps (s˛, sˇ, sK) of
model parameters. Starting from a given point (˛, ˇ, Ks) we define
all points in the 3 × 3 × 3 local grid around (˛, ˇ, Ks) with absolute
steps (s˛˛, sˇˇ, sKKs) and calculate the values of the merit function.
We compare all 27 values in order to find the position of the local
minimum, change the initial guess with the obtained position, and
repeat the procedure again. The algorithm stops when the initial
guess and the obtained position of the local minimum coincide.
This simple procedure gives possibility to calculate the position of
the global minimum �min of the merit function.

One problem we encountered with the generalized HFL
isotherm, Eq. (56), was that it contains a power (1 + 8ˇ)/(4ˇ), which
diverges for ˇ = 0 and makes the fit uncertain for small ˇ. To avoid
or at least to decrease this problem we transformed the logarithm

of the singularity term as follows:

1
4ˇ

ln

(
2

1 + Rˇ

)
= − 1

4ˇ
ln

(
1 + Rˇ − 1

2

)
= − 1

4ˇ
ln(1 + 
)

with 
 ≡ 8ˇ

1 + Rˇ

�

1 − �
(62)

leading to

1
4ˇ

ln

(
2

1 + Rˇ

)
= − 2

1 + Rˇ

�

1 − �

(
1 − 


2
+ 
2

3
− 
3

4
+ · · ·

)
(63)

In the new expression ˇ appears in the nominators and there is
no divergence.

6. Numerical results and discussion

We decided to check and compare all adsorption equations dis-
cussed above with two types of surfactant: (i) several homologues
of the dimethyl alkyl phosphine oxide DMPO: C8, C10, C12 and C14
from ref. [26] and C8, C9, C10, C11, C12 and C13 from ref. [27]; and
(ii) aliphatic acids: C7, C8 and C9 from ref. [28] and C10 from ref.
[29]. The reason for this choice was our desire to investigate the
role of different factors. The DMPO’s are typical surfactants with
large hydrophilic groups, which are supposed to interact between
themselves only by steric repulsion, whereas the acids are known
to form strong hydrogen bonds and to remain dimerized even in gas
phase. For the sake of brevity we will use the following abbrevia-
tions for the names of the models: the first capital letter indicates
the model equations are based upon (H for HFL, V for Volmer and
L for Langmuir). If it is followed by G, it means that we are using
the generalized isotherm or EOS for the respective model. When
it is followed by a number, it indicates the number of free param-
eters involved (2 or 3), e.g. H–G means generalized HFL, Eq. (56),
and V–3 means Volmer model with 3 parameters, Eq. (8). We must
point out that all fits were practically perfect—most had regres-
sion coefficients R2 = 0.999 or 0.9999 and only a few were with
0.997 or alike. In spite of the good fits couple of substances gave
somewhat strange results and we discarded them from the numer-
ical calculations, although we kept them in the table—this refers
to the C8 and C10 DMPO from both series. The reason for this
could be purely mathematical (see Appendix A), although we sus-
pect also some physical reasons, but could not prove them beyond
doubt.

Because of the numerous data, we did not present all results
graphically, especially when they were similar. Although all groups
of data lead to similar or even identical results, in most numeri-
cal calculations with DMPO we used the data of ref. [27] simply
because they were more numerous. Typical fits of the adsorption
isotherms � = �(Cs) and the equations of state �� = ��(� ) are pre-
sented in Figs. 8 and 9 (for clarity the fitting curves in Fig. 9 are not
shown). The numerical results obtained from the fits of the adsorp-
tion isotherms for all considered above six models are presented
in Table 2 (for DMPO) and 3 (for acids). We processed also all EOS,
which gave practically identical data with the adsorption isotherms
for the parameters ˛ and ˇ. Only for illustration of this statement
in Table 2 we presented the results obtained with the EOS from the
model H–G with DMPO, which can be compared with the results in
the adjacent column H–G, obtained by the adsorption isotherm.

Even superficial inspection of the data in Tables 2 and 3 allows
some interesting conclusions.

(i) Practically all 6 models lead to identical (although slightly scat-
tered) values of the adsorption constant Ks. This should not
be surprising since Ks is present only in the left hand side of
the adsorption isotherms. Indeed, if in all adsorption isotherms
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Table 2
Parameters from the fit with seven equations of the data for adsorption of alkyl di-methyl phosphine oxides (DMPO) at Air/Water interface (Ks: adsorption constant; ˛:
minimum area per molecule; ˇ: interaction constant); H–G: EOS Eq. (54); H–G Eq. (56); V–G Eq. (48); H–3 Eq. (16); V–3 Eq. (8); L–3 Eq. (13).

Surfactant Parameters EOS–G H–G V–G L–G H–3 V–3 L–3

C8–DMPO
[26]

Ks × 104, (cm) – 8.30 8.56 7.85 9.23 8.58 7.84
˛ (Å2) 24.0 26.70 36.17 47.92 18.61 31.20 47.92
ˇ 0.14 0.28 0.18 0.01 0.14 0.09 0.01

C8–DMPO
[27]

Ks × 104, (cm) – 11.41 10.71 9.33 11.86 10.77 9.32
˛ (Å2) 24.5 23.91 35.09 48.80 19.84 32.55 48.80
ˇ 0.13 0.12 0.08 0.00 0.03 0.00 0.01

C9–DMPO
[27]

Ks × 104, (cm) – 20.46 23.78 23.94 20.56 23.12 23.92
˛ (Å2) 31.0 31.33 41.91 45.95 24.40 34.21 45.95
ˇ 0.52 0.61 0.55 0.08 4.16 1.25 0.08

C10–DMPO
[26]

Ks × 104, (cm) – 83.50 88.44 73.93 91.32 83.65 74.46
˛ (Å2) 18.9 25.80 31.50 43.17 19.56 30.78 43.23
ˇ 0.01 0.29 0.06 0.01 1.03 0.42 0.01

C10–DMPO
[27]

Ks × 104, (cm) – 81.90 81.30 71.77 79.37 85.03 71.83
˛ (Å2) 24.49 25.04 35.29 42.71 20.44 29.39 42.71
ˇ 0.20 0.27 0.25 0.01 2.05 0.06 0.01

C11–DMPO
[27]

Ks × 104, (cm) – 116.4 165.7 172.0 133.0 144.0 171.7
˛ (Å2) 30.02 30.04 38.65 40.59 22.62 31.96 40.69
ˇ 1.15 1.25 1.05 0.78 6.13 2.81 0.74

C12–DMPO
[26]

Ks × 104, (cm) – 429.0 583.0 634.5 500.9 548.1 639.5
˛ (Å2) 29.8 30.30 39.66 41.01 22.61 31.89 40.96
ˇ 1.02 1.23 1.14 0.73 5.92 2.61 0.67

C12–DMPO
[27]

Ks × 104, (cm) – 300.0 475.0 508.4 402.0 440.3 524.4
˛ (Å2) 33.34 33.45 42.77 44.15 24.52 34.55 44.06
ˇ 1.76 1.97 1.74 1.59 7.24 3.55 1.34

C13–DMPO
[27]

Ks × 104, (cm) – 612.2 982.0 1066 842.1 927.4 1061
˛ (Å2) 27.90 27.90 35.68 36.73 20.38 28.69 36.98
ˇ 1.93 2.07 1.82 1.63 7.33 3.59 1.48

C14–DMPO
[26]

Ks × 104, (cm) – 3740 5972 6273 4629 5142 6048
˛ (Å2) 30.7 31.00 38.64 40.38 23.02 32.15 40.81
ˇ 1.31 1.51 1.10 0.80 6.52 2.95 0.88

we set ˛ = ˇ = 0, they will all give the same result-Henry’s law
KsCs = � , which is of course model independent.

(ii) The two models, based on Langmuir isotherm L–G and L–3,
lead for DMPO practically to the same values of the adsorp-
tion parameters. This confirms our theoretical considerations
in Section 4.1 that for small values of ˇ the Frumkin equation
becomes exact for localized adsorption. The situation is how-
ever somewhat different with the acids in Table 3, where ˇ can
be as large as 6.

(iii) The area per molecule, ˛, determined by the generalized equa-
tions H–G, V–G and L–G increases in this order, as anticipated
in Section 3.2. However, their ratio is not 1/2/4 as it must be for
� → 0 according to the theory, because the fit gives some aver-

aged value for all concentrations—for the lower homologues
the ratio is approximately 1/1.3/2, but for the higher homo-
logues it becomes 1/1.3/1.3, which is in agreement with the
behavior of the curves at � → 1 in Fig. 3.

(iv) The simplified equations, Eqs. (8), (13) and (16), lead to smaller
values of ˛ and larger values of ˇ (in a correlated manner)
with respect to the values from the generalized equations. For
example, the values of ˛, obtained by the approximate van der
Waals equation V–3 are lower than the values obtained with
the respective exact equation V–G, which in turn are much
larger than the values, obtained with the 2D equation H–G. As
a result the values of ˛ obtained by V–3 become closer (but
still remain larger by 10–25%) to the presumably true values,

Table 3
Parameters from the fit with seven equations of the data for adsorption of aliphatic acids at Air/Water interface (Ks: adsorption constant, ˛: minimum area per molecule, ˇ:
interaction constant); H–G EOS Eq. (54); H–G Eq. (56); V–G Eq. (48); H–3 Eq. (16); V–3 Eq. (8); L–3 Eq. (13).

Surfactant, [ref.] Parameters EOS–G H–G V–G L–G H–3 V–3 L–3

C7–acid
[28]

Ks × 104, (cm) – 0.906 1.46 1.68 1.53 1.58 1.82
˛ (Å2) 22.9 23.1 30.0 30.5 16.5 23.6 30.5
ˇ 2.97 3.38 3.55 3.44 8.54 4.67 2.51

C8–acid
[28]

Ks × 104, (cm) – 1.76 2.20 3.16 3.63 3.73 3.90
˛ (Å2) 15.1 18.1 27.9 29.3 14.5 21.5 29.8
ˇ 3.26 6.26 10.3 6.91 10.4 6.02 3.58

C9–acid
[28]

Ks × 104, (cm) – 9.52 15.5 18.4 16.9 18.4 20.7
˛ (Å2) 20.9 21.8 28.6 29.1 15.7 22.3 29.1
ˇ 3.04 4.18 4.65 4.27 9.31 5.03 2.66

C10–acid
[29]

Ks × 104, (cm) – 16.8 30.0 42.3 41.8 45.7 51.2
˛ (Å2) 20.2 21.9 28.5 28.8 15.6 22.1 28.8
ˇ 4.28 7.55 8.58 6.07 10.5 5.86 3.30
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Fig. 8. Fit by model H–G of the curves surface tension vs. surfactant concentration
for the DMPO surfactants—�: C8; ♦: C10; �: C11; ©: C12; �: C13; 	: C14.

obtained from H–G (see Tables 2 and 3) thus creating the wrong
impression that V–3 might be a correct equation. However, this
decrease is not uniform for all DMPO’s and it is not clear how
large the error is. The reason for this behavior can be under-
stood by comparing curves E2 (for the exact equation V–G)
and A2 (for the approximate V–3). For example, value of the
abscissa ˛� ≈ 0.5 corresponds to ordinate 0.5 for E2, but to 0.75
for A2. In order to obtain the correct value of the ordinate 0.5
from A2 one must choose ˛� ≈ 0.4, which can be achieved only
by decreasing ˛ by 25%. The coordination between ˛ and ˇ is
analyzed in Appendix A. The same effects are observed with all
approximate models. For instance, ˛ drops for the approximate
model H–3 even below 20 Å2, while ˇ reaches the incredible
values of 6–7.

Truthful to our philosophy, presented in Introduction, we did
everything possible to check at least some results of the fits by inde-
pendent methods or data. We are not aware of a method allowing
direct determination of the most important parameter ˛. How-
ever, this information can be extracted from the EOS of C18–DMPO
measured by Noskov et al. [30]. From their curves one can deduce
that the collapse point of the monolayer corresponds to area 34 Å2.
Assuming that at this area the packing was closed hexagonal and
knowing that the area of the inscribed circle is 0.906 of that of the
hexagon, one finds ˛ = 30.8 Å2, which is practically equal to the val-
ues obtained by us by the method H–G for the DMPO’s above C10.
It is very probable that the other few DMPO have the same area.
As for the acids, the values obtained (except for C8) between 20 Å2

and 20.9 Å2 hardly need verification, since this is the cross-sectional
area of the paraffinic chain.

Fig. 9. Equation of state of DMPO surfactants from model H–G (same symbols as in
Fig. 8).

Fig. 10. Degree of coverage � vs. DMPO concentration from model H–G (same sym-
bols as in Fig. 8).

We used the H–G data for ˛ to calculate the degree of cover-
age of the surface. The data are shown in Figs. 10 and 11. As one
sees, the degree of coverage � = ˛� is significantly lower than unity
even at the highest concentrations. This result cast doubt on the
common belief that before and close to the critical micelle concen-
tration CMC the degree of coverage is complete. We believe that
this finding may have some technological significance.

The values of the adsorption constants Ks can be checked from
the slope of the initial portions of the plots of � vs. Cs. This proce-
dure is extremely difficult since the concentrations are very small
and the data for � are not very reliable (the authors of [27] also
mentioned this problem). To decrease the possible errors we were
drawing a line though the point (Cs = 0, �p), where �p is the surface
tension of the pure solvent and were trying to find several data
points lying on this or close to this line. Examples of this procedure
are given in Figs. 12 and 13. The adsorption constant is calculated
by combining Gibbs’ equation and Henry’s law � = Ks,cCs, where
the subscript c indicates that the constant is calculated in this way
The result is

Ks,c = − kT

(∂�/∂Cs)in
(64)

where “in” stands for “initial”. In Figs. 14 and 15 the respective
results for Ks of DMPO’s and acids are plotted vs. the number of
carbon atom in the chain nc along with the results in columns H–G,
V–3 and L–3 of Table 2 obtained by fits with the respective equa-
tions. As already mentioned, although not coinciding, the results
are reasonably close and follow rather well straight lines, see Eq.

Fig. 11. Degree of coverage � vs. acid concentration from model H–G—�: C7; 	: C8;
�: C9; ©: C10.
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Fig. 12. Initial portion of the curve surface tension vs. C12 DMPO concentration. The
equation is shown in the figure.

Fig. 13. Initial portion of the curve surface tension, �, vs. heptanoic acid concentra-
tion, Cs. The equation is shown in the figure.

(9):

lnKs = wc

kT
nc + Q (65)

The points are so close, that it was impossible to draw sepa-
rate lines. Hence, we summarized the values of the slopes wc/(kT),
the intercepts Q and the regression coefficients r2 of the lines in
Table 4. We assumed that the most probable slope is 0.96 although
the average value is 0.951. The slope of this dependence was deter-
mined also by Davies and Rideal [19], who found slightly larger
value: wc/(kT) = 1.02.

Fig. 14. ln Ks (adsorption constant) vs. number of carbon atoms nc for DMPO surfac-
tants. The average line has the following parameters: slope 0.933, intercept −14.43
and r2 = 0.9862. The numerical data and the symbols are given in Table 4.

Fig. 15. Plot of ln Ks for aliphatic acids vs. the number of carbon atoms nc. The
symbols are the same as in Table 4. For the parameters of the linear fits see the
text.

The data for acids are slightly worse and more scattered than
those for DMPO. The average slope of all data in Fig. 15 (the dashed
line) is wc/(kT) = 1.135 (slightly larger than that for DMPO) and the
intercept is −16.89. There is no reason however that the adsorp-
tion energy of the methyl groups in both types of compounds be
different. We attribute this difference to the lower precision of the
data, the more so that the data obtained with the model H–G (the
solid line) gives a lower slope, 1.044 with intercept −16.70.

We decided to use these data to check the correctness of our the-
oretical Eq. (9) for Ks. Besides the slope wc/(kT) = 0.96 we used the
following data: �p = 72.2 mN/m, ˛c = 20 Å2 and ıs = 1.16 × 10−8 cm
[9]. In fact, the theoretical results were already plotted in Fig. 14 as
ln Ks vs. nc (see also Table 4). The agreement with the other data
in Fig. 14 is very good. Another way to check Eq. (9) is to calcu-
late theoretically the intercept Q = ln ıs + �p˛c/(kT). The result is
−14.76, which is almost equal to the value −14.66 obtained from
the fit by the H–G method. The final check of the reliability of our
Eq. (9) was the direct comparison of the results it leads to with the
data, obtained by fitting the experimental isotherms by the method
H–G. Fig. 16 demonstrates almost perfect agreement between the
theoretically calculated values K th

s and the ones obtained from the
experimental data, KH–G

s .
The last constant to be checked is ˇ. We have assumed during

the derivation of Eq. (33) that the chains are perpendicular to the
interface, but at the same time showed in Eq. (19) that the first
methyl group is immersed in the solution. Therefore, these groups
can interact only though the water, which significantly weakens the
interaction [11] and we will neglect them as we did when deriving
Eq. (20). However, in the present case the top cover on the molecule
does not take part in the interaction, so that the number of inter-
acting methyl groups will be nc − 1. The situation with the acids is
even more complicated. The first carbon atom is in fact that of the
carboxyl group and it is certainly immersed. The second one should

Table 4
Parameters of the linear fits of the data for the dependence of the adsorption con-
stants Ks of DMPO compounds on the number of carbon atoms nc, obtained by five
methods (see table).

Symbol Model/(Eq.) wc/(kT) Intercept Q r2

� �(Cs) (64) 0.961 −14.98 0.9841
� Theory (9) and (20) 0.960 −14.77 1.0000
♦ Fit H–G (56) 0.964 −14.66 0.9979
× Fit V–3 (8) 0.904 −14.06 0.9922
© Fit L–3 (13) 0.967 −14.69 0.9974
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Fig. 16. Linear dependence between the logarithms of the theoretical K th
s and the

experimentally obtained by the model H–G value KH−G
s of the adsorption constants

or DPMO surfactants. The parameters of the fits are: slope 1.004 and intercept
−0.170.

be also immersed (as the first one of the DMPO) not only because of
Eq. (20), but because of the mere fact that the acetic acid is infinitely
soluble in water. Therefore, for acids the interacting methyl groups
must be nc − 2. We will denote the number of interacting groups
by nint.

Since some of the molecules have short chains and large area ˛
of the polar head, it is possible that the length l and the diameter
d have close values. That is why we will not use the simple Eq.
(35), but the exact one, Eq. (33), which we will rewrite in slightly
different form:

ˇ = 0.75��2
t ˛pI

4d2˛kT

l

d
arctan

(
l

d

)
(66)

We determined the values of the parameters of a methyl group
from the properties of the paraffinic compounds [18,32]: l = l1nint;
l1 = 1.27 Å; �t = 1/l1; ˛p = 2 Å3; I = 10.5 eV. After some calculations
we thus found:

ˇ = 510
nint

˛5/2
arctan

(
1.12nint

˛1/2

)
(67)

where nint = nc − 1 for DMPO and nc − 2 for acids.
As we already mentioned, with the exception of ln Ks, the data

for the DMPO compounds C8, C10 (and to some extent C13) exhibit
some deviations from the trend followed by the other data (for addi-
tional discussion see Appendix A)—the values of ˛ are with 10–15%
lower than for the other compounds and the values of ˇ also deviate
considerably from the general trend (see Table 2). That is why we
performed calculations of ˇ only for the other compounds. In Fig. 17
the results for ˇ obtained from the fit of the experimental data by
the method H–G (we call them “experimental”) are compared with
the respective theoretical calculations of ˇ by Eq. (67). The scat-
tering of the data points for the H–G isotherm with respect to the
theoretical curve ˇ vs. nc, calculated from Eq. (67) do not exceed
15–25%, which is very close to the usual error of determination of ˇ.
Note that again this is result of direct calculation without using any
adjustable parameter. The (moderate) success of this procedure is
rather surprising, in view of the crudeness of the theoretical model
and the lack of relevant data.

Parallel comparison of results between several models is per-
formed in Fig. 18, where the “experimental” and the theoretical
values of ˇ vs nc are plotted together for the three models: H–G,
V–3 and L–3. The coincidence between theory and experiment for
the model L–3 in Fig. 18 is pretty good, but this result might be

Fig. 17. Values of the interaction constant, ˇ, vs. the number of carbon atoms nc.
for DMPO surfactants. The dashed line is only for guiding the eye. The theoretical
values, calculated from Eq. (67) are with solid line. The experimental values (with
dashed lines and empty symbols) are calculated from the fit of the experimental
data by the model H–G.

misleading. The values of ˇ for this model are very small (<0.5) and
the values of ˛ (which in Eq. (67) is in the denominator as ˛5/2) are
very large (see Table 2), which might be the reason for this coinci-
dence. If one calculates the theoretical values for L–3 of ˇ by using
the presumed true values of ˛ ≈ 30 Å2, they will become larger than
1 and the coincidence between theory and experiment for L–3 will
vanish. As for the model of Volmer V–3, the difference between
experimental and theoretical values is enormous-up to 5–6 times,
which confirms the data from Table 2, showing that this model
exaggerates the values of ˇ.

Although the results for ˇ are not excellent, we will dare
some speculations. The fact that Eq. (67), which works rather
well, was derived from the second virial coefficient, accounting
only for binary interactions between molecules, perpendicular
to the interface, seems to suggest that this is the domi-
nant orientation of interacting molecules even at low surface

Fig. 18. Values of the interaction constant, ˇ, vs. the number of carbon atoms nc.
for 4 DMPO surfactants (see the text). The dashed lines are only for guiding the eye.
The theoretical values, calculated from Eq. (67) are with solid lines with values of
˛, corresponding to do respective model, indicated on the right. The experimental
values (with dashed lines and empty symbols) are calculated from the fit of the
experimental data by the models H–G [circles; Eq. (16)], L–3 [squares, Eq. (13)] and
V–3 [triangles, Eq. (6)].
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Fig. 19. Experimental results for the parameter, ˇ, vs. number of carbon atoms nc

for aliphatic acids, obtained by fitting the data with three models; H–G, V–3 and
L–3 (see symbols in Table 4). The dashed lines are only for guiding eye. See text for
discussion.

concentrations—probably the attraction between the hydrocarbon
tails is the dominant effect trying to decrease the free energy of the
surfactant molecules by forcing them to stay as close as possible
to each other. This is also in agreement with the fact that the area
per molecule ˛, determined by the fit of the model H–G leads to
values of ˛ very close to those determined from the collapse pres-
sure of DMPO (see above). Such effect is possible however only if
the molecular length l exceeds considerably the distance of closest
approach d. For example for C12 the ratio is l/d ≈ 2.5. On the con-
trary, for short molecules like C8 this ratio is close to 1 and since l is
small the attraction is too weak to orient the molecules vertically.
This might be one of the reasons for the small values of ˇ for short
molecules.

The experimental results for ˇ vs. nc in Fig. 19 for acids look
very differently from those for DMPO. First, the values of ˇ are
much larger, which is probably due to the strong hydrogen bonding.
More important is the observed saw-shape of the curves. It looks
a little bit as the well known dependence of the melting point of
alkanes and the reason might be the same. With alkanes the sub-
stances with even number of carbon atoms are supposed to be more
able to acquire in the solid phase conformations with higher attrac-
tive energy, which leads to higher melting point. Some similar, but
probably more complicated effect is possible in the adsorbed layer.
Indeed, the very small values of ˛ ≈ 21 Å2, which is very close to the
cross-sectional area of the paraffinic chain, may lead to interpene-
tration of the chains, making their structure similar to that in solid
phase with alkanes more strongly attracting for even number car-
bon atoms which manifests itself here by larger values of ˇ. Another
possible effect is the change of acidity of the carboxylic groups
with the chain length, which may lead to vertical displacement and
change of density of the adsorbed layer—similar effect of ions on
alkanes was investigated in [31]. This is of course a speculation,
which can hardly be proven.

Unfortunately, no comparison between the models by direct fit
of the experimental data for � vs Cs is possible, because as already
mentioned, all models fit perfectly the experimental data but lead
to different system parameters. The different behavior of the mod-
els can be however demonstrated by plotting the Gibbs elasticity EG
and the degree of surface coverage � = ˛� vs. the surfactant concen-
tration Cs. This is done in Figs. 20 and 21 for the generalized versions
of the three models. As one might expect, the fact that the model
H–G corresponds to the smallest values of ˛ leads to considerably
smaller values of EG and �.

We consider the results, presented in this section, especially
those with DMPO (which are also due to the excellent experimen-
tal data from refs. [26,27]), as confirmation not only of our new

Fig. 20. Gibbs elasticity as a function of surfactant concentration for DMPO–C12
calculated from models L–G, V–G, and H–G.

Fig. 21. Degree of surface coverage, �, as a function of surfactant concentration for
DMPO–C12 calculated from models L–G, V–G, and H–G.

adsorption isotherm, Eq. (56) and the EOS Eq. (54), whose fit gave
the above values, but also as confirmation of our equations for the
adsorption energy EA, Eq. (20), thickness of the adsorbed layer ıs,
Eq. (21), and the adsorption constant Ks, Eq. (9). It is noteworthy that
we obtained these results without using during the calculation any
adjustable parameters.

7. Conclusion

We carried out analysis, based on the three most popular simple
equations with three free parameters (adsorption constant Ks, min-
imum area per molecule ˛ and interaction constant ˇ) of surface
tension isotherms of DMPO and aliphatic acids. It revealed more
or less the same problems which we met in [9] with ionic surfac-
tants. This stimulated us to look again on the expressions and the
values of ˛, Ks and ˇ. In [9] we have shown that correct results can
be obtained only if the hard core part of the EOS is based on the
model of HFL (see Section 3.b). We had also significantly modified
the expression for Ks by introducing new terms in the expression for
the adsorption energy EA, Eq. (20), and derived a new expression
for the thickness of the adsorbed layer, ıs. The new modification
we introduced now are the calculations of the average immersion
depth zimm of the paraffinic chain due to thermal fluctuations, Eq.
(19), which affects EA and ˇ, and of the parameter ˇ by integrating
the interaction energy between two paraffinic chains, Eqs. (33) and
(66). In this way we prepared the ground for independent verifica-
tion of the parameters determined by the fit of the experimental
data surface tension � vs. surfactant concentrations Cs. However,
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our results from such fits, (see Tables 2 and 3), showed that again
the values of the parameters determined were not only strongly
dependent on the model used, but were in most cases different
from the independent theoretical estimates.

The conclusion we reached was that the poor results are due
to the models used (the EOS and the adsorption isotherm). That
is why we tried to use also or to derive equations as precise as
possible. An almost exact generalization of the Langmuir–Frumkin
equation was available, see Eqs. (36) and (37) and [13]. However,
nothing was available for fluid monolayers. We succeeded to derive
an exact EOS, Eq. (48), for 1D adsorption of sticks on a thread by
using the so-called “sticky approximation” of Baxter [21] assum-
ing that attraction between the molecules appears only when they
touch each other. Our result turned out to be a generalization of
Volmer equation, since its hard core part exactly coincides with that
of Eq. (6). Since we have proven that the Volmer equation leads to
values of � larger than the true ones (see Fig. 3), the new equation
must have the same defect. On the other hand, it has been rigor-
ously proven [21] that it is impossible to derive a 2D EOS even for
hard discs, let alone for attracting each other disks. Hence, we used
a heuristic approach: we derived rigorously a 2D generalization of
the HFL equation with correction up to linear in ˇ terms, see Eq.
(53), and changed suitably the hard core part and the numerical
coefficients in the 1D equation to make it compatible with the new
2D result. The numerical checks of the new equation, Eq. (54), and
the respective adsorption isotherm, Eq. (56), were performed by
calculating the third virial coefficient and by deriving an analogous
equation by expansion of the correlation function in series of ˇ and
solving Kirkwood’s integral equation. Both checks gave satisfactory
results.

We subject the three simple equations (more precisely the
respective adsorption isotherms) from Section 2, Eqs. (8), (13) and
(16), and their respective generalized analogs Eqs. (37), (50) and
(56) to experimental checks by fitting the data of Makievski and
Grigoriev [26] and Warszynski and Lunkenheimer [27] for DMPO
and of Malysa et al. [28] and Lunkenheimer and Hirte [29] for acids.
The results are summarized in Tables 2 and 3. They show that prac-
tically all 6 models lead to close (although slightly scattered) values
of the adsorption constant Ks. This should not be surprising since
Ks is present only in the left hand (model independent) side of the
adsorption isotherm. The two models, based on Langmuir isotherm,
lead for DMPO practically to the same values of the adsorption
parameters. This is so because only the second virial coefficient
contains a term linear in ˇ and in all other terms ˇ is at higher
power. For small ˇ (which is the case with DMPO) these terms can
be neglected and Frumkin equation becomes from this view point
exact (see Section 5a)—however, the problems with the exagger-
ated values of ˛ remain. The situation is however different with the
acids, where ˇ can be as large as 4 and the two equations lead to
different results.

The area per molecule ˛, determined by the generalized equa-
tions increases from HFL to Volmer to Langmuir, as anticipated in
Fig. 3. The simple equations leads to smaller ˛ and larger ˇ (in a
correlated manner) with respect to the values from the general-
ized equations. We showed, by using the data of Noskov et al. [30]
that the values of ˛ ≈ 30 Å2 given in Table 1 by the generalized HFL
model are very close to the geometrical area of the DMPO heads.

We performed several independent calculations of the three
adsorption parameters in order to compare the results with those
obtained by the fits and to check in this way our theoretical devel-
opments and the reliability of our fitting procedures. The first one
was to calculate Ks directly from the initial slope of the experimen-
tal curves �(Cs) (see Figs. 12 and 13). The data were rather scattered
but the result, shown in Table 4 was in agreement with the other
data. The other test was direct calculation by the method H–G of the
adsorption constant Ks from Eq. (9) without use of any adjustable

parameter. Finally, we calculated the constant ˇ from Eq. (67) again
without using adjustable parameters. The best results were again
obtained by the method H–G (see Figs. 16 and 17). The experimen-
tal results with acids for ˇ vs. nc in Fig. 19 look very differently
from those for DMPO. First, the values of ˇ are much larger, which
is probably due to the strong hydrogen bonding. More important
is the observed saw-shape of the curves. We have no explanation
for this, but we suspect that similarly to the dependence of the
melting point of paraffins on nc, it is due to the better capability
of the substances with even number of carbon atoms to acquire
conformations with higher attractive energy.

In conclusion, we believe to have shown that the new EOS, Eq.
(54), and adsorption isotherm, Eq. (56), derived by us have given
very reliable results. However, we are aware that no definite con-
clusion is yet possible without check with other suitable systems
and without more rigorous derivation and possibly improvement
of our equations. At the same time our analysis has demonstrated
that the other equation tested, those of Frumkin and van der Waals
qualitatively correctly describe the adsorption phenomena. More-
over, they are simpler and more easy for applications, so that if
one is interested mainly in qualitative comparison of surfactants or
in the general features of the phenomena observed, they might be
preferable. If however one wants to obtain more information for
the value of some parameter, one must be cautious in the selection
of the method to be used.

Fig. A.1. Results from processing of experimental data for DMPO–C12 using H–G
model. (a) Contour plot of the merit function for fixed Ks,min; (b) change of εK and ε˛

as a function of εˇ .
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Fig. A.2. Results from processing of experimental data for DMPO–C8 using H–G
model: (a) contour plot of the merit function for fixed Ks,min; (b) change of εK and ε˛

as a function of εˇ .
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Appendix A. Relative errors of the adjustable parameters

In order to understand the accuracy of the parameters, ˛min,
ˇmin, and Ks,min, minimizing the merit function, we define their
relative errors as follows:

ε˛ ≡
∣∣∣˛ − ˛min

˛min

∣∣∣ , εˇ ≡
∣∣∣∣ˇ − ˇmin

ˇmin

∣∣∣∣ , εK ≡
∣∣∣∣Ks − Ks,min

Ks,min

∣∣∣∣ (A.1)

We studied the two dimensional contour plot diagrams of the
merit function at fixed third parameter. In all cases we found that
the relative errors ε˛ and εK are smaller at fixed value of the inter-
action parameter, ˇ.

Fig. A.1.a shows the contour plot of the merit function cross-
sections at fixed value of Ks,min calculated from the experimental
data for DMPO–C12 using H–G model. One sees that the minimum
is well pronounced and the relative errors of the parameters are
of the order of 5%. For deeper understanding of the behavior we
fixed the value of ˇ and minimized the merit function with respect
to Ks and ˛. Thus we calculate the functions Ks,min(ˇ), ˛min(ˇ), and
�min(ˇ). Fig. A.1.b shows the respective relative errors ε˛ and εK as
a function of εˇ for DMPO–C12. In Fig. A.1.b the increase of the cal-
culated merit function from its minimum value is only 0.01 mN/m.
The main conclusions are: (i) the area ˛ is calculated with a good
precision (error smaller than 4%); (ii) the parameters Ks and ˇ are
correlated and their relative errors are of the order of 10%.

When applying the H–G model to the experimental data for
DMPO–C8 the conclusions are different. Fig. A.2.a illustrates that
the contour 0.3 mN/m covers relative errors of area 10% but the
relative errors of the interaction parameter ˇ is from −100% to
60%. Fig. A.2.b has the analogous meaning as Fig. A.1.b but drawn
for DMPO–C8. The main conclusions are: (i) the area ˛ and the
parameter Ks can be estimated with precision of about 20%; (ii)
the interaction parameter ˇ is determined with very large relative
error. The same behavior of the merit function was observed for the
experimental data for DMPO–C10.
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