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Here, we present a detailed theoretical model describing the growth of disclike surfactant micelles. The
model is tested against light-scattering data for micellar solutions from mixed conventional surfactants
and from fluorinated surfactants. Theoretical expressions are derived for the concentration dependencies
of the number and mass average aggregation numbers. Central role in the theory is played by the differ-
ence between the chemical potentials of a surfactant molecule in cylindrical and discoidal micelles. This
difference, scaled with the thermal energy kT, is denoted p. For p < 0, the formation of cylindrical (rather
than disclike) micelles is energetically favored. For p > 0 disclike micelles are formed, but their growth is
limited due to the rise of their positive peripheral energy. Because of that, disclike micelles can be
observed in a relatively narrow interval, 0 < p < 0.1, and in a limited concentration range. Three sets of
light-scattering data for different surfactants were processed. It is remarkable that in all cases the best
fit gives small positive values of p, in agreement with the theoretical predictions. The model predicts that
a strong increase in the viscosity of a surfactant solution should happen upon the transformation of disc-
like micelles into cylindrical ones at small variations in p. The model can be used for analyzing the shape
and size of micelles in various surfactant solutions. The fact that typical disclike micelles form only in the
special case 0 < p < 0.1 shows why such micelles represent a relatively rare form of stable surfactant self-
assembly.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Disclike micelles from amphiphilic molecules, called also nano-
discs or bicelles, represent a relatively rare form of self-assemblies
as compared to the cylindrical (rodlike, wormlike) micelles [1,2].
Nevertheless, discoidal aggregates have been observed in numer-
ous studies. Single component disclike micelles were found in solu-
tions of some anionic [3] and nonionic [4] surfactants, fluorinated
surfactants [5–8], and with the protein b-casein [4]. After the pio-
neering works by Eastoe et al. [9] and Zemb et al. [1], nanodiscs
were detected and investigated in various binary mixtures of cat-
ionic and anionic (catanionic) surfactant solutions [10–13]. Disc-
shaped micelles and nematic phase from such micelles were ob-
served in ternary mixtures of anionic and zwitterionic surfactant
plus lauric acid [14]. Discoidal aggregates are formed also in solu-
tions of diblock and triblock copolymers [15–20]. Such aggregates
have been discovered in solutions of bile salts [21–23] and their
mixtures with phospholipids [24]. Disclike micelles are formed
also by phospholipids dispersed in water [25,26] and in aqueous
surfactant/lipid systems [27]. The self-assembly of discoidal aggre-
gates has been found to be a transitional kinetic stage in the pro-
cesses of formation and decomposition of liposomes [28,29].

At higher concentrations, the cylindrical micelles give rise to
columnar organisations such as columnar nematic, and columnar
hexagonal and rectangular phases. Likewise, disc-shaped micelles
can form nematic discotic and lamellar La phases [30–32]. It was
established that the size of the cylindrical aggregates increases
continuously with concentration, while the size of the discs could
jump from small to infinite [33,34]. The phase transitions between
isotropic and columnar phases (for rodlike micelles), as well as be-
tween isotropic and lamellar phases (for disclike micelles) have
been theoretically studied [35].

Shape polydispersity and shape fluctuations in ionic surfactant
micelles were analyzed theoretically on the basis of a model for the
free energy of deformation, which leads to transitions from spher-
ical micelles to prolate and oblate ellipsoids [36]. Such transitions
have been predicted also by computer simulations [37]. The forma-
tion of cylindrical and disclike micelles and their transformation
into liquid crystalline phases was theoretically described in terms
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Fig. 1. Sketch of a cylindrical micelle with two hemispherical caps; n is the total
number of surfactant molecules contained in the micelle; ns is the total number of
surfactant molecules contained in the two hemispherical caps.
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of the Helfrich curvature moduli [38,39] and lattice Hamiltonian
models [33]. For cylindrical micelles, there are molecular–thermo-
dynamic models, coupled with geometrical-constraint consider-
ations, which quantitatively predict the micelle growth with the
rise of surfactant concentration [40–42]. Surprisingly, such models
are missing for disclike micelles.

Our goals in the present article are (i) to develop a molecular–
thermodynamic model of disclike micelles that quantitatively de-
scribes the variation in the micelle size with the increase of surfac-
tant concentration; (ii) to test the model against experimental
results for disclike micelles, which includes development of a pro-
cedure for determining the model parameters by data fits, and (iii)
to discuss the predictions of the model regarding the transitions
from disclike to cylindrical micelles and vice versa. We take into
account the main difference between the rodlike and disclike mi-
celles, viz. that the size of the hemispherical caps of the rod is inde-
pendent of micellar length, whereas the size of the semitoroidal
rim around the disc increases with its diameter.

The paper is organized as follows. In Section 2, we briefly present
the ladder model of the growth of cylindrical micelles by Missel
et al. [41], in view of its subsequent extension to discoidal aggre-
gates. In Section 3, the model is extended to multi-component
micelles. In Section 4 the geometrical relations for spherical, cylin-
drical and disclike micelles are derived and compared. In Section 5,
theoretical expressions for the experimentally measurable radius of
gyration, Rg, and hydrodynamic radius, Rh, are derived for toro-disc
shaped micelles. The molecular–thermodynamic model of disclike
micelles is developed in Section 6, where an expression for the mi-
celle size distribution is derived, and it is applied to obtain equations
for calculating the micelle number and mass average aggregation
numbers, �nN , and �nM . The comparison of the free energies of solu-
tions with cylindrical and disclike micelles reveals the domains
where the formation of these differently shaped aggregates is ener-
getically favorable. In Section 7, we consider the limitations on the
growth of disclike micelles, derive corresponding theoretical
expressions and discuss their numerical predictions. Finally, in Sec-
tions 8 and 9 the model is tested against data for conventional and
fluorinated surfactants, and its predictions regarding the transitions
from disclike to cylindrical micelles, and vice versa, are discussed.
The proposed model predicts the laws of growth of discoidal aggre-
gates and reveals why disclike micelles are less frequently observed
in comparison with the cylindrical ones.

2. The ‘‘ladder model’’ for single-component cylindrical
micelles

Here, we briefly present the ladder model by Missel et al. [41] in
view of its subsequent generalization to mixed and disclike mi-
celles. The model describes the growth of cylindrical micelles. First,
it was applied to ionic surfactants, such as sodium dodecyl sulfate
(SDS) in the presence of a fixed high concentration of NaCl, at
which the electrostatic interactions are suppressed. The model
was further generalized to the cases of ionic surfactants in the
presence of 2:1 (CaCl2) and 3:1 (AlCl3) electrolytes taking into ac-
count the contribution of electrostatic interactions [43–45]. Here,
the model is presented in its version for nonionic surfactants and
the next terms in the series expansions for the number and mass
average aggregation numbers, �nN and �nM , are derived.

2.1. Basic thermodynamic relationships

The chemical equilibrium between the micelles of aggregation
number n and the free surfactant monomers is described by the
equation:

nl1 ¼ ln ð2:1Þ
where l1 and ln are the chemical potentials of the monomers and
the micelles, respectively. Assuming an ideal solution, from Eq. (2.1)
we obtain:

nel1 þ nkT ln X1 ¼ eln þ kT ln Xn ð2:2Þ

where el1 and eln are standard chemical potentials; X1 and Xn are
the molar fractions of monomers and micelles of aggregation num-
ber n in the solution; k is the Boltzmann constant; T is the absolute
temperature. X1 is close to the critical micellization concentration
(CMC), expressed in terms of molar fraction. Taking inverse loga-
rithm of Eq. (2.2), we obtain an expression for the micelle size dis-
tribution [41]:

Xn ¼ Xn
1 exp �

eln � nel1

kT

� �
ð2:3Þ
2.2. Basic assumption of the ladder model

Assuming that the standard chemical potential of the cylindri-
cal micelle is a sum of contributions from its cylindrical part and
from its two hemispherical caps (Fig. 1), we obtain [41]:eln ¼ �lðcÞðn� nsÞ þ �lðsÞns ð2:4Þ

Here, elðsÞ and elðcÞ are the standard chemical potentials of sur-
factant molecules in the spherical and cylindrical parts of a micelle,
respectively; n is the total number of surfactant molecules con-
tained in the micelle, whereas ns is the total number of surfactant
molecules contained in the two hemispherical caps (Fig. 1). From
Eq. (2.4), we obtain:eln � nel1 ¼ ðelðsÞ � elðcÞÞns þ ðelðcÞ � el1Þn ð2:5Þ

The substitution of Eq. (2.5) into Eq. (2.3) yields [41]:

Xn ¼
1
K

X1

XB

� �n

;
X1

XB
< 1;n P ns ð2:6Þ

where

K ¼ exp
nsðelðsÞ � elðcÞÞ

kT

� �
ð2:7Þ

XB ¼ exp
elðcÞ � el1

kT

� �
ð2:8Þ

Eq. (2.6) represents the micelle size-distribution for n P ns. In par-
ticular, n = ns corresponds to the smallest spherical micelles. Eq.
(2.6) implies that with the growth of n, the concentration Xn of
the micelles exponentially decreases with the rise of the aggrega-
tion number n. The total (input) molar fraction of surfactant in
the solution is:

X ¼ X1 þ
X1
n¼ns

nXn ð2:9Þ
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The series in Eq. (2.9) must be convergent, and consequently we
must have X1/XB < 1. The substitution of Eq. (2.6) into Eq. (2.9)
yields:

X ¼ X1 þ
1
K

X1
n¼ns

nqn; q � X1

XB
< 1 ð2:10Þ

Eq. (2.10) can be represented in the form:

KðX � X1Þ ¼
X1
n¼ns

nqn ¼
X1
n¼ns

½nsqn þ ðn� nsÞqn� ð2:11Þ

The first term in the brackets expresses the contribution from
the hemispherical caps, whereas the second term is the contribu-
tion from the micelle cylindrical part (Fig. 1). The summation in
Eq. (2.11) leads to:

KðX � X1Þ ¼ qns
ns

1� q
þ qns

q

ð1� qÞ2
ð2:12Þ

As above, the two terms in the right hand side of Eq. (2.12) rep-
resent, respectively, contributions from the hemispherical caps and
from the cylindrical parts of the micelles. If large cylindrical (rod-
like or wormlike) micelles are present in the solution, then the last
term in Eq. (2.12) must be predominant:

q

ð1� qÞ2
� ns

1� q
) e � 1� q� 1 ð2:13Þ

In terms of the small parameter e, Eq. (2.12) acquires the form:

KðX � X1Þ ¼ ð1� eÞns ns

e
þ 1� e

e2

� �
ð2:14Þ

Because small e corresponds to large micelles and large
K(X � X1), from Eq. (2.14) we can express 1/e in the form of an
asymptotic expansion for large K(X � X1):

1
e
¼ ½KðX � X1Þ�1=2 þ 1

2
þ 1þ 2nsðns � 1Þ

8½KðX � X1Þ�1=2

þ O ½KðX � X1Þ��3=2
n o

ð2:15Þ
2.3. Expression for the mean aggregation number

By definition, the number-average micelle aggregation number
is:

�nN ¼
X1
n¼ns

nXn

 !, X1
n¼ns

Xn

 !
ð2:16Þ

In view of Eqs. (2.6), (2.9), and (2.10), the summation in Eq.
(2.16) yields [41]:

�nN ¼
1
e
þ ns � 1 ðcylindrical micellesÞ ð2:17Þ

Eqs. (2.14) and (2.17) give the dependence of �nN on the total
surfactant concentration, X, in a parametric form: X = X(e) and
�nN ¼ �nNðeÞ. An approximate asymptotic expression for the depen-
dence �nNðXÞ at large K(X � X1) can be obtained by substituting
Eq. (2.15) into Eq. (2.17):

�nN ¼ ½KðX � X1Þ�1=2 þ ns �
1
2
þ 1þ 2nsðns � 1Þ

8½KðX � X1Þ�1=2

þ O ½KðX � X1Þ��3=2
n o

ð2:18Þ

Because the first term in the right-hand side is the leading one, the
plot of �nN vs. (X � X1)1/2 must be a straight line with slope K1/2

[41].
By definition the mean mass micelle aggregation number is:
�nM ¼
X1
n¼ns

n2Xn

 !,X1
n¼ns

nXn ð2:19Þ

In view of Eqs. (2.6), (2.9), and (2.10), the summation in Eq.
(2.19) yields [41]:

�nM ¼
2
e
� 1þ nsðns � 1Þe

1þ ðns � 1Þe ðcylindrical micellesÞ ð2:20Þ

Eqs. (2.14) and (2.20) give the dependence of �nM on the total
surfactant concentration, X, in a parametric form: X = X(e) and
�nM ¼ �nMðeÞ. An approximate asymptotic expression for the depen-
dence �nMðXÞ at large K(X � X1) can be obtained by substituting Eq.
(2.15) into Eq. (2.20) and expanding in series:

�nM ¼ 2½KðX � X1Þ�1=2 þ 1þ 6nsðns � 1Þ
4½KðX � X1Þ�1=2 þ O

1
KðX � X1Þ

� �
ð2:21Þ

The first term in the right-hand side is the leading one, so that the
plot of �nM vs. (X � X1)1/2 must be a straight line with slope 2K1/2

[41]. The comparison of Eqs. (2.18) and (2.21) shows that for large
cylindrical micelles we have �nM=�nN � 2, as first established by
Mukerjee [46]. The leading-term square-root dependence in Eq.
(2.21) was confirmed in Ref. [43] for cylindrical micelles formed
in aqueous solutions of the anionic surfactant sodium laurylether-
sulfate with two ethylene-oxide groups (SLES-2EO) with 0.7 M
added NaCl.

3. Generalization of the ladder model for multi-component
systems

3.1. General thermodynamic relations

Here, we generalize the model from Ref. [41] for multi-compo-
nent systems, like that considered in Section 8.1. As before, we as-
sume that the solution contains surfactant monomers and micelles
of total aggregation number n P ns, where ns corresponds to the
smallest spherical micelles. Let us assume that all micellar aggre-
gates have the same composition, irrespective of their size:

ðy1; y2; . . . ; yNÞ;
XN

i¼1

yi ¼ 1 ð3:1Þ

where y1, . . .,yN are molar fractions. Because the micelles are poly-
disperse, the above assumption means that the composition in
the central part of the micelle and in its curved periphery is the
same. In other words, we have assumed that the curvature driven
component segregation within the micelles is negligible. If for a gi-
ven system the segregation effect is considerable, this can be de-
tected as a deviation of the predictions of the present model from
the experiment.

At concentrations much higher than the CMC, the amount of
surfactant in micellar form is much greater than in monomeric
form. Then, the micelle composition (y1, y2, . . ., yN) practically coin-
cides with the composition of the input components, which is
known. The following relationships hold:

ni ¼ nyi;
XN

i¼1

ni ¼ n
XN

i¼1

yi ¼ n ð3:2Þ

where ni is the number of molecules from the component ‘‘i’’ in a
micelle of total aggregation number n. The chemical potential of
the monomers in the solution is:

lð1Þi ¼ elð1Þi þ kT ln xi ði ¼ 1;2; . . . ;NÞ ð3:3Þ

where xi is the concentration of the free monomers from the com-
ponent ‘‘i’’. As before, the chemical potential of the micelles of
aggregation number ‘n’ is:
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ln ¼ eln þ kT ln Xn ðn P nsÞ ð3:4Þ

At equilibrium, we have:XN

i¼1

nilð1Þi ¼ ln ðn P nsÞ ð3:5Þ

ns is the total aggregation number of the spherical mixed micelles.
The substitution of Eqs. (3.3) and (3.4) into Eq. (3.5), along with the
relation ni = nyi, yields

ln Xn ¼ �
eln � n�lð1Þ

kT
þ n ln X1 ðn P nsÞ; ð3:6Þ

where

�lð1Þ ¼
XN

i¼1

yi elð1Þi and X1 ¼
YN

i¼1

xni
i

 !1=n

ð3:7Þ

are, respectively, the mean arithmetic standard chemical potential
of the free monomers, and their mean geometric molar fraction.
So far, we did not make any assumptions concerning the micelle
shape. Hence, Eqs. (3.6) and (3.7) are applicable to both cylindrical
and disclike micelles.

3.2. Application to cylindrical micelles

For cylindrical micelles in mixed surfactant solutions, the basic
assumption of the ladder model, Eq. (2.4), can be generalized in
the following way:eln ¼ ns �lðsÞ þ ðn� nsÞ�lðcÞ ð3:8Þ

where �lðsÞ and �lðcÞ are the mean standard chemical potential of a
surfactant molecule, respectively, in the spherical and cylindrical
parts of a micelle of aggregation number n; see Fig. 1. With the help
of Eq. (3.8), we obtain:eln � n�lð1Þ ¼ nsð�lðsÞ � �lðcÞÞ þ nð�lðcÞ � �lð1ÞÞ ð3:9Þ

Substituting Eq. (3.9) into Eq. (3.6) and taking inverse loga-
rithm, we obtain the size distribution of the sphero-cylindrical mi-
celles in the muli-component surfactant solution:

Xn ¼
1
K

X1

XB

 !n

ðn P nsÞ ð3:10Þ

where

K ¼ exp
nsð�lðsÞ � �lðcÞÞ

kT

� �
; XB ¼ exp

�lðcÞ � �lð1Þ

kT

� �
ð3:11Þ

The total molar fraction of the micelles is given again by Eq. (2.9),
where the series must be convergent. Correspondingly, we should
have X1=XB � q < 1. Then, using the same logical scheme as in
Eqs. (2.10), (2.11), (2.12), (2.13), (2.14), (2.15), we arrive at the
same expressions, Eqs. (2.18) and (2.21), for the number and mass
average aggregation numbers of the micelles, �nN and �nM , where

X1 ¼
XN

i¼1

xi ð3:12Þ
4. Geometric relations for micelles of different shape

4.1. Spherical micelles

For a spherical micelle, we have the following estimates:

ns ¼
4
3 pR3

�v ; as ¼
4pR2

ns
¼ 3�v

R
ð4:1Þ
ns is the aggregation number of the spherical micelle; R is the radius
of its hydrophobic core; as is the area per molecule relative to the
surface of the hydrophobic core; �v is the mean volume per hydro-
carbon chain in the micelle. For a multi-component surfactant mix-
ture, both R and �v are average quantities:

R ¼
XN

i¼1

yili; �v ¼
XN

i¼1

yiv i ð4:2Þ

yi is the mole fraction of the amphiphilic component i in the mixed
micelle; li is the length of the hydrocarbon chain of the respective
molecule; vi is the volume of the tail of a molecule of the ith com-
ponent. The aggregation number ns is:

ns ¼
XN

i¼1

nðsÞi ; yi ¼
nðsÞi

ns
ð4:3Þ

where nðsÞi is the number of molecules from component i in the
spherical micelle.

4.2. Cylindrical micelles

Here, we follow the model from Fig. 1, i.e. the cylindrical micelle
consists of a cylinder of length L and two hemispherical caps of ra-
dius R equal to the cylinder’s radius. As above, we assume that the
cylindrical and hemispherical parts of the micelle have the same
composition, i.e. yi is the same (i = 1, . . .,N). Then, Eqs. (4.1), (4.2),
(4.3) hold again for the two hemispherical caps, which by size
and aggregation number correspond to a spherical micelle. For
the cylindrical part of the micelle, we have:

nc ¼
pR2L

�v ; ac ¼
2pRL

nc
¼ 2�v

R
ð4:4Þ

nc is the aggregation number of the cylindrical part of the micelle;
ac is the area per molecule relative to the cylindrical part of the sur-
face of the hydrophobic core. The aggregation number of the cylin-
drical part of the micelle nc is:

nc ¼
XN

i¼1

nðcÞi ;
nðcÞi

nc
¼ nðsÞi

ns
¼ yi ð4:5Þ

where nðcÞi is the number of molecules from component i in the
cylindrical part of the micelle.

4.3. Disclike micelles

In analogy with the cylindrical micelles, which are modeled as
‘‘sphero-cylinders’’, the disclike micelles can be modeled as
‘‘toro-discs’’, consisting of a disc of diameter L and thickness 2R,
and of a periphery that represents a semitorus of radius R
(Fig. 2). The volume and the surface area of the disclike micelle
can be expressed in the form:

V ¼ Vd þ V t; A ¼ Ad þ At ð4:6Þ

where the indices ‘d’ and ‘t’ refer to the discoidal and toroidal parts
of the micelle, respectively. The volume and the surface area of the
discoidal part are:

Vd ¼
p
2

RL2; Ad ¼
p
2

L2 ð4:7Þ

Likewise, the volume and surface area of the toroidal periphery
of the micelle are:

V t ¼
p2

2
R2Lþ 4

3
pR3; At ¼ p2RLþ 4pR2 ð4:8Þ

(see Appendix A.1). The number of surfactant molecules nd and the
area ad in the discoidal part of the micelle are as follows:



Fig. 2. Sketch of a disclike micelle with a semitoroidal periphery; n is the total
number of surfactant molecules contained in the micelle, whereas nt is the number
of surfactant molecules belonging to the periphery.

Fig. 3. Sketch of a toro-disc: 2b is simultaneously the thickness of the disc and the
diameter of its semitoroidal periphery; L is the diameter of the central discoidal
part.
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nd ¼
Vd

�v ¼
pRL2

2�v ; ad ¼
pL2

2nd
¼

�v
R

ð4:9Þ

where Eq. (4.7) was used. Summarizing Eqs. (4.1), (4.4), and (4.9),
we obtain:

ad ¼
�v
R
; ac ¼

2�v
R
; as ¼

3�v
R

ð4:10Þ

In other words, the area per molecule is the smallest for the discoi-
dal part of a micelle and the largest for a spherical micelle.

For the toroidal periphery of the disclike micelle, in analogy with
Eq. (4.9), using Eq. (4.8) we obtain:

nt ¼
V t

�v ¼
1
�v

p2

2
R2Lþ 4

3
pR3

� �
ð4:11Þ

at ¼
At

nt
¼ pLþ 4R

pLþ 8
3 R

2�v
R

ð4:12Þ

where nt and at are, respectively, the total number of surfactant
molecules and the area per molecule in the toroidal part of the disc-
like micelle. Eq. (4.11) shows how the number of surfactant mole-
cules in the toroidal part of the micelle increases with the micelle
diameter L. In the limit L = 0, the ‘‘toro-disc’’ becomes a sphere,
and Eq. (4.11) yields nt = ns; see Eq. (4.1).

The comparison of Eqs. (4.1), (4.4), and (4.12) leads to the fol-
lowing inequalities:

2�v
R
¼ ac 6 at 6 as ¼

3�v
R

ð4:13Þ

In other words, the area per molecule in the toroidal part of the mi-
celle is greater than that for a cylindrical micelle, but smaller than
that for a spherical micelle. Indeed, for large disclike micelles
(L ?1), Eq. (4.12) yields at ? ac, whereas for small disclike mi-
celles (L ? 0), Eq. (4.12) yields at ? as. The inequalities in Eq.
(4.13) will be essentially used in Section 6 to find the law of growth
of the disclike micelles.

The expression ad ¼ �v=R was obtained only on the basis of con-
siderations about the radius and volume of the micelle hydropho-
bic core; see Eq. (4.2). This is possible only if the surfactant
headgroups are relatively small. For the headgroups, we can define
ah as the average excluded area per headgroup at close packing.
Apparently, we should have ad P ah, where we are dealing with
areas projected on the surface of the micelle hydrophobic core.
Then, the generalized definition of ad is:

ad ¼
�v=R for �v=R > ah

ah for �v=R 6 ah

�
ð4:14Þ

For mixed micelles, the average excluded area per headgroup at
close packing, ah, can be estimated from the expression:
ah �
XN

i¼1

yiah;i ð4:15Þ

where ah,i are excluded areas per headgroup of the pure component
‘i’ at close packing, projected on the surface of the hydrophobic core
of the micelle. Eq. (4.15) corresponds to a chaotic mixing of head-
groups of different kind and size. For a special regular ordering of
the headgroups, ah could have a minimal value [47].

5. Disclike micelles: radius of gyration and hydrodynamic
radius

The radius of gyration of micelles, Rg, can be determined by static
light scattering (or SANS) experiments, from the angular depen-
dence of the scattered light (Guinier plot) [44,48]. In addition,
the hydrodynamic radius, Rh, can be determined by dynamic light
scattering, from data for the time autocorrelation function of the
scattered light intensity [49]. Here, we consider the relations be-
tween Rg, Rh and the geometrical parameters of toro-disc shaped
micelles: L – diameter of the discoidal part and b – radius of the
semitoroidal periphery, see Fig. 3.

The parameter b includes contributions from the surfactant
headgroup and hydrocarbon chain,

b ¼ Rþ dh ð5:1Þ

where R is given by Eq. (4.2), and dh is the headgroup diameter.
For a body of volume V and uniform mass density, the radius of

gyration Rg can be calculated from the expression [48]:

R2
g ¼

1
V

Z
V
jrj2dV ð5:2Þ

The origin of the position vector r is in the mass center of the
body; dV is the volume element. For a toro-disc, the integral in
Eq. (5.2) can be solved exactly; see Appendix A.2. As a result, the
following expression for the radius of gyration of a toro-disc is
obtained:

R2
g ¼

L2

8
1þ 2puþ 56u2=3þ 8pu3 þ 64u4=5

1þ puþ 8u2=3
ð5:3Þ

where u = b/L (see Fig. 3).
For an arbitrarily shaped micelle of volume V and uniform mass

density, the hydrodynamic radius Rh can be estimated from the
expression [24]:

1
Rh
¼ 2

3V

Z
V

1
jrjdV ð5:4Þ

The origin of the position vector r is in the mass center of the
micelle, and dV is the volume element. For a toro-disc, the integral
in Eq. (5.4) cannot be solved in terms of elementary functions. In
Appendix A.3, we derived a simple and very accurate expression
for the hydrodynamic radius Rh of a toro-disc, viz.

Rh � bþ 3
8

L ð5:5Þ
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The relative error of Rh calculated from Eq. (5.5) is smaller (by mod-
ulus) than 0.005 for all possible values of L/b; see Appendix A.3 for
details.

Eqs. (5.3) and (5.5) can be used as a criterion to prove whether
the micelles are disclike from experimental light scattering data
for Rh and Rg. The parameter b is usually known – it is approxi-
mately equal to the length of the surfactant molecule, estimated
from molecular-size considerations [42]. Then, from Eq. (5.5) we
find L = 8(Rh � b)/3. Next, L is substituted in Eq. (5.3) to calculate
Rg. If the calculated and measured Rg values are close, then the mi-
celles are disclike.
6. Extension of the ladder model to disclike micelles

6.1. Size distribution of the disclike micelles

Our starting point is Eq. (3.6), which is applicable to both cylin-
drical and disclike micelles. First, we will obtain an expression for
the arithmetic mean standard chemical potential of the micelle, eln,
that enters Eq. (3.6).

Insofar as the disclike micelle can be modeled as a combination
of disc and torus (toro-disc, see Fig. 2), eln can be expressed in the
form:eln ¼ �lðdÞðn� ntÞ þ �lðtÞnt ð6:1Þ

As before, n is the total aggregation number; nt is the number of
surfactant molecules in the semitoroidal periphery of the micelle;
�lðdÞ and �lðtÞ are mean standard chemical potentials of a molecule
that belongs, respectively, to the discoidal and toroidal part of
the micelle. Eq. (6.1) for disclike micelles is analogous to Eq. (2.4)
for cylindrical micelles. In the case of cylindrical micelles, the
hemispherical caps are independent of the micelle length, L,
whereas for disclike micelles the area per molecule in the toroidal
periphery, at, depends on L; see Eq. (4.12). For this reason, �lðsÞ and
ns in Eq. (2.4) are independent of L, whereas in Eq. (6.1) both �lðtÞ
and nt depend on L. To take into account the aforementioned
dependence, in Eq. (6.1) we expand �lðtÞ in series around a = as:eln ¼ �lðdÞnþ ð�lðtÞ � �lðdÞÞnt

� �lðdÞnþ �lðsÞ þ @
�l
@a

����
a¼as

ðat � asÞ � �lðdÞ
" #

nt ð6:2Þ

Because ac 6 at 6 as, the derivative in Eq. (6.2) can be estimated
as follows:

@�l
@a

����
a¼as

�
�lðsÞ � �lðcÞ

as � ac
¼ ð�lðsÞ � �lðcÞÞ R

�v ð6:3Þ

where the relation as � ac ¼ �v=R has been used; see Eq. (4.10). In
Appendix A.4, it is shown that the substitution of Eq. (6.3) into
Eq. (6.2), along with some geometrical relations from Section 4,
leads to the result:eln � n�lð1Þ � �lðsÞ � �lðdÞ

� �
ns þ �lðdÞ � �lð1Þ

� �
n

� �lðdÞ � �lðcÞ
� �3pL

8R
ns ð6:4Þ

The estimate of the derivative in Eq. (6.3) is equivalent to linear
interpolation of the dependence �lðatÞ for ac 6 at 6 as, see Eq.
(4.13). For this reason, Eq. (6.4) is independent of whether an
expansion around as [as in Eq. (6.2)], or around ac is used.

The substitution of Eq. (6.4) in Eq. (3.6) leads to the following
expression for the size distribution of the disclike micelles:

Xn ¼
1
K

X1

XB

 !n

exp
�lðdÞ � �lðcÞ

kT
3pL
8R

ns

� �
ð6:5Þ
where

K � exp
�lðsÞ � �lðdÞ

kT
ns

� �
ð6:6Þ

XB � exp
�lðdÞ � �lð1Þ

kT

� �
ð6:7Þ

Furthermore, it is convenient to introduce the dimensionless
quantities x, e and p as follows:

x ¼ L
R
;

X1

XB
¼ expð�eÞ ð6:8Þ

p ¼
�lðcÞ � �lðdÞ

kT
ð6:9Þ

Then, Eq. (6.5) acquires the form:

Xn ¼
1
K

exp �en� 3p
8

nspx
� �

ð6:10Þ

For p = 0, Eq. (6.10) is mathematically identical to the respective
expression for cylindrical micelles, Eq. (2.6). The term with p in Eq.
(6.10) accounts for the increment of the excess peripheral energy
of the disclike micelle. For positive/negative p, the peripheral en-
ergy increases/ decreases with the rise of disc diameter. The quan-
tities n and x are not independent. Combining Eqs. (4.1), (4.9), and
(4.11), we obtain:

n ¼ nd þ nt ¼
3ns

8
x2 þ 3ns

8
pxþ ns ð6:11Þ

In view of Eq. (6.11), it is convenient to represent the micelle
size distribution, Eq. (6.10) in the form:

Xn ¼ 1
K exp FðxÞ � 8

3 es
� 	

FðxÞ � �esx2 � pðps þ esÞx
ð6:12Þ

where

es �
3ns

8
e and ps �

3ns

8
p ð6:13Þ
6.2. Expression for the total surfactant molar fraction

The total surfactant molar fraction X is given by Eq. (2.9). In
view of Eq. (6.12), it is convenient to replace the summation by
integration using the Euler–Maclaurin formula (see Appendix A.5
for details):

X � X1 ¼
X1
n¼ns

nXn �
nsXns

2
þ
Z 1

ns

nXndn ð6:14Þ

Substituting n and Xn from Eq. (6.11) and (6.12) in Eq. (6.14), we
obtain:

KðX � X1Þ ¼
3ns

8

� �2

exp �8es

3

� �
32
9ns
þ J1

� �
ð6:15Þ

J1 �
Z 1

0
x2 þ pxþ 8

3

� �
ð2xþ pÞ exp½FðxÞ�dx ð6:16Þ

Substituting F(x) from Eq. (6.12), we solve analytically the above
integral:

J1 ¼ 3p2psðps�esÞþ4esð3þ8esÞ
12e3

s

� 3p2ðp2
s�e2

s Þþ2esð9þ16esÞ
24e7=2

s
psp3=2ð1� erfnÞ expðn2Þ

ð6:17Þ
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where erfn is the conventional error function, and

n � pðps þ esÞ
2e1=2

s

ð6:18Þ
6.3. Number average aggregation number of disclike micelles

The number average aggregation number �nN is defined by Eq.
(2.16). The numerator in this equation is given by Eq. (6.14),
whereas the denominator can be estimated as follows:

X1
n¼ns

Xn �
Xns

2
þ
Z 1

ns

Xndn ¼ Xns

2
þ
Z 1

0
XnðxÞdnðxÞ ð6:19Þ

Here, the sum was replaced by integral using again the Euler–
Maclaurin formula (Appendix A.5). As a result, using Eqs. (6.11)
and (6.12) we obtain:

X1
n¼ns

Xn ¼
1
K

3ns

8
exp �8es

3

� �
4

3ns
þ J0

� �
ð6:20Þ

J0 �
Z 1

0
ð2xþ pÞ exp½FðxÞ�dx ð6:21Þ

Substituting F(x) from Eq. (6.12), we solve analytically the above
integral:

J0 ¼
1
es
� ps

2
p
es

� �3=2

ð1� erf nÞ expðn2Þ ð6:22Þ

Thus, the expression for �nN acquires the form:

�nN ¼
3ns

8
32
9ns
þ J1

� �

4

3ns
þ J0

� �
ð6:23Þ

where J1 and J0 are given by Eqs. (6.17) and (6.22). Eqs. (6.15) and
(6.23) determine the concentration dependence of the number
average aggregation number, �nN (X), in a parametric form, viz.
X = X(es) and �nN = �nN (es).

6.4. Mass average aggregation number of disclike micelles

The mass average aggregation number �nM is defined by Eq.
(2.19). The denominator in this equation is given by Eq. (6.14),
whereas the numerator can be estimated as follows:

X1
n¼ns

n2Xn �
n2

s Xns

2
þ
Z 1

ns

n2Xndn

¼ 1
K

3ns

8

� �3

exp �8es

3

� �
256
27ns

þ J2

� �
ð6:24Þ

J2 �
Z 1

0
x2 þ pxþ 8

3

� �2

ð2xþ pÞ exp½FðxÞ�dx ð6:25Þ

Substituting F(x) from Eq. (6.12), we solve analytically the above
integral:

J2 ¼
1

144e5
s

�
9p4p3

s ps � esð Þ þ 162p2p2
s es þ 3p2ð64

� 3p2Þp2
s e

2
s � 126p2pse2

s � 3p2ð64� 3p2Þpse3
s

þ32e2
s ð9þ 24es þ 32e2

s Þ
	
� psp3=2

288e11=2
s

½9p4p4
s

þ 180p2p2
s es þ 6p2ð32� 3p2Þp2

s e
2
s þ 540e2

s þ 36ð32

� 3p2Þe3
s þ ð32� 3p2Þ2e4

s �ð1� erf nÞ expðn2Þ ð6:26Þ
Thus, the expression for �nM acquires the form:

�nM ¼
3ns

8
256
27ns

þ J2

� �

32
9ns
þ J1

� �
ð6:27Þ

where J1 and J2 are given by Eqs. (6.17) and (6.26). Eqs. (6.15) and
(6.27) determine the concentration dependence of the mass average
aggregation number, �nM (X), in a parametric form, viz. X = X(es) and
�nM ¼ �nM (es).

6.5. Mean standard chemical potential of a surfactant molecule in the
micelles

In Section 6.1, to derive the size distribution of disclike micelles
we assumed that an universal dependence, �l ¼ �lðaÞ, of the micelle
mean standard chemical potential, �l, on the area per headgroup, a,
exists. As usual, a is the average area per surfactant molecule pro-
jected on the surface of the micelle hydrophobic core. For a multi-
component micelle, �l can be defined as follows:

�l ¼
XN

i¼1

yil
ðmicÞ
i ð6:28Þ

where yi and lðmicÞ
i are the molar fractions and chemical potentials

of the surfactant molecules from component ‘i’ within the micelles.
The quantities �lðdÞ, �lðcÞ and �lðsÞ in Eq. (6.4) can be defined as
follows:

�lðdÞ � �lðadÞ; �lðcÞ � �lðacÞ; �lðsÞ � �lðasÞ ð6:29Þ

where the areas per molecule in the discoidal, cylindrical and
spherical parts of a micelle, ad, ac and as, are given by Eqs. (4.10)
and (4.14).

At a given composition of the micelles, the dependence
�l ¼ �lðaÞ is expected to have a minimum [42], as sketched in
Fig. 4. At smaller a, the intermolecular repulsion prevails, whereas
at larger a, the increased contact area between the micelle hydro-
phobic core with the surrounding water gives rise to an effective
attraction.

At this point, we have to note that the fits of experimental data
for �nM vs. X for disclike micelles with the general model from Sec-
tions 6.1–6.4 give values of the parameter p ¼ ð�lðcÞ � �lðdÞÞ=ðkTÞ,
which are positive, but close to zero (see Sections 8 and 9). In view
of Eq. (6.29), this implies �lðacÞ � �lðadÞ. However, ac is considerably
greater than ad, for example ac = 2ad; see Eq. (4.10). In such a case,
the relation �lðacÞ � �lðadÞ can be fulfilled only if ac and ad are lo-
cated on the two sides of the minimum of the function �lðaÞ, as
sketched in Fig. 4. The three possible cases, (i) �lðcÞ < �lðdÞ, i.e.
p < 0 (Fig. 4a); (ii) �lðcÞ ¼ �lðdÞ; i.e. p = 0 (Fig. 4b), and (iii) �lðcÞ > �lðdÞ;
i.e. p > 0 (Fig. 4c), are discussed in Section 6.6 in relation to the free
energy of the micellar solutions.

What concerns the chemical potential of a monomer in the
toroidal periphery of a disclike micelle, �lðtÞ � �lðatÞ, for all configu-
rations in Fig. 4 we have �lðcÞ 6 �lðtÞ 6 �lðsÞ, insofar as ac 6 at 6 as,
see Eq. (4.13) and Fig. 4a. As mentioned above, the estimate of
the derivative in Eq. (6.3) is equivalent to a linear interpolation
of the �lðaÞ dependence in the interval ac 6 a 6 as.

6.6. Gibbs free energy of the micellar solution

It is convenient to scale the expression for the Gibbs free en-
ergy, G =

P
iNili, with the number of water molecules, Nw:

g ¼ lw þ X1l1 þ
X1
n¼ns

Xnln ð6:30Þ

Here, g = G/Nw and lw is the chemical potential of water; for sim-
plicity, we are working with a single-component surfactant. After



Fig. 4. Illustrative plot of the mean free energy �l vs. the mean surface are per
surfactant molecule in the micelle, a, for three different values of the parameter
p ¼ ð�lðcÞ � �lðdÞÞ=ðkTÞ: (a) p < 0; (b) p = 0; (c) p > 0; details in the text.

Fig. 5. Plot of Dg vs. p at a fixed total surfactant concentration, characterized by
X � X1, and at fixed ns and lnK. The regions with Dg < 0 and Dg > 0 correspond to the
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some transformations described in Appendix A.6, Eq. (6.30) ac-
quires the form:

g ¼ elw � kTðX1 þ
X1
n¼ns

XnÞ þ ð�lðjÞ � e kTÞX; j ¼ c;d ð6:31Þ

As usual, the indices ‘c’ and ‘d’ denote cylindrical and disclike
micelles.

Next, let us consider a solution with a given fixed total surfac-
tant molar fraction X. The surfactant will self-assemble into disc-
like or cylindrical micelles depending on the sign of the quantity:

Dg � gðcÞ � gðdÞ ð6:32Þ

For Dg > 0 disclike micelles will form, whereas for Dg < 0 cylin-
drical micelles would appear. In view of the definition of p, Eq.
(6.9), from Eqs. (6.31) and (6.32) we obtain:

Dg
kT
¼ �XðcÞ1 þ XðdÞ1 �

X1
n¼ns

ðXðcÞn � XðdÞn Þ þ ðp� eðcÞ þ eðdÞÞX ð6:33Þ
By additional transformations, described in Appendix A.6, we
derive:

Dg
kT
�
X1
n¼ns

XðdÞn �
X1
n¼ns

XðcÞn þ ðp� eðcÞ þ eðdÞÞðX � XðcÞ1 Þ ð6:34Þ

At a given X, e(d) is calculated by solving Eq. (6.15) numerically for
the respective p value. e(c) is calculated in the same way by setting
p = 0. The sum with XðdÞn is calculated from Eq. (6.20) for the respec-
tive e(d) and p. The sum with XðcÞn is calculated from Eq. (6.20) for the
respective e(c) and p = 0. In the calculations, one should take into ac-
count that K(d) = K(c) exp(pns).

Finally, Dg is calculated from Eq. (6.34).
The fact that XðdÞn

���
p¼0
¼ XðcÞn , see Eq. (6.10), leads to Dg = 0 at

p = 0. To see what is the behavior of Dg in the vicinity of the point
p = 0, we carried out calculations using typical parameter values:
ns = 83, lnK = 35 and XðcÞ1 � CMC ¼ 1:44� 10�6 (see Section 8).
The plot in Fig. 5 is almost linear, which means that the energy
term with p in Eq. (6.34) is predominant, whereas the mixing-en-
tropy terms, expressed by the sums in Eq. (6.34), give a relatively
small contribution.

The results in Fig. 5 show that for p < 0 we have Dg < 0, i.e. the
formation of disclike micelles is energetically unfavorable at nega-
tive p values, at which the surfactant forms cylindrical micelles. In
contrast, at p > 0 we have Dg > 0, and disclike micelles should form.

At p = 0, the free energies of formation of disclike and cylindrical
micelles are identical. Moreover, setting �lðdÞ ¼ �lðcÞ in Eq. (6.6) and
p = 0 in Eq. (6.10), we obtain that in this case the micelle size dis-
tributions with respect to the aggregation number n are identical
for cylindrical and disclike micelles. For this reason, at p = 0 Eqs.
(2.16) and (2.19) give the same �nN and �nM for disclike and cylindri-
cal micelles, and Eqs. (2.18) and (2.21) hold. One could discrimi-
nate between these two different micellar shapes from the
experimental Rg and Rh values (Section 5), and from the measured
viscosity (Section 8.6).
7. Disclike micelles: size limitations and numerical results

7.1. Limitations on the size of disclike micelles

The analysis in Section 6.6 indicates that for p < 0 the formation
of disclike micelles is energetically disadvantageous, so that cylin-
drical micelles are formed in that case. Here, we will consider in
more details the case p > 0, which corresponds to �lðdÞ < �lðcÞ
(Fig. 4c) and to the formation of disclike micelles. At positive p,
we have F(x)|e=0 = �ppsx in Eq. (6.12). Then, the integrals J0, J1
formation of cylindrical and disclike micelles, respectively.



Fig. 6. (a) Plot of Xmax � X1 vs. p calculated from Eq. (7.4); the phase domains with
different micelles are shown. (b) Plot of �nM vs. p calculated from Eqs. (6.27), (7.2),
and (7.3). (c) Plot of the toro-disc diameter with Lmax calculated from Eq. (7.5) using
the �nM values.
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and J2 in Eqs. (6.21), (6.16), and (6.25) are convergent for es ? 0. The
maximal values of the respective integrals, which are attained at
es = 0, are:

J0;max ¼
2

p2 p2
s
þ 1

ps
ð7:1Þ

J1;max ¼
12

p4p4
s
þ 6

p2p3
s
þ 16þ 3p2

3p2p2
s
þ 8

3ps
ð7:2Þ

J2;max ¼
240
p6p6

s
þ 120

p4p5
s
þ 64þ 24p2

p4p4
s
þ 32þ 2p2

p2p3
s
þ 128þ 48p2

9p2p2
s

þ 64
9ps

ð7:3Þ

Setting es ? 0 in Eq. (6.15), we obtain the maximum value of X,
denoted Xmax:

Xmax ¼ X1 þ
1
K

3ns

8

� �2 32
9ns
þ J1;max

� �
ð7:4Þ

where J1,max is given by Eq. (7.2). From a physical viewpoint, this re-
sult means that for ps > 0, disclike micelles can be formed only in a
limited range of surfactant concentrations, viz. X1 < X 6 Xmax. For a
given p (for a given system), at X = Xmax, the micelle mean aggrega-
tion numbers �nN and �nM attain their maximal values, �nN;max and
�nM;max. These values can be obtained by replacing J0, J1 and J2 in
Eqs. (6.23) and (6.27) with their maximal values given by Eqs.
(7.1)–(7.3).

7.2. Numerical results and discussion

To illustrate the dependence of Xmax on p, in Fig. 6a we have
plotted Xmax � X1 vs. p calculated from Eq. (7.4) at typical param-
eter values, ns = 83 and lnK = 35 (see Section 8). Figs. 6b,c show
the corresponding plots of the mass average aggregation number
�nM;max vs. p and of the micelle diameter (Lmax + 2R) vs. p. In partic-
ular, Lmax is estimated as the positive root of the quadratic
equation

p
2

RL2
max þ

p2

2
R2Lmax þ

4
3
pR3 ¼ �v �nM;max ð7:5Þ

The left-hand side of Eq. (7.5) is the volume of the hydrophobic core
of a toro-disc shaped micelle, Vd + Vt; see Eqs. (4.7) and (4.8); R and
�v are, respectively, the mean radius and volume per surfactant tail
in the hydrophobic core of the micelle; see Eq. (4.2). In the calcula-
tions, we used typical values: R = 2.04 nm and �v ¼ 0:425 nm3 (see
Section 8).

The results shown in Fig. 6a are important for the understand-
ing of the specificity of the growth of disclike micelles. Such mi-
celles could exist only in the region confined between the two
axes of the coordinate system and the theoretical curve Xmax � X1

vs. p. In this region, at small p and large X the surfactant can form
a relatively concentrated dispersion of large disclike micelles, so
that eventually nematic or smectic phases from such micelles
could appear [5,14,31]. In the region p < 0 cylindrical micelles are
formed (see above).

At X > Xmax (Fig. 6a) the formation of large lamellae is expected
[1,31]. Indeed, at p > 0 the lower chemical potential of a molecule
in the discoidal part of a micelle, �lðdÞ < �lðcÞ, favors the growth of
lamellar structures. A theoretical analysis based on Ising Hamilto-
nians has also predicted that the size of disclike aggregates should
jump from small to infinite [33,34]. In Fig. 6a, this should happen
when crossing the boundary line Xmax � X1 vs. p.

Fig. 6b shows a plot of �nM;max vs. p at ns = 83. (Note that this plot
is independent of K.) One sees that large disclike aggregates (with
�nM > 10ns) could form only at p < 0.01. At p < 3 � 10�4, �nM could
exceed 106. In contrast, at p > 0.1 we have �nM;max � ns, i.e. the disc-
like micelles are transformed into spherical ones. The limited range
of p values, 0 < p < 0.1, where disclike micelles can form (Fig. 6b)
explains why they represent a rare form of self-assembly as com-
pared to the cylindrical ones.

Fig. 6c shows the corresponding plot of Lmax + 2R vs. p calcu-
lated for typical parameter values denoted in the figure. One sees
that the mean diameter of the disclike micelles could exceed
1 lm at p < 10�4. In contract, at p > 0.1 the disc diameter is �2R,
i.e. the micelles are almost spherical.

Note that for 0 < p < 0.01, the theoretical dependencies in
Figs. 6b,c are practically linear in double log scale. Indeed, from
Eq. (6.27), along with Eqs. (7.2), (7.3), (7.4), (7.5), it follows that
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the leading terms of the series expansions of the respective quan-
tities at p� 1 are:

�nM;max �
160

3p2ns

1
p2 ; Lmax �

320�v
3p3nsR

� �1=2 1
p

;

Xmax � X1 ¼
256

3p4Kn2
s

1
p4 ð7:6Þ

The limitations on the growth of disclike micelles, related to the
existence of maximal values, such as Xmax, �nM;max and Lmax, call for
discussion. These maximal values appear because at p > 0 all inte-
grals in Section 6 are convergent for e ? 0. (In contrast, for p 6 0
all these integrals diverge at e ? 0, which corresponds to the
growth of increasingly large micelles with the rise of surfactant con-
centration.) The convergence of the integrals at p > 0 is due to the
term with p in Eq. (6.10), which takes into account the increment
of the excess peripheral energy of the disclike micelle. Thus, disclike
micelles could appear only at p > 0 (Fig. 5), but the positive p leads
to a rise of the micelle peripheral energy with the increase of the
disc diameter, which in turns limits the micelle growth (Fig. 6).

The upward motion along the vertical dashed line in Fig. 6a cor-
responds to increase of the surfactant molar fraction, X, in a given
system (at a fixed p). With the increase of X, the parameter e de-
creases, until reaching e = 0 at X = Xmax, i.e. at the boundary line
of the region with disclike micelles. A negative value of e would
lead to divergence of all integrals in Section 6, which means that
the considered model is not applicable for e < 0.

Fig. 7 shows the variation of �nM with the rise of surfactant
concentration (characterized by X) for a given system, which
corresponds to a fixed p value. The lower line is identical for
cylindrical micelles and for disclike micelles with p = 0; see the
discussion in the last paragraph of Section 6.6. The mean aggrega-
tion number �nM increases with the rise of both X � X1 and p. At
fixed p, each curve �nM vs. X � X1 has an end-point of coordinates
(Xmax � X1, �nM;max) that can be determined from Figs. 6a,b for the
respective p. The upper dash-dotted line consists of all these
end-points.

The line with p = 0 is described by the dependence
�nM � 2½KðX � X1Þ�1=2 following from Eq. (2.21). In addition, by elim-
inating p between the first and third formula in Eq. (7.6) we obtain:

�nM;max �
10ffiffiffi

3
p ½KðXmax � X1Þ�1=2 ð7:7Þ

Hence, in a double-log scale the dependences of both �nM jp¼0 and
�nM;max on X � X1 are parallel straight lines of slope 1/2; see Fig. 7.
Fig. 7. Plots of the mass average aggregation umber, �nM , vs. X � X1 calculated from
Eqs. (6.15) and (6.27) for different systems corresponding to different fixed p values.
The upper dash-dotted curve, representing the set of the end-points of the �nM

curves, is calculated from Eqs. (6.27), (7.2)–(7.4); see the text for details.
The region with disclike micelles, confined between these to lines,
appears as a relatively narrow band of width characterized by the
ratio �nM;max=�nMjp¼0 � 5=

ffiffiffi
3
p
� 2:89.

8. Test of the model against data for mixed micelles

8.1. Experimental system and results

As mentioned above, in Ref. [14] it was established that the
addition of lauric acid to a mixed micellar solution leads to the
appearance of disclike micelles in a given range of concentrations
of the three surfactants. The investigated solutions contained
11 wt% SDS and 3 wt% cocamidopropyl betaine (CAPB). The con-
centration of lauric acid was varied between 0 and 3.5 wt%.

We carried out experiments with a similar system. The zwitter-
ionic surfactant was CAPB product of Goldschmidt GmbH with
commercial name Tego� Betain F50. By electrolytic conductivity
measurements, it was established that 100 mM CAPB contain
112 mM NaCl as an admixture. The anionic surfactant was sodium
laurylethersulfate with one ethylene-oxide group (SLES-1EO),
product of Stepan Co. This surfactant will be denoted SLES for brev-
ity. The used lauric (dodecanoic) acid (LA), P99.5%, was a product
of Acros Organics. In all experiments the molar ratio CAPB/SLES
was constant, 4:1. The temperature was 25 �C. The micelle growth
in mixed CAPB + SLES solutions in the absence of LA was studied in
Ref. [51].

The viscosity of the micellar solutions was measured by a pro-
grammable viscometer DV-II + Pro (Brookfield, USA). For diluted
micellar solutions, static and dynamic light scattering (SLS and
DLS) experiments were carried out with a Malvern 4700C (Malvern
Instruments, UK) goniometric light scattering system with a solid
state laser (532 nm).

Fig. 8 shows a plot of the measured viscosity of solutions con-
taining 80 mM CAPB and 20 mM SLES vs. the concentration of
added lauric acid. The viscosity exhibits a high and sharp maxi-
mum (peak) between 11 and 15 mM lauric acid. Because the peak
is observed only in the narrow vicinity of a certain fatty acid con-
centration, the phenomenon looks like a resonance rise of
viscosity.

The observed effect (Fig. 8) is stronger than that in Ref. [14],
insofar as the peak in viscosity is higher (598 vs. 175 mPa s) and
is observed at a lower surfactant concentration (100 vs.
480 mM). The main differences between the two experimental sys-
tems are that here the anionic surfactant is SLES, rather than SDS,
and that the molar ratio zwitterionic/anionic surfactant here is
80:20 CAPB/SLES vs. 20:80 CAPB/SDS in Ref. [14].
Fig. 8. Plot of the solution’s viscosity vs. the concentration of lauric acid added to
4:1 CAPB/SLES micellar solutions at a fixed 100 mM (3.51 wt%) total concentration
of CAPB + SLES.



Fig. 9. Oblate spheroid (oblate ellipsoid of revolution) with semi-major axis a and
semi-minor axis b.
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Note that the growth of both rodlike and disclike micelles leads
to a rise of the solution’s viscosity, the minimal being the viscosity
of spherical micelles at the same volume fraction [52,53].

Our goal here is to demonstrate how the developed theoretical
model compares with light-scattering data for disclike micelles.
For this reason, we carried out SLS and DLS experiments with di-
luted micellar solutions of viscosity close to that of water. The dilu-
tion was necessary to avoid interactions between the formed
micelles. (The investigation of the concentrated solutions of high
viscosity will be a subject of a subsequent experimental study.)

The concentrated stock solution (which was subjected to dilu-
tion) contained 80 mM CAPB + 20 mM SLES-1EO + 10 mM lauric
acid. This solution had viscosity g = 57 mPa s corresponding to
the region just before the maximum (with gmax = 598 mPa s) in
Fig. 8. The stock solution was diluted with 110 mM NaCl aqueous
solution (with the same ionic strength as of the stock solution)
and the prepared samples were left to equilibrate for at least
24 h at 25 �C. The obtained experimental values of the hydrody-
namic and gyration radii, Rh and Rg, determined by DLS and SLS,
respectively, at various total CAPB + SLES concentrations, ctot, are
given in Table 1.

8.2. Determining the micelle shape from the light scattering data

The simplest way to establish whether the micelles are disclike
or cylindrical is to analyze the data for Rh and Rg by using the mod-
els of oblate and prolate spheroid, as described below.

For an oblate spheroid (Fig. 9), Rh obeys the following relation-
ship [50]:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2=b2 � 1
q

¼ tan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q
=Rh

� �
ð8:1Þ

where a is the semi-major axis and b is the semi-minor axis.
For b = 2.8 nm (estimated as the length of the CAPB molecule)

and for each experimental Rh, Eq. (8.1) is solved numerically to
determine a. The computations show that only the first root of
Eq. (8.1) (where the tangent’s argument is between 0 and p/2)
has physical meaning. The obtained value of a is used to calculate
Rg from the expression [50]:

Rg ¼
2a2 þ b2

5

 !1=2

ðoblate spheroidÞ ð8:2Þ

The values of Rg calculated in this way from the experimental Rh are
given in the fourth column of Table 1.

In the alternative case of prolate spheroid (prolate ellipsoid of
revolution), Rh obeys the following relationship [50]:

Rh ln
a
b
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=b2 � 1

q� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q
ð8:3Þ

As before, a is the semi-major axis and b is the semi-minor axis, but
this time of the prolate spheroid.
Table 1
Comparison of the experimental Rg with the respective values of Rg calculated from the e

ctot (mM) Experiment Oblate sp

Rh (nm) Rg (nm) Rg (nm)

0.20 51.9 ± 1.6 49.9 50.5
0.25 54.5 ± 1.7 50.2 53.0
0.30 62.2 ± 1.9 52.1 60.7
0.40 67.6 ± 1.1 52.3 66.0
0.50 70.5 ± 2.6 52.3 68.9

a DRg is the error of the calculated Rg corresponding to the experimental error of Rh.
For b = 2.8 nm and for each experimental Rh from Table 1, a is
determined by numerically solving Eq. (8.3), which has a single po-
sitive root. Next, Rg is calculated by substituting the obtained a in
the equation [50]:

Rg ¼
a2 þ 2b2

5

 !1=2

ðprolate spheroidÞ ð8:4Þ

The values of Rg calculated in this way from the experimental Rh are
given in the sixth column of Table 1.

The data in Table 1 show that the experimental values of Rg are
close to the Rg values calculated from the oblate spheroid model,
but they are very different from Rg calculated using the prolate
spheroid model. Consequently, in this experiment we are dealing
with disclike, rater than cylindrical micelles.

8.3. Determination of X1, ns and some geometrical parameters

The total molar fraction of the surfactant monomers of all kinds
can be estimated as X1 � vw � CMC, where vw � 30 � 10�30 m3 is
the volume per water molecule in the solution at room tempera-
ture and CMC is the critical micellization concentration of the
mixed surfactant solution (here, expressed in number of molecules
per m3). For the investigated mixed micelles of CAPB, SLES and lau-
ric acid in molar ratio 80:20:10, the CMC can be estimated from the
formula [54]:

110
CMC

¼ 80
0:088

þ 20
0:1
þ 10

0:04
) CMC ¼ 0:08 mM ð8:5Þ

where 0.088 and 0.1 mM are the CMCs of CAPB and the used SLES,
whereas 0.04 mM is the average solubilization constant of lauric
acid in CAPB and SLES micelles [55].

The mean aggregation number of the spherical micelles, ns, can
be estimated by geometric considerations, using the Tanford for-
mulas for the length, l, and volume, v, of the surfactant hydrocar-
bon tail [42]:
xperimental Rh using the models of oblate and prolate spheroid.

heroid model Prolate spheroid model

DRg
a (nm) Rg (nm) DRg

a (nm)

1.6 122.5 4.7
1.7 130.1 5.0
1.9 153.0 5.7
1.1 169.3 3.4
2.6 178.2 8.0
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l ¼ ð0:154þ 0:1265nCÞ nm ð8:6Þ

v ¼ ð27:4þ 26:9nCÞ � 10�3 nm3 ð8:7Þ

where nC is the number of carbon atoms in a saturated hydrocarbon
chain. Thus we obtain:

l1 ¼ 2:18; l2 ¼ l3 ¼ 1:67 ðnmÞ ð8:8Þ

v1 ¼ 0:458; v2 ¼ 0:350;v3 ¼ 0:323 ðnm3Þ ð8:9Þ

The subscripts 1, 2 and 3 refer to CAPB, SLES and lauric acid.
Then, from Eqs. (4.1) and (4.2) we determine:

R ¼ 2:04 nm; �v ¼ 0:425 nm3; ns ¼ 83 ð8:10Þ

In addition, from Eqs. (4.1) and (4.10) we find:

ad ¼ 0:21; ac ¼ 0:42; as ¼ 0:63 ðnm2Þ ð8:11Þ

For comparison, the headgroup cross-sectional areas of the
investigated three surfactants are

ah;1 ¼ 0:28; ah;2 ¼ 0:43; ah;3 ¼ 0:23 ðnm2Þ ð8:12Þ

For ah,1 and ah,3, see Refs. [56,57]; ah,2 is estimated in the same way
as in Ref. [56] by fit of surface tension isotherm for SLES from Ref.
[58].

The area per molecule in the discoidal part of a micelles, esti-
mated as ad ¼ �v=R ¼ 0:21 nm2 is smaller than the area per head-
group of the lauric acid, ah,3 = 0.23 nm2. For this reason, ad has to
be estimated from Eqs. (4.14) and (4.15) using the parameter val-
ues in Eq. (8.12). The result reads ad = ah = 0.30 nm2. The latter va-
lue is smaller than ac and considerably smaller than as, see Eq.
(8.11).

The hydrodynamic radius of a spherical micelle can be esti-
mated as b = R + 0.76 = 2.8 nm, where dh = 0.76 nm is the length
of the headgroup of the predominant component, CAPB.

8.4. Determination of the mass average aggregation number �nM

The mass average aggregation number can be estimated by
division of the total volume of the micelle hydrophobic core, Vcore,
on the mean volume per hydrocarbon tail, �v:

�nM ¼
Vcore

�v ð8:13Þ

see e.g. Ref. [44]. For determining Vcore, different geometric models
are possible. For example, one can use the model of oblate spheroid
(Fig. 9) and to determine its major semi-axis, a, from the experi-
mental Rh at known b by using Eq. (8.1); see above. Then, the vol-
ume of the oblate spheroid is:

V core ¼
4
3
pða� dhÞ2ðb� dhÞ ðoblate spheroidÞ ð8:14Þ

dh is the average diameter of a surfactant headgroup.
Alternatively, one can model the disclike micelle as a toro-disc

(Fig. 3) and to determine Vcore = Vd + Vt from Eqs. (4.7) and (4.8):

V core ¼
p
2

RL2 þ p2

2
R2Lþ 4

3
pR3ðtoro-discÞ ð8:15Þ

where L = 8(Rh � b)/3, see Eq. (5.5).
Using the data in Table 1, for each Rh we calculated �nM for oblate

spheroid and toro-disc from Eqs. (8.13), (8.14), (8.15). Table 2 con-
tains the obtained �nM values, as well as the semi-major axis of the
oblate spheroid, a, which is compared with the analogous param-
eter, L/2 + b, for the toro-disc. The same value of b = 2.8 nm (the
length of the CAPB molecule) is used for oblate spheroid and
toro-disc. The calculated Vcore for oblate spheroid is systematically
smaller, but not so different from Vcore for toro-disc. The semi-axis
a of the oblate spheroid is markedly longer than L/2 + b. This is
understandable, because at the same maximal thickness b, the
average thickness of the oblate spheroid is smaller than that of
the toro-disc, which is compensated by an increase in the length
of the major semi-axis a to get the same Rh.

8.5. Determination of the parameters p and K

The used procedure for data processing is as follows:

(1) A tentative value is assigned to ps.
(2) For each experimental value of �nM for toro-disc (Table 2), we

calculate es by solving numerically Eq. (6.27).
(3) The obtained es is substituted in Eqs. (6.15), and K(X � X1) is

calculated using also Eqs. (6.17) and (6.18).
(4) The obtained K(X � X1) values, corresponding to different

experimental �nM , are plotted vs. the experimental X � X1;
see Fig. 10a.

(5) The parameter ps is varied until the plot of the calculated
K(X � X1) vs. the experimental X � X1 complies with a linear
regression of zero intercept; see the solid line in Fig. 10a.
This regression determines the physical value of ps, and its
slope gives the physical value of K.

The points in Fig. 10a represent data from the first and last col-
umns of Table 2, recalculated in terms of (X � X1) and K(X � X1) by
using the above procedure. (Note that ctot in Table 2 includes only
CAPB and SLES, but the concentration of lauric acid is also included
in the values of X � X1 plotted along the horizontal axis.) The best
fit, given by the solid line in Fig. 10a, corresponds to ps = 0.001 and
lnK = 35.2. For ns = 83, in view of Eq. (6.6) we calculate
ð�lðsÞ � �lðdÞÞ=ðkTÞ ¼ ðln KÞ=ns ¼ 0:42, which is a reasonable value.
In addition, from Eqs. (6.9) and (6.13) we obtain:

p �
�lðcÞ � �lðdÞ

kT
¼ 8ps

3ns
¼ 3:2� 10�5 ð8:16Þ

In spite of being small, the above value of p is accurately deter-
mined, because small variations in ps produce a significant effect
on the fit, as illustrated in Fig. 10a.

As mentioned above, the physical value of ps corresponds to the
linear regression that has a zero intercept (Fig. 10a). Because the
intercept of this plot is sensitive to X1, the value of X1 (i.e. of the
CMC) is essential for the present procedure of data processing, de-
spite the relation X1� X.

In Fig. 10b, the data for �nM (Table 2, toro-disc) are plotted vs.
(X � X1)1/2. The solid line corresponds to the theoretical fit at
ps = 0.001 from Fig. 10a. The dashed line is a fit of the experimental
points in Fig. 10b with a linear regression of zero intercept in
accordance with the equation �nM � 2½KðX � X1Þ�1=2. The latter
dependence corresponds to ps = 0. Because of the small value of
ps for the theoretical fit, the two lines in Fig. 10b almost coincide.
In particular, the slope of the linear regression yields lnK = 35.3,
which is close to lnK = 35.2 determined from the theoretical fit in
Fig. 10a. In other words, the value of K can be obtained with a good
accuracy by a linear regression fit as in Fig. 10b. However, the value
of ps can be determined only by using the full procedure illustrated
in Fig. 10a.

8.6. Discussion on the predictions of the model

Here, we discuss the predictions of the model regarding the
transition from disclike to cylindrical micelles. At p ? 0 the distri-
bution of the disclike micelles by aggregation number, Eq. (6.10), is
gradually transformed into the respective distribution for cylindri-
cal micelles. In other words, �nM does not exhibit any jump when



Table 2
Geometrical parameters of disclike micelles and their mean aggregation number �nM calculated by using the models of oblate spheroid and toro-disc.

Experiment Oblate spheroid Toro-disc

ctot (mM) Rh (nm) a (nm) Vcore (nm3) �nM Eq. (8.13) L/2 + b (nm) Vcore (nm3) �nM Eq. (8.13)

0.20 51.9 79.8 52,284 123,022 68.3 57,561 135,422
0.25 54.5 83.8 57,713 135,796 71.7 63,666 149,783
0.30 62.2 95.9 75,767 178,275 82.0 83,548 196,558
0.40 67.6 104 89,916 211,568 89.2 99,101 233,148
0.50 70.5 109 98,078 230,773 93.1 108,001 254,087

Fig. 10. (a) Plot of experimental data from Table 2 as K(X � X1) vs. X � X1, where
K(X � X1) is calculated from the experimental �nM using Eqs. (6.15) and (6.27),
whereas X � X1 is determined from ctot. The three sets of data correspond to three ps

values shown in the figure. The lines are fits of the respective data by linear
regression. The best fit is that of zero intercept, which corresponds to ps = 0.001 and
lnK = 35.2. (b) Plot of �nM vs. (X � X1)1/2; the points are data from Table 2 for toro-
disc; the solid line corresponds to the theoretical fit at ps = 0.001; the dashed line is
the fit of the data points by linear regression with zero intercept.

Fig. 11. (a) Plot of the aspect ratio, a, vs. the surfactant concentration characterized
by X � X1, at typical values of the parameters K, R, and v, and for p = 0; ac and ad are
calculated using the sphero-cylinder and toro-disc models, respectively. (b) Plot of
tabulated data from Ref. [59] for the intrinsic viscosity [g] vs. the aspect ratio, a, for
prolate and oblate spheroids. It is illustrated that the transformation of disclike
micelles with ad = 17 into cylindrical ones corresponds to a jump from the point
(17, 12.7) to the point (289, 3954); see Eq. (8.19).
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crossing the border between the disclike and cylindrical micelles in
Fig. 6a. However, at the same �nM the viscosity undergoes a jump,
because of a huge change in the aspect ratio, a, upon a transition
from disclike to cylindrical micelles, or vice versa.

To demonstrate that, let us consider an oblate and a prolate
spheroid of the same volume V (corresponding to the same �nM).
For the oblate spheroid we have:

V ¼ 4
3
p a2b) ad �

a
b
¼ 3V

4pb3

� �1=2

ð8:17Þ

where ad is the aspect ratio for the oblate spheroid that models a
disclike micelle. Likewise, for the prolate spheroid we obtain:

V ¼ 4
3
p ab2 ) ac �

a
b
¼ 3V

4pb3 ð8:18Þ
where ac is the aspect ratio for the prolate spheroid modeling a
cylindrical micelle. The comparison of Eqs. (8.17) and (8.18) shows
that
ac ¼ a2
d ð8:19Þ

In Fig. 11a, we have plotted ac and ad vs. the surfactant concen-
tration characterized by X � X1. The lower line of the plot of �nM vs.
X � X1 in Fig. 7 with p = 0 has been used. The �nM values have been
transformed into L values using the approach from Section 8.4. ac

has been estimated for a sphero-cylinder, whereas ad – for a
toro-disc of the same volume (the same aggregation number).
One sees that ac is between 28 and 160 times greater than ad in
the considered concentration range.



Table 3
Geometrical parameters of disclike micelles from fluorinated C8-TAC and C12-TAC
and their mean aggregation numbers calculated by using the toro-disc model.

ctot (mM) Rh (nm)* Rg (nm)* L (nm) Vcore (nm3) �nM

C8-TAC (CMC = 13.6 mM)a

54.4 23 35 56 6205 14,775
68.0 26 33 64 8028 19,115

109 32 35 80 12,377 29,470

C12-TAC (CMC = 0.25 mM)a

2.25 97 135 252 171,162 283,381
3.00 106 139 276 204,900 339,238
3.75 110 125 287 220,868 365,675

a The values of Rh, Rg, and the CMC are from Ref. [7].

Table 4
Parameters of the disclike micelles from fluorinated C8-TAC and C12-TAC determined
from the experimental �nM vs. X dependence using the theoretical model.

Parameter C8-TAC C12-TAC

ns 16 33
ps 0.015 0.001
lnK 24.1 33.7
p = (l(c) � l(d))/(kT) 2.5 � 10�3 8.1 � 10�5

(l(s) � l(d))/(kT) 1.51 1.02
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In Fig. 11b, we have plotted the dependence of the intrinsic vis-
cosity, [g], on the aspect ratio, a, for low shear rates, as tabulated
by Scheraga [59] for oblate and prolate spheroids. As an example,
it is shown that if disclike micelles of aspect ratio ad = 17 are trans-
formed into cylindrical micelles of aspect ratio ac ¼ a2

d ¼ 289, see
Eq. (8.19), then the intrinsic viscosity [g] would jump from 12.7
to 3954, i.e. 311 times.

In non-diluted micellar solutions, in which the interactions be-
tween the aggregates upon shearing are not negligible, the viscos-
ity can be described by the Krieger–Dougherty formula [53,60]:

g
g0
¼ 1� /

/max

� ��½g�/max

ð8:20Þ

where / is the volume fraction of the micelles considered as solid
particles, whereas /max is the maximum possible value of /, at
which the viscosity g diverges. Note that [g] appears as an exponent
in Eq. (8.20), and its jump upon transitions from disclike to cylindri-
cal micelles must be accompanied by a significant change in the
solution’s viscosity.

For the experimental system 80:20 CAPB/SLES + LA investigated
in the present section, we determined a rather small value,
p = 3.2 � 10�5, for the disclike micelles. In other words, the inves-
tigated system is very close to the border between the domains
with disclike and cylindrical micelles at p = 0 (Fig. 6a). Then, it is
possible the addition of lauric acid to cause a small variation in
�lðcÞ � �lðdÞ that leads to p 6 0 in a certain interval of LA concentra-
tions. In this interval, the disclike micelles would transform into
cylindrical ones, which would cause a high peak in the solution’s
viscosity. This could be one possible explanation of the peak in
Fig. 8, which will be verified in a subsequent experimental study
at high surfactant concentrations and viscosities. In the present
study, we focus on the comparison between theory and experi-
ment (DLS and SLS) in the case of relatively diluted micellar solu-
tions of viscosity close to that of pure water; see Table 1 and
Section 9.
Fig. 12. Plot of data for �nM vs. (X � X1)1/2 for C8-TAC and C12-TAC from Table 3; the
solid lines are the respective theoretical dependences calculated from Eqs. (6.15)
and (6.27) with the parameter values in Table 4.
9. Test of the model against data for disclike micelles from
fluorinated surfactants

We tested the model also against light-scattering data for Rh

and Rg of fluorinated surfactants from Ref. [7]. The surfactants
are N-(1,1-dihydroperfluorooctyl)-N,N,N-trimethylammonium
chloride [C7F15CH2N+(CH3)3Cl�] and N-(1,1-dihydroperfluorodode-
cyl)-N,N,N-trimethyl-ammonium chloride [C11F23CH2N+(CH3)3Cl�].
Hereafter, for brevity they will be denoted as C8-TAC and C12-TAC,
respectively. As demonstrated in Ref. [7], the investigated solutions
of these surfactants contain disclike micelles. From the values of Rh,
we estimated L, Vcore and �nM following the same approach as in
Section 8.3 using the toro-disc model. The results are summarized
in Table 3. Details on the procedure of calculations, including the
estimate of ns, can be found in Appendix A.7.

As seen in Table 3, the disclike micelles from the surfactant with
longer hydrophobic tail, C12-TAC, have significantly greater aggre-
gation numbers, �nM , than the C8-TAC micelles. Further, from the
values of �nM in Table 3, using the procedure illustrated in
Fig. 10a, we determined the values of the parameters ps and K,
which are listed in Table 4.

The values of p in Table 4 are smaller than 0.01 and belong to
the region of large disclike micelles; see Fig. 6b. For C12-TAC, the
values of p and lnK are close to those for the mixed micelles con-
sidered in Section 8, which also have hydrophobic chains with 12
carbon atoms. The relatively large value of l(s) � l(d) = 1.51 kT for
C8-TAC is understandable, because for such a short-tail surfactant
the spherical micelles have a low aggregation number ns with a
large area of contact between water and the hydrophobic zones
among the headgroups, which leads to a rise of l(s).

Fig. 12 shows the data for �nM vs. (X � X1)1/2 for C8-TAC and C12-
TAC from Table 3, as well as the respective theoretical dependences
calculated from Eqs. (6.15) and (6.27) with the parameter values in
Table 4. The theory agrees with the experiment. For C12-TAC the
value of p is small, and for this reason the theoretical curve is close
to a straight line. However, for C8-TAC the theoretical dependence
is markedly curved because of the greater value of p. We recall that
the linear asymptotic dependence �nM � 2½KðX � X1Þ�1=2 holds for
p = 0, and it can be satisfied also for small p values (p < 10�4).

Finally, it is worthwhile noting that the �nM vs. (X � X1)1/2 plot of
SANS data for cesium perfluorooctanoate in Ref. [6] also complies
with a straight line, which means that the disclike micelles de-
tected in this study are characterized with a small value of p, as
discussed above.
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10. Conclusions

Here, expanding the ladder model by Missel et al. [41], we
developed a detailed theoretical model describing the growth of
disclike surfactant micelles. Theoretical expressions are derived
for the concentration dependences of the number and mass aver-
age aggregation numbers of toro-disc shaped micelles, �nN and �nM .
The theory shows that the growth of disclike micelles is governed
by the difference between the standard chemical potentials of a
surfactant molecule in disclike and cylindrical micelles, character-
ized by the parameter p ¼ ð�lðcÞ � �lðdÞÞ=kT . For p < 0, the formation
of disclike micelles is energetically disadvantageous, and the sur-
factant forms cylindrical micelles. In contrast, for p > 0, disclike mi-
celles are formed. However, p > 0 corresponds to positive excess
peripheral energy of the micelles, which increases with the rise
of their diameters. For this reason, disclike micelles can appear in
a restricted concentration range and for small peripheral energies,
0 < p < 0.1.

Because of the small values of the parameter p, the problem for
its determination by analysis of experimental data is rather non-
trivial. The conventional plot of �nM vs. (X � X1)1/2 [6,41,43–45] can-
not be used for this purpose. In Section 8.5, we propose a new
procedure for data analysis, which allows determination of the
two basic parameters of the model, p and K, with a good accuracy
from light-scattering data.

The procedure was applied to interpret data for the concentra-
tion dependence of hydrodynamic radius Rh for disclike micelles.
Three sets of light-scattering data for different surfactants were
processed, using the derived original expressions for Rg and Rh

for toro-disc shaped micelles, Eqs. (5.3) and (5.5). It is remarkable
that in all cases the best fit gives p� 0.1, in agreement with the
theoretical predictions. It is possible to have such small p values
because the dependence of the surfactant chemical potential on
the area per headgroup at the micelle surface exhibits a minimum
[42], so that �lðdÞ and �lðcÞ are situated at almost the same level on
the two sides of this minimum (see Fig. 4). This role of the mini-
mum in the �lðaÞ curve for the transitions between disclike and
cylindrical micelles is established for the first time in the present
study.

The driving force for the growth of disclike micelles is the lower
value of �lðdÞ relative to �lðcÞ, which leads to a gain of free energy
upon the transfer of each surfactant molecule into the central dis-
coidal part of the micelle at p > 0. The positive peripheral energy
of the disclike micelle opposes the micelle growth preventing the
formation of micelles bigger than a given maximal size at a given
p (see Section 7). Moreover, at p > 0 the positive excess peripheral
energy preserves the round shape of the micelles. In contrast, if a
sufficiently large disclike micelle occasionally forms at p < 0, its
peripheral energy would be negative, which would give rise to a
branching instability [61].

In addition, at p ? 0 the model predicts a transition from disc-
like to cylindrical micelles, which occurs at the same size distribu-
tion, and consequently, at the same mean aggregation number, �nM ,
and mean volume. Under such conditions, the micelle aspect ratio
and viscosity undergo a significant jump-wise increase (Sec-
tion 8.6). One of the potential applications of the model is to pro-
vide an explanation of experimentally observed peaks in
viscosity; see e.g. Fig. 8.

In general, the model can be used for analyzing the shape and
size of micelles in various surfactant solutions. In particular, the
indication for the formation of discoidal aggregates only in the spe-
cial case 0 < p < 0.1 shows why disclike micelles are observed much
less frequently than cylindrical ones, as noted in preceding studies
[1,2]. Further extensions of the model are possible for ribbon-like
(tablet-shaped) micelles [39], as well as for mixed disclike aggre-
gates where the central and peripheral parts of the micelles have
different compositions [2,24].
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Appendix A. Supplementary material 

This Appendix contains the mathematical derivations of some equations  

and estimates of some parameters used in the article: 

Disclike vs. cylindrical micelles: generalized model of micelle growth and data 

interpretation 

by S.E. Anachkov, P.A. Kralchevsky, K.D. Danov, G.S. Georgieva,  
and K.P. Ananthapadmanabhan 

 
(The cited references can be found in the reference list of the main article, with the same 

numbers) 
 
 
Appendix A.1. Volume and surface area of a toro-disc shaped micelle  

 Let us consider a toro-disc of thickness 2R, which coincides with the curvature radius 

of the semitoroidal periphery, and with diameter L of the central discoidal part; see Fig. 2 in 

the main article. Let us choose the plane z = 0 of the cylindrical coordinate system, Orz, to 

coincide with the midplane of the toro-disc; r is the radial coordinate. The volume V of the 

toro-disc is a sum of the volume of the disc, Vd, and that of the semitorus, Vt: 

td VVV +=  (A.1) 
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The volume of the semitorus, Vt, is given by the integral: 
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 The surface area A of the toro-disc is a sum of the area of the two disc surfaces, Ad, 

plus the surface area of the semitorus, At: 



 2

td AAA +=  (A.4) 
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The surface area of the semitorus, At, is given by the integral: 
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where zt(r) is the equation of the generatrix of the upper surface of the semitorus: 
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Eqs. (A.3) and (A.6) correspond to Eq. (4.8) in the main text of the article. 

 

Appendix A.2. Radius of gyration of a toro-disc shaped micelle  

 The squared radius of gyration, Rg
2, is the second moment of the mass distribution of a 

given body, scaled with its total mass [48]. For a body of uniform mass density, Rg
2 is given 

by the expression: 

∫=
V

V
V

R d||1 22
g r           (A.7) 

The origin of the position vector r is in the mass center of the body of volume V; dV is the 

volume element. In the considered case of toro-disc (see Fig. 3 in the main article), we have: 
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Taking the last integral, we obtain: 
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Expressing V from Eqs. (A.1)–(A.3), with R replaced by b, we finally derive: 
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The last equation is identical to Eq. (5.3) in the main text of the article. 

 

Appendix A.3. Hydrodynamic radius of a toro-disc shaped micelle  

 In dynamic light scattering, the hydrodynamic radius, Rh, of a particle is determined 
from the experimentally determined average translational diffusion coefficient using the 
Stokes-Einstein formula. For a body of uniform density, Rh can be estimated from the 
expression [24]: 

∫=
V

V
VR

d
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3
21

h r
 (A.8) 

The origin of the position vector r is in the mass center of the body of volume V; dV is the 
volume element. One could verify that for a spherical particle of radius R, Eq. (A.8) yields 
Rh = R. Moreover, for oblate and prolate spheroids the integration in Eq. (A.8) leads to 
Eqs. (8.1) and (8.3) in the main text.  

In the considered case of toro-disc (see Fig. 3 in the main article), we obtain: 
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Hence, Rh can be expressed in the form: 
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The last integral cannot be solved analytically. Asymptotic expansions can be found for small 

and large L/b. Thus, in the case of L/b << 1, the series expansion in Eq. (A.10) yields: 
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22

h
ππ  (A.11) 

In the opposite case of L/b >> 1, the asymptotic expansion in Eq. (A.10) leads to: 
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22

h
ππ  (A.12) 

For L/b→0, Eq. (A.11) yields Rh = b, whereas for b/L→0, Eq. (A.12) reduces to Rh = 3L/8. 

Combining the last two values, we obtain an approximate expression, which turns out to be 

rather accurate for all L/b values: 

LbR
8
3

h +≈  (A.13) 

The accuracy of Eq. (A.13) is illustrated in Fig. A.1, where it is seen that the magnitude of the 

relative error of this approximate equation is smaller than 0.005 for all possible values of L/b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A.1. Relative error of the approximate Eq. (A.13) vs. log10(L/b). 
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Appendix A.4  

Expression for the mean chemical potential of a surfactant molecule in the micelles 

 Insofar as the disclike micelle is modeled as a combination of disc and torus, nμ~  can 

be expressed in the form: 

t
(t)

t
(d) )(~ nnnn μμμ +−=         (A.14) 

Here, n is the total aggregation number; nt is the number of surfactant molecules in the 

toroidal periphery of the micelle; (d)μ  and (t)μ  are mean standard chemical potentials of a 

molecule that belongs to the discoidal and toroidal part of the micelle, respectively. In the 

case of cylindrical micelles, the spherical caps are independent of the micelle length, L, 

whereas for disclike micelles the area per molecule in the toroidal periphery, at, depends on L. 

To take into account the latter dependence, in Eq. (A.14) we expand (t)μ  in series around a = 

as: 
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=  (A.15) 

With the help of Eqs. (4.1), (4.11) and (4.12) from the main article, we obtain: 

RLnaa
2
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2

tst
π

−=−         (A.16) 

Because ac ≤ at ≤ as, the derivative in Eq. (A.15) can be estimated as follows: 
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≈
∂
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=

      (A.17) 

where we have used the fact that as − ac = v /R; see Eq. (4.10) in the main article. The 

multiplication of Eqs. (A.16) and (A.17), leads to: 

v
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a
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)()(
22

)c()s(
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πμμμ
−−=−

∂
∂

=

      (A.18) 

The subtraction of Eqs. (4.1) from Eq. (4.11) in the main article yields: 
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22
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π
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In view of Eqs. (A.19), the substitution of Eq. (A.18) in Eq. (A.15) leads to: 

s
(d))(

s
(c)(d)(d) )(

8
3)(~ nn

R
L s

n μμπμμμμ −+−−≈      (A.20) 

where the two terms with )( st
(s) nn −μ  have cancelled each other. Finally, the subtraction of 

)1(μn  from Eq. (A.20) yields Eq. (6.4) in the main article.  

 

Appendix A.5. Calculation of sums using integrals 

 Our starting point will be the identity: 
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 (A.21) 

where Δn = 1. The Euler-Maclaurin approximate formula reads:  
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 (A.22) 

The above formula is very accurate for every function f(n) that varies slowly in the interval 

[n, n+1] for ns ≤ n < ∞. Note that each term in the right-hand side of Eq. (A.22) represents the 

area of a trapezoid of height Δn. In other words, the integral is replaced with a sum of the 

areas of trapezoids. The combination of Eqs. (A.21) and (A.22) yields: 
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2
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)( s

nnn
nnf

nf
nf  (A.23) 

 To illustrate the validity and precision of Eq. (A.23) for the sums used in the present 

study, let us first consider a simple geometrical progression, like that in the denominator of 

Eq. (2.16) of the main article (case of cylindrical micelles): 

10for      )1()( <<<−= εε nnf  (A.24) 

The exact expression for the sum, and its series expansion read:  
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For comparison, Eq. (A.23) gives the following result: 
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One sees that the first two terms in the expansions (A.25) and (A.26) coincide, and the third 
terms are also very close, because for typical micelles ns = 60 – 80.  

 Another example is the sum that appears in the numerator of Eq. (2.16): 

10for      )1()( <<<−= εε nnnf  (A.27) 

The exact expression for the above sum and its series expansion read:  
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For comparison, Eq. (A.23) gives the following result: 
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 (A.29) 

The comparison of Eqs. (A.28) and (A.29) show that again Eq. (A.23) works very accurately, 
with a minor difference (1/12) in the third term of the expansion in Eq. (A.29). 

 Finally, let us consider a sum that appears in the numerator of Eq. (2.19): 

10for      )1()( 2 <<<−= εε nnnf  (A.30) 

The exact expression for the above sum, and its series expansion read:  
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Eq. (A.23) gives the following result: 
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In this case, Eq. (A.23) gives exactly the first three terms in the series expansion; compare 
Eqs. (A.31) and (A.32). 
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Appendix A.6. Calculation of the free energy of the micellar solution 

 It is convenient to scale the expression for the Gibbs free energy, ∑= i iiNG μ , with 

the number of water molecules, Nw: 

∑
∞

=
++=

s

11w
nn

nnXXg μμμ         (A.33) 

Here, g ≡ G/Nw and μw is the chemical potential of water; for simplicity, we are working with 

a single-component surfactant. Substituting the expressions for the chemical potentials of 

monomers and micelles, and eliminating lnXn with the help of Eq. (2.2) in the main article, we 

bring Eq. (A.33) in the form: 

11w ln~ XXkTXg ++= μμ         (A.34) 

where Eq. (2.9) has been used and the tilde denotes standard chemical potential. Further, 

using the definition X1/XB = exp(−ε), along with Eqs. (3.11) and (6.7) in the main text, we 

obtain: 

dc,,/)~(ln 1
)(

1 =−+−= jkTX j μμε       (A.35) 

As usual, the indices ‘c’ and ‘d’ denote cylindrical and disclike micelles. The chemical 

potential of the water molecules in the micellar solution is: 

)1ln(~

s

1ww ∑
∞

=
−−+=

nn
nXXkTμμ        (A.36) 

Substituting Eqs. (A.35) and (A.36) into Eq. (A.34), we finally get: 

XkTXXkTg j

nn
n )()(~ )(

1w
s

εμμ −++−= ∑
∞

=
     (A.37) 

where the leading term in the expansion of logarithm in Eq. (A.36) has been retained.  

 Now, let us consider a solution with a given fixed total surfactant molar fraction X. 

The surfactant will self-assemble into disclike or cylindrical micelles depending on the sign of 

the quantity: 

(d)(c) ggg −≡Δ          (A.38) 

For Δg > 0 disclike micelles will form, whereas for Δg < 0 cylindrical micelles will appear. In 

view of the definition of p, Eq. (6.9) in the main text, from Eqs. (A.37) and (A.38) we obtain: 
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Using Eq. (6.7)–(6.9) in the main text, we derive:  
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The substitution of Eq. (A.40) into Eq. (A.39) finally yields: 
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Eqs. (A.37) and (A.41) are identical with Eqs. (6.31) and (6.34) in the main text. 

 

Appendix A.7. Estimation of ns, L, Vcore and nM for perfluoroalkanes 

 To estimate the length of the surfactant molecules we calculated the length of both 

perfluoroalkanes (CnF2n+2) and normal alkanes (CnH2n+2) in vacuum using the ChemAxon 

software. Fig. A.2 shows the values calculated for CnF2n+2 versus those for CnH2n+2. One sees 

that there is no significant difference between the lengths of the two types of chains at the 

same number of carbon atoms, nC. Therefore, the Tanford formula for calculating the fully 

extended length of hydrocarbon chains can be used also for fluorocarbon chains. Thus, for the 

two investigated surfactants we obtain:  

TACC8for      nm17.11265.08154.0 −≈×+=l  (A.42) 

TACC12for      nm67.11265.012154.0 −≈×+=l  (A.43) 

The diameter of the surfactant headgroup is δh = 0.69 nm, as estimated by N.C. Christov et al., 

Langmuir 22 (2006) 7528–7542. 

 To obtain an expression for the volume of the surfactant tails, we evaluated the 

molecular volumes of fluorocarbon oils, v, by using the formula 

ρAN
Mv =  (A.44) 

where NA is the Avogadro constant, M is the molar mass, and ρ is the density of 

perfluoroalkane (see Table A.1). 
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Fig. A.2. Comparison of perfluoroalkanes and normal alkanes with respect to their molecular 

length. The full circles correspond to molecules with 6, 8, 10 and 12 carbon atoms. 

The calculated values of v depend linearly on nC; see Fig. A.3. The fit with linear regression 

yields: 

( ) 33
C nm100.468.51 −×+= nv  (A.45) 

 

 

 

 

 

 

 

 

 

 

Fig. A.3. Dependence of CnF2n+2 molecular volumes on the number of carbon atoms, nC. 
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From Eq. (A.45) we obtain: 

TACC8for      nm420.010)8468.51( 33 −=××+= −v  (A.46) 

TACC12for      nm604.010)12468.51( 33 −=××+= −v  (A.47) 

 

Table A.1. Molecular masses, densities and molecular volumes of perfluoroalkanes. 

CnFn+2 M (g/mol) ρ at 25 oC (g/cm3) v (nm3) 

C6F14 338.04 1.669 0.336 

C8F18 438.06 1.765 0.412 

C10F22 538.07 1.770 0.505 

C12F26 638.09 1.730 0.612 
 

 The aggregation number of a spherical micelle, ns, is calculated as follows: 

v
ln

3

s 3
4π

=  (A.48) 

Using the obtained values for the molecular length l in Eqs. (A.42) and (A.43), and for the 

volume v in Eqs. (A.46) and (A.47), we obtain: 

TACC12for      32   and   TACC8for      16 ss −=−= nn  (A.49) 

See Table 4 in the main article. Furthermore, L, Vcore and the mass average aggregation 

number Mn  are estimated from the experimental Rh and from v in Eqs. (A.46) and (A.47), 

using Eqs. (8.13) and (8.15) in the main article with R = l and b = l + δh, where the l values 

are given by Eqs. (A.42) and (A.43); see Table 3 in the main text.  
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