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leads to higher values of the free energy per surfactant molecule in the micelle as compared with the case
of neglected ionic interactions. The results are essential for the correct prediction of the size of wormlike
micelles from ionic surfactants. This study can be extended to mixed micelles of ionic and nonionic sur-
factants for interpretation of the observed synergistic effects.
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ri (m) hard-sphere radii of the bare type i ions
r+, r� (m) hard-sphere radii of bare cations and anions
R0 (m) outer radius of the cell containing a micelle and its EDL
Rel (m) radius of the surface of charges of a micelle
s s = 1 for cylindrical and s = 2 for spherical geometry
S (J K�1) entropy
T (K) thermodynamic temperature
Uel (J) electrostatic energy of the EDL
V (m3) volume
WLM wormlike micelle
X1 total surfactant molar fraction in the solution
z1 valence of surface ionized groups
z2 valence of the counterions
b and bij (m3) parameters of the specific ion-ion interaction
ci activity coefficient of the ionic component i
ci,0 the value of ci at w = 0
cðelÞi contribution of electrostatic interactions to ci
cðhsÞi contribution of hard-sphere interactions to ci
cðspÞi contribution of specific interactions to ci
c+, c� activity coefficients of cations and anions
c± = (c+c�)1/2 mean activity coefficient
C1 (m�2) number of ionizable groups per unit area of micelle

surface
C2 (m�2) number of bound counterions per unit area of micelle

surface
dik the Kronecker delta symbol
e relative dielectric constant of the medium (water)
e0 (F m�1) electric permittivity of vacuum
h = C2/C1 occupancy of the Stern layer; degree of counterion

binding
j (m�1) reciprocal Debye length
kB (m) the Bjerrum length
li (J) chemical potential of the component i
lel
i (J) electrochemical potential of the component i

pel electrostatic surface pressure
qb (C m�3) bulk electric charge density
qs (C m�2) surface electric charge density
w (V) electrostatic potential
ws (V) surface electrostatic potential
W = qw/(kBT) dimensionless electrostatic potential
Ws = qws/(kBT) dimensionless surface electrostatic potential
1. Introduction

The present series of papers is devoted to the development of a
molecular thermodynamic theory of the growth of wormlike
micelles (WLM) that is able to predict their mean aggregation
number in agreement with the experiment. For this goal, in Ref.
[1] we presented a detailed review on the state of the art with
some new results concerning the micelle chain-conformation free
energy and the procedure for comparison theory and experiment.
Insofar as a comprehensive review has been already published
[1], here we will focus mostly on papers that are closely related
to the subject of the present article, viz. molecular-
thermodynamic theory of WLM from ionic surfactants.

In Ref. [1], it was demonstrated that to predict the WLM
mean mass aggregation number, nM, the theory should be able
to calculate the excess free energy per surfactant molecule in
the micelle endcaps (the so-called scission energy) with high
precision, which has to be better that 0.01 kBT – see Section 5
of the present article. This is the main challenge, which stimu-
lated us to construct a theoretical description of enhanced
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precision in the subsequent papers of this series, viz. Refs, [2,3,4]
and the present article.

In Ref. [2], the analytical mean-field theory of chain conforma-
tion free energy of the micellar hydrophobic core was extended to
the case of mixed micelles. It was established that the mixing of
surfactants with different hydrocarbon chainlengths is always
synergistic.

In Ref. [3], a thermodynamic expression for the scission energy
of mixed micelles was derived. The molecular-thermodynamic the-
ory was compared with available experimental data for the aggre-
gation number nM for nonionic surfactant micelles and agreement
theory–experiment was achieved without using any adjustable
parameters.

Here, our goal is to extend the theory to ionic surfactant solu-
tions, which implies calculation of the micelle electrostatic free
energy with enhanced precision, removing approximations used
in previous studies.

Ninham et al. [5,6] developed an elegant theory based on inte-
gration of the relation between surface charge and surface poten-
tial. Analytical formula for micelle electrostatic free energy was
derived at the cost of several approximations [5,6]: (i) Infinite elec-
tric double layer (EDL) around each micelle; (ii) ideal electrolyte
solution (i.e., ionic activity coefficients ci � 1); (iii) Use of approx-
imated evaluation of the free-energy integral and truncated series
expansions to take into account the curvature effect, and (iv)
neglected effect of counterion binding. Nagarajan & Ruckenstein
[7] incorporated this model of micelle electric energy in their the-
ory of micellization.

In subsequent studies, the theory from [5,6] was upgraded to
avoid a part of the used approximations or simplifying assump-
tions. Alargova et al. [8,9] and Srinivasan and Blankschtein [10]
demonstrated that the effect of counterion binding has to be taken
into account in order to achieve agreement between theory and
experiment, especially in the case of multivalent counterions.
Koroleva and Victorov [11] took into account the effect of the finite
size of the ions by using the Boublik � Mansoori � Carnahan �
Starling � Leland (BMCSL) equation for a mixture of hard spheres
of different radii [12–14]. Note, however, that all these studies
are still using some of the simplifying assumptions adopted in Refs.
[5,6].
Fig. 1. Sketch of the used cell model of a micellar solution. The electric double layer
around each micelle (cylindrical or spherical) is closed in a cell of outer radius R0. At
the outer boundary of each cell, both the electric potential and field are assumed to
be zero: w = 0 and E = 0.
Here we develop a different approach to the calculation of
micelle electrostatic free energy, which avoids using all aforemen-
tioned approximations and simplifying assumptions and meets the
requirement for enhanced accuracy needed for the theoretical pre-
diction of WLM growth. In particular, the approximate assumption
that the micelle electrostatic potential decays at infinity is
removed. Instead, the electric field is calculated using an appropri-
ate cell model, which takes into account the mutual spatial con-
finement of the EDLs of the neighboring micelles (Fig. 1). The
model is based on the Poisson equation and the mass balances of
all ionic species in the solution. Similar (but not identical) cell
models have been previously used to quantify the electrostatic
interactions in micellar solutions [15] and colloidal dispersions
[16–18].

Usually, wormlike micelles from ionic surfactants are formed at
high salt concentrations, in the range 0.4 – 4 M [19–25]. For this
reason, the effect of ionic activity coefficients, ci, becomes impor-
tant. In our model, ci varies across the micellar EDL as a function
of the local ionic concentrations. For such detailed model, the
semiempirical approach by Pitzer and other authors [26–31] to
the quantitative description of activity coefficient is inappropriate,
because it has been designed for uniform electrolyte solutions.
Here, theoretical expressions for ci are used, which take into
account (i) electrostatic [32,33]; (ii) hard-sphere [12–14] and (iii)
specific interactions [34] between the ions, and exactly describe
the experimental dependencies of c± = (c+c�)1/2 on the salt concen-
tration for uniform solutions [35]. Furthermore, to describe the
electrostatic potential and the ionic distributions in the EDL, we
combine the Poisson equation with the equation for electrochem-
ical equilibrium (with ci – 1), rather than with the conventional
Boltzmann equation, which presumes ci = 1. In this respect, the
present study is different from the Poisson-Boltzmann (PB) model
used in many preceding studies.

The upgrade of theory with additional effects (and especially,
with ci = ci(r) – 0) demands development of a new approach to
the calculation of micelle free energy. The old one [5,6] would lead
to many times repeated numerical solutions of the electrostatic
boundary-value problem, which makes it practically unusable for
our goal. To overcome this problem, we derived a different (but
equivalent) expression for the micelle free energy, which allows
using one-time numerical solution of the boundary-value problem.
At that, the effect of micelle surface curvature on the EDL is taken
into account exactly (without any truncated series expansions),
and the effect of counterion binding has been described via the
Stern isotherm [36].

The paper is organized as follows. Section 2 describes the
derivation of the new appropriate expression for micelle electro-
static free energy, which is obtained without using the Boltzmann
equation. Section 3 presents the cell model and the way for solving
the arising electrostatic boundary-value problem. The computa-
tional procedure is described in SI Appendix F (SI = Supplementary
Information). Section 4 is devoted to the theoretical model of ionic
activity coefficients and to determining the parameters of this
model from experimental data for uniform electrolyte solutions.
Section 5 presents numerical results and discussion.

The next step is to compare the developed theory with available
sets of experimental data for the mean mass aggregation number
of WLM, nM, vs. the salt concentration and temperature, T, for both
anionic and cationic surfactants [19–25]. This is the subject of the
next part of this series, Ref. [4]. There, the results of the present
paper are utilized to calculate the electrostatic component of
WLM scission energy, which is combined with the other three
free-energy components related to the interfacial tension, head-
group steric repulsion and surfactant chain conformations within
the micelle. Finally, the resulting model is tested against the
experiment.
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Some aspects of the present study, such as the cell model; the
new approach for solving the electrostatic boundary-value prob-
lem, and the developed theoretical description of activity coeffi-
cients could find applications for other colloidal systems with
developed EDLs (not necessary surfactant micelles), such as the
particle interactions in dispersions and porous media in both
quasi-equilibrium [37,38] and electrokinetic [38–40] phenomena.

2. Electrostatic free energy of colloidal dispersions

Here, our goal is to derive an expression for the electrostatic
free energy of colloidal dispersions, including surfactant micelles,
which is convenient for applications in the case of high ionic
strengths, at which the effect of activity coefficients has to be taken
into account. Moreover, this expression exactly describes the effect
of particle (e.g. micelle) surface curvature, without using any trun-
cated series expansions.

2.1. General equations for the EDL around charged colloids

As already mentioned, we will consider each electrically
charged micelle (spherical, cylindrical, discoidal, etc.), to be con-
tained in a cell of outer boundary at which the electric field and
potential are supposed to be equal to zero (Fig. 1). The same
approach is applicable also to the EDL of charged emulsion drops,
gas bubbles or solid beads in colloidal dispersions. In the special
case of diluted dispersions, one could set the outer boundary of
the cell at infinity.

The electrostatic energy, Uel, can be described as the field energy
in the solution, or, alternatively as the energy of the bulk and sur-
face charges in the local potential field [41,42]:

Uel ¼ ee0
2

Z
V
E2dV ¼ 1

2

Z
V
qbwdV þ 1

2

Z
A
qswsdA ð2:1Þ

Here, e is the dielectric constant of solution; e0 is the permittiv-
ity of vacuum; qb and qs are the bulk and surface electric charge
densities; w and ws are the bulk and surface electric potentials; E
= �rw is the vector of electric field; E2 = E�E; dV and dA are volume
and surface elements. The equivalence of the two presentations of
Uel in Eq. (2.1) can be proven by means of the Gauss’s divergence
theorem – see SI Appendix A. For our goal, it is convenient to rep-
resent the expression for Uel in another equivalent form:

Uel ¼
Z
V
ð� e0e

2
E2 þ qbwÞdV þ

Z
A
qswsdA ð2:2Þ

In view of Eq. (2.2), the free energy of the EDL can be expressed
in the form:

FEDL ¼
Z
V
ð� e0eE2

2
þ qbwþ f bÞdV þ

Z
A
qswsdA ð2:3Þ

where fb is the bulk density of the non-electrostatic contribution to
the free energy.

To find an expression for fb, we will use the classical Gibbs
approach and will consider a nonuniform system as composed of
a large number of small domains, such that in each of them the sys-
tem can be treated as uniform; see e.g. Ref. [43]. The Gibbs funda-
mental equation for such domain reads:

dF ¼ �SdT � pdV þ
Xm
i¼1

lidNi ð2:4Þ

Here, F is free energy; T is temperature; p is pressure, V is vol-
ume; li is chemical potential, Ni is number of molecules, and the
summation is over all components, 1 � i � m. Because, the consid-
ered domain is supposed to be uniform, the integration of Eq. (2.4)
over the volume V yields:
F ¼ �pV þ
Xm
i¼1

liNi ð2:5Þ

By definition, fb = F/V and then Eq. (2.5) acquires the form

f b ¼ �pþ
Xm
i¼1

lici ð2:6Þ

where ci = Ni/V are the local concentrations (1 � i � m). Further-
more, by substituting Eq. (2.5) in Eq. (2.4), one derives the known
Gibbs-Duhem equation:

dp ¼ sbdT þ
Xm
i¼1

cidli ð2:7Þ

where sb = S/V is the local density of entropy. Substituting Eqs. (2.6)
in Eq. (2.3), we obtain:

FEDL ¼
Z
V
ð� e0eE2

2
� pþ

Xm
i¼1

cilel
i ÞdV þ

Z
A
qswsdA ð2:8Þ

where we have used the definitions of the bulk charge density and
electrochemical potential:

qb ¼
Xm
i¼1

qici ð2:9Þ

lel
i ¼ li þ qiw ¼ const: ð2:10Þ
and qi is the charge of the respective molecule. The constancy of

lel
i follows from the condition for electrochemical equilibrium

across the EDL [42,43]. Under isothermal conditions (T = const.),
with the help of Eqs. (2.7), (2.9) and (2.10) we obtain:

dp ¼
Xm
i¼1

cidli ¼
Xm
i¼1

cidðli þ qiwÞ �
Xm
i¼1

qicidw ¼ �qbdw ð2:11Þ

where the constancy of the electrochemical potential has been
used. The integration of Eq. (2.11) yields:

p� p0 ¼ �
Zw
0

qbðw
�
Þdw

�
ð2:12Þ

where p0 is the pressure in the region with w = 0 and w
�
is an inte-

gration variable. Using Eq. (2.12), we can present FEDL in Eq. (2.8) as
a sum of mechanical, chemical and electrostatic contributions,
FEDL = Fmech + Fchem + Fel, where

Fmech ¼ �p0V ; Fchem ¼
Xm
i¼1

li;0N
EDL
i ð2:13Þ

Fel ¼
Z
V
½� e0eE2

2
þ
Zw
0

qbðw
�
Þdw

�
�dV þ

Z
A
qswsdA ð2:14Þ

Here, V is the volume of the EDL; li,0 is the chemical potential in
the region withw = 0; in view of Eq. (2.10), li,0 = lel

i , and NEDL
i is the

number of molecules of the respective component in the EDL:

NEDL
i ¼

Z
V
cidV ð2:15Þ

Using Eq. (2.1) and the Poisson equation, ee0r � E ¼ qb, one can
eliminate the term with qsws and bring Eq. (2.14) in another equiv-
alent form (see SI Appendix B):

Fel ¼ ee0
Z
V
½E

2

2
� wr � Eþ

Zw
0

ðr � EÞdw
�
�dV ð2:16Þ
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2.2. Discussion

It is very important to note that Eq. (2.16) was derived without
using any specific expression for the chemical potentials li. This
means that Eq. (2.16) can be used with any expression for the
activity coefficient, ci. Overbeek [42] derived Eq. (2.16) by using
the Boltzmann equation, which means that he was working in
the special case with ci = 1. The electrochemical potential can be
expressed in the following general form:

lel
i ¼ lo

i þ kBTlnðciciÞ þ qiw ð2:17Þ
where lo

i is standard chemical potential. Then, using the uniformity
of the electrochemical potential and setting lel

i = li,0 we obtain
kBTlnðciciÞ þ qiw = kBTlnðci;0ci;0Þ, which is equivalent to

cici ¼ ci;0ci;0exp � qiw
kBT

� �
ð2:18Þ

Here, ci,0 and ci,0 are the concentrations and activity coefficients
in the region with w = 0. The conventional Boltzmann equation
corresponds to ci = ci,0 = 1.

Another frequently used expression for the electrostatic free
energy, derived by Verwey and Overbeek [44], was applied to
micellar systems in the framework of the assumption ci = ci,0 = 1
[5,6]:

Fel ¼
Z
A
ð
Zqs

0

wsdq
�
sÞdA ð2:19Þ

where q
�
s is the surface charge density as an integration variable. Eq.

(2.19) allows one to calculate Fel if a relation between the surface
potential and charge, ws = ws(qs), is available. In view of the way
of its derivation, Eq. (2.19) is applicable to symmetrical systems
(sphere, cylinder, plane), for which the electric field and potential
depend only on the magnitude of position vector, r = | r |: E = E(r),
w = w(r), and consequently, the function E = E(w) is also defined.
Overbeek [42] derived Eq. (2.19) from Eq. (2.16) assuming E = E
(w), but without using the Boltzmann equation (see also SI Appen-
dix C). Insofar as Eq. (2.16) holds in the general case with ci – 1, it
follows that Eq. (2.19) is also applicable with ci – 1 for symmetric
systems, where E = E(w).

In the case with ci – 1 and counterion binding at the charged
surface, the electrostatic boundary-value problem has to be solved
numerically by using iterations (see below). In such a case, the
integration in Eq. (2.19) has to be carried out numerically, calculat-
ing ws = ws(qs) many times, at each step of the numerical integra-
tion. In our case, the application of such computational procedure
would be so heavy and slow that it becomes difficult to use, and
the accumulation of computational errors would be difficult to
assess. For this reason, in Section 2.3 we bring the general expres-
sion for Fel in another equivalent form, which allows one to calcu-
late Fel with one-time numerical solution of the electrostatic
boundary-value problem.

2.3. Fel in terms of the electrostatic surface pressure

Here, we will consider the special case of symmetrical system
(spherical, cylindrical or planar uniformly charged surface), in
which the electric field is directed normal to the charged surface
and depends on the distance to it, E = E(r). In such a case, the con-
tribution of the EDL to the surface pressure can be presented in the
form of a surface excess [45,46]:

pel ¼
ZR0
0

ðPT � p0Þdr ðplaneÞ ð2:20Þ
pel ¼ 1
Rs
el

ZR0
Rel

ðPT � p0Þrsdr ðcylinder; sphereÞ ð2:21Þ

where PT is the tangential (with respect to the surface) component
of the Maxwell electric pressure tensor; the integration is carried
out across the EDL; the surface charges are located at r = 0 for the
planar surface and at r = Rel for the cylindrical and spherical surface;
r = R0 is the outer boundary of the cell, wherew = 0 (see Fig. 1). Here
and hereafter, s = 1 for cylindrical geometry and s = 2 for spherical
geometry.

The general expression for the Maxwell electric pressure tensor
reads [47]:

Pik ¼ ðpþ ee0
2

E2Þdik � ee0EiEk ði; k ¼ 1;2;3Þ ð2:22Þ

where dik is the Kronecker delta symbol (the unit matrix) and Ei is
the i-th component of the electric field E; p is the local hydrostatic
pressure. In the considered case of symmetric system, E is directed
normal to the charged surface, so that PT = p + ee0E2/2. Then,

pel ¼
ZR0
0

ðee0
2

E2 þ p� p0Þdr ðplaneÞ ð2:23Þ

pel ¼ 1
Rs
el

ZR0
Rel

ðee0
2

E2 þ p� p0Þrsdr ðcylinder; sphereÞ ð2:24Þ

In view of Eqs. (2.12), (2.23) and (2.24), for the considered case
of symmetric system Eq. (2.14) can be presented in the form

Fel ¼ Aðqsws � pelÞ ð2:25Þ
where, as usual, A is the surface area and pel is the electrostatic sur-
face pressure given by Eq. (2.23) or (2.24).

From computational viewpoint, it is convenient to eliminate the
term (p � p0) in the expression for pel. For this goal, we will use the
Poisson equation. For cylindrical (s = 1) and spherical (s = 2) geom-
etry, this equation reads:

ee0ðd
2w
dr2

þ s
r
dw
dr

Þ ¼ �qb ð2:26Þ

Let us multiply Eq. (2.26) by dw/dr; integrate from r to R0 and
use Eq. (2.12):

�ee0 E
2

2
þ ee0

ZR0
r

s

r
� E

2d r
� ¼ p0 � p ð2:27Þ

Substituting (p0 � p) from Eqs. (2.27) into (2.24) and integrating
by parts, we obtain (see SI Appendix D):

pel ¼ ee0
sþ 1

ZR0
Rel

½ð r
Rel

Þ
s
þ sRel

r
�E2dr ðcylinder; sphereÞ ð2:28Þ

For planar geometry, for which there is no integral term in Eq.
(2.27), the final formula for pel reads:

pel ¼ ee0
ZR0
0

E2dr ðplaneÞ ð2:29Þ

Note that Eq. (2.28) can be derived directly from a general
expression for the surface tension of a curved interface obtained
in Ref. [46] – see SI Appendix E.

In summary, the electrostatic free energy of the diffuse EDL per
unit surface area, Fel, is given by Eq. (2.25), where the electrostatic
surface pressure pel is given by Eq. (2.28) or (2.29). The solution of
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the electrostatic boundary-value problem (see Section 3) yields qs,
ws, and E(r), and then from Eqs. (2.28) or (2.29) one determines pel;
see SI Appendix F. This procedure for calculation of Fel can be used
with any expression for the activity coefficient, ci. The curvature
effects are taken into account exactly, without using any truncated
series expansions as in Ref. [5].

2.4. Surface electrostatic free energy density

Let us consider monovalent surface ionized groups and mono-
valent counterions. (In the case of surfactant micelles, this means
that both surfactant and salt are 1:1 electrolytes and the counteri-
ons due to the surfactant and salt are the same.) The valence of the
surface ionized groups will be denoted z1, so that the valence of the
counterions is z2 = � z1; z1 = ±1.

The field of the surface ion creates a potential well, i.e. adsorp-
tion site, where the counterions might bind. (In addition, there
could be also binding energy of non-electrostatic origin.) The
bound counterions form the Stern layer. Let C1 and C2 be the sur-
face densities of ionized surface groups and bound counterions,
respectively. Then, qs = z1eC1 + z2eC2 (with e being the elementary
charge) and using Eq. (2.25) we obtain:

f
�
el ¼

Fel

N1
¼ 1
C1

½ðz1eC1 þ z2eC2Þws � pel�

¼ ð1� hÞz1ews � pel=C1 ð2:30Þ

where f
�
el is electric free energy per unit surface charge (in the case

of ionic surfactant micelle – per surfactant molecule in the micelle);
N1 is the number of surface ionized groups and N1/A = C1 is their
density; h = C2/C1 is the occupancy of the Stern layer.

Note that f
�
el takes into account only the contribution of the dif-

fuse part of the EDL. The total electrostatic free energy per surface
charge (per surfactant molecule in the micelle) contains contribu-
tions from both the diffuse EDL and the Stern layer:

f el ¼ f
�
el þ hz1ews þ kBTlnð1� hÞ

¼ z1ews � pel=C1 þ kBTlnð1� hÞ ð2:31Þ
where the last term accounts for the configurational free energy of
the counterions in the Stern layer (Indeed, for h = 0, i.e., no Stern

layer, the two terms added to f
�
el vanish.) The derivation of Eq.

(2.31), which is based on extensive thermodynamic considerations,
can be found in the next part of this series, Ref. [4].

3. Cell model and solution of the electrostatic boundary-value
problem

The model developed in Refs. [5,6] and applied by other authors
[7–11] assume that the electric field of each separate micelle
decays at infinity, where the existence of uniform and electroneu-
tral solution is assumed. This model is appropriate for diluted
micellar solutions, near the CMC, where the distance between
the micelles is significantly greater than the Debye length. How-
ever, in more concentrated surfactant solutions, the electric double
layers around the micelles overlap and the solution around a given
micelle becomes nonuniform and locally non-electroneutral. (The
non-uniformity is related to the fact that the micelles are macro-
ions – particles with hydrocarbon core.) In such a case, the ade-
quate physical model is the cell model [15]. In this model, the
electrostatic boundary-value problem is solved for a cell that con-
tains the micelle (or another charged colloidal particle) and its
counterion atmosphere; see Fig. 1. In the case of spherocylindrical
micelle, cylindrical and spherical cells have been used, respec-
tively, for the cylindrical part of the micelle and its endcaps. The
outer cell radius, R0, which is different for the cylinder and the end-
caps, is determined in the course of the solution of the electrostatic
boundary-value problem, as explained below. The procedure is
applicable also to charged spherical micelles.

We will consider ionic surfactant and salt, which are 1:1 elec-
trolytes. It is assumed that the counterions due to surfactant and
electrolyte are the same (e.g. Na+ ions for SDS and NaCl). In such
a case, the bulk charge density, qb, and the dimensionless surface
potential, W, can be presented in the form:

qb ¼ qðc1 � c2 þ c3Þ and W � qw
kBT

> 0 ð3:1Þ

As before, q is the electric charge of the surfactant ion (q = +e for
cationic surfactant and q = � e for anionic one); c1, c2 and c3 are,
respectively, the local bulk concentrations of surfactant ions, coun-
terions and coions due to the added salt.

The input parameters are the total concentrations of surfactant
and salt, C1 and C3, which have been dissolved by the experimen-
talist to prepare the solution. The total concentration of counteri-
ons is C2 = C1 + C3. Other input parameters are the radius Rel of
the surface, where the surface charges are located; the number of
surfactant ionized headgroups per unit area of micelle surface,
C1, and the concentration of surfactant ions c1,0 in the region with
w = 0. (The equilibrium values of Rel, C1 and c1,0 are determined
when the total free energy is minimized to find the equilibrium
state of the micelle [4].)

In view of Eq. (3.1), we can represent Eq. (2.26) in the form:

1
rs

@

@r
ðrs @W

@r
Þ ¼ 4pkBðc2 � c1 � c3Þ ð3:2Þ

where s = 1 for cylinder; s = 2 for sphere, and kB is the Bjerrum
length:

kB ¼ e2

4pe0ekBT
ð3:3Þ

Insofar as Eq. (3.2) is a second order differential equation, its
general solution depends on two integration constants, A1 and A2:

W ¼ Wðr;A1;A2Þ ð3:4Þ
The following relations hold at the outer border of the cell:

@W
@r

¼ 0 and W ¼ 0 for r ¼ R0 ð3:5a;bÞ

The first relation states that W has a local minimum at the bor-
der between two micelles; the second relation, W(R0) = 0, is based
on the fact that the electric potential is defined up to an additive
constant, which is set zero at the outer cell border. In addition, at
the surface of micelle charges (of radius Rel) the following two rela-
tions take place:

Ws ¼ Wjr¼Rel
;

@W
@r

����
r¼Rel

¼ �4pkBðC1 � C2Þ ð3:6a;bÞ

The first relation is the definition of the dimensionless surface
potential Ws. The second relation is the dimensionless form of the
standard boundary condition relating the normal derivative of
potential W with the surface charge density, which is proportional
to C1 – C2. The counterion adsorption, C2, is related to the subsur-
face activity of counterions, a2s, by the Stern adsorption isotherm:

C2

C1 � C2
¼ KSta2s ¼ KStc2;0c2;0expðWsÞ ð3:7Þ

Here, c2,0 is the counterion concentration at the outer cell
boundary (r = R0); c2,0 is the respective activity coefficient; KSt is
the Stern constant, which can be determined from fits of surface
tension isotherms or data for micelle aggregation number. The
activity coefficient c2,0 is calculated as explained in Section 4.
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At equilibrium, the electrochemical potentials are uniform
throughout the EDL. In view of Eq. (2.18) and (3.1), this leads to
a relation between the ionic concentrations in the EDL, ci = ci(r),
with their values at the outer cell border, ci,0:

lnðciciÞ � ð�1ÞiW ¼ lnðci;0ci;0Þ ði ¼ 1; 2; 3Þ ð3:8a;b; cÞ

where ci = ci(c1,c2,c3), i = 1, 2, 3, are local values of the activity
coefficients in the EDL, which are calculated as described in Sec-
tion 4. Correspondingly, ci,0 � ci(c1,0,c2,0,c3,0), i = 1, 2, 3. As before,
the subscripts 1, 2 and 3 number quantities, which are related,
respectively, to surfactant ions, counterions and coions due to
added salt. The subscript 0 denotes the values of the variables at
the outer cell boundary, where r = R0.

In the limiting case of diluted solutions, ci = ci,0 = 1, Eqs. (3.8a,b,
c) are reduced to the Boltzmann equations relating ci withW. How-
ever, because the wormlike micelles from ionic surfactants grow in
relatively concentrated electrolyte solutions, in general, we have to
work with ci – 1 and ci,0 – 1

Finally, to close the system of equations, we have to consider
also the mass balances of surfactant and salt. The mass balance
equations for surfactant ions, counterions and coions due to added
salt read:

C1 ¼ ðsþ 1ÞC1

Rel
ðRel

R0
Þ
ðsþ1Þ

þ sþ 1
Rsþ1
0

ZR0
Rel

c1rsdr ð3:9Þ

C2 ¼ ðsþ 1ÞC2

Rel
ðRel

R0
Þ
ðsþ1Þ

þ sþ 1
Rsþ1
0

ZR0
Rel

c2rsdr ð3:10Þ

C3 ¼ sþ 1
Rsþ1
0

ZR0
Rel

c3rsdr ð3:11Þ

As usual, s = 1 for cylinder; s = 2 for sphere. The first terms in
Eqs. (3.9) and (3.10) take into account contributions, respectively,
from surfactant ions incorporated in the micelles and of counteri-
ons bound in the micelle Stern layer. The integral terms in the
above three equations take into account contributions from the dif-
fuse part of the EDL, which is located in the domain Rel � r � R0. In
Eq. (3.11), there is no ‘‘adsorption” term because binding of coions
to the (like charged) surfactant headgroups is not expected.

In the case of spherocylindrical (wormlike) micelles, these mass
balances have to be formulated for the cylindrical parts of the
micelles (s = 1), insofar as we consider long micelles, for which
the contribution of the endcaps to the total mass balance is
negligible.

Note that Eqs. (3.9), (3.10) and (3.11) are not independent.
Indeed, if these equations are substituted in the electroneutrality
condition C2 � C1 � C3 = 0, and c2 � c1 � c3 is substituted from
the Poisson equation, Eq. (3.2), one obtains Eq. (3.6b). Hence, only
two among Eqs. (3.9), (3.10) and (3.11) are independent.

In the case of spherocylindrical micelles, the formulation of the
electrostatic boundary-value problem is different for the cylindri-
cal part and for the endcaps, as follows.

(A) Cylindrical part (s = 1). At given C1, C3, Rel, C1 and c1,0, Eqs.
(3.4), (3.5a,b), (3.6a,b), (3.7), (3.8a,b,c), (3.10), and (3.11) form a
system of 11 equations for determining the following 11
unknowns: W, Ws, A1, A2, C2, R0, c1, c2, c3, c2,0, and c3,0. The algo-
rithm for solving this problem can be found in SI Appendix F. This
procedure is applicable also to charged spherical micelles (s = 2).

(B) Endcaps (s = 2). The concentrations at the outer border of the
cell, c2,0 and c3,0, have been already determined from the solution
of the problem for the cylindrical parts of the micelles (see above).
In such a case, the input parameters are C1, C3, Rel, C1, c1,0, c2,0 and
c3,0. Then, Eqs. (3.4), (3.5a,b), (3.6a,b), (3.7), (3.8a,b,c) form a system
of 9 equations for determining of the following 9 unknowns: W,
Ws, A1, A2, C2, R0, c1, c2, and c3. The algorithm for solving this prob-
lem can be found in SI Appendix F.

(C) Spherical micelles and CMC. The cell model is applicable also
to describe the micellar properties at the critical micellization con-
centration (CMC), at which the micelles are supposed to be spher-
ical. At the CMC the concentration of micelles is low, so that we can
set R0?1. Then, instead of Eq. (3.5a,b), the following boundary
condition takes place:

W ! 0 for r ! 1 ð3:12Þ
The input parameters are c1,0, c2,0, c3,0, C1, Rel, kB and KSt. Eqs.

(3.4), (3.6a,b), (3.7), (3.8a,b,c) and (3.12) form a system of 8 equa-
tions for determining of the following 8 unknowns: W, Ws, A1, A2,
C2, c1, c2, and c3. The algorithm for solving this problem can be
found in Ref. [4].

The solution of the electrostatic boundary-value problem for
spherical micelles near the CMC has at least two applications. First,
at given (experimental) CMC = c1,0 without added salt (c3,0 = 0) the
micellization energy Dlo

mic is determined. Second, at known Dlo
mic,

the dependence of the CMC on the concentration of added salt can
be predicted. For details, see Ref. [4], Appendixes C and F therein.

4. Theoretical expressions for the activity coefficients of the
ions

4.1. Theoretical model

Wormlike micelles from ionic surfactants are usually formed at
high concentrations of added salt, which can be higher than 1 M. In
addition, near the charged micelle surface the concentration of
counterions can be considerably greater than their mean bulk con-
centration. Under such conditions, the effect of interactions
between the ions in the diffuse EDL and in the Stern layer must
be taken into account. For this goal, the activity coefficients ci,
which enter Eqs. (3.7) and (3.8), have to be calculated. Here, we
work with individual activity coefficients for each kind of ions,
which depend on the position in the EDL: ci = ci(r).

At high concentrations, the distances between the ions are com-
parable with the ionic diameters. For this reason, the effect of the
finite ionic size has to be taken into account. Insofar as different
ions have different radii, the best way to quantify this effect is to
use the theoretical expression for the activity coefficient of a mix-
ture of hard spheres of different radii originating from the Boublik–
Mansoori–Carnahan–Starling–Leland (BMCSL) equation of state
[12,13]. In addition to the hard-sphere interactions, we have to
take into account (i) the electrostatic interactions and (ii) the con-
tribution of any other interactions, which will be termed ‘‘specific”
interactions.

In the expression for the electrochemical potential, Eq. (2.17),
the effects of the aforementioned interactions are incorporated in
the term kBTlnci. Correspondingly, this term can be presented as
a sum of three contributions:

kBTlnci ¼ lðelÞ
i þ lðhsÞ

i þ lðspÞ
i ði ¼ 1; 2; 3Þ ð4:1Þ

Here, lðelÞ
i takes into account the electrostatic (Debye-Hückel

type) interaction between the ions; lðhsÞ
i accounts for the hard-

sphere interactions, and finally, lðspÞ
i expresses the contribution

of any other ‘‘specific” interactions. Then, the activity coefficient
can be presented in the form:

ci ¼ cðelÞi cðhsÞi cðspÞi ði ¼ 1; 2; 3Þ ð4:2Þ
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where the three multipliers correspond to the three additives in

Eq. (4.1), e.g. lðelÞ
i ¼ kBTlncðelÞi ; etc.

As before, we use the convention that the subscripts 1, 2 and 3
denote quantities related, respectively, to the surfactant ions, coun-
terions and coions due to the added salt. In fact, Eqs. (4.1) and (4.2),
as well as Eqs. (4.3) and (4.6) below, are applicable to an arbitrary
number of ionic components, 1 � i � n, not necessarily n = 3.

To calculate cðelÞi , we used the expression [33]:

lncðelÞi ¼ � z2i kB
bi

½jbi � 2
2jbi

þ lnð1þ jbiÞ
ðjbiÞ2

�

�2p
z2i k

2
B

j
X3
j¼1

z2j cj

ðjbjÞ2
2þjbj

1þjbj
� 2
jbj

lnð1þjbjÞ
� �

ði¼1; 2; 3Þ ð4:3Þ

where bi is the radius of the respective ion (close to its hydrated
radius), zi is its valence, and j is the Debye parameter:

j2 ¼ 4pkB
X3
i¼1

z2i ci ð4:4Þ

Note that in Eqs. (4.3) and (4.4), ci = ci(r) are the local ionic con-

centrations in the EDL. Consequently, j = j(r) and cðelÞi ¼ cðelÞi ðrÞ
also vary across the EDL. In other words, Eq. (4.3) generalizes the
Debye-Hückel expression to the case of non-uniform solutions
(like the EDL). If the ionic radii are equal, b1 = b2 = . . . = bn = b,
Eq. (4.3) reduces to the simpler formula [33]:

lncðelÞi ¼ � z2i jkB
2ð1þ jbÞ ð4:5Þ

For a uniform solution, Eq. (4.5) coincides with the Debye-
Hückel formula for the activity coefficient [32]. Eq. (4.5) can be

used also in a non-uniform EDL with j = j(r) and cðelÞi ¼ cðelÞi ðrÞ.
The finite ionic size can have a significant effect on the proper-

ties of the EDL, especially in the case of higher ionic strengths [48].

Here, to calculate cðhsÞi we will use the expression for the activity
coefficient of a hard-sphere fluid composed of several components
of different radii. This expression, which is derived from the BMCSL
equation of state [12,13], reads [14]:

lncðhsÞi ¼ � 1� 12r2i
n22
n23

þ 16r3i
n32
n33

 !
lnð1� n3Þ

þ 2rið3n2 þ 6rin1 þ 4r2i n0Þ
1� n3

þ12r2i n2
n2 þ 2rin1n3
n3ð1� n3Þ2

� 8r3i n
3
2
n23 � 5n3 þ 2

n23ð1� n3Þ3
ði ¼ 1; 2; 3Þ ð4:6Þ

where

nm � p
6

X3
i¼1

cið2riÞm ðm ¼ 0; 1; 2; 3Þ ð4:7Þ

In Eq. (4.7), the index i numbers the ionic components, whereas
the index m numbers the powers of the hard-sphere diameter,
Table 1
Parameters of the model used to calculate the activity coefficients ci for i = 2 and 3: b and b
shown in the first column; r+ and r� are literature data for the bare ionic radii [50].

salt T (�C) b (Å)

NaCl 60� 4.47
NaCl 25� 3.95
NaBr 25� 4.02
KCl 25� 3.90
KBr 25� 4.28
(2ri). For the ions in an electrolyte solution, in general, the radii
bi in Eq. (4.3) and ri in Eq. (4.6) are different; see Table 1 below.
In both Eq. (4.3) and Eq. (4.7), ci are number (rather than molar)
concentrations.

Despite the high salt and surfactant concentrations in the micel-
lar solutions, the water still has the highest molar fraction, at least
ten times greater than that of the solutes. Then, we can expand in
series the Wilson equation for mixed solutions (see Eq. (1.200) in
Ref. [34], as well as Refs. [26] and [49]) in order to derive (in linear
approximation) an expression for the specific interactions:

lncðspÞi ¼ �2
X3
j¼1

bijcj ði ¼ 1; 2; 3Þ ð4:8Þ

Here, the summation is over the different kinds of ions in the
solution and bij = bji are interaction parameters.

To avoid using many adjustable parameters, we can further
simplify Eq. (4.8). Insofar as the like-charged ions repel each other
and are separated at greater distances, the predominant contribu-

tion to lncðspÞi is expected to come from the oppositely charged ions,
which can come into close contact. In addition, because in solu-
tions with WLM the concentration of free surfactant ions is much
lower than that of the coions due to salt, a reasonable approxima-
tion is b12 � b32 � b. Then, Eq. (4.8) acquires the following simpler
form:

lncðspÞ1 � lncðspÞ3 ¼ �2bc2; lncðspÞ2 � �2bðc1 þ c3Þ ð4:9Þ
4.2. Determination of the parameters of the model

To determine the values of the ionic radii bi and ri, and the inter-
action parameter b for the most frequently used electrolytes, NaCl,
NaBr, KBr and KCl, we fitted literature data for the respective mean
activity coefficient c± = (c2c3)1/2 (only salt; no surfactant) by using
Eqs. (4.3), (4.6) and (4.9). We used experimental data for the
dependence of c± on the ionic strength, I, from the book by Robin-
son and Stokes [35]. For the needs of the present theoretical study,
the molality-scale activity coefficients tabulated in Ref. [35], have
been converted into molarity-scale activity coefficients used here;
see SI Appendix G.

Initially, we varied five adjustable parameters: b2, b3, r2, r3, and
b. The results showed that for the best fit (i) b2 � b3 � b, and (ii) the
values of r2 and r3 are very close to the hard-sphere radii of the
respective bare ions as given in Ref. [50]. The fact that b2 � b3 �
b probably means that the main contribution to cðelÞi comes from
the close contacts in the cationic-anionic pairs, and then 2b can
be interpreted as the distance between the centers of the ions in
such pairs upon contact; see Refs. [32,33].

The above result allowed us to fix r2 and r3 equal to the hard-
sphere radii of the bare ions in Ref. [50], and to fit the data for c±
by using only two adjustable parameters: b and b. In particular,
for b2 = b3 � b Eq. (4.3) reduces to the simpler Eq. (4.5). The fits
of experimental data for NaCl, KCl, NaBr and KBr are shown in
Fig. 2 and the values of b and b determined from the best fits are
given in Table 1, together with the hard-sphere radii of the cations
are determined from the best fits of literature data [35] for c± for alkali metal halides

r+ (Å) r� (Å) b (M�1)

1.009 1.822 0.00466
1.009 1.822 0.00966
1.009 1.983 � 0
1.320 1.822 0.0635
1.320 1.983 0.0789



Fig. 2. Molarity-scale mean activity coefficient, c±, plotted vs. the square root of the
ionic strength, I1/2, for bulk electrolyte solutions. The points are experimental data
from Ref. [35], whereas the solid lines are the best fits with the model in Section 4.
(a) NaCl and KCl at 25 �C; (b) NaBr and KBr at 25 �C, and (c) NaCl at 25 and 60 �C.
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and anions, r+ and r� from Ref. [50]. In general, one sees that b > r+ +
r�. This means that the value of b includes a contribution from the
hydration water. In the framework of 6–7%, the values of b coincide
with the sum of the soft-sphere radii of the respective cation and
anion given in Ref [50].

In this paper, by definition r2 and r3 are the radii of the
counterions and coions in a micellar solution, whereas in Table 1
r+ and r� are radii of cations and anions. Thus, in the case of an
anionic surfactant, e.g. sodium dodecyl sulfate (SDS) + NaCl, we
have r2 = r+ and r3 = r�, where r+ and r� are the values for NaCl
in Table 1.

Fig. 2 shows the fits of experimental data, from which the val-
ues of b and b in Table 1 have been determined as adjustable
parameters. As seen, the model excellently fits the experimental
data. Fig. 2a and b show that c± is markedly lower for the potas-
sium salts as compared to the respective sodium salts. In the
model, this difference is taken into account by the values of the
interaction parameter b, which is significantly greater for the
potassium salts (Table 1). Physically, this means that the specific
interaction of the K+ ions with the halide anions, Cl� and Br�, is sig-
nificantly stronger than that of the Na+ ions.

In addition, Fig. 2c shows c± for SDS at two different tempera-
tures, 25 and 60 �C. One sees that the effect of temperature on c±
is not so significant, but it is not negligible because of the high sen-
sitivity of the scission energy of the wormlike micelles to the ther-
modynamic state of the system; see Section 5. The data in Table 1
show that at 60 �C the parameter b is greater, whereas b is smaller,
than its value at 25 �C. This difference could be explained with the
stronger thermal motion at 60 �C, which leads to greater average
separation between the cations and anions at this higher
temperature.

In Fig. 3a, using KBr as an example, we compare the contribu-
tions of the different interactions in c±. The repulsive hard-sphere

interactions lead to cðhsÞ	 > 1, whereas the attractive cation–anion

electric and specific interactions lead to cðelÞ	 < 1 and cðspÞ	 < 1. The
non-monotonic dependence of c± on I is related to the significant

rise of cðhsÞ	 at higher ionic strengths. A numerical example: at

4 M KBr we have cðelÞ	 ¼ 0:5392, cðhsÞ	 ¼ 2:567, and cðspÞ	 ¼ 0:5319,

so that c	 ¼ cðelÞ	 cðhsÞ	 cðspÞ	 = 0.7362.
In Fig. 3b and c, the activity coefficients of the anions and

cations are compared with the mean activity coefficient, c±, for
NaBr and NaCl. One sees that for I1/2 > 0.5 M1/2 (that is for
I > 0.25 M – the range where WLM grow), there is significant dif-
ference between the activity coefficients of anions and cations. At
that, cBr, cCl > cNa, which is due to the greater size of the anions –
see Table 1. The use of the correct values of the activity coefficients
is a prerequisite for correct prediction of the electrostatic free
energy of the wormlike micelle and its scission energy; see
Section 5.

Note that the theoretical approach based on Eqs. (4.3), (4.6) and
(4.8) allows one to predict the local activities of the various ions
within the EDL, ci = ci(r), whereas the semiempirical approach
developed by Pitzer [26,31] predicts only the mean activity coeffi-
cient of uniform solutions, c±.

To calculate the activity coefficient, c1, of the free surfactant
ions, which appear with a low concentration in the EDL (much
lower than that of salt), a reasonable approximation is that they
can be treated as the coions due to salt (see parameters in Table 1)
with the only difference that the effective radius, r1, of the surfac-
tant ion is greater. In Section 5, numerical examples for SDS + NaCl
are considered, where we have used r1 = 4.65 Å estimated on the
basis of molecular size considerations.

5. Numerical results and discussion

Here, we present illustrative numerical results (obtained by
means of the developed model) for the effect of different factors
on the properties of micelles from ionic surfactants. The studied
properties related to the EDL around the micelle are (i) micelle sur-
face potential, ws; (ii) subsurface concentration of counterions, c2s;
(iii) occupancy of the Stern layer with bound counterions h = C2/C1

– a parameter that is related to the surface charge density; (iv) the
outer radius of the counterion atmosphere in the cell model, R0,
and (v) the electrostatic free energy per molecule in the micelle, fel.



Fig. 3. Plots of molarity-scale mean activity coefficients vs. the square root of the
ionic strength, I1/2, for bulk electrolyte solutions at 25 �C. The points are
experimental data [35]; the curves are calculated with the parameter values
determined from the best fit (Table 1). (a) Comparison of the three components of
c±, viz. c

ðelÞ
	 , cðhsÞ	 and cðspÞ	 , for KBr. (b) Comparison of cNa, cBr and c± for NaBr. (c)

Comparison of cNa, cCl and c± for NaCl.
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Effects of the following factors have been investigated: (i) salt
concentration, C3; (ii) micelle geometry, sphere vs. cylinder, and
(iii) activity coefficients, ci (i = 1, 2, 3).

In order to compare the predictions of the theoretical model
with experimental data for the mean mass aggregation number
of wormlike micelles, nM, we have to calculate the total interaction
free energy per molecule in the micelle, fint, which is a sum of four
components corresponding to different kinds of interactions of a
surfactant molecule in the micelle [1,7]:

f int � f r þ f conf þ f hs þ f el ð5:1Þ

where fr is the interfacial-tension component; fconf is the chain-
conformation component; fhs is the headgroup-steric component,
and finally, fel is the electrostatic component; see Eq. (2.31). Hence,
in addition to the electrostatic free energy, we have to accurately
calculate the other three free-energy components. The values of
Rel for the cylindrical part of the micelle and its endcaps have to
be found by minimization of fint. (In the general case, Rel is greater
for the endcaps as compared to the cylindrical part.) This is done
in [4], where the theory is compared with data for nM and excellent
agreement is achieved.

In the present article, which is focused on the calculation of fel,
our goal is limited to demonstration of the effects of the aforemen-
tioned factors on micellar properties related to the EDL. For this
goal, as an illustrative system we are using the anionic surfactant
sodium dodecyl sulfate (SDS) in the presence of added NaCl. For
this system, the values of the input parameters are estimated in
SI Appendix F6. In these illustrative calculations, it has been
assumed that the radius of micelle hydrophobic core is equal to
the extended dodecyl chain of SDS. Then, one obtains 1/C1 = 88.4
Å2 for spherical micelles; 1/C1 = 49.7 Å2 for cylindrical micelles,
and Rel = 19.8 Å for both spherical and cylindrical micelles. For
the Stern constant, the value KSt = 0.668 M�1 [51] was used. Insofar
as the results are not sensitive to the concentration of free surfac-
tant anions at the outer cell boundary (at r = R0), in the present
illustrative calculations we used a typical value, viz. c1,0 = 5 mM.

Fig. 4 shows the variation of the activity coefficients of the Na+

and Cl� ions across the EDL of a cylindrical SDSmicelle (Rel � r� R0)
at three NaCl concentrations, 0.5, 1.0 and 1.5 M. The ionic activity
coefficients, ci, have been calculated by means of the full theory in

Section 4, i.e., ci ¼ cðelÞi cðhsÞi cðspÞi , where the three components of ci
are calculated from Eqs. (4.5), (4.6) and (4.9) using the parameter
values in Table 1. Greater deviation of cNa and cCl from 1 indicate
stronger effect of ionic interactions.

In general, the behavior of the dependences cNa(r) and cCl(r) in
the nonuniform EDL is rather different from that in a uniform solu-
tion – compare Fig. 3c with Fig. 4. Indeed, across the EDL the con-
centration of the Na+ counterions increases monotonically up to
c2s = 5.6 M in the subsurface layer (Fig. 5b for 1.5 NaCl). However,
both cNa and cCl level off at greater distances from micelle surface
and exhibit a pronounced variation near the charged micelle sur-
face (Fig. 4). The latter variation is important, because it determi-
nes the subsurface activity of the counterions, a2s = c2sc2s, which
(in turns) affects the occupancy of the Stern layer, h = C2/C1 (see
Eq. (3.7)), and the net surface charge of the micelle.

Note also that in Fig. 4 the plateau values of cNa and cCl are (in
general) different from the bulk values in a uniform NaCl solution
of the same concentration. Thus, at 0.5 M NaCl in the uniform solu-
tion we have cNa � cCl � 0.80 (Fig. 3c), whereas in Fig. 4 the respec-
tive plateau values are cNa = 0.67 and cCl = 0.70.

In Fig. 5, we compare theoretical curves calculated for ci – 1 and
ci = 1. Here, ci – 1 means that the activity coefficients of the ions, ci,
are calculated by means of the full theory in Section 4, as in Fig. 4.
For the curves calculated with ci = 1 (shown with dashed lines), the
interactions between the ions in the EDL have been neglected
(ideal solution). All theoretical curves are calculated for the same
surfactant concentration, C1 = 100 mM SDS.

Fig. 5a and b illustrate the effect of NaCl concentration on the
micelle surface electric potential, ws, and on the subsurface con-
centration of Na+ counterions, c2s, for spherical and cylindrical
micelles. As expected, ws decreases, whereas c2s increases with
the rise of salt concentration. The values of both ws and c2s are



Fig. 4. Calculated variations of the activity coefficients of (a) the Na+ counterions
and (b) Cl� coions across the electric double layer (Rel � r � R0) of the cylindrical
micelles in 100 mM SDS solution at three NaCl concentrations, 0.5, 1.0 and 1.5 M;
the right end of each plot corresponds to r = R0.
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higher for the cylindrical micelles as compared to the spherical
ones. This is due to the higher density of charged surfactant head-
groups, C1, for the cylindrical micelles. The effect of activity coeffi-
cient, ci, is much stronger for c2s as compared to ws. For cylindrical
micelles, the subsurface Na+ concentration, c2s, is with up to 1.2 M
higher for ci – 1, in comparison with the case of ci = 1. The highest
computed value is c2s = 5.6 M for cylindrical micelles at 1.5 M NaCl.

To check how important is the effect of counterion binding, we
calculated also the subsurface Na+ concentration assuming C2 = 0
(no counterion binding); the results was c2s = 29 M for cylindrical
micelles at 0.5 M NaCl for the case with ci = 1. This completely non-
physical result confirms the necessity to take into account the
effect of counterion binding (C2 > 0) and (ii) the effect of ionic
interactions (ci – 1).

Fig. 5c and d illustrate the effect of NaCl concentration on the
outer radius of the EDL, R0, and on the occupancy of the Stern layer
with bound Na+ ions, h = C2/C1. One sees that (at fixed surfactant
concentration) R0 has a limited variation with the NaCl concentra-
tion, and levels off at R0 � 6.14 nm for the spherical micelles and R0

� 11.77 nm for the cylindrical ones. This behavior of R0 can be
understood by using the inequality (see SI Appendix F2):

ðsþ 1ÞC1

RelC1
< ðR0

Rel
Þ
sþ1

<
ðsþ 1ÞC1 � Relc1;0

RelðC1 � c1;0Þ ð5:2Þ

which follows from the surfactant mass balance (s = 1 for cylin-
drical and s = 2 for spherical micelles). The relatively small value of
c1,0 leads to a relatively small range of variation of the calculated
R0. (For c1,0 ? 0, the two limits of R0/Rel coincide.) Then, the differ-
ence between the R0 values for sphere and cylinder in Fig. 5c and d
are related to the different values of C1 and s for spherical and
cylindrical micelles. (Here, we work at fixed Rel = 19.8 Å and
c1,0 = 5 mM.) Eq. (5.2) shows also that R0 should decrease with
the rise of the surfactant concentration C1, which is related to the
mutual confinement of the counterion atmospheres of the neigh-
boring micelles in the solution (Fig. 1).

Fig. 5c and d show also that the effect of activity coefficient ci on
the occupancy of the Stern layer h (and on the net surface charge) is
significant: h is with up to 6 – 7% higher in the case ci = 1 as com-
pared to ci – 1. This result might seem surprising in view of the
opposite tendency for c2s in Fig. 5a and b. In fact, h grows with
the subsurface activity, a2s = c2sc2s, and it turns out that the effect
of c2s prevails – see the lower values of cNa = c2 near the micelle
surface (r � Rel = 0) in Fig. 4a. Note also that h essentially increases
(the net surface charge density of the micelle, z1eC1(1 � h), essen-
tially decreases) with the rise of NaCl concentration.

Fig. 6a and b show plots of the electrostatic free energy per
molecule, fel, vs. the NaCl concentration, C3, which are calculated
using the same parameter values as in Fig. 5. As expected, fel
decreases with the rise of C3 because of the screening of the elec-
trostatic interactions by the added electrolyte. At the highest salt
concentrations, fel becomes negative, which is a consequence of
the headgroup-counterion attraction in the Stern layer. The differ-
ence between the cases with ci = 1 and ci – 1 increases with the
salt concentration and reaches ca. 0.3 kBT at 1.5 M NaCl. Is this dif-
ference physically important?

To answer this question, one could use an estimate based on the
relation between the mean mass aggregation number of wormlike
micelles, nM, and the excess interaction free energy (scission
energy) per molecule in the endcaps, fsc [7,52,53]:

nM � 2ðX1 � Xo
1Þ1=2expð

nsf sc
2kBT

Þ ð5:3Þ

where X1 is the total surfactant molar fraction in the solution; Xo
1 is

the surfactant molar fraction at the CMC; ns is the aggregation num-
ber of the two micelle endcaps together. To estimate the error, DnM,
of the aggregation number nM, which is due to an error Dfsc in the
value of fsc, we differentiate Eq. (5.3):

DnM

nM
� nsDf sc

2kBT
ð5:4Þ

With ns = 70 and Dfsc = 0.3 kBT, Eq. (5.4) gives a relative error
DnM/nM = 10.5 (that is 1050%). Using Eq. (5.4) and the same param-
eter values, one estimates that in order to determine the aggrega-
tion number nM with a relative errorDnM/nM = 10%, the error in the
value of fsc should be Dfsc = 0.003 kBT.

In view of the fact that fel is one of the components of fsc, the
above results clearly show why we have to determine fel with
the maximal possible accuracy, and in particular, why the effect
of activity coefficients ci (i = 1, 2, 3) must be taken into account.
The correct prediction of the nM values could seem a very difficult
task, but as demonstrated in the next part of this study [4], this is
achievable, even without using any adjustable parameters.
6. Conclusions

The goal of the present series of papers is to develop a molecular
thermodynamic theory of the formation of wormlike micelles,
which predicts their mean mass aggregation number in agreement
with the experiment and gives quantitative description of the
effect of all factors that influence the micellar growth. To achieve
that, the theory has to calculate the excess free energy per surfac-
tant molecule in the micelle endcaps (known also as scission



Fig. 5. Comparison of theoretical curves calculated taking into account the interactions between the ions in the EDL (ci – 1) with curves calculated neglecting these
interactions (ci = 1) for micelles formed in 100 mM SDS solution with added NaCl. (a,b) Plots of the magnitude of the micelle surface potential, �ws, and the subsurface Na+

concentration, c2s, vs. the NaCl concentration, C3, for (a) spherical and (b) cylindrical micelle. (c,d) Plots of the cell radius, R0, and the occupancy of the Stern layer, h, vs. C3, for
(c) spherical and (d) cylindrical micelle.
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energy) with high accuracy, better than 0.01 kBT (see Section 5),
which is a considerable challenge.

The present article is devoted to the theory of growth of worm-
like micelles from ionic surfactants in the presence of added salt.
Here, we focus on the accurate calculation of micelle electrostatic
free energy, Fel. The approximate assumption that micelle electro-
static potential decays at infinity, which has been used in previous
studies [5–11] is removed. Instead, the electric field is calculated
using a cell model, which takes into account the mutual spatial
confinement of the EDLs of the neighboring micelles based on Pois-
son equation and the integral mass balances of surfactant and salt
(Section 3). The effect of micelle surface curvature on the EDL is
taken into account exactly, without using any truncated series
expansions.

At high salt concentrations (0.4–4 M), at which WLMs form, the
effect of activity coefficients ci of the ions becomes important. In
our study, theoretical expressions for ci are used, which take into
account (i) the electrostatic, (ii) the hard sphere, and (iii) the speci-
fic interactions between the ions, and exactly describe the concen-
tration dependencies of the mean activity coefficients of
electrolytes, c± = (c+c�)1/2. A detailed model has been used, in
which ci varies across the EDL as a function of the local ionic con-
centrations. In addition, the effect of counterion binding has been
taken into account via the Stern isotherm [36]. Such detailed
description of the electrostatic effects with ionic surfactant
micelles has been given in none of the preceding studies [5–11,15].

To take into account all aforementioned effects, we derived an
appropriate expression for Fel in terms of micelle electrostatic sur-
face pressure, pel; see Eq. (2.25). This expression, in combination
with a new original computational procedure (SI Appendix F),
allows one to quickly calculate the micelle electrostatic free energy
with one-time solution of the boundary-value problem. The calcu-
lation of all theoretical curves reported in this paper is achievable
with a standard laptop.

The presented numerical results (Section 5) illustrate the varia-
tion of quantities characterizing the EDL of cylindrical and spheri-
cal micelles with the rise of electrolyte (NaCl) concentration. The
variation of the ionic activity coefficients, ci, across the EDL is also
quantified (Fig. 4). The effect of ci on the free energy per surfactant
molecule in the micelle, fel, leads to higher values of fel (as com-
pared to the case with ci = 1, i.e., with neglected ionic interactions
in the EDL). These results demonstrate that the effect of activity
coefficients is essential for the correct prediction of the size of ionic
wormlike micelles.

The obtained results are applied in the next paper of this series
[4], where the present study on electrostatic effects is comple-
mented with a molecular-thermodynamic study. The full micelle
interaction free energy, Eq. (5.1), is minimized to obtain the equi-
libriummicelle shape; the results are compared with experimental
data for the mean mass aggregation number of wormlike micelles
from both anionic and cationic surfactants, and excellent agree-
ment between theory and experiment is achieved. The perspective
of this study is to extend it to mixed solutions of ionic, zwitterionic
and nonionic surfactants in order to give a theoretical interpreta-
tion of the observed synergistic effects, which are manifested as
peaks of viscosity.



Fig. 6. Comparison of theoretical curves for fel vs. the NaCl concentration calculated
taking into account the interactions between the ions in the EDL (ci – 1) with
curves calculated neglecting these interactions (ci = 1); the micelles are formed in
100 mM SDS solution with added NaCl; fel is the electrostatic free energy per
surfactant molecule in the micelle. (a) Spherical micelle. (b) Cylindrical micelle. The
insets show the variation of fel in a wider range of NaCl concentrations.
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Appendix A. Derivation of the two forms of Eq. (2.1) 

By definition, we have E = −∇ψ. Then, E2 = (∇ψ)2 = (∇ψ)⋅(∇ψ). Differentiating, we get: 

2( ) ( ) ( )ψ ψ ψ ψ ψ ψ∇⋅ ∇ = ∇ ⋅ ∇ + ∇  (A1) 

In addition, the Poisson equation reads: 

2
0 bεε ψ ρ∇ = −  (A2) 

Then, using Eqs (A1) and (A2) we obtain [1]: 

2 2 20 0 0

0
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d ( ) d [ ( ) ]d
2 2 2

1d ( ) d
2 2

1 1d d
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ρψ ρ ψ

= ∇ = ∇⋅ ∇ − ∇

= ⋅ ∇ +

= +

∫ ∫ ∫

∫ ∫

∫ ∫

n  (A3) 

Here, we have used the Gauss divergence theorem and the boundary condition 

0 s at  Aεε ψ ρ⋅∇ = ∈n ρ , (A4) 

 1 



where n is the outer unit normal to the surface A of the volume V, and ρs is the surface charge 

density.  

Appendix B. Derivation of Eq. (2.16) from Eq. (2.14) 

Eq. (2.14) reads: 

2
0

el b s s
0

[ ( )d ]d d
2V A

EF V A
ψee
ρ ψ ψ ρψ= − + +∫ ∫ ∫   (B1) 

where ψ  is the electric potential in the role of integration variable. Using Eq. (A3), we 

obtain: 

2
s s 0 b

2
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d d d

d d
A V V

V V

A E V A

E V V

ρψ ε ε ρ ψ

ε ε ε ε ψ

= −

= − ∇⋅

∫ ∫ ∫
∫ ∫ E

 (B2) 

where at the last step the Poisson equation, Eq. (A2) with E = −∇ψ, has been used. 

Substitution of Eq. (B2) in Eq. (B1), along with b 0ρ εε= ∇ ⋅Ε , yields Eq. (2.16): 

2

el 0
0

[ ( )d ]d
2V

EF V
ψ

ee ψ ψ= − ∇⋅ + ∇ ⋅∫ ∫E E   (B3) 

Appendix C. Derivation of Eq. (2.19) from Eq. (2.16) 

Here, we consider a symmetrical system (sphere, cylinder, plane), for which the electric field 

and potential depend only on the magnitude of position vector, r = | r  |: E = E(r), ψ = ψ(r), 

and consequently, the function E = E(ψ) is also defined. In Eq. (2.16), which is identical to 

Eq. (B3), we substitute the Poisson equation, 0 bεε ρ∇ ⋅ =Ε : 
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 (C1) 

Using again the Poisson equation, b 0ρ εε= ∇ ⋅Ε , we get: 
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 (C2) 

 The “imaginary charging process” [1] is equivalent to replace the integration variable 

ψ  with a new integration variable, ξ = /ψ ψ , which varies between 0 and 1. In terms of the 

new variable, Eq. (C2) acquires the following form: 
1 2
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 (C3) 

The last expression is Eq. (2.19) in the main text; sρ  is the surface charge density in the role 

of integration variable. We have used the boundary condition, Eq. (A4). 

 

Appendix D. Derivation of Eq. (2.28) 

The expression for the surface pressure, Eq. (2.24) in the main text, is: 

0

el

20
el 0

el

1 ( ) d (cylinder, sphere)
2

R
s

s
R

E p p r r
R

ee
p = + −∫  (D1) 

Here and hereafter, s = 1 for cylinder and s = 2 for sphere; r is the radial distance. The Poisson 

equation reads: 
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2

0 b2
d d( )

dd
s
r rr

ψ ψεε r+ = −  (D2) 

Eq. (D2) is multiplied by dψ/dr and integrated from r to R0: 

02
2
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d d
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R

r

E s E r p p
r

ψ

εε εε r ψ− + = − = −∫ ∫ 
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 (D3) 

where Eq. (2.12) in the main text has been used. Next, (p0 − p) from Eq. (D3) is substituted in 

Eq. (D1): 

0 0

el

2 20
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el
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R R
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s
R r

sE E r r r
rR

ee
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 (D4) 

The last term can be integrated by parts: 

0 0 0 0 0 0

el el el el

2 2
2 1 1 2

el( d ) d ( d )d d d
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RR R R R R
s s s s

R r R r R R
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 (D5) 

Finally, the combination of Eqs. (D4) and (D5) yields 

0

el

2el
el 0

el

1[ ( ) ] d
1 1

R
s

R

Rr s E r
s R s r

πee  = +
+ +∫  (D6) 

which is identical with Eq. (2.28) in the main text. 

 

Appendix E.  

Derivation of Eq. (2.28) from the general expression for surface pressure in Ref. [2] 

 In Ref. [2], by mechanical considerations in terms of the general pressure tensor, the 

following expression for the surface pressure has been derived for a spherical interface (s = 2) 

0

el

2el
T N

el

21 ( )[ ( ) ]d
3

R

R

R rP P r
r R

π = − +∫  (E1) 

(we have used the fact that by definition the surface pressure equals the surface tension with 

the inverse sign); PT and PN are the tangential and normal components of the surface pressure 

tensor with respect to the interface; see Eq. (40) in Ref. [2]. 

 The Maxwell electric pressure tensor is given by the expression [3]: 

20
0( ) ( , 1, 2,3)

2ik ik i kP p E E E i kεε
δ εε= + − =  (E2) 

 4 



where δik is the Kronecker delta symbol (the unit matrix) and Ei is the i-th component of the 

electric field E; p is the local hydrostatic pressure. In the considered case of symmetric 

system, E is directed normal to the charged surface, so that  

2 20 0
T N,

2 2
P p E P p Eεε εε

= + = −  (E3) 

Substituting Eq. (E3) in Eq. (E1), we obtain Eq. (D6) for s = 2 (spherical interface). 

Appendix F.  

General computation procedure for the electrostatic boundary-value problem 

F1. Input parameters 

We consider a solution of an ionic surfactant with added salt, where spherical or cylindrical 

(wormlike) micelles are formed. For the endcaps of the cylindrical micelles, which have the 

shape of truncated spheres, the electric field is calculated in spherical geometry (as for full 

spheres), i.e., the edge effects truncated-sphere/cylinder are neglected. This approximation is 

reasonable, as confirmed by the agreement theory/experiment achieved in the next part of this 

study, Ref. [4].  

 The input parameters are as follows:  

C1 – total surfactant concentration;  

C3 – total concentration of salt; the total concentration of counterions is C2 = C1 + C3; 

Rel – radius of the surface, at which the micelle surface charges are located; 

Γ1 – surface density of surfactant charged headgroups at r = Rel; 

c1,0 – concentration of surfactant ions at r = R0, i.e. at the outer boundary of the cell, which 

contains the EDL around the micelle; see Fig. 1 in the main text. 

s =1 for cylindrical micelles; s = 2 for spherical micelles and for the endcaps of WLMs. 

 Note: In the next part of this study [4], a procedure based on free-energy minimization 

is developed, which yields the values of Rel, Γ1 and c1,0 for each specific system. 

 The Stern constant, KSt, could be determined from experimental surface tension 

isotherms, or it could be found by fits of experimental data for the scission energy of 

wormlike micelles, Esc; see Ref. [4]. 

F2. Basic equations 

 To solve numerically the Poisson equation in the cell model, it is convenient to 

introduce the dimensionless coordinate, t, as follows: 

 5 



0 0 el( )r R R R t≡ − −  (F1) 

t = 0 corresponds to the outer cell boundary r = R0, whereas t = 1 corresponds to the micelle 

surface, r = Rel.  

In terms of the new variable t, the Poisson equation, Eq. (3.2), acquires the form: 
2

20 el
B 0 el 2 1 32

0 0 el

( )d d 4 ( ) ( )  for 0 1
( ) dd

s R R R R c c c t
R R R t tt

πl
−Ψ Ψ

− = − − − < <
− −

 (F2) 

The respective form of the boundary condition, Eq. (5.13), reads: 

2
B 0 el 1

1

d 4 ( ) (1 )  for 1
d

R R t
t

πl ΓΨ
= − Γ − =

Γ
 (F3) 

where Γ2/Γ1 is calculated from the Stern isotherm for counterion adsorption, Eq. (3.7): 

2
St 2,0 2,0 1

1 2
exp (1)K c yγΓ

=
Γ −Γ

 (F4) 

where y1(1) = Ψs; see Eq. (F11) below. The mass balances for the surfactant ions and for the 

coions (due to the added salt) acquire the form: 
1

( 1) 1el el 01
1 1

el 0 0 0 el0

( 1) ( ) ( 1)(1 ) ( ) ds s sR R RC s s c t t
R R R R R

+ +Γ
= + + + − −

−∫  (F5) 

1
1el 0

3 3
0 0 el0

( 1)(1 ) ( ) ds sR RC s c t t
R R R

+= + − −
−∫  (F6) 

see Eqs. (3.9) and (3.11). Finally, the expression for the electrostatic component of micellar 

surface pressure reads: 
1

1 20 0 0 0B
el

B 0 el el el el el0

1{ [ ( 1) ] [ ( 1) ] }( ) d
4 ( ) 1 1

sR R R Rk T st t t
R R s R R s R R t

π
πl

− ∂Ψ
= − − + − −

− + + ∂∫  (F7) 

see Eq. (2.28). 

 To determine the interval of variation of the cell radius R0, we will use the inequality 

0 < c1 ≤ c1,0 in combination with the surfactant mass balance, Eq. (F5), in the form  

0

el

( 1)el1
1 11

el 0 0

1( 1) ( ) d
R

s s
s

R

R sC s c r r
R R R

+
+

Γ +
= + + ∫  (F8) 

The resulting inequality reads: 
1

( 1) ( 1)el el el1 1
1 1,0 1

el 0 el 0 0
( 1) ( ) ( 1) ( ) (1 )

s
s s

s
R R Rs C s c

R R R R R

+
+ +

+
Γ Γ

+ < < + + −  (F9) 

Solving this inequality with respect to R0/Rel, we obtain: 
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1 el 1,0101

el 1 el el 1 1,0

( 1)( 1) ( )
( )

s s R cRs
R C R R C c

+ + Γ −+ Γ
< <

−
 (F10) 

F3. Main computational module 

 To calculate all parameters with a self-consistent precision, we define the following 

boundary-value (Cauchy) problem. The input parameters are s, R0/Rel, c1,0, c2,0 and c3,0. 

(i) The functions y1(t) and y2(t) are defined as follows: 

1 2
d( )  ,  ( )
d

y t y t
t
Ψ

≡ Ψ ≡  (F11) 

(ii) The functions y3(t) and y4(t) are related to the mass balances, Eqs. (F5) and (F6): 

0 0
3 1 4 3

0 el 0 el0 0

( ) ( )( ) d  ,  ( ) ( )( ) d
t t

s sR Ry t c t t t y t c t t t
R R R R

≡ − ≡ −
− −∫ ∫       (F12) 

(iii) The function y5(t) is related to the mass balance, Eq. (3.10): 

0
5 2

0 el0

( ) ( )( ) d
t

sRy t c t t t
R R

≡ −
−∫     (F13) 

(iv) The function y6(t) is related to the calculation of pel in Eq. (F7): 

1 20 0 0 0
6
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1 1

t
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− ∂Ψ

≡ − − + − −
+ + ∂∫   



 (F14) 

Hence, the numerical boundary-value problem reads: 

1
2

d
d
y y
t
=  (F15) 

20 el2
2 B 0 el 2 1 3

0 0 el

( )d 4 ( ) ( )
d ( )

s R Ry y R R c c c
t R R R t

πl
−

= + − − −
− −

 (F16) 

3 0
1

0 el

d ( )
d

sy R t c
t R R
= −

−
 (F17) 

04
3

0 el

d ( )
d

sRy t c
t R R
= −

−
 (F18) 

5 0
2

0 el

d ( )
d

sy R t c
t R R
= −

−
 (F19) 

1 26 0 0 0 0
2

el el el el

d 1{ [ ( 1) ] [ ( 1) ] }
d 1 1

sy R R R Rst t y
t s R R s R R

−= − − + − −
+ +

 (F20) 

with simple boundary conditions: 

1 2 3 4 5 6(0) (0) (0) (0) (0) (0) 0y y y y y y= = = = = =  (F21) 
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The boundary-value problem, Eqs. (F11)–(F21), is solved numerically using the Verner sixth-

order coefficients for the Runge-Kutta method [5]. At each step of the numerical integration, 

the values of c1(t), c2(t) and c3(t) are determined by numerical solution of the equations: 

1 1 1,0 1,0 1 2 2 2,0 2,0 1 3 3 3,0 3,0 1ln( ) ln( )  ,  ln( ) ln( )  ,  ln( ) ln( )c c y c c y c c yγ γ γ γ γ γ= − = + = −  (F22a) 

where the activity coefficients, γi = γi(c1,c2,c3), i = 1,2,3, are determined by Eqs. (4.2), (4.5), 

(4.6) and (4.9) with parameter values given in Table 1; see the main text. 

 In the special case γi ≡ 1, Eqs. (F22a) are transformed into explicit expressions for c1(t), 

c2(t) and c3(t) (Boltzmann equations): 

1 1,0 1 2 2,0 1 3 3,0 1exp( ) ,  exp( ) ,  exp( )c c y c c y c c y= − = = −  (F22b) 

F4. Determination of R0 

 In view of Eq. (F11), the combination of Eqs. (F3) and (F4) yields: 

B 0 el 1
2

St 2,0 2,0 1

4 ( )(1)
1 exp( (1))

R Ry
K c y
pl
γ

− Γ
=

+
 (F23) 

At given c2,0 and c3,0, Eq. (F23) is solved numerically (say by the bisection method), to 

determine R0/Rel, which belongs to the interval in Eq. (F10). At each step of the numerical 

procedure, y1(1) and y2(1) are determined by running the module in Section F3 above. 

F5. Determination of c2,0 and c3,0 

 To calculate c2,0 and c3,0, we use the mass balances for the counterions and coions, 

Eqs. (F6) and (3.10), which in view of Eqs. (F12) and (F13) can be presented in the form: 

( 1) 1el el2
1 3 5

el 0 0
( 1) ( ) ( 1)(1 ) (1)s sR RC C s s y

R R R
+ +Γ

+ = + + + −  (F24) 

1el
3 4

0
( 1)(1 ) (1)sRC s y

R
+= + −  (F25) 

The values of c2,0 and c3,0 are obtained by numerical solution of Eqs. (F24) and (F25). This 

can be achieved, for example, by numerical minimization of a merit function, based on 

Eqs. (F24) and (F25). At each steps of the numerical procedure, we run the modules in 

Sections F3 and F4 to determine R0/Rel, y4(1), y5(1), as well as y1(1) which enters the 

expression for Γ2 in Eq. (F4). 

Having determined c2,0 and c3,0, we calculate pel: 
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B
el 6

B 0 el
(1)

4 ( )
k T y
R R

π
πl

=
−

 (F26) 

see Eqs. (F7) and (F14). Finally, using Eqs. (2.31), (F4) and (F26) we calculate the free 

energy per ionic surfactant molecule in the micelle: 

el B 1 2 1 el 1[ (1) ln(1 / )] /f k T y π= + −Γ Γ − Γ  (F27) 

 

F6. Parameter values for the system SDS + NaCl at 25 °C 

 At 25 °C, the length and volume of the dodecyl chain of SDS can be estimated from the 

Tanford formulas [6-8]: 

C C( ) 2.8 1.265( 1)l n n= + −  Å (F28) 

C C( ) 54.3 ( 1)26.9v n n= + −  Å3 (F29) 

where nC is the number of C atoms in the paraffin tail. For nC = 12, we get l = 16.7 Å and 

v = 350 Å3. Because the radius of the sulfate headgroup is ca. 3.1 Å, the radius of the surface 

of charges can be estimated as Rel = 16.7 + 3.1 = 19.8 Å, supposedly, the micelle radius 

corresponds to extended paraffin chain. This value of Rel will be used for the illustrative 

calculations in the present article. (In the next paper of this series [4], the equilibrium values 

of Rel, which are different for the cylindrical part of the WLM and its endcaps, are found by 

free-energy minimization). 

 For spherical micelles, the volume of the micellar core, Vm, and the micelle aggregation 

number, Nagg, are: 

3
3 m

m agg
4 4,
3 3

V lV l N
v v

ππ= = =  (F30) 

Then the density of surfactant headgroups on the surface of the micelle is:  

1
2 3
el

1 2
agg el

4
3

R l
N vR
π

−
 

Γ = =  
 

 (F31) 

With the above parameter values, we obtain 1/Γ1 = 88.4 Å2 or Γ1 = 1.88×10−6 mol/m2.  

 In the case of cylindrical micelle of length L, we have: 
2

2 m
m agg, V l LV l L N

v v
ππ= = =  (F32) 
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1
2

el
1

agg el

2
2

R L l
N vR
π

−
 

Γ = =  
 

 (F33) 

With the above parameter values, we obtain 1/Γ1 = 49.7 Å2 or Γ1 = 3.34×10−6 mol/m2. As 

expected, Γ1 is greater for the cylindrical micelle. 

 For SDS at 25 °C, we used the value of the Stern constant KSt = 0.668 M−1 ; see 

Ref. [9]. 

 

Appendix G. Relation between the molality- and molarity-scale activity coefficients 

 In the literature [10], molality-scale activity coefficients, γm, are given. In the present 

study, molarity-scale activity coefficients, γ±, are used. For 1:1 electrolytes, the ionic 

strength I (mol/l) and γ± are simply related to the molality m (mol/kg) and γm [10]: 

m  and  
1 /1000

m mI
mM I

ρ γ γ±= =
+

 (G1) 

where ρ (g/cm3) is the density of the aqueous solution and M (g/mol) is the molecular weight 

(Table G1). 

Table G1. Molecular weights of alkali metal halides. 

 NaCl NaBr KCl KBr 

M (g/mol) 58.443 102.894 74.551 119.002 

 

 We interpolated the experimental data for the density of NaCl aqueous solutions 

measured at 25 oC and 60 oC (Fig. G1a, symbols) and obtained the following interpolation 

formulae: 

3 2 o0.99705 0.040228 1.3094 10   at  25 Cm mρ −= + − ×  (G2) 

3 2 o0.98320 0.038590 1.1814 10   at  60 Cm mρ −= + − ×  (G3) 

where the density is measured in g/cm3 and the molality in mol/kg. The relative errors of 

predicted values are less than 2×10−4 (see Fig. G1a – the solid lines). 

 The experimental data for the density, ρ (g/cm3), of NaBr aqueous solutions [11] versus 

the molality, m (mol/kg), are interpolated as follows: 
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3 2 o0.99725 0.077531 2.2538 10   at  25 Cm mρ −= + − ×  (G4) 

The relative errors of predicted values for m ≤ 4 mol/kg are less than 1.5×10−4 (see Fig. G1b). 

The respective interpolation formula for the experimental data for KBr solutions [12] reads: 

3 2 o0.99717 0.083812 3.4294 10   at  25 Cm mρ −= + − ×  (G5) 

The relative errors of predicted values for m ≤ 2.5 mol/kg are less than 1.0×10−4 (see 

Fig. G1b). Finally, the data for KCl solutions [13] are interpolated by the formula: 

3 2 o0.99732 0.045428 1.6747 10   at  25 Cm mρ −= + − ×  (G6) 

The relative errors of predicted values for m ≤ 4.5 mol/kg are less than 1.5×10−4 (see 

Fig. C1b). 

  
 

Fig. G1. Dependence of the solution’s density ρ on its molality m: (a) NaCl at 25 oC and 
60 oC; (b) NaBr, KCl, and KBr at 25 oC. The symbols are experimental data; the lines show 
the interpolation curves. 
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