Prof. Slavka S. Tcholakova, Ph.D.

Head of the Laboratory for Active Formulations and Materials

sc@lcpe.uni-sofia.bg
+359 2 8161 698
Interests
  • Formation, stability and rheology of foams and emulsions
  • Mechanism of action of antifoams
  • Surfactant aggregates and mesophases in bulk: structure, rheology, stability
  • Biophysics & colloid science in fat digestion and drug delivery systems
  • Defoamers and antifoams
  • Physicochemical theoretical models for foamability, emulsification; foam rheology
  • Natural based surfactants
Bio

Slavka Tcholakova received M.Sc. in Chemistry (1996), Ph.D. in Physical Chemistry (2004), Assistant Professor (2006), Associate Professor (2009), Professor (2013) in the Faculty of Chemistry and Pharmacy, Sofia University, Bulgaria. She is head of the Department of chemical and pharmaceutical engineering in Sofia University since January 2015. She has been a visiting researcher in the Research Center Paul Pascal, CNRS, Bordeaux, France (1997). Her research interests include: formation and stability of emulsions; rheology of foams and emulsions; protein adsorption in relation to emulsion stability; foam stability in the presence of antifoams; in-vitro models for digestion and bioavailability of hydrophobic molecules and the respective experimental methods. So far, she has published 129 research and review articles, cited over 4600 times in the scientific literature (h-index = 38). She has been leading 55 projects and participating in 30 projects with international companies (BASF, Unilever, Saint Gobain, Wacker, Lubrizol, PepsiCo, Altana, BYK Chemie, Productolysa, etc.). She has been a supervisor and co-supervisor of 14 completed PhD Theses, and 6 other Theses are under preparation. She was the recipient of the award “Best Young Scientist” for 2006 of the Sofia University Foundation “St. Kliment Ohridski”. She bears the National award “Pythagoras” (2018) for high scientific achievements in natural sciences.

Detailed CV
Publications
Most recent publications
D. Cholakova, S. Tcholakova
Current Opinion in Colloid & Interface Science 2024
73
101832
Show Abstract

Sucrose esters (SEs), derived from sucrose and fatty acids, are biodegradable and non-toxic surfactants increasingly favored as substitutes for petrochemically synthesized ones in food, cosmetics, and pharmaceuticals. SEs provide versatile hydrophilic–lipophilic properties, determined by the degree of sucrose esterification ranging from one to eight. The length of the fatty acid residues further influences the phase behavior of SEs, allowing creation of tailored formulations for specific applications. This review provides insights about our current understanding of the SEs phase behavior, their aggregation in aqueous and oily solutions, and its correlation with formulation outcomes. Furthermore, an overview of recent studies investigating SEs in various colloidal systems, including emulsions, foams, oleogels, and others, is provided. Novel concepts are discussed alongside future research directions, emphasizing the SEs potential as sustainable, functional ingredients.

S. Tsibranska, S. Iliev, A. Ivanova, N. Aleksandrov, S. Tcholakova, N. Denkov
Colloids Surf. A 2024
697
134466
Show Abstract

Medium- to long-chain alkanes can form upon cooling intermediate phases between isotropic liquid and solid crystalline, called rotator phases, where relative freedom of the molecules to rotate about their long axis is combined with long range translational order. Rotator phases are well documented experimentally but the mechanism of their formation at the molecular level is still not fully explained. In a previous work, we have shown that molecular dynamics simulations can produce rotator phases upon cooling of hexadecane [S. Iliev et al., J. Col. Int. Sci., 2023, 638, 743]. The aim of the current work is to develop a procedure to identify the specific ordered phase obtained in the simulations. The influence of the cooling rate on the freezing process of hexadecane (bulk and surfactant-interfaced to water) is tested as well. Several parameters are combined to quantify the degree of ordering and the type of phase in the studied systems. These are the tilt angle of the molecules with respect to the crystallite plane, the radial distribution function of the centre of mass of the molecules in the crystallite, the percentage of the gauche torsion angles in the molecules, the angle of the second principal axis of each molecule with respect to the x axis of the coordinate system, and estimates from Voronoi analysis. The results show that the systems form a rotator phase, which transitions gradually towards the thermodynamically most stable triclinic crystal, and the transformation progresses to different extent depending on the system. The influence of the cooling rate is related only to the size of the largest crystallite formed, the other parameters of the freezing process remain unaffected. The work also presents a robust procedure for obtaining and identifying different types of ordered phases in alkane-containing systems with thoroughly tested computational protocol and a comprehensive set of structural analyses. Several key characteristics are advanced, compared to previous research [Ryckaert et al., Mol. Phys., 1989, 67, 957; Wentzel et al., J. Chem. Phys. 2011, 134, 224504], namely, a new methodology is proposed to compute the unit cell deformation parameter and azimuthal angle from MD simulation trajectories of the freezing process in alkane-containing systems. The suggested structural analysis, which is independent of the coordinate system, is applicable to any linear-chain system with polycrystalline structure.

N. Pagureva, D. Cholakova, Z. Mitrinova, M. Hristova, N. Burdzhiev, S. Tcholakova
J. Colloid Interface Sci. 2024
674
209-224
Show Abstract

Hypothesis: Aqueous solutions of long-chain water-soluble sucrose ester surfactants exhibit non-trivial response to temperature variations, revealing a peak in viscosity around 40–50 ◦C. While previous investigations have explored the structures within sucrose stearate systems at various constant temperatures, a comprehensive understanding of the entire temperature dependence and the underlying molecular factors, contributing to this phenomenon is currently missing. Experiments: Temperature dependent properties and supramolecular structures formed in aqueous solutions of commercial sucrose palmitate were examined using SAXS/WAXS, DSC, optical microscopy, rheological measurements, NMR, and cryo-TEM. Findings: The underlying mechanism governing this unusual behavior is revealed and is shown to relate to the mono- to di-esters ratio in the solutions. Solutions primarily containing sucrose monoesters (monoesters molecules ≳ 98% of all surfactant molecules) exhibit behavior typical of nonionic surfactants, with minimal changes with temperature. In contrast, the coexistence of mono- and di-esters results in the formation of discrete monodisperse diester particles and a network of partially fused diester particles at low temperature. As the temperature approaches the diesters’ melting point, wormlike mixed micelles form, causing a viscosity peak. The height of this peak increases significantly with the diester concentration. Further temperature increase leads to fluidization of surfactant tails and formation of branched micelles, while excess diester molecules phase separate into distinct droplets.

S. Tcholakova, B. Petkova
Current Opinion in Colloid & Interface Science 2024
72
101824
Show Abstract

The primary objective of this review is to consolidate our current understanding of the factors controlling the foamability of surfactant solutions under hydrodynamic conditions realized in various laboratory tests. In particular, two regimes of foam generation are considered: at low surfactant concentrations where the coalescence between the bubbles plays a crucial role, and a high surfactant concentration range where the hydrodynamic conditions are much more important for the final outcome of foaming. The review discusses the role of surfactant concentration, dynamic surface coverage, and surface forces acting between film surfaces for the foam generated in the surfactant-poor regime. Additionally, the interplay between the hydrodynamic conditions and the viscosity of the formed foams in the surfactant-rich regime is also discussed.

V. Georgiev, Z. Mitrinova, A. Gers-Barlag, G. Jaunky, N. Denkov, S. Tcholakova
Colloids Surf. A 2024
681
132838
Show Abstract

The effects of antifoam and surfactant concentration on the foamability of solutions of an anionic (SLES) and nonionic (Brij 35) surfactants and a series of polyvinyl alcohols with 88% and 98% degree of hydrolysis and molecular masses between 31 and 205 kDa, were studied. Three methods which differ in the way of air incorporation were used for foaming – Bartsch test, shake test and Ultra Turrax. Mixed silicone oil-silica particles antifoam was studied. The antifoam was introduced in the foaming solution as pre-dispersed in organic solvent or as antifoam-in-water emulsion. It was shown that the antifoam is very active in the fast foaming methods (Bartsch and shake tests) for the slow adsorbing polymers PVA and has no any activity in the slow foaming method (Ultra Turrax) for the fast adsorbing surfactants with electrostatic stabilization (SLES). The efficiency of pre-dispersed in organic solvent antifoam is much higher as compared to that of emulsified antifoam, due to the faster segregation of the silica particles and silicone oil in the emulsified antifoam. The antifoam efficiency increases with antifoam concentration and with lowering the surfactant concentration. In a given foaming method, the antifoam efficiency is the highest in PVA solutions with 98% DH, intermediate for PVA with 88% DH and Brij 35, and the lowest for SLES solutions. At a certain degree of hydrolysis, the molecular mass of PVA has no significant effect on the antifoam activity. Good correlation between the antifoam efficiency and the stability of the pseudo emulsion film formed between the antifoam globule and the bubble surface is established, showing that the electrostatic repulsion is more efficient to prevent the entering of the antifoam globules on the air-water interface, as compared to the steric repulsion.

See all

Choose featured publications

Publications

Create a new publication