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Quantitative theory of the particle-interface interaction across a nonpolar medium is developed. We consider a
spherical dielectric particle (phase 1), which is immersed in a nonpolar medium (phase 2), near its boundary with
a third dielectric medium (phase 3). The interaction originates from electric charges at the particle surface (e.g., the
surface of a silica particle immersed in oil). The theoretical problem is solved exactly, in terms of Legendre polynomials,
for arbitrary values of the dielectric constants of the three phases. As a result, expressions for calculating the interaction
force and energy are derived. These expressions generalize the known theory of the electrostatic image force (acing
on point charges) to the case of particles that have finite size and uniform surface charge density. For typical parameter
values (silica or glass particles immersed in tetradecane), the image-force interaction becomes significant for particles
of radiusR > 30 nm. At fixed relative particle-to-interface distance, the force increases with the cube of the particle
radius. In general, this is a strong and long-range interaction. For micrometer-sized particles, the interaction energy
could be on the order of 105 kBT at close contact, and, in addition, the interaction range could be about 105 particle
radii. The sign of the interaction depends on the difference between the dielectric constants of phases 2 and 3. When
phase 3 has a smaller dielectric constant (e.g., air), the interface repels the particle. In contrast, when phase 3 has a
greater dielectric constant (e.g., water), the interaction is attractive. Especially, water drops attract charged hydrophobic
particles dispersed in the oily phase, and thus favor the formation of reverse particle-stabilized (Pickering) emulsions.
The particle-interface interaction across the oily phase is insensitive to the concentration of electrolyte in the third,
aqueous phase.

1. Introduction

Adsorption layers of colloidal particles play a central role in
the formation of Pickering emulsions.1-7 If the particle adsorption
is fast enough, the newly formed emulsion drops will not coalesce
upon collision, and a fine emulsion will be produced. In contrast,
if the particle adsorption occurs slowly, the collision of bare
drops (unprotected by particle monolayers) would lead to drop
coalescence and eventually to phase separation.8

When the particles are dispersed in thewaterphase, it often
happens that the emulsion drops and the particles bear surface
electric charges of the same sign. Then, the overlap of the electric
double layers around the particles and drops gives rise to a strong
double-layer repulsion between them. It is known that the bare
oil-water interface is negatively charged because of the ad-
sorption of OH- ions.9 Therefore, any kind of negatively charged

particles will be repelled by the drops (Figure 1a). In such a case,
adsorption is possible only if the electrostatic barrier is overcome
(because of the mechanical energy of agitation), or suppressed
by the addition of electrolyte. The experiment indicates that the
addition of electrolyte facilitates the formation of oil-in-water
emulsions,10,11although the effect of the ionic strength is more
complex because of the occurrence of particle flocculation in the
aqueous phase.5,10,11

The situation can be quite different if the particles have been
initially dispersed in theoily phase. A number of experimental
studies indicate that electric charges can be present at the particle-
oil boundary.12-19If such is the case, the particles will be attracted
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by the oil-water interface, as proven in the present paper.
Physically, this effect is related to the electrostatic image force.20,21

The respective energy of electrostatic attraction is much greater
than the thermal energy,kBT (kB - Boltzmann constant;T -
temperature). This attraction is able to cause quick particle
adsorption at the surfaces of the newly formed emulsion drops
(Figure 1b) to protect the latter against coalescence and to favor
the formation of fine reverse emulsions. Analogous force that
pushes the particle into the water (electrodipping force) is
experienced also by the particles, which are attached to the
oil-water interface and form a finite contact angle.16

The interaction between a charged particle in oil and the
oil-water interface has been theoretically described only in the
case of a point particle (charge): this is the conventional image
force.20,21 Here, our aim is to develop a quantitative theory of
the particle-interface interaction in the case of a spherical particle
of finite size that bears electric charge of a given surface den-
sity. The problem is formulated and solved in the general case,
where the particle and the two large phases have different di-
electric constants. The interaction of a dielectric particle with an
oil-water or oil-air interface represents a special case of the
considered problem.

The paper is organized as follows: In section 2, we solve the
electrostatic problem and derive equations for the electrostatic
potential and the interaction force and energy. In section 3, we
consider the special case when the particle has the same dielectric
constant as the surrounding nonpolar phase (oil); then, the
theoretical expressions are much simpler. In addition, we examine
the effect of electrolyte concentration in the aqueous phase.
Section 4 is focused on the procedure for the computation of the
interaction force and energy. Illustrative numerical results are
reported and discussed in section 5. In Appendix A, it is
demonstrated that the effect of electrolyte concentration in the
water phase is rather weak. Appendices B and C, containing
parts of the theoretical derivations, are given as Supporting
Information.

2. Electric Field and Interaction Force

2.1. Electric Potential in the Three Phases.We consider a
spherical particle (dielectric phase 1), of radiusR, that is immersed
in another dielectric phase 2. The particle is situated at a surface-
to-surface distances to the flat interface between phases 2 and
3 (Figure 2). We assume that phase 3 is also dielectric, but, as

discussed in section 3.2, it could be also an aqueous phase that
may contain dissolved electrolyte. In the case of reverse emulsions
(Figure 1b), phase 2 is oil, whereas phase 3 is water. The dielectric
constants of the three phases are denotedε1, ε2, and ε3,
respectively.

We assume that the charge density,σ, at the particle surface
(the phase boundary between phases 1 and 2) is a known constant,
whereas the interface between phases 2 and 3 is not charged. (If
phase 3 is an aqueous electrolyte solution, the phase boundary
2-3 could bare surface electric charge, but the latter does not
affect the particle-interface interaction; see section 3.2 and
Appendix A). The total surface charge of the particle,Q, is

The planexy of the Cartesian coordinate system used (x, y, z)
coincides with the boundary between phases 2 and 3; thez-axis
is chosen to be the axis of rotational symmetry of the system
(Figure 2). It is convenient to also introduce an auxiliary
cylindrical coordinate system (r, æ, z) with radial coordinater
and polar angleæ:

However, the natural symmetry of the problem suggests
introducing a bispherical (bipolar) coordinate system (ê, η, æ)
(see Figure 3), in whicheê andeη denote the unit vectors along
the respective coordinate lines. Allê-lines are passing through
the polesA+ andA- of the bipolar coordinate system, which are
situated symmetrically with respect to the planez ) 0. The
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Figure 1. (a) The double-layer repulsion between like-charged
colloidal particles and oil drops in water medium impedes the
particle adsorption at the oil-water interface. (b) When par-
ticles dispersed in the oil bear surface electric charges, they are
attracted by the water drops because of the image-force effect (see
eq 2.25).

Figure 2. Sketch of a particle of radius,R, which is immersed in
phase 2 and situated at a distance,s, to the boundary between phases
2 and 3. The three phases are dielectrics of constantsε1, ε2, andε3,
respectively.

Figure 3. Sketch of the coordinate systems used: Cartesian
coordinates (x, y, z); cylindrical coordinates (r, æ, z), and bipolar
coordinates (ê, η, æ) with unit coordinate vectorseê and eη, and
polesA+ andA-.

Q ) 4πR2σ (2.1)

x ) r cosæ, y ) r sin æ (2.2)
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coordinates of the polesA( are (0, 0,(a). The bipolar coordinates
are defined as follows:22,23

whereh is a metric coefficient. The Lame´ coefficients of the
bipolar coordinate system,hê, hη, andhæ, are22,23

The upper part of the axis of revolution (z > a) corresponds
to ê ) 0, whereas its lover part (0< z < a) corresponds toê
) π. The boundary between phases 2 and 3 (the planez ) 0)
corresponds toη ) 0. For the polesA(, we haveη f (∞. The
coordinate surfaces of constantη are spheres:23

Equation 2.5 shows that the bipolar coordinate system can be
chosen in such a way that the particle surface corresponds to a
fixed η, viz. η ) ηs. Then, the parametersa andηs are related
to the radius,R, and the distance,s (Figure 2), by the following
expressions:

From eq 2.6, we determine

The electric potentialsψ1, ψ2, andψ3, in the respective three
dielectric phases, 1, 2, and 3, obey the Laplace equation

where∇2 denotes the Laplace operator. (The case in which phase
3 is an electrolyte solution is considered in section 3.2.) Because
our system has rotational symmetry, the solution should not
depend on the polar angle,æ. Therefore, the Laplace operator
in bipolar coordinates is23

When∇2 is given by eq 2.9, it is known24 that the variables in
the equation,∇2ψ ) 0, can be separated by introducing a new
function,F ) h1/2F̃. Then, eq 2.9 acquires the form

In such a case, the general solution of the Laplace equation can
be presented as a series expansion:

HereF stands for either ofψ1, ψ2, andψ3; Pn (n ) 0, 1, ...) are
the Legendre polynomials;22,23 andXn andYn are coefficients
that have to be determined from the boundary conditions. In
particular, the electric potential should be finite at the polesA+
andA-:

The electric potentials should be equal at the phase boundaries
1-2 and 2-3:

With the help of the boundary conditions, eqs 2.12-2.15, from
eq 2.11 we obtain

in which An andBn (n ) 0, 1, ...) are unknown dimensionless
constants, which are to be determined from the boundary
conditions for the normal electric-field components.

We assume that the surface charge density is zero at the planar
boundary between phases 2 and 3, which leads to the following
boundary condition:

Substituting eqs 2.17 and 2.18 into eq 2.19, we obtain a relation
between the constantsAn andBn:

in which we have introduced the notation

Note that-1 < âij < 1. Especially, we haveâ23 f -1 for ε3

. ε2 (e.g., phase 3 is water and phase 2 is oil). Forâ23 ) -1,
eq 2.20 yieldsBn ) -An, and eq 2.18 reduces toψ3 ) 0; that
is, the electric potential is zero at the planar interface (z) 0) and
inside phase 3.

The boundary condition for the normal electric-field com-
ponents at the particle surface is

(22) Arfken, G.Mathematical Methods for Physicists, 2nd ed.; Academic
Press: London, 1970.

(23) Korn, G. A.; Korn, T. M.Mathematical Handbook for Scientists and
Engineers, 2nd ed.; Dover: New York, 2000.
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Systems, Differential Equations, and Their Solutions, 2nd ed.; Springer-Verlag:
New York, 1988.

r ) a
h

sin ê, z ) a
h

sinhη, h ≡ coshη - cosê (2.3)

hê ) hη ) a
h
; hæ ) a

h
sin ê (2.4)

r2 + (z - a cothη)2 ) a2

sinh2 η
(2.5)

R + s ) a cothηs; R ) a
sinhηs

(2.6)

a ) [(2R + s)s]1/2, coshηs ) 1 + s
R

,

ηs ) ln{1 + s
R

+ [(2 + s
R)s

R]1/2} (2.7)

∇2ψ1 ) 0, ∇2ψ2 ) 0, ∇2ψ3 ) 0 (2.8)

∇2F ) h3

a2 sin ê[ ∂

∂ê(sin ê
h

∂F
∂ê) + ∂

∂η(sin ê
h

∂F
∂η)] (2.9)

∇2F ) h5/2

a2 [ 1
sin ê

∂

∂ê(sin ê∂F̃
∂ê) + ∂

2F̃

∂η2
- F̃

4] (2.10)

F ) h1/2∑
n)0

∞

[Xn exp(λnη) +

Yn exp(-λnη)]Pn(cosê), λn ≡ n + 1/2 (2.11)

ψ1 f const., atη f ∞ (2.12)

ψ3 f const., atη f -∞ (2.13)

ψ1 ) ψ2 at η ) ηs (2.14)

ψ2 ) ψ3 at η ) 0 (2.15)

ψ1 )
Qh1/2

ε2R
∑
n)0

∞

[An exp(2λnηs) + Bn] exp(-λnη)Pn(cosê)

(2.16)

ψ2 )
Qh1/2

ε2R
∑
n)0

∞

[An exp(λnη) + Bn exp(-λnη)]Pn(cosê)

(2.17)

ψ3 )
Qh1/2

ε2R
∑
n)0

∞

(An + Bn) exp(λnη)Pn(cosê) (2.18)

ε2

∂ψ2

∂η
) ε3

∂ψ3

∂η
at η ) 0 (2.19)

Bn ) â23An (n ) 0,1,...) (2.20)

âij ≡ εi - εj

εi + εj
(i,j ) 1,2,3) (2.21)

eη‚(ε1∇ψ1 - ε2∇ψ2) ) -4πσ at η ) ηs (2.22)
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In view of eq 2.4, eq 2.22 acquires the form

Further, we substitute eqs 2.16 and 2.17 into eq 2.23 and take
into account eq 2.20; thus, we determine the constantsAn (n )
0, 1, ...) (see section 4.1 below).

2.2. Electrostatic Force and Energy.In accordance with
Newton’s third law, the electrostatic force acting on the particle,
Fz, is opposite to the force acting on the flat interface,S23, between
phases 2 and 3. The same conclusion follows from the field
theory:20 The divergence of the Maxwell stress tensor is zero in
phase 2. Then, in accordance with the Gauss theorem, one obtains
that the sum of the integrals overS12 andS23 must be zero; that
is, these two integrals are equal (by magnitude) with the opposite
signs. Therefore, we can calculateFzby integrating the Maxwell
stress over the surfaceS23 that coincides with thexy-plane:

In view of eq 2.20, by substitution of eq 2.17 in eq 2.24 and
integration, one can derive an exact formula for the force acting
on the particle (see Appendix B in the Supporting Information):

Here Fz > 0 means that the phase boundary 2-3 repels the
particle, whereasFz < 0 corresponds to attraction; the dimen-
sionless force coefficient,fz, is

The coefficientsAn can be calculated numerically, as described
in section 4. It is important to note thatfz depends only on the
dimensionless distance,s/R, and on the parametersâ12 andâ23

defined by eq 2.21.
In view of eq 2.25, the electrostatic energy of interaction

between the particle and phase 3 is

where the definition of the dimensionless energy coefficient,w,
is

In the special case whereε1) ε2, the above equations considerably
simplify (see section 3.1). Numerical results forfzandwat various
s/R, â12, andâ23 are presented and discussed in section 5.

3. The Special CaseE1 ) E2

3.1. Phase 3 is a Common Dielectric.In the special case
whereε1 ) ε2, one can determine the electric potentialψ(r ) by
means of the method of reflections.20,25(The alternative approach
of Legendre-polynomial expansion, eq 2.11, gives the same result;

see the comment after eq 4.5.) Following an approach analogous
to that used in ref 20, one can obtain the electric potential in
phase 2 as a superposition of electric potentials induced by two
charges located at the axis of revolution. The first is situated at
z ) R + s (at the particle center), whereas the second one is
placed atz ) -(R + s); that is, it is the mirror image of the
former charge with respect to the planez ) 0:

The electric potential in phase 1 (inside the particle) is obtained
as a superposition of a constant potential,Q/(ε2R), and the potential
induced by the image charge atz ) -(R + s):

The electric potential in phase 3 is induced only by the original
charge atz ) R + s:

The substitution of eq 3.1 into eq 2.24, after some transformations,
gives the interaction force in the form of 2.25 withfz ) 1:

As in the case of point charge,20 eq 3.4 expresses the force of
interaction between the original charge,Q, and the image charge,
-â23Q, which are separated at a distance 2(R + s). In other
words, the physical origin of the particle-interface interaction,
considered in the present article, is the image-force effect. Because
we are dealing with a particle of finite size (rather than with a
point ion), the force given by eq 3.4 has a finite value at contact
(ats) 0). The substitution of eq 3.4 into eq 2.28 leads to eq 2.27
with w ) 1:

As it could be expected, the interaction energy also has a finite
value at contact (ats ) 0). The additional multipliersfz andw
in eqs 2.25 and 2.27 (in comparison with eqs 3.4 and 3.5) account
for the fact that, in general, the particle may have a different
dielectric constant from the surrounding medium; that is,ε1 *
ε2.

It has been proven (see ref 26, p 408) that the method of
reflections cannot be applied whenε1 * ε2. Therefore, in the
latter case, it is impossible to obtain simple analytical expressions
like eqs 3.4 and 3.5. Instead, one has to use the series, eq 2.26,
which enables one to calculate exactly the interaction force and
energy,Fz andW, for ε1 * ε2 (see sections 4 and 5).

3.2. Phase 3 is Water.Here, we consider the important special
case when phase 3 is water. Water always contains dissolved
ions. Even the ideal pure water has an ionic strength of 10-7 M
due to the inevitable H+ and OH- ions. The presence of ions

(25) Happel, J.; Brenner, H.Low Reynolds Number Hydrodynamics; Prentice
Hall: New York, 1965.

(26) Grinberg, G. A.Selected Problems of the Mathematical Theory of Electric
and Magnetic Phenomena; Publishing House of the Academy of Sciences of
USSR: Moscow, 1948 (in Russian).

ε1

∂ψ1

∂η
- ε2

∂ψ2

∂η
) -4πσa

h
at η ) ηs (2.23)

Fz ) -
ε2

8π∫S23
[(∂ψ2

∂z )2

- (∂ψ2

∂x )2

- (∂ψ2

∂y )2]dS23 atz ) 0
(2.24)

Fz )
â23Q

2

4ε2(R + s)2
fz (2.25)

fz ) (1 +
s

R)2

∑
n)0

∞

[(4n + 2)An
2 - (4n + 4)AnAn+1] (2.26)

W ) ∫s

∞
Fz ds )

â23Q
2

4ε2(R + s)
w (2.27)

w ≡ (1 + s
R)∫s/R

∞ fz

(1 + s̃)2
ds̃ (s̃≡ s/R) (2.28)

ψ2 ) Q
ε2

{ 1

[r2 + (z - R - s)2]1/2
+

â23

[r2 + (z + R + s)2]1/2}
(3.1)

ψ1 ) Q
ε2

{1
R

+
â23

[r2 + (z + R + s)2]1/2} (3.2)

ψ3 ) Q
ε2

1 + â23

[r2 + (z - R - s)2]1/2
(3.3)

Fz )
â23Q

2

ε2[2(R + s)]2
(3.4)

W )
â23Q

2

4ε2(R + s)
(3.5)
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implies that the Laplace equation,∇2ψ3 ) 0, must be replaced
by the Poisson equation,∇2ψ3 ) -(4π/ε3)F, in which F is the
bulk charge density. In principle, this could affect the force and
energy coefficients,fz andw, in eqs 2.25 and 2.27.

It is important to note that water has a high dielectric constant,
ε3 . ε2. In view of eq 2.21, this means thatâ23 is close to-1.
As discussed after eq 2.21,â23 ) -1 implies thatBn ) -An, and
thereforeψ3 ) 0 (see eq 2.18). In other words, the electric field,
created by the charged particle into the oil (phase 2), does not
enter the water (phase 3). Actually, some weak electric field
could enter the water phase becauseâ23 is slightly different from
-1 (for tetradecane-water at 25°C, we haveε2 ) 2.04,ε3 )
78.2, and thenâ23 ) -0.95).

Thus, it turns out that the high dielectric constant of water
suppresses the penetration of the particle electric field into the
aqueous phase. If the latter contains dissolved ions, the penetration
of the particle-induced electric field will be additionally
suppressed because of the Debye screening effect.27 Hence, we
could expect that, if phase 3 is water, then eq 3.4 could be
expressed in the form

where

In eq 3.7, the lower limit,B23) -1, corresponds to high electrolyte
concentrations in the water (2κ(R + s) . 1; see Appendix A)
when the aqueous phase becomes conductor of electricity (for
conductors,ε3 f ∞). The upper limit,B23 ) â23 ≈ -0.95,
corresponds to the case of negligibly small ionic strength
(deionized water,ε3 ≈ 80). Hence, the addition of electrolyte in
the aqueous phase leads to a variation ofB23 in the frame of only
5%. In Appendix A, we have derived eq 3.7 for the simpler case
in which ε1 ) ε2 and for when the electric potential into water
is low so that the Poisson-Boltzmann equation can be linear-
ized.27The general case of nonlinear electric-double-layer theory
and ε1 * ε2 demands the application of more complicated
mathematics and a numerical solution, but the result is unlikely
to differ from eq 3.7, insofar asε3 . ε1,ε2.

In summary, the effect of electrolyte in phase 3 (water) onFz

andW turns out to be relatively weak, in the frame of 5% (see
eq 3.7). In the following, we will setâ23 ) -1 when phase 3
is an aqueous electrolyte solution, andâ23 ) -0.95 for the
deionized water/oil boundary. Of course,B23 is expected to vary
from -0.95 to-1 with the increase of electrolyte concentration
(see eqs A.16 and A.17 in Appendix A). However, the general
theoretical description of this variation is mathematically
complicated and could be the subject of a separate study.

4. Determination of the CoefficientsAn

4.1. System of Equations forAn.Here, we return to the general
case in whichε1 * ε2 * ε3, considered in section 2. After a
substitution of eqs 2.16 and 2.17 into the boundary condition,
eq 2.23, and after elimination of the constantsBn by using eq
2.20, one can derive (Appendix C in the Supporting Information)

in which Cn ) â23 exp(-2λnηs), Dn ) An exp(λnηs)Pn(u), u )
cosê, andλn ) n + 1/2. Because the Legendre polynomials,
Pn(u), are orthogonal over the interval [-1, 1], from eq 4.1 we
obtain a three-diagonal linear system of equations for the
coefficientsAn, n ) 0, 1, ... (Appendix C in the Supporting
Information):

in whicht ≡ exp(-ηs). It is important to note that the asymptotic
form of eq 4.3 forn . 1 is

The system defined by eq 4.4 has a simple solution:

In addition, one could check that, in the case of equal dielectric
constants of phases 1 and 2, that is,â12 ) 0, the solution of
system 4.2-4.3 is given by eq 4.5 for alln. Then, the series in
eq 2.26 can be summed exactly and givesfz) 1; correspondingly,
w ) 1 in eq 2.28. This results shows that eqs 3.4 and 3.5, derived
by means of the reflection method forε1 ) ε2, also represent the
special cases of eqs 2.25-2.28, which are based on series
expansions in terms of Legendre polynomials.

4.2. Principles of the Computational Procedure.The
numerical algorithm for solution of the system of eqs 4.2-4.3
is the following: For a givens/R, we determineηs (and t )
exp(-ηs)) from eq 2.7. Next, we choose a sufficiently large
number,N, for which we havet2N+1 < δ, whereδ determines
the precision of the numerical calculations. Forng N, we calculate
the coefficientsAn from the asymptotic expression, eq 4.5. For
0 e n e N - 1, we determineAn by solving exactly the three-
diagonal system of eqs 4.2-4.3 by using the Thomas algorithm.28

Following this numerical scheme, the solution of the system for
the coefficientsAn could be found with very high accuracy. Next,
the force is calculated from eqs 2.25 and 2.26. Finally, the
interaction energy is determined from eqs 2.27 and 2.28 by
numerical integration.

5. Numerical Results and Discussion

5.1. Interaction Energy for Typical Parameter Values.Let
us consider the following example: glass particle in tetradecane
near the tetradecane-water boundary. For this system, the surface
charge density at the particle-oil interface was experimentally
determined16 to beσ ) 71µC/m2. We haveε1 ) 3.97,ε2 ) 2.04,

(27) Overbeek, J. Th. G. Electrochemistry of the double layer, InColloid
Science; Kruyt, H. R., Ed.; Elsevier: Amsterdam, 1953; Vol. 1.

(28) Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.Numerical
Recipes in Fortran. The Art of Scientific Computing, 2nd ed.; Cambridge University
Press: Cambridge, U.K., 1992.

Fz )
B23Q

2

ε2[2(R + s)]2
(3.6)

-1 e B23 e â23 ≈ -0.95 (3.7)

∑
n)0

∞

[2(coshηs - u)(1 + â12Cn)λn - â12 sinhηs(1 + Cn)]Dn )

(1 - â12) sinhηs

(coshηs - u)1/2
(4.1)

[1 - â12 + (1 + â12)t
2 + 2â12â23t

3]A0 -

2(1 + â12â23t
3)A1 ) 21/2(1 - â12)(t - t3) (4.2)

- 2nt2(1 + â12â23t
2n-1)An-1 + {2(1 + t2)λn - (1 - t2)â12 +

[2(1 + t2)λn - (1 - t2)]â12â23t
2n+1}An - 2(n + 1)(1 +

â12â23t
2n+3)An+1 ) 21/2(1 - â12)(1 - t2)t2n+1 (n g 1) (4.3)

- 2nt2An-1 + [(2n + 1)(1 + t2) - â12(1 - t2)]An -

2(n + 1)An+1 ≈ 21/2(1 - â12)(1 - t2)t2n+1 (n . 1) (4.4)

An ) 21/2t2n+1 (n . 1) (4.5)
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andε3 ) 78.2, respectively, for the glass, tetradecane, and water,
at 25°C. Then,â12 ) 0.32. When phase 3 is water or air, we
have, respectively,â23 ) -0.95 andâ23 ) +0.34. In accordance
with eq 2.27,â23 < 0 corresponds to attraction, whereasâ23 >
0 corresponds to repulsion between the particle and the oil-
water interface.

In Figure 4, numerical results for the interaction energy,W,
scaled by the thermal energykBT, are plotted versus the relative
distance,s/R, for various values of the particle radius,R; the
other parameter values have been specified above. In general,
the curves in Figure 4 correspond to a strong and long-range
particle-interface interaction, which isattraction if phase 3 is
water (Figure 4a), but isrepulsionif phase 3 is air (Figure 4b).
For the given surface charge density (σ ) 71 µC/m2), the
interaction energy,W, becomes comparable to or smaller than
the thermal energykBT for R < 30 nm. On the other hand, for
R > 30 nm, W strongly increases with the particle size and
reachesW≈ 105 kBT for R) 1 µm at close contact. In addition,
the range of the interaction also strongly increases, reachings/R
≈ 105 for R ) 1 µm. The strong effect of the particle radius
follows from eq 2.27, which could be expressed in the form

Here,w(s/R, â12, â23) is a function of bounded variation (see
below), so the major effect of the particle radius on the interaction

energy is due to the multiplierR3/(1 + s/R) in eq 5.1. The fact
that the bilogarithmic plots ofWversuss/Rin Figure 4 are parallel
lines for larges/R is due to the asymptotic form of eq 5.1:

Here, we have used the fact thatw ≈ 1 for s/R > 1 (see the
subsequent figures).

In summary, we are dealing with a significant effect, which
can force particles initially dispersed in the oily phase to adsorb
at the oil-water interface (see Figures 1b and 4a). This result
is of central importance for the production of particle-stabilized
emulsions. The rest of this section is focused on the behavior of
the functionsw(s/R, â12, â23) and fz(s/R, â12, â23).

5.2. Effect ofâ12in the Case Whereâ23≈ -1 (e.g., Aqueous
Phase 3).As discussed above, when phase 3 is an aqueous
electrolyte solution (or whatever phase of high dielectric constant),
thenâ23 is close to-1. In this case, eqs 2.25 and 5.1 predict
attractionbetween the particle and interface. Numerical results
for the force coefficient,fz, calculated as explained in section
4.2, are shown in Figure 5. Ifε1 > ε2, thenâ12> 0, and we obtain
fz > 1 (Figure 5a). In the opposite case,ε1 < ε2 andâ12 < 0, we
obtain fz < 1 (Figure 5b). If we compare the curves forfz in
panels a and b of Figure 5, we see that the relative influence of
â12 on fz is greater in the case whereâ12 > 0. The dashed line,
fz ) 1, corresponds to equal dielectric constants; that is,ε1 ) ε2

andâ12 ) 0 (see eq 3.4).
The numerical results for the energy coefficientw (see eq

2.28) are shown in Figure 6. The curves in Figures 5 and 6 look

Figure 4. Plot of the interaction energyW (scaled withkBT) vs the
dimensionless distance,s/R, between a charged glass particle and
a planar interface; phase 2 is tetradecane. The curves correspond to
different particle radii,R, denoted in the figure; the other parameter
values are given in the text. (a) Phase 3 is water. (b) Phase 3 is air.

W )
4π2σ2R3â23

ε2(1 + s/R)
w(s/R,â12,â23) (5.1)

Figure 5. The force coefficient,fz, as a function of the dimensionless
distance,s/R, for fixed â23 ) -1 (i.e.,ε3 . ε2, which is satisfied
for the oil-water interface), and for variousâ12denoted in the figure.

W≈ 4π2σ2R4â23

ε2s
for s/R . 1 (5.2)

Particle-Interface Interaction in Nonpolar Media Langmuir, Vol. 22, No. 1, 2006111



similar, but the values on the ordinate axes indicate that the
variation ofâ12 produces a weaker effect onw in comparison
with fz. On the other hand, the general trend offzandw is similar:
both of them increase with the increase inâ12, and both of them
tend to 1 fors/R > 1.

The deviation offz andw from 1 is the greatest at contact, that
is, ats ) 0. We havefz ≈ fz(0) andw ≈ w(0) for s/R < 10-2

(see Figures 5 and 6). The dependencies offz(0) andw(0) onâ12,
for â23 ) -1, are given in Figure 7. These dependencies are
accurately interpolated by means of the following expressions:

For -0.95e â12 e +0.95, the accuracy of eqs 5.3 and 5.4 is
better than 1% and 0.1%, respectively.

For a more convenient computation of the dependencies of
fz(s/R,â12) andw(s/R,â12) (see the curves in Figures 5 and 6), we
obtained accurate interpolation formulas, as follows:

where the coefficientsfz(0) andw(0) have to be calculated from
eqs 5.3 and 5.4, andηs is given by eq 2.7. The coefficientsa1,
b1, a2, b2, a3, andb3 are listed in Table 1 for variousâ12. For
-0.95e â12 e +0.6, the accuracy of eqs 5.5 and 5.6 is better
than 1% and 0.1%, respectively. For values ofâ12 that are
intermediate between those given in Table 1, the values of the
coefficients ai and bi (i ) 1,2,3) could be determined by
interpolation.

At short distances (s f 0), eq 2.7 givesηs f 0, and then eqs
5.5 and 5.6 reduce tofz) fz(0) andw) w(0), as could be expected.
In the other limit,sf ∞, we haveηs f ∞, and then eqs 5.5 and
5.6 give the correct asymptotics at long distances, viz.fz ) w
) 1 (see Figures 5 and 6).

5.3. Effect ofâ23 on the Force and Energy Coefficients,w
and fz. In general, eqs 2.25 and 2.27 predict that, ifε2 < ε3 and

Figure 6. The energy coefficient,w, as a function of the
dimensionless distance,s/R, for fixed â23 ) -1 (i.e.ε3 . ε2, which
is satisfied for the oil-water interface), and for variousâ12 denoted
in the figure.

fz(0) ) (1 - â12)
-3/2(1 - 0.9386â12 + 0.1410â12

2 +

0.0226â12
3 + 0.0111â12

4) (5.3)

w(0) ) (1 - â12)
-3/2(1 - 1.3833â12 + 0.2760â12

2 +

0.0541â12
3 + 0.0272â12

4) (5.4)

fz(ηs) ) 1 + [fz(0) - 1] exp{a1[1 - exp(-b1ηs)] +
a2[1 - exp(-b2ηs)] - 3ηs} (5.5)

w(ηs) ) 1 + [w(0) - 1] exp{a3[1 - exp(-b3ηs)] - 3ηs}
(5.6)

Figure 7. (a) Force coefficient,fz(0), and (b) energy coefficient,
w(0), plotted vsâ12 for fixed â23 ) -1 ands/R) 0. The latter value
corresponds to a point contact of the spherical particle with the
planar interface.

Table 1. The Coefficients in Eqs 5.5 and 5.6 for Variousâ12

â12 a1 b1 a2 b2 a3 b3

-0.95 2.1369 1.6601 0 0 2.0006 1.7449
-0.5 1.8537 1.8780 0 0 1.8990 1.7392
-0.3 1.7566 1.9374 0 0 1.8521 1.7724
-0.2 1.6997 1.9740 0 0 1.8259 1.7943
-0.1 1.6354 2.0167 0 0 1.7968 1.8185

0.1 1.4780 2.1270 0 0 1.7252 1.8692
0.2 1.2296 2.3361 0.15393 1.2836 1.6808 1.8895
0.3 0.37249 3.7971 0.89831 1.8364 1.6275 1.9051
0.4 0.31101 5.1660 0.82345 1.7796 1.5635 1.9120
0.5 0.29731 6.6758 0.66725 1.6470 1.4863 1.9075
0.6 0.26771 9.1370 0.47725 1.4123 1.3938 1.8946
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â23 < 0, the interaction force isattractiVe, whereas, ifε2 > ε3

andâ23 > 0, the force corresponds torepulsion. Our aim here
is to present numerical results for the force and energy coefficients,
fz and w, which have been obtained by means of the exact
computational procedure in section 4.2. The values offz(s/R, â12,
â23) andw(s/R, â12, â23) are necessary for the exact calculation
of the interaction force and energy.

Figure 8 presents numerical data forfz versuss/R in the case
whereâ23< 0 (attraction). In addition, Figure 9 shows numerical
data forfz versuss/R in the case whereâ23 > 0 (repulsion). The
respective curves forw(s/R) look similar to those forfz(s/R), but
correspond to somewhat different absolute values. To illustrate
the effect ofâ12, we compare the curves calculated forâ12 ) 0.5
(Figures 8a and 9a) with the respective curves calculated forâ12

) -0.5 (Figures 8b and 9b).
In the case whereâ12 ) 0.5, fz decreases whenâ23 increases

(Figures 8a and 9a). In contrast, forâ12 ) -0.5,fz increase when
â23 increases (Figures 8b and 9b). In all cases,fz levels off at 1
for s/R > 1. On the other hand, fors/R < 0.01,fz takes a finite
value, fz(0), corresponding to contact of the particle with the
oil-water interface.

In Figure 10, the calculated values offz(0) andw(0) are plotted
versusâ23 for variousâ12. This figure visualizes the effect ofâ12

andâ23 on themagnitudeof the force and energy coefficients.
Note thatfz(0) ) 1 andw(0) ) 1 correspond to the conventional
image force, that is, the force experienced by apoint charge
(rather than a particle of finite size) near the boundary between
two dielectric phases. In Figure 10, this is the case forâ12 ) 0
(the dashed horizontal line), which corresponds to a particle
having the same dielectric constant as the surrounding fluid (e.g.,

oil; see section 3.1). Forâ23 ) 0, we again havefz(0) ) w(0)
) 1; however, in this case, the force and energy,Fz andW, are
equal to zero because of the multiplierâ23 in eqs 2.25 and 2.27.
Indeed, from a physical viewpoint, in the latter case, there is no
particle-interface interaction because, atε2 ) ε3, the electric
field does not feel the presence of a boundary between phases
2 and 3. Figure 10 also shows that the greatest deviations from
the conventional image force (fromfz(0) ) w(0) ) 1) occur at
the greatest absolute values ofâ12 andâ23.

It should be noted that the effect ofâ23 on the force,Fz, and
energy,W, is much stronger that its effect on the force and energy
coefficients,fzandw, becauseâ23appears explicitly as a multiplier
in eqs 2.25 and 2.27. In addition, as demonstrated in section 3.2
and Appendix A, the presence of electrolyte in the aqueous phase
does not alter the overall picture: it turns out that the case in
which phase 3 is water and phase 2 is a nonpolar liquid can be
described by the above results forfz andw with â23 ≈ -1 (see
Figures 5-7 and eqs 5.5 and 5.6).

It should be noted also that here we have considered the case
in which the particle approaches the flat interface at fixedsurface
charge density, σ. In the case of hydrophobic dielectric particles
in oil, possible hypotheses about the origin ofσ have been
discussed in refs 18 and 19. The alternative case of fixed particle
surface potentialis not considered here; it could be the subject
of a separate study. Note that, at fixed surface electric potential,
the particle-interface interaction becomes independent of the
particle dielectric constant,ε1. Consequently, the case of fixed
surface potential is physically rather different from the case of
fixed surface charge considered here.

Figure 8. Plot of the force coefficient,fz, vs the dimensionless
distance,s/R, for various negative values ofâ23denoted in the figure.
(a) â12 ) 0.5. (b)â12 ) -0.5.

Figure 9. Plot of the force coefficient,fz, vs the dimensionless
distance,s/R, for various positive values ofâ23denoted in the figure.
(a) â12 ) 0.5. (b)â12 ) -0.5.
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6. Summary and Conclusions

Quantitative theory of the particle-interface interaction across
a nonpolar medium is developed. We consider a spherical
dielectric particle (phase 1), which is immersed in a nonpolar
medium(phase2), near itsboundarywitha thirddielectricmedium
(phase 3) (see Figure 2). This interaction originates from electric
charges at the interface particle/nonpolar phase (e.g., particle/
oil). The theoretical problem is solved exactly, in terms of
Legendre polynomials, for arbitrary values of the dielectric
constants of the three phases. As a result, expressions for
calculating the interaction force and energy, eqs 2.25 and 2.27,
are derived. These expressions generalize the known theory of
the electrostatic image force (acting on point charges) to the case
of particles that have finite size, uniform surface charge density,
and specific dielectric constant,ε1. The deviation from the
conventional image-force interaction is considerable at particle-
to-interface distances smaller than the particle radius (fz * 1 and
w * 1 for s/R < 1; see Figures 5, 6, and 8-10).

For typical parameter values (glass or silica particle immersed
in liquid paraffin), the image-force interaction becomes significant
for particles of radiusR > 30 nm (see Figure 4). Of course, if
the surface charge density is greater, the effect will become
significant for smaller particles. For a fixed relative particle-
to-interface distance (s/R), the respective force and energy increase
with the cube of the particle radius. In general, this is a strong
and long-range interaction. For example, for micrometer-sized
particles, the interaction energy could be on the order of 105 kBT
at close contact, whereas the interaction range is about 105particle
radii (Figure 4).

As usual for image forces, the sign of the particle-interface
interaction depends on the difference between the dielectric
constants of phases 2 and 3. When phase 3 has a smaller dielectric
constant (e.g., when phase 3 is air), the interface repels the particle
(Figure 4b). In contrast, when phase 3 has a greater dielectric
constant (e.g., when phase 3 is water), the interaction is attractive
(Figure 4a). Thus, water drops attract charged hydrophobic
particles dispersed in the oily phase, and, in this way, favor the
formation of reverse particle-stabilized (Pickering) emulsions
(Figure 1b). This could be one of the reasons for the easier
production of reverse Pickering emulsions in comparison with
the production of direct ones. It should also be noted that the
particle-interface interaction across the oily phase is insensitive
to the concentration of electrolyte in the aqueous phase 3 (see
sections 3.2 and Appendix A).
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Appendix A: Effect of Electrolyte in Phase 3 on the
Particle-Interface Interaction

To derive eq 3.7, we will consider the simpler case where
ε1 ) ε2 and where the electric potential into water (phase 3)
is low so that the Poisson-Boltzmann equation can be
linearized:27

Here,κ is the Debye screening parameter,e is the elementary
electric charge,ci andZi are the concentrations of the ionic species
and their valences, and the summation is carried out over all
ionic species in the water phase. In general,ψ3 can be expressed
in the form

in which ψ0 is the electric potential in the aqueous phase in
the absence of the particle (phase 1 in Figure 2), whileψ̃3 is
the electric field induced by this particle into the aqueous
phase. Correspondingly,ψ0 and ψ̃3 obey eq A.1 and the fol-
lowing boundary conditions at the interface between phases 2
and 3:

Here,σ23 is the surface electric charge density at the boundary
2-3. Thus, forψ0(z), we will obtain the conventional expression
for the electric potential of a planar electric double layer of surface
chargeσ23.27 On the other hand,ψ̃3 is independent ofσ23. In
addition, we will seekψ2 andψ1 in the form

whereb ≡ R + s, andψ̃2 obeys the Laplace equation,∇2ψ̃2 )
0. In addition, we have∇2ψ̃3 ) κ2ψ̃3. To satisfy the latter
equations, in view of the geometry of the system, we will seek
ψ̃2 and ψ̃3 in the form of Hankel transforms:

Figure 10. Force and energy coefficients,fz(0) andw(0), at the
contact of the spherical particle with the planar interface (s/R) 0),
plotted vsâ23 for variousâ12.

∇2ψ3 ) κ
2ψ3, κ

2 )
4πe2

ε3kBT
∑

i

Zi
2ci (A.1)

ψ3 ) ψ0 + ψ̃3 (A.2)

ε3

∂ψ0

∂z
) 4πσ23 andε3

∂ψ̃3

∂z
) ε2

∂ψ2

∂z
atz ) 0 (A.3)

ψ2 ) Q
ε2

1

[r2 + (z - b)2]1/2
+ ψ̃2 (A.4)

ψ1 ) Q
ε2

1
R

+ ψ̃2 (A.5)
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J0 is the Bessel function of order zero, andC2 andC3 are constants
that have to be determined from the boundary conditions. In
view of eq A.4, the boundary conditionsψ2 ) ψ3, atz ) 0, and
eq A.3 acquire the form

The first terms in the left-hand side of eqs A.8 and A.9 have the
following Hankel transforms:

Equation A.11 can be derived by the differentiation of eq A.10
with respect tob. With the help of eqs A.6, A.7, A.10, and A.11,
we obtain the Hankel transforms of the boundary conditions, eqs
A.8 and A.9:

From eqs A.12 and A.13, we determineC2 and substitute the
result into eq A.6:

Furthermore, to calculate the forceFz acting on the particle, we
have to substitute eq A.4, along with eq A.14, into eq 2.24. The
same result can be obtained in the following simpler way: Note
that the first term in eq A.4 is the electric potential created by
a point charge of magnitudeQsituated atz) b. The second term
in eq A.4 represents the potential created by the image charge.
Then, the force of interaction between the original chargeQ and
the respective image charge is

By substitution of eq A.14 into eq A.15 and after some
transformations, we obtain

in whichu ) 2bk. When there is no electrolyte in phase 3, then
κ ) 0, C23 ) 0, andB23 ) â23. On the other hand, at sufficiently
large electrolyte concentrations, we have 2κb . 1. In this limit,
for finite u, the fraction in the integrand of eq A.17 is equal to
1, whereas, at greateru, the integrand itself is zero because of
the multiplier e-u. Thus, we obtain

Substitutingâ23 from eq 2.21 andC23 from eq A.18 into eq A.16,
we obtainB23 ) -1. In this way, we confirm the validity of eq
3.7.

Supporting Information Available: Expression for the electric
force acting on the particle (Appendix B) and the recurrence formula
for the coefficientsAn (Appendix C). This material is available free of
charge via the Internet at http://pubs.acs.org.
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ψ̃2 ) ∫0

∞
C2e

-kzJ0(kr)kdk (A.6)

ψ̃3 ) ∫0

∞
C3e

qzJ0(kr)kdk, q ≡ (k2 + κ
2)1/2 (A.7)

Q
ε2

1

(r2 + b2)1/2
+ ψ̃2 ) ψ̃3 (atz ) 0) (A.8)

Qb

(r2 + b2)3/2
+ ε2

∂ψ̃2

∂z
) ε3

∂ψ̃3

∂z
(atz ) 0) (A.9)

1

(r2 + b2)1/2
) ∫0

∞
e-bkJ0(kr)dk (A.10)

b

(r2 + b2)3/2
) ∫0

∞
e-bkJ0(kr)kdk (A.11)

Q
ε2

e-bk + kC2 ) kC3 (A.12)

Qe-bk - ε2kC2 ) ε3qC3 (A.13)

ψ̃2 ) -Q
ε2
∫0

∞ ε3q - ε2k

ε3q + ε2k
e-(b+z)kJ0(kr)dk (A.14)

Fz ) -Q
∂ψ̃2

∂z
|r)0,z)b (A.15)

Fz ) Q2

4ε2b
2
B23; B23 ) â23(1 + C23) (A.16)

C23 )
2ε2

ε3 - ε2
∫0

∞ [u2 + (2κb)2]1/2 - u

[u2 + (2κb)2]1/2 + ε2u/ε3

e-uudu (A.17)

C23 f
2ε2

ε3 - ε2
∫0

∞
e-uudu )

2ε2

ε3 - ε2
for 2κb f ∞ (A.18)
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