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Particle—Interface Interaction across a Nonpolar Medium in Relation
to the Production of Particle-Stabilized Emulsions
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Quantitative theory of the partictdnterface interaction across a nonpolar medium is developed. We consider a
spherical dielectric particle (phase 1), which is immersed in a nonpolar medium (phase 2), near its boundary with
a third dielectric medium (phase 3). The interaction originates from electric charges at the particle surface (e.g., the
surface of a silica particle immersed in oil). The theoretical problem is solved exactly, in terms of Legendre polynomials,
for arbitrary values of the dielectric constants of the three phases. As a result, expressions for calculating the interaction
force and energy are derived. These expressions generalize the known theory of the electrostatic image force (acing
on point charges) to the case of particles that have finite size and uniform surface charge density. For typical parameter
values (silica or glass particles immersed in tetradecane), the image-force interaction becomes significant for particles
of radiusR > 30 nm. At fixed relative particle-to-interface distance, the force increases with the cube of the particle
radius. In general, this is a strong and long-range interaction. For micrometer-sized particles, the interaction energy
could be on the order of 2&gT at close contact, and, in addition, the interaction range could be abopadiftle
radii. The sign of the interaction depends on the difference between the dielectric constants of phases 2 and 3. When
phase 3 has a smaller dielectric constant (e.g., air), the interface repels the particle. In contrast, when phase 3 has a
greater dielectric constant (e.g., water), the interaction is attractive. Especially, water drops attract charged hydrophobic
particles dispersed in the oily phase, and thus favor the formation of reverse particle-stabilized (Pickering) emulsions.
The particle-interface interaction across the oily phase is insensitive to the concentration of electrolyte in the third,
aqueous phase.

particles will be repelled by the drops (Figure 1a). In such a case,
adsorption is possible only if the electrostatic barrier is overcome
(because of the mechanical energy of agitation), or suppressed
by the addition of electrolyte. The experiment indicates that the
addition of electrolyte facilitates the formation of oil-in-water

' emulsions’®11although the effect of the ionic strength is more
complex because of the occurrence of particle flocculation in the
aqueous phaseo11

1. Introduction

Adsorption layers of colloidal particles play a central role in
the formation of Pickering emulsioAs? If the particle adsorption
is fast enough, the newly formed emulsion drops will not coalesce
upon collision, and a fine emulsion will be produced. In contrast
if the particle adsorption occurs slowly, the collision of bare
drops (unprotected by particle monolayers) would lead to drop

coalescence and eventually to phase separation. The situation can be quite different if the particles have been
When the particles are dispersed in thiaterphase, it often jnitially dispersed in th@ily phase. A number of experimental
happens that the emulsion drops and the particles bear surfaceygies indicate that electric charges can be present at the particle

electric charges of the same sign. Then, the overlap of the electricoj) houndary!2-191f such is the case, the particles will be attracted
double layers around the particles and drops gives rise to a strong

double-layer repulsion between them. It is known that the bare

(9) Marinova, K. G.; Alargova, R. G.; Denkov, N. D.; Velev, O. D.; Petsev,

oil—water interface is negatively charged because of the ad-

sorption of OH ions? Therefore, any kind of negatively charged

* Corresponding author. Phone+859) 2-962 5310. Fax:+359) 2-962
5438. E-mail: pk@lcpe.uni-sofia.bg.

T University of Sofia.

§ Unilever Research & Development.

(1) Pickering, S. U. Emulsiongl. Chem. Sacl907, 91, 2001-2021.

(2) Tambe, D. E.; Sharma, M. M. The effect of colloidal particles on fluid-
fluid interfacial properties and emulsion stabilitidv. Colloid Interface Sci.
1994 52, 1-63.

(3) Thieme, J.; Abend, S.; Lagaly, G. Aggregation in Pickering emulsions.
Colloid Polym. Scil1999 277, 257—260.

(4) Binks, B. P. Particles as surfactantssimilarities and difference€urr.
Opin. Colloid Interface Sci2002 7, 21—41.

(5) Aveyard, R.; Binks, B. P.; Clint, J. H. Emulsions stabilized solely by
colloidal particlesAdv. Colloid Interface Sci2003 100-102 503-546.

(6) Nushtaeva, A. V.; Kruglyakov, P. M. Capillary pressure in thinning emulsion
film stabilized with solid particlesColloid J. 2003 65, 341—349.

(7) Arditty, S.; Whitby, C. P.; Binks, B. P.; Schmitt, V.; Leal-Calderon, F.
Some general features of limited coalescence in solid-stabilized emulEimaos.
Phys. J. E2003 11, 273-281.

(8) Kralchevsky, P. A.; Ivanov, |. B.; Ananthapadmanabhan, K. P.; Lips, A.
On the Thermodynamics of Particle-Stabilized Emulsions: Curvature Effects
and Catastrophic Phase Inversidiangmuir2005 21, 50—63.

10.1021/1a052273j CCC: $33.50

D. N.; lvanov, I. B.; Borwankar, R. P. Charging of ©\Water Interfaces Due
to Spontaneous Adsorption of Hydroxyl lonsangmuir1996 12, 2045-2051.

(10) Binks, B. P.; Lumsdon, S. O. Stability of oil-in-water emulsions stabilized
by silica particlesPhys. Chem. Chem. Phys999 1, 3007-3016.

(11) Ashby, N. P.; Binks, B. P. Pickering emulsions stabilized by Laponite
clay particlesPhys. Chem. Chem. PhyZ00Q 2, 5640-5646.

(12) Aveyard, R.; Clint, J. H.; Nees, D.; Paunov, V. N. Compression and
Structure of Monolayers of Charged Latex Particles at Air/Water and Octane/
Water InterfacesLangmuir200Q 16, 1969-1979.

(13) Aveyard, R.; Binks, B. P.; Clint, J. H.; Fletcher, P. D. I.; Horozov, T. S.;
Neumann, B.; Paunov, V. N.; Annesley, J.; Botchway, S. W.; Nees, D.; Parker,
A.W.; Ward, A. D.; Burgess, A. N. Measurement of long-range repulsive forces
between charged particles at an-oitater interfacePhys. Re. Lett 2002 88,
246102.

(14) Horozov, T. S.; Aveyard, R.; Clint, J. H.; Binks, B. P. Ord®&isorder
Transition in Monolayers of Modified Monodisperse Silica Particles at the Oetane
Water InterfaceLangmuir2003 19, 2822-2829.

(15) Stancik E. J.; Kouhkan, M.; Fuller, G. G. Coalescence of Particle-Laden
Fluid InterfacesLangmuir2004 20, 90—94.

(16) Danov, K. D.; Kralchevsky, P. A.; Boneva, M. P. Electrodipping Force
Acting on Solid Particles at a Fluid Interfadeangmuir2004 20, 6139-6151.

(17) Horozov, T. S.; Aveyard, R.; Clint, J. H. Particle Zips: Vertical Emulsion
Films with Particle Monolayers at their Surfacésingmuir 2005 21, 2330~
2341.

(18) Horozov, T. S.; Aveyard, R.; Binks, B. P.; Clint, J. H. Structure and
Stability of Silica Particle Monolayers at Horizontal and Vertical OctaWéater
InterfacesLangmuir2005 21, 7407-7412.

© 2006 American Chemical Society

Published on Web 11/23/2005



Particle—Interface Interaction in Nonpolar Media Langmuir, Vol. 22, No. 1, 20007

T z
“@ : @" phase 1
water
O Q R
'y ~
hydrophilic particl hydrophobic particl
(a)  dolileriayer repuision () image-force atiraction ~
_ _ _ s phase 2
Figure 1. (a) The double-layer repulsion between like-charged i

colloidal particles and oil drops in water medium impedes the
particle adsorption at the eilwater interface. (b) When par- o phase 3

ticles dispersed in the oil bear surface electric charges, they are

attracted by the water drops because of the image-force effect (sedigure 2. Sketch of a particle of radiu®, which is immersed in
eq 2.25). phase 2 and situated at a distars;& the boundary between phases
2 and 3. The three phases are dielectrics of constants andes,
respectively.

by the oil-water interface, as proven in the present paper.
Physically, this effect s related to the electrostatic image féfék. z
The respective energy of electrostatic attraction is much greater
than the thermal energksT (ks — Boltzmann constanfl —
temperature). This attraction is able to cause quick particle
adsorption at the surfaces of the newly formed emulsion drops
(Figure 1b) to protect the latter against coalescence and to favor
the formation of fine reverse emulsions. Analogous force that
pushes the particle into the water (electrodipping force) is
experienced also by the particles, which are attached to the
oil—water interface and form a finite contact anéfle.

The interaction between a charged particle in oil and the
oil—water interface has been theoretically described only in the
case of a point particle (charge): this is the conventional image
force20-21 Here, our aim is to develop a quantitative theory of

the particle-interface interaction in the case of a spherical particle Figure 3 Sketc_h of the coordinate systems used: Cartesian
of finite size that bears electric charge of a given surface den- coordinatesy y, 2); cylindrical coordinatésr( ¢, 2), and bipolar
sity. The problem is formulated and solved in the general case, coordinates &, 7, ¢) with unit coordinate vectors: and e,, and
where the particle and the two large phases have different di- polesA; andA-_.

electric constants. The interaction of a dielectric particle withan ] ] ]
oil—water or oil-air interface represents a special case of the discussed in section 3.2, it could be also an aqueous phase that
considered problem. may contain dissolved electrolyte. In the case of reverse emulsions

(Figure 1b), phase 2is oil, whereas phase 3 is water. The dielectric
constants of the three phases are denatgde;, and ez,

The paper is organized as follows: In section 2, we solve the
electrostatic problem and derive equations for the electrostatic .
potential and the interaction force and energy. In section 3, we feSPectively.

consider the special case when the particle has the same dielectric W€ @ssume that the charge densityat the particle surface
constant as the surrounding nonpolar phase (oil); then, the (the phase boundary between phases 1 and 2) is a known constant,

theoretical expressions are much simpler. In addition, we examine"/ereas the interface between phases 2 and 3 is not charged. (If
the effect of electrolyte concentration in the aqueous phase.PNase 3 is an aqueous electrolyte solution, the phase boundary
Section 4 is focused on the procedure for the computation of the 23 could bare surface electric charge, but the latter does not
interaction force and energy. lllustrative numerical results are fféct the particle-interface interaction; see section 3.2 and
reported and discussed in section 5. In Appendix A, it is APPendix A). The total surface charge of the partidle,is
demonstrated that the effect of electrolyte concentration in the
water phase is rather weak. Appendices B and C, containing Q= 4nRlo (2.1)

parts of_the theoretical derivations, are given as Supporting o planexy of the Cartesian coordinate system usedy( 2)

Information. coincides with the boundary between phases 2 and 2-#xés

is chosen to be the axis of rotational symmetry of the system

(Figure 2). It is convenient to also introduce an auxiliary
2.1. Electric Potential in the Three PhasesWe consider a cylindrical coordinate systent,(¢, z) with radial coordinate

spherical particle (dielectric phase 1), of radRJghat is immersed and polar anglep:

in another dielectric phase 2. The particle is situated at a surface- )

to-surface distancgto the flat interface between phases 2 and X=Trcosg,y=rsing (2.2)

3 (Figure 2). We assume that phase 3 is also dielectric, but, as

2. Electric Field and Interaction Force

However, the natural symmetry of the problem suggests
(19) Horozov, T. S.; Binks, B. P. Particle behavior at horizontal and vertical |ntr0dup|ng a bl'sphe.rlcal (prOIar) coordlnate. SyStm 90)
fluid interfaces Colloids Surf. A2005 267, 64-73. _ _ (see Figure 3), in whick: ande, denote the unit vectors along
(20) Landau, L. D.; Lifshitz, E. MElectrodynamics of Continuous Medium the respective coordinate lines. &flines are passing through
Pergamon Press: Oxford, U.K., 1960. th lesA; andA_ of the bipol dinat t hich
(21) Israelachvili, J. NIintermolecular and Surface Force&cademic Press: .e pole an - ortne .|p0 ar coordinate system, which are
London, 1992. situated symmetrically with respect to the plame= 0. The
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coordinates of the poles. are (0, 0;+a). The bipolar coordinates
are defined as follow&*23

r= aﬁsin Ez= aﬁsinhn, h= coshy — cosé (2.3)

whereh is a metric coefficient. The Lameoefficients of the
bipolar coordinate systenh, h,, andh,, are?23

(2.4)

The upper part of the axis of revolution ¥ a) corresponds
to & = 0, whereas its lover part (& z < a) corresponds t@
= m. The boundary between phases 2 and 3 (the ptane))
corresponds tg = 0. For the pole#\., we havey — +o. The
coordinate surfaces of constaptare sphere&

2

a
sintf 5

r? + (z— acothy)?= (2.5)
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<)

F= h”zgo[xn exp) +
&
Y, exp(—4i,m)]P,(cosé), A, =n+ 1/2 (2.11)

HereF stands for either of1, 9, andys; Po(n=0, 1, ...) are
the Legendre polynomiaf&;22 and X, andY, are coefficients
that have to be determined from the boundary conditions. In
particular, the electric potential should be finite at the péles
andA_:

1, — const., aty — oo (2.12)

15— const., at) — —oo (2.13)

The electric potentials should be equal at the phase boundaries
1-2 and 2-3:

Y=y aty = (2.14)

Y,=yzatn =0 (2.15)

Equation 2.5 shows that the bipolar coordinate system can be N
chosen in such a way that the particle surface corresponds to aVith the help of the boundary conditions, eqs 2-2215, from

fixed 7, viz. n = ns. Then, the parameteessandys are related
to the radiusR, and the distances,(Figure 2), by the following
expressions:

a
smh

R+ s=acothyg R (2.6)

From eq 2.6, we determine

a=[(2R+ 9)9" coshy, =1+ é

- In{l +2+ [(2 + g)g]m} @2.7)

The electric potentialg, 1, andys, in the respective three
dielectric phases, 1, 2, and 3, obey the Laplace equation

VA, =0, V2, =0, V2, =0 (2.8)

whereV2denotes the Laplace operator. (The case in which phase
3is an electrolyte solution is considered in section 3.2.) Because
our system has rotational symmetry, the solution should not
depend on the polar angle, Therefore, the Laplace operator

in bipolar coordinates 3

V2E = sin& 8F) 4 (sm& oF

a’sin g[aé( o an

When V2 is given by eq 2.9, it is knowi that the variables in

)] (2.9)

eq 2.11 we obtain

&R E

[An eXp(m'nns) + Bn] eXp(_lnﬂ)Pn(COSS)
(2.16)

Y=

th/z ©
Zo[An expi.y) + B, exp(2,m)]P(cosé)

(2.17)

th/2 o

62 n=

Y3 = (A, + By) exply)P,(cosé)  (2.18)

in which A, andB, (n =0, 1, ...) are unknown dimensionless
constants, which are to be determined from the boundary
conditions for the normal electric-field components.

We assume that the surface charge density is zero at the planar
boundary between phases 2 and 3, which leads to the following
boundary condition:

0, 03
EZW = 63% atn =0 (2.19)
Substituting eqs 2.17 and 2.18 into eq 2.19, we obtain a relation
between the constants, andB:

B,=AA, (n=0,1,...) (2.20)

the equationV%y = 0, can be separated by introducing a new in which we have introduced the notation

function, F = h'2F. Then, eq 2.9 acquires the form

h5’2 ¥E F

1 a(| g§)+——z] (2.10)

2
V= smé o&

(| i=12.3) (2.21)

€
ﬁi' €t e

Note that—1 < g < 1. Especially, we havBss — —1 for €3

In such a case, the general solution of the Laplace equation cans> ¢, (e.g., phase 3 is water and phase 2 is oil). fFgr= —1,

be presented as a series expansion:

(22) Arfken, G.Mathematical Methods for Physicist&nd ed.; Academic
Press: London, 1970.

(23) Korn, G. A.; Korn, T. M.Mathematical Handbook for Scientists and
Engineers 2nd ed.; Dover: New York, 2000.

(24) Moon, P.; Spencer, D. Eield Theory Handbook, Including Coordinate
Systems, Differential Equations, and Their Solutjéred ed.; Springer-Verlag:
New York, 1988.

eq 2.20 yieldB, = —A,, and eq 2.18 reduces ip; = 0; that
is, the electric potential is zero at the planar interface () and
inside phase 3.

The boundary condition for the normal electric-field com-
ponents at the particle surface is
€,V,) = —4mo atn = 1,

&, (€,Ve, — (2.22)
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In view of eq 2.4, eq 2.22 acquires the form see the comment after eq 4.5.) Following an approach analogous
o oy to that used in ref 20, one can obtain the electric potential in

61_1 _ 62_2 — 472 aty =y (2.23) phase 2 as a superposition of electric potentials induced by two

on on h S charges located at the axis of revolution. The first is situated at

. ] z = R + s (at the particle center), whereas the second one is
Further, we substitute eqs 2.16 and 2.17 into eq 2.23 and takep|aced az = —(R + s); that is, it is the mirror image of the

0, 1, ...) (see section 4.1 below).
2.2. Electrostatic Force and Energy.In accordance with Q 1 Bas
Newton’s third law, the electrostatic force acting on the particle, %2~ 6 [r2 Y z-R- 3)2]1/2 + [r2 Y Z+R+ s)2] 12

F,, is opposite to the force acting on the flat interfegg, between
phases 2 and 3. The same conclusion follows from the field (3.1)

theory2® The divergence of the Maxwell stress tensor is zero in

phase 2. Then, in accordance with the Gauss theorem, one obtainghe electric p_o_tential in phase 1 (inside the particle) is obt_ained
that the sum of the integrals ovBr, andS»; must be zero; that as a superposition of a constant poten@é(¢-R), and the potential

is, these two integrals are equal (by magnitude) with the opposite "duced by the image charge at= —(R + s):

signs. Therefore, we can calcul&gby integrating the Maxwell B
stress over the surfac®s that coincides with thexy-plane: P, = Q1 + 23 (3.2)
YR [P+ @E+R+99%
€ A O A A
F,= “ads:\az) T \Uax/) 3_y dSzatz=0 The electric potential in phase 3 is induced only by the original
(2.24) charge az = R+ s:
In view of eq 2.20, by substitution of eq 2.17 in eq 2.24 and 0 1+ By
integration, one can derive an exact formula for the force acting Y3=—"— 17 (3.3)
on the particle (see Appendix B in the Supporting Information): Q[+ Z-R-97]
B Qz The substitution of eq 3.1 into eq 2.24, after some transformations,
=2 1 (2.25) gives the interaction force in the form of 2.25 with= 1:
4e,(R+ 9)° ,
. B2Q

Here F, > 0 means that the phase boundaryrepels the Fo=—r— (3.4)
particle, wherea&, < 0 corresponds to attraction; the dimen- &[2(R+9)]

sionless force coefficient, is . .
: As in the case of point chardg@eq 3.4 expresses the force of

s\2 @ interaction between the original char@ and the image charge,
f,= (1 +EZ) [(4n+2)A7 — (4n+ 4)AA..] (2.26) —f23Q, which are separated at a distanc® 2{ s). In other
= words, the physical origin of the partieténterface interaction,
. . . considered inthe presentarticle, is the image-force effect. Because
The coefficientsi, can be calculated numerically, as described e gre dealing with a particle of finite size (rather than with a

in section 4. It is important to note thitdepends only on the  qint jon), the force given by eq 3.4 has a finite value at contact
dimensionless distancgR, and on the parametefs, andf PR ;

. ’ P 2 23 (ats=0). The substitution of eq 3.4 into eq 2.28 leads to eq 2.27
defined by eq 2.21.

) . . . withw=1:
In view of eq 2.25, the electrostatic energy of interaction
between the particle and phase 3 is B Qz
_ 23
) W= —»"—— (3.5)
B2Q 4e,(R+9)

w= ["F,ds= (2.27)

W
de(R+9) As it could be expected, the interaction energy also has a finite
value at contact (&t = 0). The additional multiplier§, andw
ineqs 2.25and 2.27 (in comparison with egs 3.4 and 3.5) account
for the fact that, in general, the particle may have a different

R dielectric constant from the surrounding medium, thatjsz
w=(1+ ﬁ) BE=R) (228) e
( Jor (1+9?

where the definition of the dimensionless energy coefficient,
is

It has been proven (see ref 26, p 408) that the method of
reflections cannot be applied when= ¢,. Therefore, in the
latter case, itisimpossible to obtain simple analytical expressions
like egs 3.4 and 3.5. Instead, one has to use the series, eq 2.26,
which enables one to calculate exactly the interaction force and
energy,F, andW, for €1 = ¢, (see sections 4 and 5).
] ) . . 3.2. Phase 3is Waterere, we consider the important special
3.1. Phase 3 is a Common Dielectridn the special case  case when phase 3 is water. Water always contains dissolved
wheree; = ¢,, one can determine the electric potentjgt) by ions. Even the ideal pure water has an ionic strength of 0

means of the method of reflectioffs?>(The alternative approach  gue to the inevitable Hand OH ions. The presence of ions
of Legendre-polynomial expansion, eq 2.11, gives the same result;

Inthe special case where= ¢;, the above equations considerably
simplify (see section 3.1). Numerical resultsff@ndw at various
SR, 12, and 23 are presented and discussed in section 5.

3. The Special Case; = ¢;

(26) Grinberg, G. ASelected Problems of the Mathematical Theory of Electric
(25) Happel, J.; Brenner, How Reynolds Number HydrodynamiBsentice and Magnetic Phenomen&ublishing House of the Academy of Sciences of
Hall: New York, 1965. USSR: Moscow, 1948 (in Russian).
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implies that the Laplace equatio¥i?yz = 0, must be replaced
by the Poisson equatioV?y; = —(4n/es)p, in which p is the
bulk charge density. In principle, this could affect the force and
energy coefficientsf; andw, in eqs 2.25 and 2.27.

Itis important to note that water has a high dielectric constant,
€3> €. In view of eq 2.21, this means théis is close to—1.
As discussed after eq 2.2433= —1 implies thaB, = —A,,, and
thereforey; = 0 (see eq 2.18). In other words, the electric field,

created by the charged particle into the oil (phase 2), does not

enter the water (phase 3). Actually, some weak electric field
could enter the water phase becafiggs slightly different from

—1 (for tetradecanewater at 25°C, we havec, = 2.04,¢3 =
78.2, and therf,3 = —0.95).

Thus, it turns out that the high dielectric constant of water

suppresses the penetration of the particle electric field into the
aqueous phase. Ifthe latter contains dissolved ions, the penetration

of the particle-induced electric field will be additionally
suppressed because of the Debye screening &ffelgnce, we
could expect that, if phase 3 is water, then eq 3.4 could be
expressed in the form

B 2
€[2(R+ 9)]
where
—1=<B,; = f,3~ —0.95 8.7

Ineq 3.7, the lower limitB3,3= —1, corresponds to high electrolyte
concentrations in the water{@® + s) > 1; see Appendix A)

Danav et al.

<)

[2(coshys — u)(1 + B1,C)A, - Bra Sinhy(1 + C)ID, =

(1 - ﬁlZ) Sinh’]s

1/2

n=

(coshy,—u)

in which C, = 23 exp(—24ws), Dn = An €Xplans)Pn(U), u =
cosé&, andi, = n + 1/2. Because the Legendre polynomials,
Pr(u), are orthogonal over the intervatl, 1], from eq 4.1 we
obtain a three-diagonal linear system of equations for the
coefficientsA,, n = 0, 1, ... (Appendix C in the Supporting
Information):

[1 - ﬂlZ + (1 + ﬁ12)t2 + 2[312823t3]A0 -

214 BBot)A = 2" - Bt — ) (4.2)
- 2n12(1 + ﬁlzgzstznil)Anfl +{2(1+ tz)/ln -(1- tz)ﬂlz +
[2(1+ )4, — (1 = OB B A, — 200+ 1)(1+

BiBod™ )AL = 21 = B (1 - )" (n= 1) (4.3)

in whicht = exp(—#s). Itis important to note that the asymptotic
form of eq 4.3 forn> 1 is

— 2nfA,_, +[2n+ DA+ ) = B0 — DA, -
2+ DA, ~ 2"51 — B,)(1 — " (n> 1) (4.4)

The system defined by eq 4.4 has a simple solution:

A, = 2" (n> 1) (4.5)

when the agueous phase becomes conductor of electricity (forin addition, one could check that, in the case of equal dielectric

conductors,ez — o). The upper limit,Bys = 23 ~ —0.95,
corresponds to the case of negligibly small ionic strength
(deionized waters ~ 80). Hence, the addition of electrolyte in
the aqueous phase leads to a variatioBgfn the frame of only
5%. In Appendix A, we have derived eq 3.7 for the simpler case
in which €1 = ¢, and for when the electric potential into water
is low so that the PoisserBoltzmann equation can be linear-
ized?” The general case of nonlinear electric-double-layer theory
and ¢; # ¢, demands the application of more complicated
mathematics and a numerical solution, but the result is unlikely
to differ from eq 3.7, insofar ag; > €j,€2.

In summary, the effect of electrolyte in phase 3 (waterfon
andW turns out to be relatively weak, in the frame of 5% (see
eq 3.7). In the following, we will seB,3 = —1 when phase 3
is an aqueous electrolyte solution, afigss = —0.95 for the
deionized water/oil boundary. Of cour&szis expected to vary
from —0.95 to—1 with the increase of electrolyte concentration
(see eqgs A.16 and A.17 in Appendix A). However, the general
theoretical description of this variation is mathematically
complicated and could be the subject of a separate study.

4. Determination of the CoefficientsA,

4.1. System of Equations foA,. Here, we return to the general
case in whiche; = €2 = €3, considered in section 2. After a
substitution of egs 2.16 and 2.17 into the boundary condition,
eq 2.23, and after elimination of the constaBtsby using eq
2.20, one can derive (Appendix C in the Supporting Information)

(27) Overbeek, J. Th. G. Electrochemistry of the double layeCdiloid
ScienceKruyt, H. R., Ed.; Elsevier: Amsterdam, 1953; Vol. 1.

constants of phases 1 and 2, thatdg = 0, the solution of
system 4.2-4.3 is given by eq 4.5 for ah. Then, the series in
eq 2.26 can be summed exactly and giyesl; correspondingly,
w=1ineq2.28. This results shows that eqs 3.4 and 3.5, derived
by means of the reflection method far= €, also represent the
special cases of eqs 2:28.28, which are based on series
expansions in terms of Legendre polynomials.

4.2. Principles of the Computational Procedure.The
numerical algorithm for solution of the system of eqs—4423
is the following: For a giverg/R, we determineys (andt =
exp(—7ns) from eq 2.7. Next, we choose a sufficiently large
number,N, for which we have®*! < §, whered determines
the precision of the numerical calculations. Rar N, we calculate
the coefficientsA, from the asymptotic expression, eq 4.5. For
0 < n= N -1, we determiné\, by solving exactly the three-
diagonal system of eqs 4-2.3 by using the Thomas algorithi#.
Following this numerical scheme, the solution of the system for
the coefficient®\, could be found with very high accuracy. Next,
the force is calculated from eqs 2.25 and 2.26. Finally, the
interaction energy is determined from eqs 2.27 and 2.28 by
numerical integration.

5. Numerical Results and Discussion

5.1. Interaction Energy for Typical Parameter Values.Let
us consider the following example: glass particle in tetradecane
near the tetradecansvater boundary. For this system, the surface
charge density at the partict@il interface was experimentally
determine# to beo = 71 uC/n?. We haves; = 3.97,¢, = 2.04,

(28) Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, BNémerical
Recipesin Fortran. The Art of Scientific Computifgd ed.; Cambridge University
Press: Cambridge, U.K., 1992.
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) ) ) ) Figure 5. The force coefficient,, as afunction of the dimensionless
Figure 4. Plot of the interaction energy (scaled withkgT) vs the distance /R, for fixed 23 = —1 (i.€.,e3 > €, which is satisfied
dimensionless distance/R, between a charged glass particle and  for the oil-water interface), and for varioyis, denoted in the figure.
a planar interface; phase 2 is tetradecane. The curves correspond to

different particle radiiR, denoted in the figure; the other parameter energy is due to the multiplie®¥/(1 + &/R) in eq 5.1. The fact
values are given in the text. (a) Phase 3 is water. (b) Phase 3 is air 4ot the bilogarithmic plots aversus/Rin Figure 4 are parallel

. lines for larges/R is due to the asymptotic form of eq 5.1:
andesz = 78.2, respectively, for the glass, tetradecane, and water, ! 9 1S du ymprot q

at 25°C. Then,12 = 0.32. When phase 3 is water or air, we 4n202R4ﬁ
have, respectivelyi,; = —0.95 and3.3 = +0.34. In accordance ~ BiorJR> 1 (5.2)
with eq 2.27 5,3 < 0 corresponds to attraction, wherghsg > €55
0 corresponds to repulsion between the particle and the oil
water interface. Here, we have used the fact that~ 1 for R > 1 (see the
In Figure 4, numerical results for the interaction eneiyy, ~ Subsequent figures).
scaled by the thermal energyT, are plotted versus the relative In summary, we are dealing with a significant effect, which
distance g/R, for various values of the particle radiug, the can force particles initially dispersed in the oily phase to adsorb

other parameter values have been specified above. In generalat the oi-water interface (see Figures 1b and 4a). This result
the curves in Figure 4 correspond to a strong and long-rangeis of central importance for the production of particle-stabilized
particle—interface interaction, which iattractionif phase 3 is emulsion_s. The rest of this section is focused on the behavior of
water (Figure 4a), but ieepulsionif phase 3 is air (Figure 4b).  the functionsw(s/R, f12, f23) andf(S/R, f12, f23).
For the given surface charge density € 71 uC/n?), the 5.2. Effectoffi1zin the Case Wherefzs~ —1 (e.g., Aqueous
interaction energy\V, becomes comparable to or smaller than Phase 3).As discussed above, when phase 3 is an aqueous
the thermal energiT for R < 30 nm. On the other hand, for  electrolyte solution (or whatever phase of high dielectric constant),
R > 30 nm, W strongly increases with the particle size and thenfsis close to—1. In this case, eqs 2.25 and 5.1 predict
reachedV~ 10° kgT for R= 1 um at close contact. In addition, ~ attractionbetween the particle and interface. Numerical results
the range of the interaction also strongly increases, reagtitg  for the force coefficientf, calculated as explained in section
~ 10° for R = 1 um. The strong effect of the particle radius 4.2, are shown in Figure 5.4f > ¢, thenf1, > 0, and we obtain
follows from eq 2.27, which could be expressed in the form f; > 1 (Figure 5a). In the opposite cage,< 2 andfi2 < 0, we
obtainf, < 1 (Figure 5b). If we compare the curves figrin

4n202R3ﬂ panels a and b of Figure 5, we see that the relative influence of
= ZWER 12829 (5.1) B12 onf, is greater in the case whefie, > 0. The dashed line,
&(1+9R) f,= 1, corresponds to equal dielectric constants; that is; e,

andfi2 = 0 (see eq 3.4).
Here,W(S/R, S12, f23) is a function of bounded variation (see The numerical results for the energy coefficient(see eq
below), so the major effect of the particle radius on the interaction 2.28) are shown in Figure 6. The curves in Figures 5 and 6 look
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dimensionless distancgR, for fixed 5,3 = —1 (i.e.€3> €, which

is satisfied for the oitwater interface), and for varioy, denoted Figure 7. (a) Force coefficientf,(0), and (b) energy coefficient,
in the figure. w(0), plotted vs3,, for fixed 823 = —1 ands/R= 0. The latter value

corresponds to a point contact of the spherical particle with the
similar, but the values on the ordinate axes indicate that the planar interface.

variation of 81, produces a weaker effect amin comparison - . )
- L Table 1. The Coefficients in Egs 5.5 and 5.6 for Variou
with f,. On the other hand, the general trend,a@hdwis similar: g L

both of them increase with the increasgsin, and both of them Bre a by a2 b2 a bs
tend to 1 fors/R > 1. —0.95 2.1369 1.6601 O 0 2.0006 1.7449
The deviation of, andw from 1 is the greatest at contact, that —0.5  1.8537  1.8780 0 0 1.8990 1.7392
is, ats = 0. We havef, ~ f,(0) andw ~ w(0) for R < 102 —-0.3 1.7566 19374 O 0 1.8521 1.7724
Figures 5 and 6). The dependencidg@f andw(0) on/ ~02 16997 1.9740 0 0 18259 1.7943
(see Fig ). 1he aep 12 0.1 16354 20167 O 0 1.7968 1.8185
for f23 = —1, are given in Figure 7. These dependencies are 91 14780 2.1270 O 0 17252 1.8692

accurately interpolated by means of the following expressions: 0.2  1.2296  2.3361 0.15393 1.2836 1.6808 1.8895
0.3 0.37249 3.7971 0.89831 1.8364 1.6275 1.9051

£(0)=(1— By) %1 — 0.9386,, + 0.141®,,> + 0.4 0.31101 5.1660 0.82345 1.7796 1.5635 1.9120
0.5 0.29731 6.6758 0.66725 1.6470 1.4863 1.9075
0.022¢3,,° + 0.0118,,") (5.3) 0.6 0.26771 9.1370 0.47725 1.4123 1.3938 1.8946

w(0) = (1— B, 2)—3/2(1 —1.383F,,+ 0.276()9122 + where the coefficientg(0) andw(0) have to be calculated from

3 4 egs 5.3 and 5.4, ang; is given by eq 2.7. The coefficients,
0.0541,," +0.0273,,) (5.4) by, @z, by, as, andbs are listed in Table 1 for various;.. For
- —0.95< 12 = +0.6, the accuracy of egs 5.5 and 5.6 is better
For —0.95= f1p = +0.95, the accuracy of eqs 5.3 and 5.4 iS than 1% and 0.1%, respectively. For valuespa$ that are
better than 1% and 0.1%, respectively. intermediate between those given in Table 1, the values of the

For a more convenient computation of the dependencies of coefficients a and by (i = 1,2,3) could be determined by
fARf12) andw(s/R512) (see the curves in Figures 5 and 6), we  jnterpolation.

obtained accurate interpolation formulas, as follows: At short distancess(— 0), eq 2.7 givegs— 0, and then egs
. B B . 5.5and 5.6 reduce fg=f,(0) andw=w(0), as could be expected.
f 19 =1+ [f,0) — 1] exp{&,[1 — exp(=byyJ] + In the other limit,s— o, we haveys— o, and then eqgs 5.5 and

3[1 — exp(-byJ)] — 34 (5.5) 5.6 give the correct asymptotics at long distances, fyiz. w

_ _ _ - _ =1 (see Figures 5 and 6).
W) = 1+ [w(0) — 1] exp{a5[1 — exp(=bgyJ] — 3¢ 5.3. Effect of 5,3 on the Force and Energy Coefficientsy
(5.6) and f. In general, eqs 2.25 and 2.27 predict that,ik €3 and
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Figure 8. Plot of the force coefficientf,, vs the dimensionless
distanceg/R, for various negative values gf;denoted in the figure.
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Figure 9. Plot of the force coefficientf,, vs the dimensionless
distanceg/R, for various positive values @¢hsdenoted in the figure.
(a) ﬁlZ = 0.5. (b)ﬁlg = —0.5.

P23 < 0, the interaction force iattractive, whereas, ifgp_ > €3 oil; see section 3.1). Fqzs = 0, we again havé,(0) = w(0)

andf»3 > 0, the force corresponds tepulsion Our aim here = 1; however, in this case, the force and enefgyandW, are

isto present numerical results for the force and energy coefficients,equa| to zero because of the multiplg in egs 2.25 and 2.27.

f, andw, which have been obtained by means of the exact |ngeed, from a physical viewpoint, in the latter case, there is no

computational procedure in section 4.2. The valudg®R, 12, particle-interface interaction because, at= e3, the electric

B23) andW(S/R, 12, 523) are necessary for the exact calculation  fie|q does not feel the presence of a boundary between phases

of the interaction force and energy. _ 2 and 3. Figure 10 also shows that the greatest deviations from
Figure 8 presents_numerlcal .d.ata fgversuss/R in the case the conventional image force (frof(0) = w(0) = 1) occur at

wherefzs < 0 (attraction). In addition, Figure 9 shows numerical ¢ greatest absolute valuesfb andfos.

data forf, versussRin the case whergs > 0 (repulsion). The It should be noted that the effect 83 on the forceF,, and

respective curves fan(5/R) look similar to those fof(sR), but neravW. is much stronaer that its effect on the force and ener
correspond to somewhat different absolute values. To illustrate SNErgy WV, Is much strongerthat s efiecton Ine force and energy
the effect off1s, we compare the curves calculated ffigs = 0.5 _coefﬂmentsfzandw, becausﬁ_zgfappears explicitly as a_mult|p!|er
(Figures 8a and 9a) with the respective curves calculateg or inegs 2.25 a_tnd 2.27. In addition, as demon_strated in section 3.2
= ~0.5 (Figures 8b and 9b). and Appendix A, the presence of electrolyte in the agueous phase
does not alter the overall picture: it turns out that the case in

In the case wherfi, = 0.5,f, decreases whefps increases - : . S
(Figures 8a and 9a). In contrast, b= —0.5,, increase when Whlch_ phase 3 is water and phase 2 is a r_10npo|ar liquid can be
Basincreases (Figures 8b and 9b). In all caselevels off at 1 described by the above results foandw with f23 ~ —1 (see

Figures 5-7 and eqgs 5.5 and 5.6).

for R > 1. On the other hand, f&R < 0.01,f, takes a finite )
value, f(0), corresponding to contact of the particle with the It should be noted also that here we have considered the case
oil—water interface. in which the particle approaches the flat interface at fswdace
In Figure 10, the calculated valuesfg) andw(0) are plotted charge densityo. In the case of hydrophobic dielectric particles
in oil, possible hypotheses about the origin @thave been

versus3zs for variousfy,. This figure visualizes the effect B
andp23 on themagnitudeof the force and energy coefficients.  discussed inrefs 18 and 19. The alternative case of fixed particle
surface potentiais not considered here; it could be the subject

Note thatf(0) = 1 andw(0) = 1 correspond to the conventional

image force, that is, the force experienced bgaint charge of a separate study. Note that, at fixed surface electric potential,
(rather than a particle of finite size) near the boundary between the particle-interface interaction becomes independent of the
two dielectric phases. In Figure 10, this is the caseglfer= 0 particle dielectric constant;. Consequently, the case of fixed
(the dashed horizontal line), which corresponds to a particle surface potential is physically rather different from the case of

having the same dielectric constant as the surrounding fluid (e.g.,fixed surface charge considered here.
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(a)

pRRY: : : As usual for image forces, the sign of the particieterface
12 =

|
I Prz=-088 interaction depends on the difference between the dielectric
1.75 + i T constants of phases 2 and 3. When phase 3 has a smaller dielectric
g os araction | repulss constant (e.g., when phase 3 is air), the interface repels the particle
"E‘. 150 1\ . ! (Figure 4b). In contrast, when phase 3 has a greater dielectric
8 04 | 05 constant (e.g., when phase 3 is water), the interaction is attractive
% I (Figure 4a). Thus, water drops attract charged hydrophobic
g 12 '*~5'f_h__ i 037 particles dispersed in the oily phase, and, in this way, favor the
3 "12 Mip— | = formation of reverse particle-stabilized (Pickering) emulsions
S 100 L= e O —— (Figure 1b). This could be one of the reasons for the easier
—— iy production of reverse Pickering emulsions in comparison with
I —] the production of direct ones. It should also be noted that the
0.75 1 , J, ; Jf , , J, T particle-interface interaction across the oily phase is insensitive
-1.00 075 -050 -0.25 0.00 025 050 075 1.00 to the concentration of electrolyte in the aqueous phase 3 (see
Bos sections 3.2 and Appendix A).
(b) = = = i = e e Acknowledgment. We gratefully acknowledge the support
By,=08 i e 1 of Unilever Research & Development, Trumbull, Connecticut,
g 110 ¢ attraction i repulsion i for this study.
e 0.4 ! o] Appendix A: Effect of Electrolyte in Phase 3 on the
2 105 o3 ! 1 Particle—Interface Interaction
£ 102 " T~ i = To derive eq 3.7, we will consider the simpler case where
E | 04 ——— €1 = €, and where the electric potential into water (phase 3)
e ! is low so that the PoisserBoltzmann equation can be
s [ linearized?”
i
0.95 : ] 5
€
i f | Il i ; | k V21p3 = K21/J3, K= ZZiZCi (A1)
-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 1.00 63kBT |
Bas
. - Here,k is the Debye screening parameteis the elementary
E(I)%]L:;itlo?'thzosr;ﬁ e?incilepn;;%ecxﬁg 'fﬁgnﬂg;ﬁﬂ?evyf(gg'a?:t g;? electric ghargeci andz are the concentratior)s ofthg ionic species
plotted vsfzs for variousia. and their valences, and the summation is carried out over all
ionic species in the water phase. In genepglcan be expressed
6. Summary and Conclusions in the form
Quantitative theory of the partictenterface interaction across Y3 =19t 1/33 (A.2)

a nonpolar medium is developed. We consider a spherical

dielectric particle (phase 1), which is immersed in a nonpolar in which v is the electric potential in the aqueous phase in
medium (phase 2), near its boundary with a third dielectric medium the absence of the particle (phase 1 in Figure 2), wiids
(phase 3) (see Figure 2). This interaction originates from electric the electric field induced by this particle into the aqueous
charges at the interface particle/nonpolar phase (e.g., particle/phase. Correspondingly;o and s obey eq A.1 and the fol-

oil). The theoretical problem is solved exactly, in terms of |owing boundary conditions at the interface between phases 2
Legendre polynomials, for arbitrary values of the dielectric and 3:

constants of the three phases. As a result, expressions for

calculating the interaction force and energy, eqgs 2.25 and 2.27, LT 81];3 Y,

are derived. These expressions generalize the known theory of €5, — Mopande - =€ —-atz=0 (A3)
the electrostatic image force (acting on point charges) to the case

of particles that have finite size, uniform surface charge density, Here 4,5 is the surface electric charge density at the boundary

and specific dielectric constan¢;. The deviation from the 2—3. Thus, forpo(2), we will obtain the conventional expression

conventional image-force interaction is considerable at particle- for the electric potential of a planar electric double layer of surface
to-interface distances smaller than the particle radiws L and charges,32” On the other hand% is independent 0f. I

w = 1 for ¥R < 1; see Figures 5, 6, and-80). addition, we will seeky, andy; in the form
For typical parameter values (glass or silica particle immersed

inliquid paraffin), the image-force interaction becomes significant _Q 1 iy A4
for particles of radiu®k > 30 nm (see Figure 4). Of course, if V2= € [r2 +(z— b)z] RRE (A-4)
the surface charge density is greater, the effect will become

significant for smaller particles. For a fixed relative particle- P, = Q1 + 1, (A.5)

to-interface distance/R), the respective force and energy increase
with the cube of the particle radius. In general, this is a strong
and long-range interaction. For example, for micrometer-sized whereb = R + s, andy), obeys the Laplace equatio¥izy, =
particles, the interaction energy could be on the order k3D 0. In addition, we havevZys = «%ps. To satisfy the latter
at close contact, whereas the interaction range is ab&pttticle equations, in view of the geometry of the system, we will seek
radii (Figure 4). 1 and s in the form of Hankel transforms:
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V= [ Cre  y(kn)kak (A.6)

Ps= [, Ce(knkdk, g = (K + k) (A7)

Jois the Bessel function of order zero, abghindCs are constants
that have to be determined from the boundary conditions. In
view of eq A.4, the boundary conditions = 3, atz= 0, and

eq A.3 acquire the form

Q 1

P (I’2+—l)2)1/2 + 9, =1y, (atz=0) (A.8)
Qb Y, _ Y5 _
i Tz G @270 (A9)

The first terms in the left-hand side of eqs A.8 and A.9 have the
following Hankel transforms:

1
(r2+ b2)1/2
_ b
(rZ + b2)3/2

= [ e *3y(kr)dk (A.10)

= [ e P Jy(kr)kdk (A.11)

Equation A.11 can be derived by the differentiation of eq A.10
with respect td. With the help of eqs A.6, A.7, A.10,and A.11,
we obtain the Hankel transforms of the boundary conditions, eqs
A.8 and A.9:

N4k, = kG, (A.12)
2

Qe ™~ kG, = eqC, (A.13)
From egs A.12 and A.13, we determi@ and substitute the
result into eq A.6:

o €30 T €K —(b+z)k
53q +62 Jkndk  (A.14)
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Furthermore, to calculate the forEgacting on the particle, we
have to substitute eq A.4, along with eq A.14, into eq 2.24. The
same result can be obtained in the following simpler way: Note
that the first term in eq A.4 is the electric potential created by
a point charge of magnitud@situated az=b. The second term

in eq A.4 represents the potential created by the image charge.
Then, the force of interaction between the original ch@gad

the respective image charge is

N,
Q_|r =0z=b

(A.15)

By substitution of eq A.14 into eq A.15 and after some
transformations, we obtain

2

F,= BZS’ BZ3

Bar1+ Cyy (A.16)

z

4e b’

Jo

in whichu = 2bk When there is no electrolyte in phase 3, then
k=0, Cp3 =0, andB,3 = f323. On the other hand, at sufficiently
large electrolyte concentrations, we haw® 2> 1. In this limit,

for finite u, the fraction in the integrand of eq A.17 is equal to
1, whereas, at greater the integrand itself is zero because of
the multiplier €Y. Thus, we obtain

2¢, fw o
0

€3 €
Substitutings,sfrom eq 2.21 an€,3from eq A.18 into eq A. 16,
we obtainB,3 = —1. In this way, we confirm the validity of eq
3.7.

2¢,

€3~ €,

(U2 + (2cb)2 ™ + e,ule,

e “udu (A.17)

2¢,
for 2«b— 0
€37 €

Cys— udu = (A.18)

2

Supporting Information Available: Expression for the electric
force acting on the particle (Appendix B) and the recurrence formula
for the coefficientsA, (Appendix C). This material is available free of
charge via the Internet at http://pubs.acs.org.
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