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Reconstruction of the electric charge density in thin films from
the contrast transfer function measurements
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Abstract

The radial distribution of the beam-induced charge in thin films is investigated using the contrast transfer properties
of the transmission electron microscope. The phase shift due to charging is measured as the phase difference between the
contrast transfer functions of two photos taken with and without film at the back focal plane. Solving the inverse

Laplace problem with this input data recovers the charge density of the measured film. The electric potential function in
the whole area is reconstructed using the boundary integral method and the analytical solution of the Laplace equation
for the electric potential is induced from unit step-wise surface charge. The phase shift of electron waves is derived in a

weak lens approximation. In this way, the radial dependence of the charge density and the magnitude of the
electrostatic potential at the thin film are obtained. The surface charge density reaches quasi-equilibrium state after the
first 30min of the electron beam pre-irradiation. The hydrocarbon contamination layer on the surface of the film is

considered to be the main source of charging. An explanation of the qualitative behavior of the charge density, based on
the contamination diffusion theory, is proposed. r 2002 Elsevier Science B.V. All rights reserved.

PACS: 61.16.Bg; 41.20.Cv
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1. Introduction

The electron beam induced charging in thin
material films is a well-known phenomenon [1].
The problem, related to scanning electron micro-
scopy (SEM), is discussed in Ref. [2] and the
different conditions in the transmission electron

microscope (TEM) are the subject of investigation
in Ref. [3]. Non-conductive materials under high-
energy electron bombardment are usually posi-
tively charged. This is due to the absence of
conduction electrons to compensate for the
emitted secondary and Auger electrons with yield
higher than unity (i.e. for each trapped incident
electron more than one is emitted). The trapped
charge electrostatically interacts with the observa-
tion beam and in most cases has negative effect on
the system performance.

Charging of non-conductive specimens may
result in image deterioration [4] as well as specimen

*Corresponding author. Tel: +81-564-55-7811; fax: +81-

564-52-7913.

E-mail address: nagayama@nips.ac.jp (K. Nagayama).
1On temporary leave from the Laboratory of Chemical

Physics Engineering, Sofia University, 1 J. Bourchier Avenue,

1164 Sofia, Bulgaria.

0304-3991/02/$ - see front matter r 2002 Elsevier Science B.V. All rights reserved.

PII: S 0 3 0 4 - 3 9 9 1 ( 0 1 ) 0 0 1 4 3 - 7



damage [3]. Conductive surfaces, which are subject
to electron bombardment inside the electron-
optical system (specimen support film, apertures,
phase plates, sample holder, etc.), may be covered
by non-conductive contaminants [5–9]. This can
also give rise to charging which in turn degrades
the system performance.

One application, where electron-induced char-
ging is employed, is the electrostatic phase plate
proposed by Unwin [10], where the potential
distribution produced by charging of the central
portion of thin thread is used as electrostatic lens.
Recently, based on the idea of complex observa-
tion [11] for improvement of images, application
of the Zernike phase plate to the TEM was
reported [12]. The authors conclude that the major
practical problem in such application is the
electrostatic charging of the phase plate.

There are numerous experimental works utiliz-
ing electron holography in which the charging of
dielectric spheres, as well as electric potentials and
magnetic fields in solids, have been investigated
[13–16]. Innovative approach is used in Ref. [4] for
the investigation on the charging of biological
cryo-samples. The change of the beam diameter
and defocused diffraction observation after irra-
diation of a small area are used for quantification
of the charge magnitude.

A new experimental technique for the measure-
ment of the electron wave phase shift due to
charging is described in Ref. [17]. Using the fact
that the electron waves traveling through electro-
static field experience phase shift, the method
exploits the phase contrast transfer properties of
the TEM.

The theoretical modeling of the phase shift of
electron waves is based on the numerical solution
of the Laplace equation for the electric potential
using various geometries of walls and boundary
conditions for the electric potential at them
[1,2,18,19]. Matsumoto and Tonomura [20] proved
from the solution of the Laplace equation that the
phase shift, which is proportional to the potential
integrated along the optical axis, is constant inside
the ring of a Boersch phase plate. For the case of
charging effects in thin film phase plates and thin
foil lenses, the problem of electron phase shift
determination is solved in Ref. [17]. The influence

of the geometry of the aperture and the size of the
central hole in the case of Zernike phase plate is
taken into account in a recent work [21]. Similar
problems appear when a foil lens is applied after
the objective lens of a conventional TEM for
reduction of the spherical aberration [22,23].

All these theoretical works do not give an idea
about the solution of the inverse Laplace problem,
which is important for the reconstruction of
the physical parameters from experimental data.
From a mathematical viewpoint, the solution of
the inverse Laplace problem is much easier if
the boundary conditions for the potential at the
surfaces are postulated. Then for example,
the surface potential at the irradiated film can be
reconstructed. Unfortunately, this solution will
not be a great success because in order to find the
surface charge, the second derivative from the
reconstructed data has to be taken. It is a well-
known fact that the error in the second derivative
of experimental curves is very large and some
times it is not possible to extract any information.
Therefore, the inverse Laplace problem has to be
solved for the direct reconstruction of the surface
charge distribution.

The article is outlined as follows. In Section 2,
the experimental results for the phase difference
between the contrast transfer functions (CTFs) of
two photos taken with and without film at the
back focal plane are described. The measured
normalized electron beam intensity gives addi-
tional information about the geometry of the
charging area. The solution of the inverse Laplace
problem for the reconstruction of the electric
charge density is developed in Section 3. The
phase shift of electron waves is derived in a weak
lens approximation. With this method, the radial
dependence of the charge density and the magni-
tude of the electrostatic potential at the thin film
are obtained in Section 4. Finally, in Section 5 we
draw some conclusions.

2. Experimental data

A sketch of the investigated system is shown in
Fig. 1. Thin material film is supported on an
aperture with radius ra situated at the back-focal
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plane of the objective lens. The aperture is
centered relative to the optical axis so that the
main beam illuminates a small area around the
center of the film. The size of the illuminated area
can be varied by shifting the aperture along the
optical axis (the z-axis in Fig. 1) thus changing the
focus of the zero-diffraction spot on the film. Due
to the electron irradiation, the film is charged
forming a three-dimensional electrostatic potential
distribution in the surrounding space. The poten-
tial is assumed to be zero at the aperture surfaces.
The surface potential of the film in the ring area
between rc and ra is considered to be zero too (see
the explanation in Ref. [17]). The electrostatic field
causes a phase shift to the electron waves, which
combined with the one due to defocus and
spherical aberration determines the CTF of the
microscope. In order to measure only the phase
shift due to charging, two photos are taken at the
same defocusFone with film and one without film
at the back-focal plane. The phase shift due to
defocus and spherical aberration is determined
from the CTF in the second photo. Then it is
subtracted from the phase shift in the CTF of the
first photo thus leaving only the one due to
charging. The detailed description of the proce-
dure is given in Ref. [17].

The extraction of the phase shift due to charging
is illustrated in Fig. 2. The phase shift from each
photo is extracted by fitting the positions of the

extrema in the rotationally averaged CTF profile.
The phase step between two adjacent extrema
(minimum and maximum) is p=2: In our experi-
ments, the material film is usually charged
positively due to the emission of secondary
electrons exceeding the amount of the captured.
This gives effect similar to overfocusing because
the central portion of the electron wave at the
back-focal plane retards relatively to the outer
part. Taking the photos at overfocus condition
(defocus o0) gives the advantage of easier
processing of the data. In this case, the phase shift
in the CTFs is positive and it increases mono-
tonously.

For our experiments, we used JEOL JEM-
4010N transmission electron microscope with
LaB6 gun operated at 300 kV (CS ¼ 3mm).
Amorphous carbon film with thickness 3271 nm
was prepared by vacuum evaporation on freshly
cleaved mica, floated on water and transferred on
standard 50 mm molybdenum apertures. The aper-
tures were then placed in the objective lens
aperture holder and inserted into the microscope.
The aperture holder was positioned slightly
below the back-focal plane giving more spread

Fig. 1. A sketch of the investigated system.
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Fig. 2. Illustration of the phase shift due to charging extrac-

tion. The total phase shift is from the CTF of a photo taken
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central beam on the film. In order to reduce the
effects of contamination, we used the microscope’s
built-in anti-contamination device in all experi-
ments.

In our trial experiments, we observed a change
in the charging properties of the film due to the
irradiation of the film by the electron beam. In the
literature, the characteristic time for the charge to
reach equilibrium is given in the order of several
seconds [1]. We could not observe this initial
charge buildup as it is too fast for our experi-
mental technique. However, a decrease in the
change magnitude was observed after the film was
irradiated for minutes. In order to investigate this
effect, three measurements of the phase shift due to
the charging were performedFwithout pre-irra-
diation, after 30min of pre-irradiation, and after
30 more minutes or a total of 60min of pre-
irradiation. Each measurement consisted of four
photos: two defocus values and two photos at each
defocusFone with film and one without film at
the back-focal plane. Combining the data from
several defocuses increases the number of data
points thus improving the statistics. The pre-
irradiation was performed by spreading of the
electron beam so that the whole aperture opening
to be covered by the beam. Pre-irradiation of
30min gives a total dose of around 2000 e�/nm2 to
the film. After each pre-irradiation, the aperture is
retracted and left for 5min outside the beam. This
procedure is used for temperature stabilization and
relaxation of short-time processes before the
photos are taken. The photographic exposure
was 2 s with a beam current of around
6� 10�9A (measured with the microscope’s
built-in electrometer).

The charge distribution of the measured film is
expected to correlate with the radial dependence of
the electron beam intensity. Hence, we pay a
special attention for the measurement of the beam
intensity distribution. The beam profile at the film
was measured in diffraction mode by focusing on
the aperture and taking a snapshot with an inline
2K� 2K CCD camera. The CCD camera was not
used for the phase shift measurement as it offers
much lower total pixel number compared to the
photographic film (i.e. lower signal-to-noise ratio
in the CTF data).

The results for the phase shifts from the three
measurements are given in Fig. 3. In each figure,
the measured beam profile normalized through its
maximum intensity is also plotted. The illustrated
phase shift dataset is a combination of measure-
ments at two defocusesFopen and filled symbols.
The corresponding values of the defocuses are
given in the legends of Figs. 3a–c. It is seen from
Figs. 3a–c that the difference between the experi-
mental points, obtained at the two defocuses, is
small. The dashed line in Figs. 3a–c represents the
best polynomial fit for each dataset. We used only
polynomials of even powers of the radial distance.
This requirement comes from the symmetry of the
Laplace problem in cylindrical coordinates (see
Section 4 for details about the data processing).
The final conclusion from the experimental data is
that: the first pre-irradiation (30min) reduces the
phase shift due to charging about 2 times (compare
Figs. 3a and b); further irradiation has no sig-
nificant effect on the phase shift (compare Figs. 3b
and c).

The phase shift measurements give some quan-
titative information about the magnitude of the
total charge trapped in the specimen. The larger
the phase shift due to charging the larger the total
charge in the specimen. Moreover, the radial
dependence of the measured phase shift contains
information about the radial distribution of this
charge. To extract this information, the inverse
Laplace problem has to be solved.

3. Theoretical model for the reconstruction of the

film charge density

In order to reconstruct the film charge density r
from the experimental data, presented in Section 2,
the inverse Laplace problem for the electric
potential function is solved. We will consider the
case of axial symmetry and thin films when r
depends only on the radial coordinate r: The
electrostatic potential function at the phase plate
U is a solution of the one-dimensional Poisson
equation [1]

1

r

d

dr
r
dU

dr

� �
¼ �

r
e0er

for 0prprc; ð1Þ
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where e0 is the dielectric constant, er is the relative
dielectric permittivity of the film and rc is the
radius of the boundary between the conductive
and charged film parts. Generally, rc should be
equal to the radius of the aperture ra; but the
experimental results reported in Ref. [17] show
that in some cases rcora: In such cases, the
charging occurs mainly at the surface of the film
where some contamination could reside. Then the
film is assumed to be conducting and the
contamination layer acts as an insulating covering.

We will consider the spatial dependence of the
electrostatic potential function, Vðr; zÞ; in the case
of axial symmetry, where the vertical axis Oz of the
cylindrical coordinate system coincides with the
axis of symmetry and the film coincides with the
zero plane, z ¼ 0 (see Fig. 1). The film separates
the calculation area into two parts. The semi-
infinite region above the aperture, called here as

‘‘area I’’, is described by zX0: The region below
the film is a cylinder with radius ra and depth da;
given by 0prpra and �dapzp0; called ‘‘area II’’.
The typical apertures used in the TEM have depths
more than 2 times larger than diameters. There-
fore, the assumption that the phase shift of the
electron wave does not depend on the aperture
depth can be applied. In the case of axial
symmetry, the electrostatic potential function V
is a solution of the two-dimensional Laplace
equation [2]

1

r

q
qr

r
qV
qr

� �
þ

q2V
qz2

¼ 0 ð2Þ

in the working areas I and II. The partial
differential Eq. (2) is solved using Eq. (1) and the
boundary conditions that at the aperture wall the
electrostatic potential function is zero and it
vanishes at infinity.
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Fig. 3. Experimental data for the measured phase shift due to charging after different pre-irradiation times: (a) without pre-irradiation;

(b) after 30min of pre-irradiation; and (c) after 60min of pre-irradiation. The solid line is the beam intensity profile. The dashed lines

are the best polynomial approximations of the data.
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Knowing the electric potential in the whole
region, the phase shift j of the electron wave due
to the charging of the film can be estimated in a
weak lens approximation [17,20,21] as

jðrÞ ¼ �p
1þ 2aU0

1þ aU0

1

lU0

Z
N

�N

Vðr; zÞ dzþ jf ðrÞ; ð3Þ

where l is the electron wavelength, U0 is the
accelerating voltage, and a ¼ 0:9785�10�6 V�1: In
Eq. (3), jf ðrÞ is the phase shift of the electron wave
corresponding to the internal potential Vin and the
surface potential UðrÞ: jf ðrÞ is calculated using the
simple formula

jf ðrÞ ¼ �p
1þ 2aU0

1þ aU0

h

lU0
½UðrÞ þ Vin�: ð4Þ

The internal potential Vin is an intrinsic property
of the specimen material. As it was shown in the
literature [17,21] for thin films, the phase shift
calculated from the electrostatic potential in the
working area is 2 orders of magnitude larger than
the part of jf corresponding to the surface
potential U: (The typical thickness of the film is
hE30 nm and the radius of the electron beam is in
the range 5–10 mm.) Therefore, the integral in
Eq. (3) should give the radial dependence of j;
shown in Fig. 3.

Problems (1)–(3) have no analytical solution
and the classical numerical methods are also
not applicable [24]. For that reason we will
use the idea of the boundary integral method
[24]. Following this idea, the interval [0, rc] is
divided into N subintervals by points r0 	
0; r1;y; rN 	 rc; The unknown charge density
function r divided by the relative permittivity er
is represented as a sum of unit step-wise model
functions (see Fig. 4) with amplitudes rk 	
rðrkÞ=erðrkÞ; k ¼ 1; 2;y;N: Then the surface po-
tential function Uk which corresponds to the k-
step-wise charge function is a solution of the one-
dimensional Eq. (1). The final results for U1ðrÞ
read as

4e0U1

r1r
2
1

¼ 1þ 2 ln
rc
r1

� �
�

r2

r21
for 0prpr1;

2e0U1

r1r
2
1

¼ ln
rc
r

� �
for r1prprc; ð5Þ

and for all other surface potential functions UkðrÞ
(k ¼ 2; 3;y;N)

4e0Uk

rkðr
2
k � r2k�1Þ

¼ 1þ
2r2k

r2k � r2k�1

ln
rc
rk

� �
þ

2r2k�1

r2k � r2k�1

ln
rk�1

rc

� �

for 0prprk�1;

4e0Uk

rkðr
2
k � r2k�1Þ

¼
r2k � r2

r2k � r2k�1

þ
2r2k

r2k � r2k�1

ln
rc
rk

� �

þ
2r2k�1

r2k � r2k�1

ln
r

rc

� �
for rk�1prprk;

2e0Uk

rkðr
2
k � r2k�1Þ

¼ ln
rc
r

� �
for rkprprc: ð6Þ

Because of the linearity of the Laplace equation
(2), the solution of the problem for the electric
potential function can be presented as a super-
position of the simpler problems, corresponding to
each step-wise charge function. This model gives a
very high efficiency of the numerical computations
only when the simpler problem has an analytical
solution [24]. Otherwise, the numerical method is
equivalent to the classical difference methods.
Fortunately, the particular Laplace problems
have simple solutions. For the first surface

Fig. 4. Illustration of the step-wise charge density approach.

For each charge step function, the surface potential is

calculated and then used as boundary condition for the Laplace

problem.
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potential function, U1ðrÞ; the corresponding
space dependence of the electric potential
function V1ðr; zÞ and the corresponding radial
dependence of the phase shift j1ðrÞ are reported
in Ref. [17].

The analytical solution of the Laplace equation
in the areas I and II are different because of the
different boundary conditions at the aperture wall.
In area I, the general solution of Eq. (2) is
presented, applying the Fourier–Bessel integral
transformation [2], as

Vk ¼
rkðr

2
k � r2k�1Þ
4e0

�
Z

N

0

*UkðsÞexp �s
z

rc

� �
J0 s

r

rc

� �
s ds; ð7Þ

where Jn is the Bessel function of the nth order,
*UkðsÞ is the Fourier–Bessel transform of the
dimensionless electrostatic potential function at
the zero plane, and Vkðr; zÞ is the electrostatic
potential function corresponding to the k-step-
wise charge distribution. The negative sign in the
exponent of solution (7) is used in order to satisfy
the boundary condition at infinity, i.e. the electro-
static potential function is assumed to be zero at
z-N: If the boundary condition (6) is substituted
into the general solution (7) and the inverse
Fourier–Bessel transformation is taken, then the
analytical result for the image *UkðsÞ can be
calculated. Using the similar mathematical proce-
dure as in Refs. [17,21], the final result can be
written in the following form

*UkðsÞ ¼
2

s2

(
r2k

r2k � r2k�1

J2 s
rk
rc

� �
þ J0 s

rk
rc

� �� �

�
r2k�1

r2k � r2k�1

J2 s
rk�1

rc

� �
þ J0 s

rk�1

rc

� �� �

� J0ðsÞ

)
ð8Þ

for k ¼ 1; 2;y;N: For k ¼ 1; r0 ¼ 0; and r1 ¼ a;
where a is the measure of the electron beam radius
used in Ref. [17], formula (8) gives the respective
result for the Fourier–Bessel image from Ref. [17].

In area II, the general solution of the Laplace
equation (2) for the electrostatic potential

function Vkðr; zÞ is presented as a Fourier–Bessel
series [2]

Vk ¼
rkðr

2
k � r2k�1Þ
4e0

XN
i¼1

Aki exp ai
z

ra

� �
J0 ai

r

ra

� �
;

ð9Þ

where ai is the ith zero of the Bessel function J0;
i.e. J0ðaiÞ ¼ 0 and Aki are constants, which are
determined from the boundary condition at the
film surface. This form of the solution obeys the
boundary conditions at the aperture wall and at
infinity (see Ref. [17]). For the constants Aki after
the substitution of Eq. (6) into Eq. (9) and taking
into account the orthogonality of the Bessel
functions with respect to their zeros, the following
relationship is derived

Aki ¼
4

a2i J
2
1 ðaiÞ

�
r2k

r2k � r2k�1

J2 ai
rk
ra

� �
þ J0 ai

rk
ra

� �� ��

�
r2k�1

r2k � r2k�1

J2 ai
rk�1

ra

� �
þ J0 ai

rk�1

ra

� �� �

�J0 ai
rc
ra

� ��
; ð10Þ

for k ¼ 1; 2;y;N and i ¼ 1; 2;y:For k ¼ 1; r0 ¼
0; and r1 ¼ a; formula (10) gives the respective
result for the coefficients of the Fourier–Bessel
series from Ref. [17].

Because of the linearity of the problem, the main
part of the phase shift of electron waves due to the
charging of the film can be presented as a
superposition of the phase shifts jk corresponding
to each k-step-wise charge distribution. Therefore,

j ¼ j1 þyþ jN ;

jkðrÞ ¼ �p
1þ 2aU0

1þ aU0

1

lU0

Z
N

�N

Vkðr; zÞ dz: ð11Þ

If the general solutions (7) and (9) are substituted
into Eq. (11), the phase shift function jk can be
calculated as

jkðrÞ ¼ p
1þ 2aU0

1þ aU0

raðr2k � r2k�1Þ
2lU0

ð fI;k þ fII;kÞrk; ð12Þ
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where the dimensionless phase shift factors of
areas I and II are fI;k and fII;k; respectively. The
phase shift factors are calculated from the relation-
ships

fI;k ¼ �
rc
2ra

Z
N

0

*UkðsÞJ0 s
r

rc

� �
s ds;

fII;k ¼ �
1

2

XN
i¼1

Aki

ai
J0 ai

r

ra

� �
: ð13Þ

The integral, appearing in Eq. (13) has an analy-
tical form, which is more convenient for the
numerical calculations than the integral represen-
tation (see Appendix A).

The function multiplying rk in Eq. (12) corre-
sponds to the unit charge step-wise distribution
and they are universal for the problem. Therefore,
if we know the experimental data for the phase
shift (see Fig. 3), the inverse Laplace problem is
transformed to a simple linear optimization
procedure for the amplitudes rk:

4. Results and discussions

Our numerical investigation shows that even six
intervals of the charge density are enough to
achieve good agreement between the experimental
points and the theoretical phase shift function. The
numerical results for the phase shift function in the
case of Fig. 3a and six charge intervals are plotted
in Fig. 5a. Therein, the best polynomial fit of the
experimental data is also drawn. The difference
between them is very small and practically both
curves coincide. The corresponding charge density
step-wise functions are illustrated in Fig. 5b (bar
graph). Further increase of the number of intervals
N leads only to the appearance of false oscillations
in the final results because the procedure assumes
precise input data. In order to find a smooth
charge density distribution, one can interpolate the
found six steps (Fig. 5b). This way is not prefer-
able because we do not have any prior knowledge
of the behavior of the charge density. The other
variant to receive a smooth charge density
distribution is to approximate the original experi-
mental data with a smooth curve. Then substitut-

ing this curve (shown in Fig. 3a) as input data we
recover the charge density distribution represented
by a large number of intervals. The resulting
charge density function is plotted in Fig. 5b (solid
line). It is well illustrated that the solid line follows
the results from the six charge-step reconstruction.
From our viewpoint, interpolation of the original
data is more physical because the decision about
the quality of the approximation in the experi-
mental data space is easier. It is important to know
that in the case of axial symmetry, the solutions
depend on r2 and the interpolation of the
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tion curve. (b) Radial charge density distributions. Both results

are practically the same with the polynomial approximation

method providing much smoother results (more points).

K. Danov et al. / Ultramicroscopy 90 (2002) 85–9592



experimental data has to be done also as a
function of r2: In all cases calculated below, we
compared the results from both approaches and
found a good agreement between them (similar to
that shown in Fig. 5).

The calculated distributions of the electric
potential at the zero plane are plotted in Fig. 6a.
The different style of lines corresponds to the
experimental data for different pre-irradiation
times (see Figs. 3a–c). The calculated radius
at which the surface potential becomes zero is
about 19 mm in all cases. The surface potential
is positive which means that the irradiated film is
positively charged. The magnitude of the surface
potential at the center of the film is very low, about
100mV. It drops down with increasing of the
radial distance for all experiments. The surface
potential changes significantly after the first 30min

of the pre-irradiation. Its maximum in the center
of the electron beam decreases from 176 to
101mV. Pre-irradiating the film for 30 more
minutes (or total of 60min) results in a much
smaller change of the surface potential maximum
(it drops to 92.6mV). This indicates that the
system approaches equilibrium and further pre-
irradiation will not significantly influence the
surface potential. Rough estimation of the poten-
tial due to DC resistivity of the material using the
following parameters: 20% inelastic scattering (see
Ref. [12]), 4.0 emitted electrons per inelastic event,
1.64� 0.10�5Om specific resistivity (bulk gra-
phite); gives 0.7 mV in the center of the film. The
measured potential of about 100mV after pre-
irradiation is about 5 orders higher in magnitude.
Such a big difference cannot be explained by
reduced conductivity of the film due to its thinness.
Here, we can draw the conclusion that the main
origin of the charging is the contamination layer
on the surface of the film. It is important to note
that the shape of the curves for the surface
potential is similar to the one for the phase shift.
Therefore, the surface potential distribution is not
giving much more information about the charging
effect.

The reconstructed charge density, rk 	 rðrkÞ=
erðrkÞ; distributions from the experimental data are
plotted in Fig. 6b. For better illustration of the
correlation between the charge density distribution
and the electron beam intensity, the measured
normalized intensity is also given in Fig. 6b. It
should be noted that the material properties of the
film and the real charge density are not known.
They both can vary as a function of the electron
beam intensity and the time of pre-irradiation.
Therefore, we can make quantitative conclusions
only for the ratio rk 	 rðrkÞ=erðrkÞ; which we call
‘‘charge density’’. The radial distributions of the
charge density without pre-irradiation and after 30
and/or 60min of pre-irradiation are extremely
different (Fig. 6b). Without pre-irradiation, the
charged area is larger than in the other two cases
and the charge density distribution is more spread.
Also, there is no correlation between the charge
density and the electron beam radial dependencies.
After the pre-irradiation, the charge distribution
becomes narrower and in the central part of the
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Fig. 6. Results for the reconstructed surface potential (a) and

charge density (b) distributions. In each plot, the result for the

three measurements (without pre-irradiation, after 30min of

pre-irradiation, and after 60min of pre-irradiation) together

with the electron beam intensity profile are plotted.

K. Danov et al. / Ultramicroscopy 90 (2002) 85–95 93



film it correlates very well with the electron beam
profile.

For this complex behavior of the charge density,
a simple physical explanation could be given if the
dielectric permittivity is constant erðrkÞ ¼ er [5,8,9].
We assume that there is a uniform contamination
layer residing on the film surface before the first
measurement. As a rule, the intensity of the
electron beam does not change significantly
between the different measurements. The following
three processes take place: adsorption/desorption
of species on/from the film surfaces, induction of
surface charge due to the irradiation, and surface
charge diffusion. The diffusion of the charge due to
the high mobility of the molecules in the contam-
ination layer results in dispersed charge distribu-
tion in the first measurement. The pre-irradiation
has the effect of ‘‘fixation’’ of the hydrocarbon
molecules adsorbed on the surface. The second
measurement shows localization of the charge
around the beam with pronounced ‘‘bump’’ close
to the beam edge. This bump is a result of newly
adsorbed and diffusing molecules on the surface
coming into the vicinity of the irradiated area and
being ionized. Such ring-type contamination in
the case of uniform beam intensity is described in
Ref. [8].

If the experimental system is well defined, such
as, uniform film without any contamination on
the surface, known dielectric permittivity of the
material, known electrical conductivity of the
material, etc. this technique can provide much
more quantitative data (e.g. absolute charge
density distribution, secondary electron yield,
etc.). Various parameters could be varied like
beam size, beam intensity, film thickness, etc. and
their effect on the above mentioned quantities
observed.

5. Conclusion

The phase shift due to charging of amorphous
carbon film (thickness 32 nm) is measured using
the contrast transfer properties of the TEM. The
effect of the electron bombardment on the char-
ging is investigated by measurements after differ-
ent pre-irradiation times (without pre-irradiation,

after 30min, and 60min). Each dataset for the
phase shift is composed from two photos taken at
different defocuses. The measured phase shift at a
given pre-irradiation time does not depend on the
defocus and no systematic error is observed in
the experiments. The experimental results show
that the phase shift reduces about 2 times after
the first electron beam pre-irradiation. After the
second pre-irradiation, significant change of the
phase shift was not observed. The charging
properties of the film are reaching a quasi-
equilibrium state.

To obtain the radial dependence of the charge
density in the film, the inverse Laplace problem for
the electric potential function is solved. The
appropriate boundary conditions following from
the geometry of the experimental setup are used.
The boundary integral method developed for
step-wise charge density functions gives analytical
solutions for the phase shift distribution.
This approach provides numerical scheme with
high efficiency for processing of the experimental
data.

For each experimental dataset, the surface
potential and the charge density distributions are
recovered. The potential is positive and the film is
positively charged. The behavior of the surface
potential is similar to that of the phase shift. After
30min of pre-irradiation, its maximum value
drops from 176 to 101mV and after that it does
not change significantly. The main origin of the
charging is considered to be the contamination
layer on the surface of the film. The calculated
distribution of the surface charge density is
broader without pre-irradiation. The electron
beam treatment results in a localization of the
surface charge in an area slightly larger than
the electron beam. The recovered distributions of
the charge density after the pre-irradiation follow
the measured electron beam intensity profile for
small radial distances. The measurements after
pre-irradiation show pronounced bump close to
the beam edge.

The behavior of the charging (the localization,
the bump, and the time dependence) can be
explained by the contamination diffusion theory
[5,8]. The quantitative investigation of these effects
is a subject of future work.
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Appendix A. Calculation of the phase shift

geometrical function, fI;kðrÞ

If the formula for the dimensionless Fourier–
Bessel image (8) is substituted into the result for
the phase shift geometrical function (13), a sum of
the Weber–Schafheitlin type integrals [25] is
obtained. They can be evaluated in a close
analytical form as

fI;k ¼ Gkðr; rkÞ � Gkðr; rk�1Þ �HðrÞ; ðA:1Þ

where the functions Gk and H are the combina-
tions of the classical hypergeometric function 2F1:
The final form of the function H is

HðrÞ ¼
rc
ra

2F1 �
1

2
;�

1

2
; 1;

r2

r2c

� �
for 0prprc; ðA:2Þ

HðrÞ ¼
r

ra
2F1 �

1

2
;�

1

2
; 1;

r2c
r2

� �
for rcprpra:

ðA:3Þ

The function Gk in the interval 0prpx is defined
as

Gkðr; xÞ ¼ �
x3

3raðr2k � r2k�1Þ
2F1 �

3

2
;
1

2
; 1;

r2

x2

� �

þ
x3

raðr2k � r2k�1Þ
2F1 �

1

2
;�

1

2
; 1;

r2

x2

� �
;

ðA:4Þ

and in the interval xprpra it is

Gkðr; xÞ ¼ �
x4

8rraðr2k � r2k�1Þ
2F1

1

2
;
1

2
; 3;

x2

r2

� �

þ
rx2

raðr2k � r2k�1Þ2
F1 �

1

2
;�

1

2
; 1;

x2

r2

� �
:

ðA:5Þ

The convergence of the series representing the
corresponding hypergeometric function is very fast
and Eq. (A.1) is convenient for numerical calcula-
tions.
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