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Relaxation processes of surfactant adsorption and surface ten-
sion, which are characterized by two specific relaxation times, are
theoretically investigated. We are dealing with fluid interfaces and
small initial deviations from equilibrium. For surfactant concen-
trations below the critical micellization concentration (CMC), we
consider adsorption under mixed barrier-diffusion control. General
analytical expressions are derived, which are convenient for both
numerical computations and asymptotic analysis. Series expansions
for the short- and long-time limit are derived. The results imply that
the short-time asymptotics is controlled by the adsorption barrier,
whereas the long-time asymptotics is always dominated by diffu-
sion. Furthermore, for surfactant concentrations above the CMC,
adsorption under mixed micellization-diffusion control is consid-
ered. Again, a general analytical expression is derived for the relax-
ation of surfactant adsorption and surface tension, whose long- and
short-time asymptotics are deduced. The derived equations show
that at the short times the relaxation is completely controlled by
the diffusion, whereas the long-time asymptotics is affected by both
demicellization and diffusion. The micellar effect is manifested as
an exponential (rather than square-root) decay of the perturbation.
The derived expressions are applied to process available experimen-
tal data for the nonionic surfactant Triton X-100 and to determine
the respective demicellization rate constant. C© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The rate of surfactant adsorption at fluid interfaces has cru-
cial importance for the processes of foam generation and emul-
sification. Dynamic surface coverage with adsorbed surfactant
monolayers determines whether the gas bubbles or oil drops will
coalesce upon collision (1, 2). The physical parameter, which
characterizes the surfactant solutions with their ability to quickly
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generate adsorption layers, is the relaxation time of the dynamic
surface tension, which is liable to direct measurements with
various experimental methods (3–7). In the case of adsorption
of a nonionic surfactant under diffusion control, the theoretical
problem for the relaxation of a small initial perturbation was sol-
ved by Sutherland (8), who derived [σ (t) − σ e]/[σ (0) − σ e] =
F(t , t−1/2

d ); here, t is time, σ (t) and σ e are, respectively, the
dynamic and equilibrium surface (interfacial) tension, and td is
the characteristic diffusion time:

F(t, α) ≡ exp(α2t) erfc
(
αt1/2

)
; [1]

erfc(x) is the complementary error function (9, 10). Note that
in the Sutherland formula we have α = t−1/2

d , where td = (∂�/

∂c)2/D, c is the bulk surfactant concentration, and � and D are,
respectively, the surfactant adsorption and diffusion coefficient.

The experiment shows that sometimes the dynamics of sur-
face tension can be affected by kinetic barriers to adsorption (3–
5, 11, 12). In such cases, the interfacial dynamics depends on
two characteristic relaxation times: the diffusion and adsorption
times. The respective relaxation problem leads to an expres-
sion for the dynamic surface tension in terms of the function
F(t , α); see Eq. [10]. However, this time α is, in general, a com-
plex number. The latter fact makes the numerical computations
and the derivations of asymptotic expressions for the short and
long times much more difficult.

For fast numerical calculation of the function F(t , α), Cody
(13) provided precise rational polynomials, based on the
Chebyshev approximations. Unfortunately, these approxima-
tions are valid only for real values of α. In the present paper
we report that the mathematical difficulties can be overcome by
using the relationship F(t , α) = w(iαt1/2), where w is the so-
called “plasma function” (9). The latter has a convenient integral
presentation, which can be utilized to compute numerically the
relaxation curves of adsorption, subsurface concentration, and
surface tension. Moreover, this integral presentation can be used
to derive simple analytical expressions describing the relaxation
behavior in the long- and short-time limit. This is the subject of
section 2 of the present article.

The same theoretical approach can be applied to the case
of adsorption from surfactant solutions above the critical
micellization concentration (CMC). Insofar as small deviations
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from equilibrium are concerned, the kinetics of demicellization
can be formally described in the framework of the pseudo-first-
order-reaction (PFOR) approximation (14). In such case, again
two relaxation times enter the theoretical description: the char-
acteristic diffusion and micellar times. In section 3 below, the
integral presentation of the plasma function is applied to derive
the respective short- and long-time asymptotics of the dynamic
surface tension. To illustrate the applicability of the obtained
equations, they are applied to process available dynamic data
for micellar solutions of the nonionic surfactant Triton X-100,
and the demicellization rate constant of Kresheck et al. (15) is
determined.

In spite of the fact that the adsorption relaxation time is de-
fined for small perturbations, there are indications that it char-
acterizes also the dynamics of adsorption in the case of large
initial deviations from equilibrium (16).

In the present article we consider only nonionic surfactants.
In the case of ionic surfactants the theoretical analysis is more
complicated: the existence of dynamic electric double layer and
counterionic binding has to be taken into account (3, 11, 16–19).
We hope that in the future the results of the present study can be
extended to the case of ionic surfactants.

2. BARRIER-DIFFUSION CONTROL BELOW THE CMC

2.1. Physical Background and Basic Equations

Here, we consider the relaxation of surfactant adsorption, �,
and surface tension, σ , after a small perturbation. Our system
is an aqueous solution of nonionic surfactant at concentrations
below the CMC. A semi-infinite solution with a flat air–water
(or oil–water) interface is considered. At the initial moment,
t = 0, the interface is perturbed. Next, the equilibrium is restored
by exchange of surfactant molecules between the surface and
the subsurface layer (adsorption/desorption), accompanied by
diffusion transport between the subsurface and the bulk (3, 4). If
the adsorbing surfactant molecules have to overcome a barrier to
adsorption, then the exchange of surfactant between the surface
and subsurface is described by the kinetic equation

d�

dt
= 	(�)[cs − f (�)/K1]; [2]

see Refs. (3, 4, 19, 20). Here, cs is the subsurface concentra-
tion of surfactant, K1 is the equilibrium constant of adsorp-
tion; the explicit form of the functions 	(�) and f (�) de-
pends on the type of adsorption isotherm used: that of Henry,
Langmuir, Frumkin, Volmer, or van der Waals. Using Table 1.4
in Ref. (19), we find explicit expressions for 	(�) and f (�),
which are given in Table 1. The following notation is used in
Table 1: �∞ is the maximum possible adsorption; Kads is the
rate constant of adsorption. Note that the equilibrium constant
is K1 = Kads/(Kdes�∞), where Kdes is the rate constant of des-
orption, k is the Boltzmann constant, T is the temperature, and

β is a parameter which accounts for the interaction between
neighboring adsorbed molecules (19, 21).
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TABLE 1
Expressions for Φ(Γ) and f (Γ) for Various Kinetic Models

Adsorption
isotherm Function 	 (�) Function f (�)

Henry 	(�) = Kads = const. f (�) = �

�∞
Langmuir 	(�) =

(
1− �

�∞

)
Kads f (�) = �

�∞−�

Frumkin 	(�) =
(

1− �

�∞

)
Kads f (�) = �

�∞−�
exp

(
− 2β �

kT

)

Volmer 	(�) = Kads = const. f (�) = �

�∞−�
exp

(
�

�∞ − �

)

van der Waals 	(�) = Kads = const. f (�) = �

�∞−�
exp

(
�

�∞−�
− 2β �

kT

)

Note that the right-hand side of Eq. [2] represents the differ-
ence between the adsorption and desorption fluxes. At equilib-
rium, these two fluxes counterbalance each other and Eq. [2]
reduces to the equilibrium adsorption isotherm,

K1ce = f (�e), [3]

which can be any of the aforementioned types of isotherms; here
and hereafter the subscript “e” denotes the equilibrium value of
the respective variable.

For small perturbations, denoted with subscript “p”, the
bulk and subsurface concentrations as well as the adsorption
and surface tension can be presented in the following form:
c(x, t) = ce + cp(x, t), cs(t) = ce + csp(t), �(t) = �e + �p(t),
and σ (t) = σe + σp(t). The x-axis is oriented normal to the
fluid interface, which is situated at x = 0. Then, having in mind
Eq. [3], one can bring Eq. [2] to the following linearized form,
which is valid for small perturbations,

d�p

dt
= ka

(
csp − �p

G

)
(t > 0), [4]

where

ka ≡ 	(�e), G ≡
(

∂�

∂c

)
e

=
[

1

K1

d f

d�

]−1

e

. [5]

For the Henry, Volmer, and van der Waals isotherms ka =
Kads, whereas for the Langmuir and Frumkin isotherms we have
ka = (1 − �e/�∞)Kads; see Table 1. df/d� can be calculated by
differentiation of f (�) given in Table 1. The linearized forms
of the diffusion equation and its boundary condition are

∂cp

∂t
= D

∂2cp

∂x2
(x > 0, t > 0), [6]

d� ∂c
p

dt
= D

p

∂x
(x = 0, t > 0), [7]
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where D is the diffusion coefficient of the surfactant molecules.
The initial conditions are

�p(0) = �p0, σp(0) = σp0, csp(0) = 0, [8]

where �p0 and σp0 denote the small initial perturbations in the
surfactant adsorption and surface tension, respectively. In other
words, the system is initially in equilibrium and then the interface
is quickly deformed so that � and σ change, while the concen-
tration profile remains unchanged (equilibrium). Then, � and
σ relax to equilibrium values. In particular, we have csp(0) = 0
because of the presence of kinetic barrier to adsorption, which
does not allow the subsurface to respond instantaneously to
the surface perturbation. On the other hand, such instantaneous
response (equilibration of surface and subsurface) would take
place if the surfactant transfer occurs under pure diffusion con-
trol; then, the respective initial condition would be csp(0) =
�p0/G ≡ csp0. The latter quantity is used to scale the subsurface
concentration in Eq. [14] below.

2.2. Adsorption Time vs Diffusion Time

For adsorption under mixed barrier-diffusion control, two
characteristic times can be distinguished, viz. the diffusion time,
td = G2/D, and the adsorption time, ta = G/ka. Dong et al. (22)
investigated numerically the limiting case ta/td � 1 (prevailing
barrier). Our purpose here is to obtain the exact analytical so-
lution of the relaxation problem for arbitrary values of the ratio
ta/td and to derive simpler asymptotic expressions for the limi-
ting cases of short and long times.

To solve the mathematical problem, we apply Laplace trans-
formation with respect to time. The Laplace transforms of the
perturbations in adsorption, bulk, and subsurface concentra-
tions are, respectively, �̃p(s) ≡ L[�p(t)], c̃p(x, s) ≡ L[cp(x, t)],
and c̃sp(s) ≡ L[csp(t)]. Thus, from the diffusion Eq. [6] and
the boundary condition csp(t) = cp(0, t), one derives c̃p(x, s) =
c̃sp(s) exp[−x(s/D)1/2]. Further, using Eqs. [4], [7], and [8], one
can deduce an explicit expression for the Laplace transform of
the perturbation in adsorption:

�̃p(s)

�p0
= 1

s1/2

tas1/2 + t1/2
d

tas + (std)1/2 + 1
. [9]

Since we are dealing with small deviations from equilibrium,
we have σ p(t) = (∂σ/∂�)e�p(t). The latter relationship, written
for the moment t = 0, yields σ p0 = (∂σ/∂�)e�p0. In view of
the latter two expressions, we can express the inverse Laplace
transform of Eq. [9] in the form (20)

�p(t)

�p0
= σp(t)

σp0
= 1

α1 − α2
[α1 F(t, α2) − α2 F(t, α1)], [10]
where F(t , α) is given by Eq. [1] and the parameters α1 and α2
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are defined as follows:

α1,2 = t1/2
d

2 ta

[
1 ± (1 − 4ta/td)1/2

]
. [11]

It is important to note that α1 and α2 are positive real numbers
for 4ta/td < 1, whereas they are complex numbers with a positive
real part for 4ta/td > 1. As already mentioned, the complex form
of Eq. [10] creates mathematical problems for the calculation of
the functions �p(t) and σ p(t) and for obtaining their asymptotics
in the limiting cases t → 0 and t → ∞.

To overcome the aforementioned problems, we notice that
the function F is related to the so-called plasma function, w; see
Ref. (9):

F(t, α) = w
(
iαt1/2

) = 2αt1/2

π

∞∫
0

exp(−τ 2)

τ 2 + α2t
dτ , Re(α) > 0.

[12]

With the help of Eqs. [10]–[12], the functions �p(t) and σ p(t)
can be expressed in a compact and convenient integral form:

�p(t)

�p0
= σp(t)

σp0
= 2

π
(td/ta)1/2

∞∫
0

exp(−tτ 2/ta)

(τ 2 − 1)2 + tdτ 2/ta
dτ . [13]

The integrand in Eq. [13] has no singularities and vanishes ex-
ponentially at infinity. For this reason, Eq. [13] is suitable for
both numerical computations and asymptotic analysis. Similar
analytical expression for the subsurface concentration can be
deduced from Eqs. [4] and [13]:

csp(t)

csp0
= 2

π
(td/ta)1/2

∞∫
0

(1 − τ 2) exp(−tτ 2/ta)

(τ 2 − 1)2 + tdτ 2/ta
dτ . [14]

In the short-time limit (t →0), Eq. [13] has the following asymp-
totic expansion:

�p(t)

�p0
= σp(t)

σp0
= 1 − t

ta
+ 4t1/2

d

3(π ta)1/2

(
t

ta

)3/2

+ ta − td
2ta

(
t

ta

)2

− 8(2ta − td) t1/2
d

15 π1/2 t3/2
a

(
t

ta

)5/2

+ · · ·, [15]

which is applicable for t � t2
a /td. One sees that for t → 0

the leading term of the time dependence in Eq. [15] is the
linear term t/ta; this indicates the presence of barrier control
of adsorption at the short times. The typical diffusion term ∝
(t/td)1/2 does not appear in Eq. [15]. In other words, the short-

time asymptotics is always controlled by the kinetic barrier to
adsorption.
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In the long-time limit (t → ∞), Eq. [13] has the following
asymptotic expansion,

�p(t)

�p0
= σp(t)

σp0
=

(
td
π t

)1/2

− td − 2ta
2π1/2td

(
td
t

)3/2

+ 3(td − ta)(td − 3ta)

4π1/2t2
d

(
td
t

)5/2

+ · · ·, [16]

which is valid for t � |td/2 − ta|. One sees that the leading term
in the long-time asymptotics is the diffusion term ∝ (td/t)1/2.
Therefore, we can conclude that the long-time asymptotics is
always controlled by the diffusion.

2.3. Numerical Results and Discussion

Numerical results for the relaxation of small perturbations in
the surfactant subsurface concentration csp(t), adsorption �p(t),
and surface tensionσ p(t) are shown in Fig. 1. Using Eqs. [13] and
[14], we have calculated the respective time dependencies for
various values of ta/td. The upper curve in Fig. 1a corresponds
to ta/td = 0, that is, to the regime of pure diffusion control. With
the increase of the ratio ta/td (i.e., with the rise of the adsorption
barrier), the initial perturbation in the subsurface concentration
(that for t = 0) becomes smaller and smaller. The latter behavior
is due to the fact that when the barrier grows higher, the flux
of subsurface molecules, which overcome the barrier to com-
pensate the surface perturbation, becomes smaller. At longer
times csp(t) exhibits a maximum, and soon after that the respec-
tive curve practically coincides with the curve corresponding to
ta/td = 0. In other words, at the longer times, the effect of bar-
rier vanishes and the process of relaxation gradually approaches
the regime of diffusion control. In addition, Fig. 1a shows that
csp(t) ≈ 0 for ta/td = 100 (high barrier to adsorption, curve G),
which means that in this case the subsurface concentration is
almost equal to the bulk one, and the process of relaxation is
close to the regime of pure barrier control (fast diffusion).

In Fig. 1b, the three curves A, B, and C , corresponding to
ta/td = 0, 0.001, and 0.01, merge with each other. Hence, for
ta/td ≤ 0.01 the effect of the barrier on the relaxation of adsorp-
tion and surface tension is negligible and the process exhibits
diffusion control. Note that the subsurface concentration, csp(t),
is more sensitive to the barrier than the adsorption, �p(t), and the
surface tension, σ p(t): compare curves A, B, and C in Figs. 1a
and 1b. Moreover, Fig. 1b clearly shows that the barrier decel-
erates the relaxation of surface tension and adsorption: greater
values of ta/td (higher barrier) lead to a shift of the relaxation
curve to the right (to the longer times) and to an increase in the
difference between the respective curve and curve A referring to
diffusion control. Nevertheless, however high the barrier might
be, at sufficiently long times all curves �p(t) and σ p(t) approach
asymptotically curve A.

It turns out that the coinciding curves A, B, and C in Fig. 1b,

corresponding to ta/td ≤ 0.01, can be well described by the
known expression for relaxation under pure diffusion control,
OR NONIONIC SURFACTANTS 21
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FIG. 1. Barrier-diffusion control: (a) Relaxation of perturbations in the sub-
surface concentration, csp(t), computed by means of Eq. [14]. (b) Relaxation of
perturbations in the surfactant adsorption, �p(t), and surface tension, σp(t), cal-
culated with the help of Eq. [13]. Each curve corresponds to a fixed value of the
ratio ta/td.

�p/�p0 = σ p/σ p0 = exp(t/td)erfc(t1/2/t1/2
d ), in the time range

presented in Fig. 1. For ta/td > 0.01 the effect of the adsorption
barrier becomes significant and one has to use the more general
expression, Eq. [13], or the asymptotic expansions, Eqs. [15]
and [16], in the ranges of their validity.

Equation [13] and its short-time asymptotics, Eq. [15], can
be relatively easily applied to process experimental data and to
verify whether in a given specific case the surfactant adsorp-
tion is influenced by the presence of a kinetic barrier. For ex-
ample, recently we applied Eq. [13] to fit experimental data
for dynamic surface tension of aqueous solutions of the milk
proteins β-lactoglobulin and Na–caseinate (23). The data have
been obtained by using the fast-formed drop (FFD) technique
(24, 25). The fits show that, in the experimental time interval,

the β-lactoglobulin adsorbs under diffusion control, whereas the
adsorption of Na–caseinate encounters a kinetic barrier with a
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characteristic adsorption time ta = 2.7 ± 0.3 s; see Ref. (23) for
details.

3. MICELLIZATION-DIFFUSION CONTROL

3.1. Adsorption Relaxation after a Small Perturbation

Here, we consider again the relaxation of adsorption, �, and
surface tension, σ , after a small perturbation, but this time for
surfactant concentrations above the CMC. At the initial moment,
t = 0, the air–water (or oil–water) interface is slightly expanded.
Next, the equilibrium is restored by a diffusion transport of sur-
factant monomers from the bulk of solution to the interface,
which is accompanied by a supply of monomers by the surfac-
tant micelles (4, 14).

As known, the experiments on the relaxation of small pertur-
bations in the bulk of micellar solutions show the existence of
a fast and a slow relaxation process, with characteristic times
τ 1 and τ 2, respectively (26–28). According to the detailed the-
ory of micellization kinetics by Aniansson and Wall (26, 27),
the fast process corresponds to the release of separate surfactant
monomers by the micelles at constant total micelle concentra-
tion. In contrast, the slow process is related to the decomposition
of a part of the micelles to monomers, which is accompanied by
a decrease in the total micelle concentration.

To describe the release of monomers from the micelles, we
will use the pseudo-first-order reaction (PFOR) approximation.
Indeed, every complicated reaction (or system of reactions)
can be approximately described as a pseudo-first-order reac-
tion, if the deviations from equilibrium are small, which al-
lows linearization of the respective kinetic equations. As shown
in Ref. (14), in the case of adsorption from surfactant solu-
tions after a small interfacial perturbation, the micelles serve as
sources of monomers rather than as surfactant carriers. Corre-
spondingly, to describe the transport of surfactant, in the frame-
work of the PFOR approximation, we will use the Eqs. (3, 4, 14,
29–31)

∂cp

∂t
= D

∂2cp

∂x2
− cp

tm
(x > 0, t > 0), [17]

where the last term describes a source of surfactant monomers
due to the presence of micelles; tm is the characteristic time
of the micellar supply of monomers. Because of the used PFOR
approximation, t−1

m is not a simple rate constant of an elementary
first-order reaction, but is a function of the micelle concentration
and the rate constants of the real demicellization reactions (4,
14, 15). We will use an expression due to Kresheck et al. (15)

t−1
m = k0

(
Cs − CMC

CMC

)
, [18]

where k0 is a rate-constant parameter, independent of the total

surfactant concentration Cs. In section 3.3 we discuss the relation
between tm and the two micellar relaxation times, τ 1 and τ 2.
AND KRALCHEVSKY

Demicellization accelerates the diffusion supply of mono-
mers, which facilitates the manifestation of the adsorption bar-
rier (if any). However, if the theoretical model includes also a
kinetic barrier to adsorption (in addition to the diffusion and
demicellization), one arrives at a more complicated relaxation
problem, with three characteristic times (ta, td, and tm), which
could be a subject of a subsequent study. To simplify the mathe-
matical problem, here, we assume that there is no kinetic barrier
to the surfactant adsorption at the interface. Thus, we arrive at
a relaxation problem with two characteristic times: the diffu-
sion time td = G2/D and the micellar time tm. We have to solve
Eq. [17] along with the boundary condition provided by Eq. [7]
and the relationships

�p(0) = �p0, σp(0) = σp0, csp(t) ≡ �p(t)/G. [19]

The latter relationship, csp ≡ �p/G, is a corollary from the ab-
sence of barrier to adsorption, which leads to an instantaneous
equilibration between subsurface and surface. We apply again
the Laplace transformation. Thus, for the Laplace transform of
the perturbation in the bulk surfactant concentration, one obtains

c̃p = �̃p

G
exp

(
−x

√
stm + 1

Dtm

)
. [20]

By substituting Eq. [20] into the Laplace image of Eq. [7], one
derives

�̃p

�p0
= t1/2

m t1/2
d

t1/2
m t1/2

d s + (tm s + 1)1/2
. [21]

The reverse Laplace transformation of Eq. [21] yields (14)

�p

�p0
= σp

σp0
= exp(−t/tm)

β1 + β2

[
β1 F(t, β1)

− β2 F(t, β2) + 2β2 exp
(
β2

2 t
)]

, [22]

where the parameters β1, β2, and β are defined by the
expressions

β1,2 = (β ± 1)/
(
2 t1/2

d

)
, β = (1 + 4 td/tm)1/2. [23]

Equation [22] is equivalent to Eq. [5.7] in Ref. (14). The num-
bers β1 and β2 are ≥0; this gives the possibility to apply again
Eq. [12]. Thus, Eq. [22] acquires the form

�p

�p0
= σp

σp0
= β − 1

β
exp

(
− β − 1

2

t

td

)

2
∞∫

exp[−(t/tm + tτ 2/td)]
+
π

0
(τ 2 + td/tm)2 + τ 2

τ dτ . [24]
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3.2. Asymptotic Expressions

The short-time asymptotic expansion of Eq. [24], for t → 0,
reads

�p

�p0
= σp

σp0
= 1 − 2

π1/2

(
t

td

)1/2

+ t

td
− 2(2tm + td)

3π1/2tm

(
t

td

)3/2

+ tm + td
2tm

(
t

td

)2

− 8t2
m + 12tmtd − t2

d

15 π1/2t2
m

(
t

td

)5/2

+ · · ·, [25]

which is valid for t � td. Equation [25] implies that the time-
limiting factor at short times is the diffusion of surfactant
monomers. The first three terms in the right-hand side of Eq. [25]
are the same for surfactant concentrations below the CMC and
above the CMC (no adsorption barrier); note that the micellar
characteristic time, tm, appears in the fourth and the higher order
terms. In the limit tm → ∞, Eq. [25] reduces to the respective
expansion for concentrations below the CMC.

The long-time asymptotics of Eq. [24] is

�p

�p0
= σp

σp0
= β − 1

β
exp

(
−β − 1

2

t

td

)
+ · · · (t → ∞), [26]

where higher order terms are neglected; β is defined by Eq. [23].
Hence, in contrast with the short-time limit, the long-time
asymptotics is strongly affected by the presence of surfactant
micelles: Eq. [26] predicts an exponential decay of the perturba-
tion, instead of the slower square root decay [�p/�p0 ∝ (td/t)1/2]
for concentrations below the CMC. Equation [26] shows that
above the CMC the characteristic decay time is τ = 2td/(β − 1).
One sees that τ depends on both tm and td; that is, the re-
laxation is affected by both the micelles and the diffusion of
monomers.

For td � tm, i.e., for diffusion of monomers much slower than
their supply by the micelles, Eq. [26] reduces to

�p

�p0
= σp

σp0
≈ exp

(
− t

t1/2
d t1/2

m

)
(t → ∞, td � tm). [27]

In Ref. (14) an incorrect form of Eq. [27], viz. σ p/σ p0 ≈
exp(−t/tm), was given. The correct form of Eq. [27] can be de-
duced from the steady-state analysis by Johner and Joanny (30).
In addition, Eq. [27] has been obtained by Joos (4) using the
concept for the diffusion penetration depth. Note, however, that
Eq. [26] is more general than Eq. [27], and as demonstrated
below, Eq. [26] should be preferably used when processing ex-
perimental data.

3.3. Numerical Predictions and Comparison with Experiment

Figure 2 shows theoretical curves for the relaxation of the per-

turbation in the surface tension, σ p(t), and the adsorption, �p(t),
calculated by means of the general expression, Eq. [24]. The
OR NONIONIC SURFACTANTS 23
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FIG. 2. Micellization-diffusion control: Relaxation of perturbations in the
surfactant adsorption, �p(t), and surface tension, σp(t), calculated by means of
Eq. [24]; each curve corresponds to a fixed value of the ratio tm/td.

different curves correspond to different values of the ratio tm/td.
With the increase of tm/td, the rate of supply of monomers by
the surfactant micelles becomes slower and slower, which de-
celerates the surface tension relaxation. For example, in view
of Eq. [18], the decrease of micelle concentration leads to in-
creasing of the ratio tm/td. At small dimensionless times, t/td,
all curves merge into one, which is described by the short-time
asymptotics, Eq. [25].

It turns out that Eq. [26], which has been derived as long-time
asymptotics, quite accurately describes the whole relaxation
curves A, B, and C in Fig. 2 (for 0.001 ≤ t/td ≤ 100). In other
words, if tm/td ≤ 1, the relatively simple Eq. [26] can be used to
quantify the whole relaxation process. Likewise, Eq. [27], which
is a special case of Eq. [26], accurately describes the whole re-
laxation process if tm/td ≤ 0.1. On the other hand, for tm/td > 1
one has to use the general integral formula, Eq. [24], which is
applicable for all values of the ratio tm/td.

The first three columns of Table 2 show data by Joos for
micellar solutions of the nonionic surfactant Triton X-100
[octyl-phenol-ether-(EO)10]; see Table 10.2 in Ref. (4). More

TABLE 2
Diffusion and Micellar Relaxation Times for Solutions

of Triton X-100

(Cs − CMC)/CMC td (s), Ref. (4) tm (s), Ref. (4) tm (s), Eq. [28]

0.5 7.00 × 10−1 1.00 4.56 × 10−1

1 3.82 × 10−1 7.91 × 10−1 3.24 × 10−1

4 1.23 × 10−1 1.13 × 10−1 5.77 × 10−2

9 3.52 × 10−2 3.52 × 10−2 1.76 × 10−2

14 1.43 × 10−2 3.14 × 10−2 1.27 × 10−2

19 1.46 × 10−2 2.87 × 10−2 1.19 × 10−2

29 1.42 × 10−2 1.42 × 10−2 7.10 × 10−3

39 1.20 × 10−2 1.20 × 10−2 6.00 × 10−3
49 9.71 × 10−3 9.71 × 10−3 4.86 × 10−3
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precisely, the experiment gives td and the characteristic decay
time τ . In view of Eq. [27], Joos has calculated tm using the ex-
pression tm = τ 2/td (the third column of Table 2). However, the
comparison of the second and third columns in Table 2 show that
the condition td � tm is not fulfilled, and consequently, Eq. [27]
is not applicable in the considered case.

To determine more accurately the values of tm for Triton X-
100, we proceed in the following way. First, we recover the ex-
perimental values of the characteristic decay time, τ = (tdtm)1/2,
using the data in the second and third columns of Table 2. Next,
we utilize the more precise asymptotics, Eq. [26], which gives
τ = 2td/(β − 1), and consequently

tm = 4td
(2td/τ + 1)2 − 1

. [28]

The latter equation was used to recalculate the micellar time
tm(the last column in Table 2); the respective values are about
2 times smaller than those computed in Ref. (4): compare the
last two columns in Table 2.

Finally, we plot t−1
m , computed from the last column of Table 2,

vs (Cs − CMC)/CMC; see Fig. 3. It is seen that the data points
comply well with a straight line (correlation coefficient 0.992)
in accordance with the equation of Kresheck et al. (15), Eq. [18].
From the slope of the linear regression in Fig. 3 we determine
the kinetic parameter for Triton X-100 to be k0 = 4.2 ± 0.1 s−1;
see Eq. [18].

3.4. Discussion

Aniansson and co-workers (26–28) found the following ex-
pressions for the characteristic times of the fast and slow micellar

(Cs − CMC)/CMC

0 10 20 30 40 50

1 
/ t

m
  (

s−1
)

0

50

100

150

200

Experiment
Linear fit

Triton X-100

FIG. 3. Plot of the inverse micellar relaxation time, t−1
m (the last column

in Table 2), vs the dimensionless concentration of surfactant in micellar form,

(Cs − CMC)/CMC. The points represent experimental data for aqueous solu-
tions of Triton X-100; the straight line is drawn in accordance with Eq. [18].
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relaxation processes,

τ−1
1 = k−

σ̃ 2
+ k−

na

(
Cs − CMC

CMC

)
, [29]

τ−1
2 = n2

a R−1

CMC

(
1 + (Cs − CMC)

CMC

σ̃ 2

na

)−1

, [30]

where k− is the stepwise micelle dissociation rate constant; na

is the most probable micelle aggregation number; σ̃ is the half-
width of the micellar size distribution; R is the resistance to
“flow” through the region of the least probable micellar aggre-
gates. Note that τ 1 and τ 2 depend in a rather different way on
Cs − CMC.

Dushkin et al. (14) found that one can approximately iden-
tify tm ≈ τ 1 or tm ≈ τ 2 depending on whether the fast or the slow
demicellization process dominates the supply of monomers from
the micelles. In our case, Fig. 3 shows that t−1

m increases lin-
early with Cs − CMC, just as τ−1

1 increases in accordance with
Eq. [29]. Consequently, in our case one could identify tm with
τ 1, rather than with τ 2. In other words, the supply of surfactant
monomers by the micelles in the considered process of surface
tension relaxation seems to be dominated by the fast demicel-
lization process.

The above conclusion is supported also by the experimen-
tal values of the slow process relaxation time, τ 2 = 3.5–4 s for
Triton X-100, reported by Patist et al. (32, 33). Since the values
of tm in Table 2, determined by means of Eq. [28], are markedly
smaller than 4 s, then it is more likely that tm ≈ τ 1. Note that the
nonionics, like Triton X-100, exhibit a much longer micelle re-
laxation in comparison with the ionic surfactants, such as sodium
dodecyl sulfate, SDS (32, 33).

If really tm ≈ τ 1, then in view of Eq. [29] from the slope of the
line in Fig. 3 one determines the demicellization rate constant of
Triton X-100 to be k− = 584 ± 14 s−1. For the micelle aggrega-
tion number of Triton X-100 we have used the value na = 139
reported in Ref. (34). The considerable experimental error of the
intercept of the linear regression in Fig. 3 does not allow one to
determine a reliable value of σ̃ using Eq. [29].

4. SUMMARY AND CONCLUSIONS

This article is devoted to relaxation processes of surfactant
adsorption and surface tension, which are characterized by two
specific relaxation times. We are dealing with fluid interfaces
and small initial deviations from equilibrium.

For surfactant concentrations below the CMC we consider
adsorption under mixed barrier-diffusion control, characterized
by the adsorption and diffusion relaxation times. General ana-
lytical expressions are derived for the relaxation of surfactant
adsorption, surface tension, and subsurface concentration; see
Eqs. [13] and [14]. The numerical computations show that the

subsurface concentration is more sensitive to the kinetic barrier
than the adsorption and the surface tension; cf. Figs. 1a and 1b.
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Asymptotic expansions for the short- and long-time limit are
derived; see Eqs. [15] and [16]. The results imply that the short-
time asymptotics is controlled by the adsorption barrier, whereas
the long-time asymptotics is always dominated by the diffusion.

For surfactant concentrations above the CMC we consider
adsorption under mixed micellization-diffusion control, charac-
terized by the micellar and diffusion relaxation times. Since we
are dealing with small perturbations, we apply the pseudo-first
order reaction approximation; see Eq. [17]. Again, a general
analytical expression is derived for the relaxation of surfactant
adsorption and surface tension; see Eq. [24]. The numerical com-
putations (Fig. 2) visualize the speeding up of the surface ten-
sion relaxation, owing to the supply of surfactant monomers by
the micelles. The derived short- and long-time asymptotic ex-
pressions, Eqs. [25] and [26], show that, at the short times, the
relaxation is completely controlled by the diffusion, whereas the
long-time asymptotics is affected by both demicellization and
diffusion. In particular, the effect of micelles is manifested as
an exponential (rather than square-root) decay of the perturba-
tion. The derived asymptotic expression, Eq. [26], is applied to
process available experimental data for the nonionic surfactant
Triton X-100 and to determine the respective demicellization
rate constant; see Table 2 and Fig. 3.
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