
  PRO
O

F CO
PY 012010PHF  

Viscous drag of a solid sphere straddling a spherical or flat surface
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The aim of this paper is to compute the friction felt by a solid particle, of radiusa, located across
a flat or spherical interface of radiusR, and moving parallel to the interface. This spherical interface
can be a molecular film around an emulsion or aerosol droplet, the membrane of a vesicle or the
soap film of a foam bubble. For simplicity, the acronym VDB is used to refer to either vesicle, drop,
or bubble. The theory is designed as a tool to interpret surface viscosimetry experiments involving
spherical probes attached to films or model membranes, taking care of the finite-size effects when
the film encompasses a finite fluid volume. The surface of the VDB is a two-dimensional fluid,
characterized by dilational (hs

dil) and shear (hs
sh) surface viscosities. The particle intercepts a

circular disc in the interface, whose size depends on the particle penetration inside the VDB. The
three-dimensional fluids inside and outside the interface may be different. The analysis holds in the
low Reynolds number and low capillary number regime. A toroidal (x1 ,x2 ,f) coordinate system is
introduced, which considerably simplifies the geometry of the problem. Then the hydrodynamic
equations and boundary conditions are written inx1 , x2 , f. The solution is searched for the
first-order Fourier component of the velocity field in the radial anglef. Reformulating the equations
in ‘‘two-vorticity-one-velocity’’ representation, one basically ends up with a set of equations inx1 ,
x2 only. This set is numerically solved by means of the Alternating-Direction-Implicit method.
Numerical results show that the particle friction is influenced both by the viscosity and by the
finiteness of the VDB volume. Finite-size effects have two origins: a recirculation effect whena/R
is not very small, and an overall rotation of the VDB-particle complex whenhs is very large. In
principle, the theory allows for a quantitative determination ofhs whatevera/R, including the limit
a/R50 ~flat interface!. © 2000 American Institute of Physics.@S1070-6631~00!01210-1#

I. INTRODUCTION

The problem of the motion of a solid particle along an
interface separating two fluid phases has implications in
technological and biological problems: for instance, emul-
sions can be stabilized by solid particles at the oil/water in-
terface~Pickering emulsions1!; the mobility of macroscopic
inclusions or of organelles in contact with or across cell
membranes also relates to the hydrodynamic problem dis-
cussed hereafter. A theory on the motion of a disc along a
viscous interface/membrane was set up by Saffman2,3 and
later developed by Hugheset al.4 In their approach the disc
has the same thickness as the membrane, which is modeled
as a two-dimensional viscous fluid. The Saffman–Hughes
theory was successfully used to interpret experiments on
Brownian motion of disc-like domains in a layer of fluid
lipid,5 and of proteins in membranes.6,7 The disc problem
was the matter of subsequent refinements, to include the ef-
fect of a wall parallel to the membrane~see the recent com-
plete theory by Stone and Ajdari8 and references therein!.

The disc theory is not directly applicable to experiments

with macroscopic three-dimensional probes, for instance
spherical micron-sized particles on surfactant monolayers9,10

at the water/air interface. This kind of system was theoreti-
cally addressed by Danovet al.11 Their approach took into
account both the interfacial viscous properties and the hydro-
dynamic contribution of the part of the floating particle pro-
truding in the water subphase. However, this approach was
valid only for the air/liquid interface and a limited interval of
three-phase contact angles at the particle surface. Danov
et al.’s theory was worked out for particles which were pre-
dominantly immersed in the water phase, i.e., the contact
angle u ~defined in the liquid phase!, had to be less than
about 100°. Recently, experiments12 were carried out with
latex microspheres attached to lipid membranes. In this situ-
ation, both sides of the film are made of a viscous fluid, and
then both sides of the particle contribute to the friction. The
interpretation of the experimental results in Ref. 12 was
based on regarding the studied system as a superposition of
two ‘‘air/water’’ systems with complementary contact
angles, u and 180°2u. However, because of the above-
mentioned restriction, the superposition approach is inappli-
cable for spheres with contact angles far from 90°. More-
over, Danovet al.’s theory11 was elaborated only for flat and
infinite interfaces. As the particle in the experiments in Ref.
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12 is moving along a closed spherical membrane, i.e., a
vesicle, the theoretical approach needs to account for the
contribution of the finite water volume encompassed inside
the vesicle.

Addressing this general problem is the purpose of this
paper. Our goal is to compute the friction felt by a spherical
solid particle straddling the interface of a spherical vesicle,
droplet, or bubble~VDB! or flat interface. The interface is
supposed to be a two-dimensional viscous fluid, character-
ized by dilation and shear surface viscosities.

In the following section, we start with the basic hydro-
dynamic equations and boundary conditions of the problem.
We then introduce a toroidal coordinate system, (x1 ,x2 ,f),
whose axis contains the particle and the VDB centers.f is
the polar angle around this axis@see Fig. 1~b!#. Hydrody-
namic equations are written inx1 , x2 , f variables and the
solution is searched for the first-order Fourier component in
f of the velocity and pressure fields. Reformulating the
problem in the two-vorticity-one-velocity formalism allows
us to transform the initial three-space-variable problem into a
two-variable (x1 ,x2) one. The equations are solved numeri-
cally by means of the Alternating-Direction-Implicit method.
Numerical results for the particle friction coefficient are
given and commented on in Sec. III. There we identify the
influences of the surface viscosity and of the finiteness of the
VDB volume. As we will see, finite-size effects involve both
a recirculation flow inside the VDB and an overall rotation
of the VDB-particle complex when the interface is very vis-
cous. A paragraph in Sec. III is dedicated to the limiting case
of a flat infinite membrane. There we analyze the way in
which the friction felt by the spherical particle depends on
the contact angle,u. This dependence is compared to that
found in Saffman’s theory for a disc. The results for the
translational drag force are complemented by those for hy-
drodynamic torque acting on the particle, in the limit cases of
an inviscid curved interface and of a viscous flat infinite one.
Our main conclusions are summarized in Sec. IV.

II. MATHEMATICAL FORMULATION OF THE
PROBLEM

A. Basic equations and boundary conditions

We consider the motion of a particle of radiusa on a
spherical viscous interface separating two fluid phases, see
Fig. 1~a!. The inner and external phases are denoteda andb,
respectively. The interface is of finite radius,R, and meets
the particle surface along a circular contact line indicated by
L. In Fig. 1, c is the half angle of the cone defined by the
VDB center andL ~the limit c50 corresponds to a flat inter-
face and will be commented on later!. Sp andS i refer to the
particle surface and to the spherical interface correspond-
ingly, while Cp andCi indicate their centers. We denote by
Oxyz a system of Cartesian coordinates, whose origin is at
the center of the particle contact line@see Fig. 1~b!#. The
z-coordinate of the particle center isd5OCp. The particle
moves parallel to the membrane, i.e., in the (Oy,Oz) plane
with a translational velocityV5(0,V,0) directed along the
y-axis. We suppose thatthe contact line does not move rela-
tively to the surface of the particle. This important assump-
tion is suggested by the observations of Dietrichet al.13 on
polystyrene particles bound to lipid vesicles. These authors
noticed that the contact angle would remain constant when
the particle moved on the surface of the vesicle and that the
membrane-particle contact line was ‘‘pinned’’13 to the par-
ticle solid surface. The assumption of contact line pinning
has the advantage of considerably simplifying the hydrody-
namics of the problem. In particular, this eliminates the dif-
ficulties related to moving contact lines, such as the diver-
gence of the shear rate or the multivaluedness of the flow
field at the contact line.14 In our description, the flow is ev-
erywhere single-valued and regular. Because of pinning of
the contact line at the particle surface, rotations of the par-
ticle aroundOx andOy are forbidden. Rotation aroundOz
is forbidden by symmetry. The particle movement then re-
duces to a simple solid rotation around the VDB center. The
corresponding angular velocity,v, is given by

v5
V tanc

b1d tanc
, ~1!

whereb5Aa22d2 is the radius of the particle contact line,
b5OL @see Fig. 1~a!#. The components of the velocity,vp ,
of an arbitrary point on the particle surface,Sp , in the cy-
lindrical coordinate system,Orfz @see Fig. 1~b!#, are

np,r5@V1v~zp2d!#sinf,

np,f5@V1v~zp2d!#cosf, ~2!

np,z52vr p sinf,

where (r p ,f,zp) are the coordinates of the point onSp .
The two bulk phases on both sides of the spherical in-

terface are assumed to be viscous and incompressible. Rey-
nolds numbers in our problem are on the order of 1024 or
less, which allows us to safely ignore inertial terms. Conse-
quently the Stokes equations hold for the local fluid velocity
and for the pressure distribution15 on both sides of the inter-
face,

FIG. 1. ~a! The problem: a particle of radiusa across a spherical interface of
radiusR separating two fluid phases,a andb; ~b! detail of the VBD-particle
complex; see text for symbol definitions.
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¹•vk50, ¹pk5hk¹•¹vk , k5a,b, ~3!

where ¹ is the spatial gradient. The subscriptk refers to
either a or b three-dimensional~3D! fluid. v and p are the
velocity and pressure fields, respectively, andhk is a 3D
fluid dynamical viscosity.

We impose a no-slip boundary condition at the solid
particle surfaceSp for both fluid phases,

vk5vp , k5a,b. ~4!

We will consider a system where the particle motion
perturbs the interface surface only very weakly, i.e., we work
in the regime of small capillary number. In this situation the
capillary forces dominate over the dynamic pressure contri-
bution term and the spherical surface may be regarded as
unperturbed~see the Appendix for a more detailed discus-
sion!. The balance of the tangential velocity components in
both phases atS i and the condition for no mass transfer
acrossS i lead to

vk5u, k5a,b, ~5!

whereu is the velocity of the two-dimensional continuous
phase. Equation~5! represents the so-called kinematic
boundary condition. The tangential stresses at the interface,
S i , balance the pressure jump across the interface from one
bulk phase to another. This results in the dynamic boundary
condition16

~¹s•Pi !3ni5ni•~Pa2Pb!3ni . ~6!

¹s is the surface gradient operator,Pi is the two-dimensional
~2D! stress tensor atS i , ni is the unit normal to the interface
oriented toward the continuous phaseb, see Fig. 1~a!, andPa

and Pb are the bulk stress tensors in the enclosed and the
external phases, respectively. For Newtonian fluids the latter
are defined as15

Pk52pkI1hk@¹vk1~¹vk!
T#, k5a,b, ~7!

where I is the three-dimensional idemfactor and the super-
script ‘‘T’’ denotes transposition. To define the interfacial
stress tensorPi introduced in Eq.~6!, we adopt a simple
linear Boussinesq–Scriven constitutive law17,18

Pi5sI s1~hs
dil2hs

sh!~ I s :Ds!I s12hs
shDs , ~8a!

Ds5
1
2 @~¹su!•I s1I s•~¹su!T#. ~8b!

In Eqs. ~8a! and ~8b!, I s is the 2d idemfactor andDs is the
interfacial rate-of-strain tensor. The physical parameters
characterizing the surfaceS i are the thermodynamical inter-
facial tension,s, and the intrinsic shear and dilational mem-
brane viscosities,hs

sh andhs
dil , respectively. Both viscosities

are assumed constant. Note that surface viscosities have the
dimension of a volume viscosity multiplied by a length. Here
we follow the notation chosen, for instance, by Edwards
et al.16 In Saffman’s and related theories,2–4,8 the membrane
shear viscosity is denotedhmh where h is the membrane
thickness. With this notation, the membrane property,hm ,
obviously has the dimension of a 3d fluid viscosity.

Due to the symmetry of the system under consideration,
the velocity field satisfies the following condition along the
r 50 axis:

]nk,r

]r
50,

]nk,f

]r
50, nk,z50, k5a,b. ~9!

B. Toroidal coordinates

We consider af5constant plane and define new (x1 ,x2)
coordinates through

x5r ~x1 ,x2!cosf, y5r ~x1 ,x2!sinf, z5z~x1 ,x2!,
(10)

with

r 5
b~12x2

2!

112x2 cosx11x2
2 , z5

2bx2 sinx1

112x2 cosx11x2
2 . ~11!

Putting x15constant orx25constant defines two sets of
circles,

r 21~z1b cotx1!25
b2

sin2 x1
; ~12a!

S r 2b
11x2

2

12x2
2D 2

1z25
4b2x2

2

~12x2
2!2 . ~12b!

This mapping of the (r ,z) plane is illustrated in Fig. 2~a!.
WhenbÞ0 this representation maps the infinite (r ,z) plane
into a finite rectangular domain in the (x1 ,x2) space@see Fig.
2~b!#: 2d<x1<p2d and21<x2<0. The left boundary of
the domain,x152d, is the portion of the particle surface in
contact with theb phase, while the right one,x15p2d, is

FIG. 2. ~a! Toroidal mapping in the (y,z) plane;~b! numerical domain in
toroidal coordinates.
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the portion in contact with thea phase. The interface,S i , is
simply represented byx15c. The upper boundary,x250, is
the three-phase contact line (r 5b, z50), and the lower
boundary,x2521, is the Oz axis. Note that infinity (r
→`, z→6`) reduces to a single point~0,21! in the
(x1 ,x2) domain. The expressions for the metric coefficients,
h1 and h2 , can be derived from the relation between the
coordinates, see Eq.~11!,

h152
1

2bx2
~112x2 cosx11x2

2!, h252x2h1 . ~13!

C. Two-vorticity-one-velocity formalism

Solving the system of Eqs.~3! coupled with the set of
boundary conditions~4!–~6!,~9! is very difficult. Obstacles
specific to the structure of the equations@problems essen-
tially arise from the second-order derivatives in Eq.~6!# are
discussed elsewhere.19–21

We now proceed to setting out the equations in a nu-
merically tractable form. Our first step is to retain only the
first-order Fourier mode of the velocity field as a function of
f,

vk5@nk,1~x1 ,x2!sinf;nk,2~x1 ,x2!sinf;nk,f~x1 ,x2!cosf#,

k5a,b. ~14!

The second index to the velocity refers to components along
thex1 andx2 coordinates, and along the perpendicular to the
(x1 ,x2) plane. Basically, this mode is filtered out as a con-
sequence of the symmetry of the system geometry and of the
boundary conditions for the flow field in (x1 ,x2) coordi-
nates. A similar approach was applied prior to this work in
related problems; see, for instance, the papers by Goldman22

and O’Neil.23

We now introduce the vorticity vector,w, as

wk5 1
2 ¹3vk , k5a,b. ~15!

Likewise, we retain only the first Fourier mode ofw,

wk5@wk,1~x1 ,x2!cosf;wk,2~x1 ,x2!cosf;

wk,f~x1 ,x2!sinf], k5a,b. ~16!

It is equivalent to formulate the hydrodynamic problem
in terms ofnk,1 , nk,2 , nk,f or in terms ofwk,1 , wk,2 , nk,f .
The equivalence between both presentations is the conse-
quence of the following property:

nk,15h1

]

]x1
~rnk,f!12rwk,2 ,

nk,25h2

]

]x2
~rnk,f!22rwk,1 , k5a,b. ~17!

The second representation, known as the ‘‘two-vorticity-one-
velocity’’ formalism,19–21 has the advantage of leading to a
set of differential equations whose derivatives are taken only
along x1 and x2 . These two-variable equations are set out
below.

Substituting Eq.~17! in the equation of continuity,¹
•vk50, transforms the latter into a second-order partial dif-
ferential equation for thef-component of the velocity,

]

]x1
F rh1

h2

]

]x1
~rnk,f!G1

]

]x2
F rh2

h1

]

]x2
~rnk,f!G2

nk,f

h1h2

52
]

]x2
S r 2wk,1

h1
D22

]

]x1
S r 2wk,2

h2
D , k5a,b. ~18!

Eliminating the pressure from the Stokes’s Eqs.~3! pro-
vides an extensive expression of the vorticity vector for both
phases,¹3¹3wk50, (k5a,b), giving a set of second-
order partial differential equations for the vorticity compo-
nents,

h1

r 2

]

]x1
F rh1h2

]

]x1
S rwk,1

h2
D G1

h2

r

]

]x2

3F rh1h2

]

]x2
S wk,1

h1
D G2

wk,1

r 2

52h2

]h1

]x2

]wk,2

]x1
22S h1

]h2

]x1
1

h1h2

r

]r

]x1
D ]wk,2

]x2

2H h1

r 2

]

]x1
F rh1h2

]

]x2
S r

h1
D G

1
h2

r

]

]x2
S rh1

h2

]h2

]x1
D J wk,2 , k5a,b; ~19a!

h1

r

]

]x1
F rh1h2

]

]x1
S wk,2

h2
D G1

h2

r 2

]

]x2

3F rh1h2

]

]x2
S wk,2

h1
D G2

wk,2

r 2

52h1

]h2

]x1

]wk,1

]x2
22S h2

]h1

]x2
1

h1h2

r

]r

]x2
D ]wk,1

]x1

2H h2

r 2

]

]x2
F rh1h2

]

]x1
S r

h2
D G

1
h1

r

]

]x1
S rh2

h1

]h1

]x2
D J wk,1 , k5a,b. ~19b!

We now reformulate the boundary conditions in
(x1 ,x2 ,f) coordinates. At the infinity point,x150, x2

521, the fluid is at rest, i.e.,

nb,f50, wb,150, wb,250. ~20!

As we explained in Sec. II A, contact line pinning for-
bids rolling motion, from which Eq.~2! results. In (x1 ,x2)
space, this leads to specific conditions along the left, right,
and top boundaries of the rectangular domain@see Fig. 2~b!#.
For the particle surface,x152d andx15p2d, we obtain

nf5V1v~zp2d!, k5a,b, ~21a!

wk,156v
r p

a
, k5a,b, ~21b!

4 Phys. Fluids, Vol. 12, No. 10, October 2000 Danov, Dimova, and Pouligny
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h1

]nk,f

]x1
12wk,256v

zp2d

a
, k5a,b. ~21c!

In Eqs.~21!, the sign ‘‘1’’ refers to the part of the particle
surface in contact with phasea. In this case, the derivative in
Eq. ~21c! is taken atx15p2d. The sign ‘‘2’’ refers to the
b part, x152d. The trace of the contact line which was a
couple of points in the (y,z) representation, transforms into a
line (x250) in toroidal coordinates. Along this line, the
above condition gives

nk,f5V2vd, k5a,b, ~22a!

wk,2 sin~x11d!2wk,1 cos~x11d!5v sind, k5a,b,
~22b!

4wk,12
1

b

]nk,f

]x2
52v sinx1 , k5a,b. ~22c!

At the axis of revolution (x2521), Eq. ~9! yields

]nk,f

]x2
50, wk,150,

]wk,2

]x2
50, k5a,b. ~23!

The no-mass-transfer condition, Eq.~5!, at the interface,x1

5c, transforms into

nk,f5uf , wk,15wi ,1,

h1

]nk,f

]x1
1h1

] ln r

]x1
uf12wk,250, k5a,b, ~24!

wherewi ,1 is thex1-component of the vorticity at the inter-
face. After some tedious calculations to reformulate the tan-
gential components of the dynamic boundary condition at the
interface,S i , Eqs. ~6!–~8!, we obtain for the interface ve-
locity,

1

x2
2h1

Fhb

]nb,f

]x1
2ha

]na,f

]x1
2

] ln r

]x1
~hb2ha!ufG

5~hs
dil1hs

sh!F]2uf

]x2
2 1S 11

] ln h1

] ln x2
13

] ln r

] ln x2
D 1

x2

]uf

]x2

2
2 sin2 x1

b2h2
2 ufG 12hs

shS 1

x2

] ln r

]x1
D 2

uf

22hs
dil 1

h2

]wi ,1

]x2
24~hs

sh 1hs
dil!

1

h2

] ln r

]x2
wi ,1 , ~25a!

and for the interfacial vorticity,

1

x2
2h1

Fhb

]wb,1

]x1
2ha

]wa,1

]x1
1

] ln h1

] ln x2
~hbwb,22hawa,2!G

5hs
shH ]2wi ,1

]x2
2 1S 11

] ln h1

] ln x2
1

] ln r

] ln x2
D 1

x2

]wi ,1

]x2

2F 4

~12x2
2!22

2 sin2 x1

b2h2
2 Gwi ,1J . ~25b!

D. Numerical procedure

Equations~18! and~19! with the imposed boundary con-
ditions Eqs.~20!–~25!, are solved numerically applying the

basic ideas of the Alternating-Direction-Implicit~ADI !
method ~see, e.g., Ref. 24!. The latter was already
employed19 for solving the problem of the motion of a par-
ticle in a thin liquid film. The approach implies introducing
an artificial time variable followed by a time iteration proce-
dure~see Ref. 19 for details!. Each step provides an interme-
diate set of numerical values for the pressure and velocity
fields. The time iteration is repeated until stationarity is
reached.

To compute the drag force,F, and torque,M , acting on
the particle, we use the following relationship:11,25

F5E
Sp,a

Pa•np,adS1E
Sp,b

Pb•np,bdS1E
Lc

Pi•ncdL,

~26a!

M5aE
Sp,a

np,a3Pa•np,adS1aE
Sp,b

np,b

3Pb•np,bdS1aE
Lc

nc3Pi•ncdL, ~26b!

wherenp,a andnp,b are the unit vectors normal to surfaces
Sp,a andSp,b , correspondingly.Lc is the three-phase con-
tact line andnc is the unit vector perpendicular to it. The first
two terms on the right-hand side of Eq.~26! account for the
friction experienced by the particle from the bulk phases,
while the last term brings in the additional hydrodynamical
resistance from the interfaceS i . F is proportional toV and
because of the symmetry of the problem the torqueM has
only anx-component i.e.,M y50 andMz50. The computed
quantities are the particle drag coefficient,f, and the particle
torque coefficient,m, defined by

F5 f V, ~27a!

M5maVex . ~27b!

We compute reduced coefficients:f̄ 5 f / f 0 , where f 0

56phaa is the Stokes drag coefficient in phasea and m̄
5m/m0 , where m058phaa is the Kirchoff’s rotation
torque coefficient in phasea. Input parameters of the com-
putation are: the viscosity ratio,hb /ha , the shear and dila-
tional viscosity numbers,

E5
hs

sh

aha
and K5

hs
dil

aha
, ~28!

the size ratio,R/a, and the scaled penetration depth,d̄
5d/a ~for d̄521 the particle is completely immersed in the
enclosed phasea and for d̄51 in phaseb!. The numerical
code is written in FORTRAN and usually run on a PC
Pentium-MMX computer. The program is made of four mod-
ules. The first module starts with a coarse periodic sampling
of the (x1 ,x2) domain and calculates the values of the
f-component of the velocity and thew1 andw2 components
of the vorticity vector. The following modules work with
increasing sampling densities and provide increasingly accu-
rate velocity fields. The final module assures a precision of
about 0.02% for the calculated velocity values~there is no
essential difficulty for increasing the precision by using more
powerful machines!. However the drag and torque coeffi-
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cients are computed with lower precision~61%! because of
the integrations in Eq.~26!. The computing time depends on
the values of the input parameters and on the required nu-
merical accuracy. For typical inputs such asha /hb51, E
52, K50, R/a55, andd̄50, it takes about 2 h to compute
f̄ andm̄ with the highest precision. Bringingd̄ close to61
demands increasing the (x1 ,x2) sampling density and makes
computation several times longer. Whend̄561, the set of
circles corresponding tox25constant@see Eq.~12b!# col-
lapses to the origin (r 50, z50), i.e., to the particle-VDB
contact point. Because of this limitation, the numerical pro-
cedure is inapplicable to the case of a particle tangent to the
interface. The numerical results presented in the following
section were obtained by running the program on a PC-
Pentium II computer. The maximum computation time was
limited to about 50 h, which imposed a limitation of the
particle position toud̄u>0.9. This corresponds to a contact
angle@u, see Fig. 1~b!# between 25 and 155°.

III. NUMERICAL RESULTS AND DISCUSSION

A. Inviscid spherical interface. Recirculation effect

To visualize the events occurring as a consequence of
the particle motion along the interface, we calculated the

(Oy,Oz) profile of the velocity field in thex50 plane for
two different penetration depths of the particle. Figure 3~a!
shows the result for anonviscous interface(E5K50) and
for similar a and b phases (ha /hb51). In Figs. 3~a! and
3~b! the particle strongly penetrates into the VDB interior
(d̄520.5) while in Figs. 3~c! and 3~d! the penetration is
weak (d̄50.5). The size ratio,R/a, is everywhere510. The
particle is presented in gray and the dotted curve is the
spherical interface,S i . Because of the symmetry in the ve-
locity field, n(x,y,z)52n(x,2y,z), it is sufficient to show
only they.0 side. In Figs. 3~a! and 3~c! the representation
corresponds to a periodic sampling of the (x1 ,x2) domain,
while in Figs. 3~b! and 3~d! a standard grid in the (y,z) plane
is used. Note that (x1 ,x2) sampling ensures a high mapping
density of the region close to the particle surface, and thus
optimizes the accuracy in the velocity field entering Eq.~26!.

The range of the perturbation caused by the particle mo-
tion is readily seen in Figs. 3~b! and 3~d!. At large distances
in the continuous phase,b, the velocity drops down to zero
~undisturbed fluid!. The influence of the solid particle is not
very far reaching. At distances of six times the particle ra-
dius, the velocity in they-direction is less than 0.2V,
whereas in thez-direction the velocity profile is quickly
damped down to the same value already at distances less

FIG. 3. Velocity field in thex50 plane~distances are scaled to particle radius! for a spherical particle moving iny-direction with velocityV; ha /hb51,
E50, K50, R/a510. In ~a! and ~b! d̄520.5, in ~c! and ~d! d̄50.5; ~a! and ~c! present the velocity distribution in a (x1 ,x2) lattice, the gray hemisphere
represents the particle, and the dotted line denotes the interface position. Thex15const andx25const circles can be recognized as the loci of the velocity field
vectors’ origins.~b! and~d!: same numerical data in Cartesian lattice, the solid line denotes the interface position. The broken curve represents the contact line
~in perspective, artificially!.
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than a particle diameter, see Figs. 3~b! and 3~d!. When
choosing zero interface viscosity numbers~nonviscous inter-
face! we want to emphasize the effect of just the finite size of
the VDB. The spherical shell,S i , plays the role of a wall
blocking the flow lines which are forced to follow its con-
tour. The flow ina phase is looped inside the finite volume
encompassed by the interface. This is an example of ‘‘recir-
culation,’’ similar to that encountered in the problem of the
motion of a particle in a closed box.26 This recirculation is
most pronounced when the particle is more deeply immersed
in the enclosed phase,d̄520.5 @see Fig. 3~b!#. The less the
particle portion in phasea, the weaker the perturbation~re-
circulation!.

Figure 4 shows the incidence of the flow confinement on
the value of the particle drag and torque. In Fig. 4~a!, the
dimensionless friction coefficient,f̄ , is plotted as a function
of the scaled penetration depth,d̄, for systems with different
size ratios,R/a. Again the surface viscosity is chosen to be
zero (E50, K50). The lower limit for f̄ is just 1 (f 5 f 0).
This limit is approached for large size ratios@R/a'50 in
Fig. 4~a!# when the particle feels the interface as flat and
infinite. When the VDB size is decreased to ten times the

size of the particle, the finite volume effect becomes dis-
tinctly pronounced. The behavior off̄ is as expected: the
deeper the particle penetration, the larger the friction ratio.
Even at weak penetration (d̄50.9), where a very small por-
tion of the particle~about 8% forR/a510) is in the enclosed
phasea, we observe a noticeable increase inf̄ . The behavior
of the dimensionless torque coefficientm̄ is illustrated in Fig.
4~b!. All other parameters are the same as in Fig. 4~a!. For
large size ratios,R/a, the torque coefficient is symmetric
with respect to the particle penetration depth. When the
membrane is flat (R/a@1), the particle performs a pure
translational motion. Whend.0 ~see Fig. 1!, the hydrody-
namic torque tends to make the particle rotate counterclock-
wise. We find the same sense for the torque as that found by
Lee and Leal28 for a particle close to but not in contact with
a plane interface (d̄.1). Following Lee and Leal,28 we de-
fine the torque as positive in this case.

Of course, the particle rotation is forbidden by the
contact-line-pinning condition, as we explained in Sec. II A.
In other words, the hydrodynamic torque is counteracted by
a mechanical torque from the membrane at the level of the
contact line. When the size ratio decreases, the particle per-
forms a rotational motion as well, whose angular velocity is
given by Eq.~1!. Because of this rotation, the flow velocity
around the upper part of the particle is larger than around the
bottom part~see the flow fields in Fig. 3!. This has the con-
sequence of making the torque more positive, whatever the
particle’s penetration. WhenR/a,5, the torque becomes
positive for all penetrations. For intermediate size ratios, e.g.,
R/a510, the torque is negative only whend̄,20.4, i.e.,
when the particle is largely inside the VDB@for instance, as
in Fig. 3~a!#.

Note that um̄u is everywhere moderate~,0.35!, which
means that the computed values of the torque are definitely
less than 3pha2V in absolute value. As discussed in the
Appendix, such torques cannot definitely distort the VDB
shape in usual experimental conditions with lipid vesicles.

B. Flat infinite interface. Comparison with Saffman’s
disc problem

When R/a→`, finite-size effects obviously disappear.
Analyzing the problem for a flat interface simply amounts to
choosingc50 @see Fig. 1~a!#. We calculated the drag and
torque coefficients for three different values of the surface
viscosity, again supposingha5hb . The data are presented
in Fig. 5. Each of the curves is symmetrical aboutd̄50
because of the symmetry of the system about the interface
S i . In the case of an inviscid interface (E50, K50), the
only factor influencing the friction is the particle position,
i.e., d̄. The base curve for the drag coefficient in Fig. 5~a!

~dotted line! has its minimum atd̄50 when the sphere equa-
tor is located in the interface plane. In this situation, the
streamlines are identical to those for the same particle in the
bulk fluid; then f 5 f 056pha, the sphere Stokes friction.
When d̄Þ0, the interface perturbs the streamlines of the
Stokes flow and this results in increasing the friction. This
explains why the bottom curve in Fig. 5~a! is concave. Con-

FIG. 4. Size ratio effect for a nonviscous interface (E50, K50). Dimen-
sionless drag coefficientf̄ ~a! and torque coefficientm̄ ~b!, as a function of
penetration depth,d̄, for different size ratios,R/a ~see the insert!, ha /hb

51.
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versely, when the interface is very viscous (E55, solid line!,
the curve becomes convex. Here the drag coefficient is
mainly influenced by the interface friction rather than by
hydrodynamic perturbations in bulk phases. The drag coeffi-
cient arrives at a maximum whend̄50. In that position the
intersection area of the particle with the viscous surface is
the largest (b5a), which leads to a greater resistance. In
general, the sphere drag coefficient may be decomposed as
f 5 f 01 f exc, wheref exc is an excess friction. The decompo-
sition gets a simple physical significance when the interface
viscosity is large (E@1). In this limit, f exc essentially rep-
resents the friction which the interface opposes to the motion
of the contact line, in other words of the disc~of radiusb!
which the particle intercepts in the interface plane. WhenE
;1, f exc is influenced by both the streamlines’ perturbation
in bulk phases and by the plane disc friction. Because of the
competition between these two mechanisms, thef̄ (d̄) curve
evolves from concave to convex whenud̄u increases@Fig.
5~a!, E51#. Results for the hydrodynamic torque acting on
the particle are shown in Fig. 5~b!. Because the membrane is
supposed flat, all curves are odd ind̄. Note thatum̄u,0.35
whenE,5, which again means that the torque is definitely

less thanm0 , the Kirchoff’s value corresponding to an an-
gular velocity equal toV/a. The 3D fluids on both sides of
the membrane are supposed identical, as before~results for
water/air interface are given in Ref. 11!.

The curve corresponding toE50 is the same as that in
Fig. 4~b! in the infiniteR/a limit. Whend.0, the flow wants
to make the particle rotate counterclockwise, i.e.,m̄ is posi-
tive. When the membrane viscosity increases, so does the
friction on the side of the particle in contact with the mem-
brane. Then (d.0 andE very large! the interfacial friction
tends to make the particle rotate clockwise. IfE is large
enough, the torque becomes negative. The influence of the
interfacial friction has a maximum at some finite penetration
depth, d̄ ~about60.7 for E55). Beyondd̄, um̄u decreases
because the size of the contact line rapidly decreases.

It is interesting to compare the friction of the spherical
particle to that of a disc with the same contact line. Thus we
come back to Saffman’s problem, for a disc of radiusb and
same thickness as that of the membrane. Saffman’s equation
for the disc friction coefficient reads

f disc5hs
sh 4p

lnS l

bD2g

, ~29!

where l is a characteristic length,g is Euler’s constant
~50.5772...!. In the standard situation of an infinite mem-
brane inside a continuous phase of bulk viscosityh, l
5hs

sh/h ~we recall that the shear surface viscosity has the
dimension of a bulk viscosity3length!. Equation ~29! is
valid whenb/ l !1 ~there is no such restriction in the gener-
alized theory of Hugheset al.4!. The important and some-
what counterintuitive idea conveyed by Eq.~29! is that the
disc friction depends only marginally on its size. Becauseb
intervenes only through a logarithm,f disc remains on the or-
der of hs

sh, whateverb. Our analysis for low viscosity num-
bers, see Fig. 4~a! (E,2), also demonstrates a very weak
dependency of the spherical particle drag coefficient on the
particle penetration, or equivalently, on the radius of the
disc, b, that the particle intercepts in the membrane. This
analogy with Saffman’s disc problem suggests that the
spherical particle excess friction follows an equation similar
to Eq. ~29!,

f exc5hs
shgS l

bD , ~30!

whereg is a slowly varying function; Eq.~29! is equivalent
~for h5ha5hb) to

f̄ exc[ f̄ 215
E

6p
gS E

sinu D . ~31!

In Fig. 6 the reduced excess frictionf̄ exc/E is plotted versus
E/sinu. The broken line was computed for a constant angle
u590° (d̄50) and 1<E<100. The gray zone marks the
numerical error band for the computed data. We do find a
slowly varying function, which can be approximated by a
power low ~solid line! with a very weak exponent,

g~x!'2.93x20.116 ~u590°,1<x<100!. ~32!

FIG. 5. Reduced friction~a! and torque~b! of a spherical particle across a
flat interfaceK50 andha /hb51. The dotted line corresponds to a nonvis-
cous interface,E50; the broken and solid lines toE51 andE55, respec-
tively.
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This power low fits to the computed values within numerical
error. Equations~30!–~32! show thatf exc'2.9hs

sh for a5 l
and only decreases down to 1.4hs

sh for a50.01l . Note that
Eq. ~32! only holds foru590° (d̄50). We thus find that the
excess friction of a macroscopic spherical particle whose
center lies in the membrane plane~u590°! behaves similarly
to the disc friction in Saffman’s theory. Nevertheless note
that the similarity is only qualitative@Eqs.~28! and ~32! are
quantitatively different#, which means that Saffman’s equa-
tion, Eq. ~29!, cannot be used to interpret data with macro-
scopic spherical particles.27 In their most general form~with
variableu!, Eqs.~30! and ~31! suggest that the dependence
of f exc on b might be universal, i.e., independent of the con-
tact angle. If it were so, increasing the particle size while
increasingudu so as to keepb5a sinu5constant should not
significantly modify f exc. For instance, a small sphere,a
51 mm, u590°, and a large one,a53 mm, u520°, should
have the same friction. We tested this conjecture forE52
andE55 and found that it was valid within the error band
only for angles not too far from 90°, say 45°<u<135°. For
small ~or large, symmetrically! contact angles, the particle
friction is inferior to that foru590°, at constantb. In fact,
this difference is not surprising; coming back to the above
given example, it is clear that the velocity fields correspond-
ing to the small and large spheres are necessarily different
and so are the particle frictions. Nevertheless, this difference
becomes negligibly small whenudu,0.7.

As we discussed before, our procedure does not allow us
to compute the particle drag coefficient in thed̄561 limit,
i.e., when the particle is tangent to the interface. Neverthe-
less, when the viscosity is not too largef̄ (d̄561) can be
found by extrapolating thef̄ (d̄) curve. For instance, we find
f̄ (d̄561)>1.05 for a nonviscous interface (E50) between
two fluids of equal viscosities (ha5hb). Interestingly, the
d̄561 configuration can be found as a limit situation too, in
the case of a sphere near to, but not in contact with a flat

interface. A numerical exact solution to this problem was
worked out by Lee and Leal28 for a nonviscous interface;
recently the same problem was generalized to a flat viscous
interface by Danovet al.29 The sphere tangent to the inter-
face configuration corresponds to thed̄51 limit in Lee and
Leal’s notation. Their result forl5ha /hb51 is f̄ (d̄51)
>1.051,which is in agreement with ours. We checked that
this agreement remained true with viscous films (E<2) us-
ing data from Danovet al.29

C. General situation: Spherical viscous interface

Having discussed the limit situations of a finite-size in-
viscid interface and that of flat infinite viscous interface, we
now come to the general problem of a spherical viscous in-
terface. Making the interface viscous obviously increases the
particle friction. For a large number of systems to which the
problem relates, the dilational and the shear surface viscosi-
ties are of the same order of magnitude. It is quite common
that they differ by a factor of 0.2 up to 5. Conversely, for
biological membraneshs

dil and hs
sh differ by several~4–5!

orders of magnitude.30 Since this work is mainly dedicated to
lipid membranes,12,31 we will put K50. Figure 7 presents
numerical data for four systems with different parameters
indicated in the legend. For the three upper curves the sur-
face shear viscosity number isE52 andR/a varies between
3 and 10. To facilitate the comparison, the base curve pre-
sents numerical results (E50, R/a55) already displayed in
Fig. 4~a!. The main feature in Fig. 7 is the upward shift of
the friction values~for R/a55) in the whole interval ofd̄.
The effect is noticeable even for penetrations corresponding
to d̄50.9 ord̄520.9 when the size of the disc,b, which the
particle intercepts in the interface is!a. However, the vis-
cosity influence forE52 does not overpower the finite-size
contribution and as a whole the curves preserve their nega-
tive slope tendency. An interesting point to note is that all
three upper curves converge to one and the same value for

FIG. 6. Scaled excess frictionf̄ exc/E versusE/sinu for a flat infinite mem-
brane. See text and figure insert for definition of symbols. The gray band
represents the estimated uncertainty of the computed values off̄ exc/E. As
the relative uncertainty off̄ is about constant, that off̄ exc/E diverges when
f̄→1, i.e., whenE→0.

FIG. 7. Dimensionless drag coefficient,f̄ , as a function of penetration
depth,d̄, for different size ratios,R/a, and shear surface viscosity numbers;
K50, ha /hb51. The dotted curve corresponds toE50 ~the numerical data
are the same as in Fig. 4, see legend!. The three upper curves present results
for E52.
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small penetrations (d̄50.9), in contrast to the behavior ob-
served with the inviscid membrane,E50 @see Fig. 4~a!#.
Obviously, in this region the interface viscosity dominates
the flow confinement effect.

Figure 8 shows results for high shear viscosity numbers.
The friction coefficient is plotted as a function of the size
ratio, R/a, of the VBD-particle complex. Here we consider
the general situation wherea and b may be different, and
plot (ha /hb) f̄ . In other words the friction coefficient pre-
sented in the figure is scaled by the Stokes friction not in
phasea as in the previous figures, but in phaseb. Only for
curve b, solid line, the viscosity ratio is different from 1:
ha /hb51.5. For all curvesd̄ is set50. The novel effect in
the figure is the growth of the friction for largeE ~two upper
curves! when the size ratio increases. We recall that for small
values of the shear viscosity (E52), f̄ is a decreasing func-
tion of R/a ~see Fig. 7!. Figure 8 demonstrates an opposite
behavior whenE is very large. The interpretation of this
apparently paradoxical result lies in the possibility of the
VDB-particle complex to rotate as a whole inb phase. In the
limit of an infinite membrane viscosity, the VDB-particle
complex may be viewed as a rigid body. The friction in-
volved in the particle motion is then the rotational friction of
the whole complex inb phase. Obviously, this friction in-
creases whenR increases. The upper limit off̄ for d̄→21
may be estimated from the Kirchoff equation25,32 for a rotat-
ing sphere; both upper curves on the figure are below that
limit. We find:32 f̄→4R/3a whenhs→`. The overall rotat-
ing effect acts oppositely to the above described recirculation
effect. The influence of the latter is obviously more pro-
nounced for ‘‘less rigid’’~less viscous! surfaces. The dotted
line, curve a,E50, ha /hb51, represents the extreme case
of an inviscid interface for identicala and b phases. The
lower limit of the curve at infinity is set by the net Stokes’
resistance (f̄ 51). Curve b, solid line (ha /hb51.5, E
50), shows that increasingha results in increasingf̄ , but
the general tendency of the curve is preserved as a whole.

The slightly positive slope of the third curve (E530) in
Fig. 8 indicates that both recirculation and overall rotation
are operative in this case. We expect rigid rotation to be the
leading mechanism for smallR/a; conversely, whenR is
very large, rotating the VDB as a whole costs too much in
terms of dissipation and it is preferable for the particle to
shear the interface. Ultimately, whenR→`, we are back to
the situation of an infinite interface, with obviously no over-
all motion. Size ratios in Fig. 8 (2<R/a<5) are intermedi-
ate between theR→0 andR→` regimes. For illustration,
the flow field corresponding toE530, R/a53, ha5hb , is
shown in Fig. 9, in toroidal coordinates representation. The
existence of a partial overall rotation of the system is evident
from the slow decrease of the velocity along the interface;
compare with Figs. 3~a! and 3~b!. However, note that the
flow pattern inside the VDB is not cylindrical~the vortex is
not located at about mid-distance between the particle and
the VDB center and follows the particle motion!, which
means that part of the dissipation takes place in the VDB
interior.

IV. CONCLUSIONS

The theoretical study presented in this work was aimed
at assessing the friction coefficient for systems where the
curvature of the interface influences the resistance experi-
enced by the floating particle. The model refers to slow mo-
tion in the Stokes’ regime and small capillary numbers and is
applicable both to curved and flat interfaces. The approach
accounts for the viscous properties of the surface.

A toroidal coordinate system was introduced allowing
decoupling of the coordinate variables. The hydrodynamic
equations and boundary conditions were transformed follow-
ing the two-vorticity-one-velocity formalism, which allowed
us to eliminate thef-coordinate, thus reducing the problem

FIG. 8. Friction coefficient scaled to Stokes resistance for phaseb. K50,
d̄50. The two upper curves present results for high shear surface viscosity
(E530 andE51000) and a viscosity ratioha /hb51. The dotted line,
curve~a!, corresponds to a nonviscous surface,E50 andha /hb51, while
the solid line, curve~b!, is calculated forE50 andha /hb51.5. FIG. 9. Velocity field for a particle on a very viscous interface (E530).

Input parameters areha /hb51, K50, R/a53, d̄50. The velocity field is
shown in toroidal coordinates lattice presentation. The dotted line shows the
position of the spherical interface.
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to a two-variable one. The numerical solution was achieved
employing the Alternating-Direction-Implicit method with a
second-order precision.

The performed analysis on the influence of different fac-
tors demonstrated a considerable contribution to the friction
coefficient both from the finite size of the enclosed fluid and
from the surface shear viscosity. An interesting prediction of
the numerical calculations is the possible rotation of the
particle/interface complex as a whole when surface viscosity
is increased, i.e., when the particle is blocked on the spheri-
cal shell.

Finally, the theory makes feasible the interpretation of
experiments based on the ‘‘falling ball viscosimetry’’
method independently of the size ratio of the vesicle/particle
complex.31 Moreover, the approach is applicable to systems
where the fluids on both sides of the interface are of different
viscosities. This happens in emulsions stabilized by solid
particles~so-called Pickering emulsions!.
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APPENDIX: DOES THE PARTICLE MOTION PERTURB
THE SHAPE OF THE INTERFACE?

Since we supposed a spherical VDB, we implicitly as-
sumed that the particle motion would not modify the shape
of the interface. We expect this assumption to be approxi-
mately valid whenever the capillary number,Ca5hV/s, is
much inferior to 1. Heres is the interfacial tension. Roughly,
Ca represents the ratio of the friction force,F, to the surface
tension force,Fcap, acting on the particle. As we argue in the
discussion,F remains on the order of the Stokes friction
(F}6phaV) in the bulk fluid. The capillary force is on the
order of 2psb52psAa22d2. We thus find the above re-
sult for Ca wheneverudu is not close toa, i.e., when the
particle is well across the interface. Equivalently,Ca repre-
sents the ratio of the viscous torque (}ha2V) to the capillary
torque (}sba) acting on the particle. To estimateCa in
typical conditions, we may putV}(2/9)a2Drg/h, the par-
ticle sedimentation velocity in the bulk fluid. With polysty-
rene spheres in water anda>5 mm ~this corresponds to the
experiments in Dietrichet al.29!, hV is of the order of
1025 dyn/cm. Correspondingly small values of the interfa-
cial tension exist only with so-called ‘‘quasi-spherical’’
vesicles, whose shapes are fluctuating under thermal
agitation.33 Vesicles with no visible thermal fluctuations
have tensions at least of the order of 0.1 dyn/cm.30 In con-
clusion, a vesicle~or a VDB in general! which appears
spherical under the microscope, corresponds toCa!1.
Strictly speaking, this condition cannot remain valid when
udu>a, i.e., when the contact line reduces to a point (b
→0). However, the value ofCa is definitely increased only

when b is extremely small, which meansd/a very close to
61. As we explain in Sec. II B, the mapping of the (r ,z)
plane by toroidal coordinates fails in thed̄→61 limit. For
this reason, the accuracy of the numerical procedure consid-
erably decreases when the size of the contact line becomes
small compared toa. Keeping the computing time within
reasonable limits~>50 h!, the friction coefficient can be
computed within about61% only whenb.0.1a. In such
conditions,Ca is not considerably larger thanhV/s, and,
consequently, the above estimate for the validity of the
theory remains in force. In other words, there is no risk that
a computed value of the particle drag coefficient be physi-
cally wrong because the interface shape could be distorted by
the particle motion.
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