ADVANCES IN
COLLOID AND
INTERFACE
SCIENCE

Advancesin Colloid and Interface Science www.elsevier.nl/locate/cis
85 2000. 145] 192

Capillary interactions between particles
bound to interfaces liquid films and
biomembranes

Peter A. Kralchevsky?*®, Kuniaki Nagayam&"

#Laboratory of Ultrastructue ResearchNational Institute for PhysiologicaSciences,
Myodaiji-cho, Okazak 444-8585 Japan
bLaboratory of Thermodynamisand PhysicochemiceHydrodynamicsFaculty of Chemisty,
Uni” ersiy of Sofia, Sofia 1126 Bulgaria

Abstract

This article is devoted to an overview, comparisan and discussia of recert results both
theoretical and experimentd. about lateral capillary forces. They appea when the contact
of particles or other bodies with a fluid phas boundary cause perturbations in the
interfacial shape The capillary interaction is due to the overlap of such perturbations which
can appea around floating particles, vertical cylinders, particles confined in a liquid film,
inclusions in the membranes of lipid vesicles or living cells, etc. In the cas of floating
particles the perturbations are due to the particle weight; in this case the force decreases
with the sixth power of the particle size and becomes immaterial for particles smaller than
approximately 10 mm. In all other cases the interfacial deformations are due to the particle
wetting properties; the resulting “immersion’ capillary forces can be operative even between
very smal particles, like protein globules In many cases sud forces can be responsibke for
the experimentally observel two-dimensiond particle aggregation and ordering. An analogy
between capillary and electrostatic forces enables one to introduce “capillary charges of the
attached particles, which characteriz the magnitude of the interfacial deformation and
could be both positive and negative Moreover, the capillary interaction between particle
and wall resembles the image force in electrostatics When a particle is moving bound to an
interface under the action of a capillary force, one can determine the surface drag

UCorresponding author. Tel: g 81-564-55-7811fax:q 81-564-52-7913.
E-mail addressnagayama@nips.aqy K. Nagayana..

0001-8686 00r $ - see front matter Q 2000 Elsevier Scien® B.V. All rights reserved.
Pll: S0001-8686 99.00016-0



146  P.A. Kralche sky, K. Nagayamar Ad" ancesin Colloid and Interface Sciene 85 (2000) 145] 192

coefficient and the surface viscosiy supposedy the magnitude of the capillary force is
known. Alternative but equivalert. energy and force approaches can be used for the
theoretical description of the lateral capillary interactions. Both approaches require the
Laplace equation of capillarity to be solved and the meniscus profil e around the particles to
be determined. The energy approach account for contributions due to the increase of the
meniscLs area, gravitational energy andr or energy of wetting. The secord approach is based
on calculating the net force exerted on the particle, which can originate from the hydrostatic
pressure interfacial tension and bending moment. In the ca® of smal perturbations, the
superposition approximation can be used to derive an asymptotic formula for the capillary
forces, which has been found to agree well with the experiment Capillary interactions
between particles bound to sphericd interfaces are also considered taking into accourt the
specid geometry and restricted area of such phase boundaries A similar approach can be
applied to quantify the forces between inclusions transmembrare proteins. in lipid mem-
branes The deformations in a lipid membrane due to the inclusions can be described
theoretically in the framework of a mechanicd model of the lipid bilayer, which account for
its “hybrid' rheology neither elastic body nor fluid.. In all considerad cases the lateral
capillary interaction originates from the overlap of interfacial deformations and is subjed to
a unified theoretical treatment, despite the fact that the characteristic particle size can vary
from 1 cm down to 1 nm. Q 2000 Elsevier Scien@ B.V. All rights reserved.

Keywords:Capillary forces, Lipid membranes containing inclusions Liquid films containing particles;
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1. Introduction

It is known from the experimert and practice that particles floating on a fluid
interface attract each other and form clusters Such effects are observed and
utilized in some extraction and separation flotation processa V,2X As noticed by
Nicolson \8X these lateral capillary forces are causeal by the deformation of the
interface due to the effect of gravity particle weight and buoyang force.. The
shape of the surface deformations created by floating particles has been studied by
Hinsch WiXby means of a holographic method. Allain and Jouhier V8X and in other
experimernt Allain and Cloitre VX hawe studied the aggregation of spherical
particles floating at the surface of water and demonstrated that the obtained
aggregate have a structure corresponding to a fractal dimension 1.6. A theoretical
calculation of the capillary force between two vertical or inclined plates, partially
immersed in a liquid, has been carried out by Derjaguin and Starov WX

Our interest in the capillary forces was provoked by the finding that small
colloidal particles and protein macromolecules confined in liquid films also exhibit
attraction and do form clusters and larger ordered domains two-dimensional
arrays. V8] 13X However, the weight of such tiny particles is too smal to create any
surface deformation. Nevertheless they also produce interfacial deformations
becau® of their confinement in the liquid film; sud deformations depend on the
wetting properties of particle surfaces related to the thermodynamic requirement
that the interface must meet the particle surface at a given angle } the contact
angle. The overlap of such wetting-driven deformations also gives rise to a lateral
capillary force vi4x

After Nicolson V8X who derived an approximated analyticd expressia for the
capillary force between two floating bubbles calculations about the capillary force
per unit length of two infinit e parallel horizontal floating cylinders were carried out
by Gifford and Scriven ViI5Xand by Fortes VI6X This configuration is the simplest
one, becaug the meniscis has a translational symmetry and the Laplace equation,
governing the interfacial profile, acquires a simpler form W,15,16X Chan et al. vi7X
derived analyticd expressiors for floating horizontal cylinders and spheres using
the Nicolson's superposition approximation, whose validity was supported by a
comparisan with the exad numerical results for cylinders from Giffor d and Scriven
VI5X

The aforementioned studies V8,15 17xded with floating particles. For the first
time the capillary forces between two vertical cylinders and between two spheres
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partially immersed confined. in a liquid layer have been theoretically studied by
Kralchevsky et al. VI4X A generd expressiam for the interaction energy has been
used VI4x which includes contributions from the gravitational energy, energy of
particle wetting and energy of increase of the meniscws area due to the deforma-
tion causal by the particles; this expressiam is valid for both floating and confined
particles. Expressiors and numerical results for the energy and force of interaction
have been obtained for the case when the slope of the deformed meniscws is small;
this ca® corresponds to the usud experimentd situation with smal particles. The
theory has been extended also to particles entrapped in thin films, for which the
disjoining pressue effect, rather than gravity, keeps the non-deformed surface
planar ¥4x

Another new moment in the paper by Kralchevsky et al. W4Xis the approach to
solving the Laplace equation: instead of assumirg a mere superposition of the
known axisymmetrc profiles around two separae particles, the linearized Laplace
equation has been solvad directly in bipolar coordinates which allows one to
impose the correct boundary conditions at the particle contad lines constang of
the contad angle.. Thus a correct theoretical description of the force at small
interparticle distances is achieved which is not accessib® to the superposition
approximation.

Paunov et al. i8X obtained solutions for the meniscus profil e in bipolar coordi-
nates for other configurations: vertical cylinder] vertical wall, and particle] vertical
wall. A different, force approac to the calculation of lateral capillary interactions
has been applied to obtain both analyticd and numerical results. The validity of
the derived analyticd expressiors has been confirmed by checking whether the
force exerted on the particle and the wall have equa magnitudes and opposite
signs as required by the third Newton's law.

Next, the theory developed by Kralchevsky et al. t4xand Paunov et al. I8Xwas
extended in VI9Xin the following two aspects First, the energyapproach and the
force approach havwe been applied to the same object: vertical cylinders and
particles in a liquid film; the two approaches were found to give numerically
coinciding results, although their equivalene has not been proven analytically
there. Furthermore, in Ref. V19X an analyticd solution of Laplace equation in
bipolar coordinates has been obtained for the ca® of two dissimilar particles:
vertical cylinders andr or spheres confined in a film. Attractive and repulsive
capillary forces have been obtained depending on whether the meniscis slope at
the contad line of the two particles has similar or different signs.

In Ref. V20Xthe theory of the capillary forces between small floating particles of
different size has been extended on the bask of the result for the meniscus profile
from Ref. 19X The energy approach has been applied to calculate the capillary
interaction, appropriate analyticd expressiors have been derived and numerical
results for various configurations have been obtained. From the generd expression
for the interaction free energy the approximation of Nicolson 8Xhas been derived
as an asymptotic case and thus its validity has been proven analytically. It has been
noticed that in a wide range of distances the capillary forces obey a two-dimen-
siond version of the Coulomb law of electricity. Following this analogy “capillary
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charges of the particles have been introduced; depending on whether the two
“capillary charge$ have the same or the opposite sign, the capillary force is
respectivel attractive or repulsive.

In Ref. V20Xthe physicd nature and the magnitude of the lateral capillary forces
between floating and confined particles have been compared and the differences
between them hawve been explicitly analyzed It has been establishal that the
energy of capillary interaction between floating particles becomes negligible
smaller than the thermal energy kT . for particles smaller than 5] 10 mm. On the
other hand, when the particles instead of being freely floating. are partially
immersed into a liquid film, the energy of capillary interaction is much larger for
the same particle size., and it can be much greater than kT even for particles of
nanometer size This analyss has been extendead in Ref. V21X where the former
type of capillary interactions have been called flotation forces', and the latter }
‘immersion forces'. Other configurations have been also investigated in Ref. V21X
i. two particles in a symmetric liquid film with accourt for the disjoining pressure
effect, and ii. two particles of fixed contad lines rather than fixed contad angles..
It has been establisheal that the interaction at fixed contad angle is stronger than
that at fixed contad line. Finally, in Ref. V21Xthe equivalene of the energy and
force approaches to the capillary interactions has been analytically proven for the
cas of two semi-immerseal vertical cylinders.

Paunov et al. VI8X noticed that the meniscus between a vertical cylinder or
particle. and a wall has the same shape as the meniscis between two identical
particles, each of them being the image of the other one with resped to the wall.
For that reasm the capillary interaction between the particle and the wall is the
sanme as between the particle and its mirror image. In this resped there is analogy
with the image forces in electrostatics Thisidea has been applied and developal in
Refs. 22,23X where the capillary image forces between particles floating over an
inclined meniscus in a vicinity of a wall have been theoretically and experimentally
investigated.

Further extensimn of the theory of capillary forces has been achieveal in Ref. V24X
where the interaction between particles attached to a sphericd interface mem-
brane. has been carried out; note that in contrag with the planar interface or
film. the sphericd interface has afinite area and “infinite ' interparticl e separations
are not possible Other extensian of the theory has been made by Kralchevsky et
al. V5% where lateral capillary forces between inclusions in phospholipid mem-
branes have been investigated on the bask of a specid mechanicd model accourt-
ing for the elastic properties of the lipid bilayer. It is a generd conclusian from alll
studies of lateral immersion forces is that they are strong enough to produce
aggregation and ordering of sub-micromete particles 84,18 25X This fact could
explain numerous experimentd evidences about the formation of two-dimensional
2D. particle arrays in liquid film s \26] 45Xand in phospholipid membranes W6] 48X

It should be also noted, that the problem about horizontal floating cylinders, was
reexamined by Allain and Cloitre W9,5% who used the linear superposition
approximation and alternatively, a more rigorous expressiors for the free energy of
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the cylinders they calculated the capillary force for both light and heaw cylinders
for both smal and large Bond numbers..

We should note that the lateral capillary forces are distinct from the popular
capillary bridge forces which are known to form contacts between patrticles in the
soil, pastes as well as in some experiments with the atomic force microscope
AFM., see e.g Mate et al. 81] 56X The capillary bridge forces ac normally to the
plane of the contad line on the particle surface whereas the lateral capillary forces
are directed almog. tangentially to the plane of the contad line.

Lucassen 87X proposed another type of capillary force, which can be operative
between particles of irregula wetting perimeter The latter creates respectiwe irregu-
lar deformations in the surrounding liquid surface even if the weight of the
particle is negligible. The overlap of the deformations around such two particles
also gives rise to a lateral capillary force. For the time being only a single
theoretical study 87X of this kind of forces has been carried out.

In Section 2 we give an outline of the main results both theoretical and
experimentd. for flotation and immersion lateral capillary forces Then we demon-
strate how the asymptotic expressiors for these forces are derived. Further, we
review the extensian of the theory to particles at sphericd interfaces films and to
inclusions in lipid bilayers.

2. Overview of results about lateral capillary forces
2.1 Interaction betweea two particles

As mentioned in the introduction, the origin of the lateral capillary forces is the
deformation of the liquid surface which is supposeal to be flat in the absene of
particles. The larger the interfacial deformation created by the particles, the
stronger the capillary interaction between them. It is known that two similar
particles floating on a liquid interface attract each other V8,15 17,20,2X} see Fig.
la This attraction appears becau the liquid meniscws deformsin sud a way that
the gravitational potential energy of the two particles decreass when they ap-
proach each other. Hence the origin of this force is the particle weight including
the Archimedes force..

A force of capillary attraction appears also when the particles instead of being
freely floating. are partially immersed confined. into aliquid layer 14,18,19,21,24
} see Fig. 1b. The deformation of the liquid surface in this cas is related to the
wetting propertiesof the particle surface i.e. to the position of the contad line and
the magnitude of the contad angle, rather than to gravity.

To make a difference between the capillary forces in the cas of floating
particles and in the case of particles immersed in a liquid film, the former are
called lateral flotation forces and the latter } lateral immersion forces V20,21X
These two kinds of force exhibit similar dependene@ on the interparticl e separation
but very different dependencies on the particle radius and the surface tension of
the liquid. The flotation and immersion forces can be both attractive Fig. 1la,b
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(e) forR <5 um ® even for R = | nm
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Fig. 1. Capillary forces of flotation a,ce- and immersion b,df. type: a. attraction between two
similar floating particles, b. attraction between two similar particles immersed in a liquid film on a
substrate c . repulsion between a light and a heaw floating particle; d. repulsion between a
hydrophilic and a hydrophobic particle; e. smal floating particles do not deform the interface and do
not interact, f. smal particles confined within a liquid film experiene capillary interaction because
they deform the film surfaces due to the effects of wetting V21X

and repulsive Fig. 1cd.. This is determined by the signs of the meniscis slope
angles ¢, and c, at the two contad lines: the capillary force is attractive when
sinc;sinc,) 0 and repulsive when sinc,sinc,- 0. In the cas of flotation forces
c) Ofor light particles including bubbles. and ¢ - 0 for hedy particles. In the
cae of immersion forces between particles protruding from an aqueouws layer
c¢) 0 for hydrophilic particlesand c¢- 0 for hydrophobt particles When ¢s 0
there is no meniscus deformation and, hence there is no capillary interaction
between the particles. This can happen when the weight of the particles is too
smal to create a significant surface deformation, Fig. 1e. The immersion force
appears not only between particles in wetting films Fig. 1bd., but also in
symmetric fluid films Fig. 1f.. The theory W7,2( 22X provides the following
asymptotic expressim for calculating the lateral capillary force between two
particles of radii R, and R, separatal by a center-to-center distance L.

Fs y 2psQ,Q,qK; qL.[1g O g’RZ.| r< L 2.1.

where s is the liquid] fluid interfacial tension, r, and r, are the radii of the two
contad lines and

Qs r;sinc; is 1,2 2.2.
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is the “capillary chargé of the particle V20] 22% in addition

g?s Drg's inthick film.
g’s Drgy *rs inthinfims. 2.3

Here Dr is the difference between the mass densities of the two fluids and P*is
the derivative of the disjoining pressuke with resped to the film thickness K; x. is
the modified Bessé function or Macdonald function. of the first order 88] 60X
The derivation of Egs. 2.1. and 2.3. can be found in Section 3. The asymptotic
formof Eq. 2.1. for gL< 1 @Y 's 2.7 mm for water.,

Fs y2psQQrL rn< L< gt 2.4.

looks like a two-dimensiond analogue of Coulomb's law, which explains the name
“capillary chargé of Q, or Q,. It is worth noting that the immersion and flotation
forces exhibit the same functional dependen@ on the interparticle distance see
Egs. 2.1. and 24.. On the other hand, their different physicd origin results in
different magnitudes of the “capillary charges of these two kinds of capillary force.
In this resped they resembk the electrostatic and gravitational forces which obey
the same power law, but differ in the physicd meaning and magnitude of the force
constans charges masse.. In the particular cae when R;s R,s R;r,< L<
g’ ! one can derive \20,21,6X

FA R°s.K,gL. for flotation force

FA sR?K, qL- for immersion force 2.5.

Consequently the flotation force decreaseswhile the immersion force increases,
when the interfacial tension s increases Besides the flotation force decreases
much stronger with the decreag of R than the immersion force. Thus Fygai0n 1S
negligible for R- 5]10 mm, whereas F,,meson C8N be significant even when
Rs 2 nm, see Fig. 2. Protein molecules of nanometer size can be considered as
“particles insofar as they are much larger than the solvert water. molecules. In
Fig. 2 the two types of capillary interaction are compared with resped to their
energyDW L.s HF LXd L for a wide range of particle sizes The values of the
parameters used are: particle mass density r,s 2 gr cm®, density difference
between the two fluids Dr s 1 gr cm?, surface tension ss 40 mNr m, contact
angle as 608 interparticle distance L s 2R, and thickness of the non-disturbed
planar film |;s R. The pronounced difference in the magnitudes of the two types
of capillary forces is due to the different magnitude of the interfacial deformation.
The smal floating particles are too light to create a substantid deformation of the
liquid surface and the lateral capillary force is negligible. In the ca® of immersion
forces the particles are restricted in the vertical direction by the solid substrate
Fig. 1b. or by the two surfaces of the liquid film Fig. 1f.. Therefore, as the film
becomes thinner, the liquid surface deformation increases thus giving rise to a
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10°r =40 mN.m"
| a=60°
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Fig. 2. Energy of capillary attraction DW, in KT units, plotted vs the radius R of two similar particles
separatal at a center-to-cente distanceL s 2R.If PW < KT, the capillary attraction is stronger than
the Brownian force and can caus particle aggregation V20,21

strong interparticl e attraction. Hence, as already mentioned, the immersion forces
may be one of the main factors causirg the observel sef assemby of small
colloidal particles V1] 13,26 45X and protein macromolecules confined in thin
liquid films V8] 10Xor lipid bilayers V25,44 48X

In the cae of interactions between inclusions in lipid bilayers Fig. 3. the
elasticity of the bilayer interior must also be taken into account The calculated
energy of capillary interaction between integral membrane proteins turns out to be
of the order of several kT; hence sud an interaction can be one possible
explanation of the observed aggregation of membrane proteins V25,48X Lateral
capillary forces can be operative also between particles captured in a spherical
rather than planar- thin liquid film or lipid vesick V24X

2.2 Measuremert of laterd capillary forces

The first measuremen of lateral capillary force of the immersion type. has been
carried out by Camoin et al. v82Xwith millimeter-sized polystyrene spheres attached
to the tip of rod-lik e holders. By means of a sensitive electromechanica balance it
has been establishal that the force is attractive and decays approx.. exponentially,

(a) (b)

Fig. 3. The thickness of an inclusion say transmembrare protein. can be a. greater or b. smaller
than the thickness of the non-disturbed phospholipid bilayer. In both cases the overlap of the
deformations around two similar inclusions gives rise to attraction between them.
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which corresponds to the long-distanee asymptotics of Eq. 2.1., see e.g Lucassen
Vv89xand Dwight V83X

2pq ['? 1
Ff ypQ,Q, o expy gL.{1g O q_L gL G 2. 2.6.

A detailed comparisan of the experimentd results from Camoin et al. v82Xwith the
theory is not possible becau® data for the surface tension, contad angle and the
contad line radius are not given in Ref. V82X

Both attractive and repulsive lateral immersion forces between two vertical
cylinders as well as between a vertical cylinder and a wall, were obtained by Velev
et al. v84xby mears of a piezo-transduse balance see Fig. 4. One of the cylinders
"1 in Fig. 4. is connectead by a thin glass needle to a piezo-resistiwe sensor thus the
sensa@ can deted the pressue causel by the needle, which isin fact the horizontal
componert of the force exerted on the vertical cylinder 1. The other cylinder 2 can
be moved during the experimert in order to change the distance L between the
bodies Fig. 5 presens the dimensionles capillary force Fr gs Q,Q,. vs the
dimensionles distance qL measurel by Velev et al. 84X The liquid is pure water,
Ss 724mNrm, ¢’ *s 2.72 mm; the two cylinders are hydrophilic, so ¢c;s ¢,s
908 the radii of the cylindersare r; s 370mm and r,s 315mm. The solid curve in
Fig. 5 is drawn by means of Eq. 2.1. without using any adjustablke parameters One
sees that Eq. 2.1. agrees well with the experimert excep in the region of small
distances where the asymptotic formula Eq. 2.1., derived under the assumption
for smal meniscus slope and long distances is no longer valid.

Systematt measuremens of lateral immersion force between two vertical cylin-

Yz

Fig. 4. Sketd of the experimentd setup used in Velev et al. 84Xto measuee the capillary immersion
force between two vertical cylinders, "1' and "2'; "3' is a glass needle, which transfers the horizontal force
exerted on cylinder "1 to a piezo-resistive sensg ‘4'. Thus the force, converted into electric signal is
measurda as a function of the distance L.
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12r

10 |

F
q00,0,

Fig. 5. Force F of capillary attraction between two hydrophilic vertical cylinders measurel in Velev et
al. 84X by means of the piezo-transduce balanae sketchel in Fig. 4; F is plotted vs the distance L
between the axes of the cylinders the parameters values are ¢! s 2.72 mm, ss 724 mNr m,
Q;s 0.3 mm, Q,s 0.315 mm. The solid line is calculated by mears of Eg. 2.1.; no adjustable
parameters

ders, between cylinder and sphere and between sphere and vertical wall were
carried out in Dushkin et al. v85,66Xby means of a torsion micro-balance see Fig. 6.
The latter in principle resembles the balanee used by H. Cavendis to measue the
gravitational constart in 1798} but is much smaller. The force between two
couples of vertical cylinders andr or spheres Fig. 6. was measured by counter-
balancing the moment created by the two couples of forces with the torsion
moment of a fine platinum wire, whose diameter was 10 mm and 25 mm in
different experiments The angle of torsion, w, was measurel by reflection of a
laser beam from a mirror attached to the ancha of the balance see Fig. 6. Fig. 7
shows data from Dushkin et al. V85X for the capillary force between two identical
vertical cylinders for r;s r,s 50, 165 and 365 mm,; the solid lines in Fig. 7 are
calculated by means of Eq. 2.1. without using any adjustable parameter. It is seen
that the theory and experimert agree well in the range of validity of the theoretical
expressions At shorter distances between the two interacting bodies at which the
linearized theory is not accurate deviations from Eq. 2.1. are experimentally
detected V86X as it could be expected.

The lateral capillary force between two freely floating particles no attachment
to any holders. is more difficult to be measured One way is to counterbalane the
capillary force by the gravity force in the vicinity of an inclined meniscus see Fig. 6
in Velev et al. 23X Other way is to measue the displacemen of a floating particle

moving under the action of the lateral flotation force. as a function of time;
knowing the surface drag coefficient one can determine the capillary force, and
vice versa see Petkov et al. v88xand the next Section 2.3.

*About the measuremert of the gravitational constart see Rose et al. V87x
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[ h

Fig. 6. Sketd of a torsion balance used by Dushkin et al. v85,66Xxto measue the capillary attraction
between two pairs of smal glass spheres 1y 1 and 2y 2% attached to holders. The immersed part of
the holders is shown dashed One of the particles in each pair these are particles 1 and 2. is connected
to the central anchor 3, which is suspende@ on a platinum wire 4; the angle of torsion is measurea by
reflection of a light beam from the mirror 5.

10* 3
F * R=50um
10° E ® R=165um
A R=365um
— 10
Z i
I, C
107 3
10°® E
i .
10,9 PSS TR ST SR SR (R SR ST SR (ST S S ST ST ST S S S
0.0 0.2 0.4 0.6 0.8 1.0 1.2
L [em]

Fig. 7. Plot of the force of capillary attraction F vs the distance L between the axes of two identical
vertical cylinders of radius R. The force is measureal by Dushkin et al. v85,66Xby means of the torsion
balance shown in Fig. 6; the three curves correspord to cylinders of radii Rs 50, 165 and 365mm. The
solid lines are drawn by mears of Eq. 2.1.; no adjustable parameters.
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2.3 Particlg wall interactions capillary image forces and their application

The overlap of the meniscus around a floating particle with the meniscus on a
vertical wall gives rise to a particle] wall interaction, which can be both repulsive
and attractive. Imagine a floating sphericd particle in the vicinity of a vertical
planar wall. We will use subscrips "1 and 2' to denote parameters characterizing
the wall and particle, respectively First, following Kralchevsky et al. V22X we
conside the simpled case when the contad angle at the wall is a; s 908 In such
a ca® the meniscws would be flat if the floating particle Fig. 8a. were removed.
Let us denote by z, x,y. the meniscws shape in the presene of particle. Since
a, s 908the function z, x,y» mus satisfy the boundary condition -zyr -X.,. oS 0
at the wall surface Using considerations for symmetyy one realizes that the
meniscws shape z, x,y. in Fig. 8a would be the same if instead of a wall at a
distance s. one has a secord particle mirror image. floating at a distance 2s from
the original one. The image must be identical to the original particle with respect
to its size weight and contad angle, that is the particle and itsimage ought to have
identical capillary charges,Q,. Note, that the capillary charge of a floating particle
is given by the expressio V20X

r,y ry
ryry
2.7.

1
Q,f EqZRg 2y 4D,q 3 cosa,y cosa,. 1q O gR,.., D,'

where R,, a, and r, are the radius, contad angle and the mass density of the
particle; r, and r,, are respectivel the mass densities of the lower and upper fluid
phases As mentioned previously, for two identical particles the lateral capillary
force is always attractive. Hence, the particle and its mirror image depicted in Fig.
8a will attract each other, which in fact means that the wall will attract the floating
particle; the resulting force will asymptotically. obey Eq. 2.1. with Q;s Q,.

The boundary condition z, xs 0.s O represens a requirement for a zero
elevation of the contad line at the wall. As noticed in Ref. V22Xthis can be realized
in practice if the contad line is attached to the edge of a vertical plate, as shown in
Fig. 8b, or to the boundary between a hydrophobic and a hydrophilic domain on
the wall. Using again consideratiorns for symmetity one realizes that the meniscus
shape z, x,y. in Fig. 8b would be the sane if instead of a wall at a distance s. one
has a secord particle image. of the oppositecapillary charge Q,s y Q,. at a
distance 2s from the original particle. In such a cas the capillary force is
repulsive, i.e. in reality the wall will repel the floating particle V22X

The configuration with repulsive capillary image force, which is depicted in Fig.
8b, is realized experimentally by Velev et al. v23Xand Petkov et al. v88Xas shown in
Fig. 9. In these experiments the "wall' is a hydrophobic Teflon barrier, whose
position along the vertical can be precisely varied and adjusted The total lateral
capillary force exerted on the particle depicted in Fig. 9 is given by the following
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image : particle

Fig. 8. Sketch of the meniscus profile, z, r ., around a particle floating in the vicinity of a vertical wall;
a, and r, are the particle contad angle and contad line radius; ¢, is the meniscis slope angle at the
particle contad line; a. fixed contad angle at the wall a;s 908 corresponding to attractive capillary
image force; b. fixed contad line at the wall z,' 0Ofor xs 0. which leads to repulsive capillary image
force V22X

asymptotic expressim V22%

F s f ps[2Q,qHe ®q q r,qHe =%y 2qQ3K, 2qs] 1q O q?R3..
= 1,< s 2.8.

Here H characterizes the position of the contad line on the wall with resped to
the non-disturbed horizontal liquid surface Fig. 9.; s isthe particle] wall distance;
and g is defined by Eq. 2.3. thick films.. The first term in the right-hand side of
Eq. 2.8. expresss the gravity force pushing the particle to slide down over the
inclined meniscus on the wall; the secord term originates from the pressure
difference across the meniscus on the wall }  this pressue difference also pushes
the particle to slide downward, toward the wall; the third term expresse the
repulsive “capillary image force', that is the particle is repelled by its mirror image
with resped to the wall surface asit isin Fig. 8b.

Note that for the configuration in Fig. 9 the first two terms in Eq. 2.8. are
positive, whereas the third one is negative For eadh given H there will be a
distance ss s’, for which F s”. s 0. This distance corresponds to an equilibrium
position of the particle, i.e. one can exped that a particle floating in a vicinity of
the vertical wall Fig. 9. at equilibrium will stay at a distance s’ from the wall. The
measuremens carried out by Velev et al. V23X show that really this is the experi-
mental situation. Varying H one can chang the distance s’. Fig. 10 shows
experimentad points for H vs. s measural with a hydrophobized copper bead
floating on the surface of pure water. The radius of the bead is R,s 700" 15mm
and its contad angle with pure water is a,s 1008 The accuray and the repro-
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Fig. 9. Experimental setup used for studying capillary interactions V23X for measuremen of surface
drag coefficient V88X and surface shea viscosilyy of surfactart adsorption monolayers W2x Particle 1 is
floating at a distance s from a hydrophobic plate 2, whose lower edge is located at a distance H below
the level of the non-disturbed horizontal liquid; H can be varied by means of the micrometric table 3
and screw 4.

ducibility of the measuremen are about” 2 mm for H and " 20 mm for s’. The
theoretical curve the dashdl line in Fig. 10. is drawn with R,s 711 mm which
agrees well with the optically measural radius of the bead a more rigorous
expressio derived by Velev et al. V23Xis used in the calculations instead of the
asymptotic formula Eq. 2.8.. One sees in Fig. 10 that the agreemen between
theory and experimert is very good.

As demonstrated by Petkov et al. V88X knowing the capillary force F, see EqQ.
2.8., and measuring the particle velocity, §n dynamic experiments one can

300
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S50
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Fig. 10. Experimental data v. from Velev et al. 23X for the dependen@ of H on the equilibrium
distance s” for a hydrophobized copper sphere see the text for the notation. The dashel line
represent the theoretical dependen@ calculated with the experimentd values of the contad angle
a,s 100and sphere radius R,s 711 mm.
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determine the drag force, Fy:
Fys Fy mE Fy' 6phR,f,€ 2.9.

where R,, m and Eare the particle radius, mass and acceleration, h is the viscosity
of the liquid and f, isthe drag coefficient. If the particle were entirely immersed
in the bulk liquid, F; would be given by the Stokes formula, Fys 6phR,§ and f
would be equd to 1. In general, f; differs from unity becaug the particle is
attached to the interface and protrudes from the underlying liquid phase An
exampk is given in Fig. 11, where the experimentally measured velocity €of a
particle approaching the wall is plotted vs the capillary force F s., calculated by
means of Eqs. 2.7. and 2.8. for the experimentd values of the distance s. The
particle is a glass sphere of radius R,s 229 mm and contad angle a,s 48.78
floating at the surface of pure water, ss 72 mNr m. The straight line in Fig. 11
corresponds to drag force equd to the capillary force, i.e. Fys F s.; from the
slope of the straight line one determines fys 0.68 The deviation of the data for
the larger F s. is not a discrepang between theory and experiment the deviation
is due to the inertia term in Eq. 2.9., mE which is not negligible for shorter
distances between the particle and wall, at which the approximation F; f F s. is
not good enough.

According to the hydrodynamic theory by Brenner and Leal 89,70X and Danov
et al. W1x the drag coefficient f, of a particle attached to a planar fluid interface is
a function only of the viscosities of the two fluids and of the three-phas contact
angle, a,. The experimert by Petkov et al. V88X gives f, varying between 0.68 and
0.54 for particle contad angle varying from 498to 828 the less the depth of particle
immersion, the less the drag coefficient, as could be expectal.; the data are in a

0.6
0.5 .
*
4// )
2 04t P
5 "1
9, ‘.‘
» 03f
: -~
° 02
= H=0.0914 cm
0.1 ® H=0.1102cm
A H=0.1220cm
00 / 1 1
0.0 0.4 0.8 1.2 1.6 2.0

capillary force x 10°[dyn]

Fig. 11 Experimental data from Petkov et al. v88xfor the velocity €of a glass sphere plotted vs The
capillary force F calculated from Eq. 2.8.; the sphere is floating see Fig. 9. on the surface of pure
water. The slope of the dashe line, drawn in accordan@ with Eq. 2.9. the inertial term mEneglected.,
gives drag coefficient f;s 0.68 the data are obtained in three runs corresponding to three fixed values
of H denoted in the figure.
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very good quantitative agreemen with the hydrodynamic theory of the drag
coefficient V89] 71x

If the floating particle is heaw enough it deforms the surrounding liquid
surface the deformation travels together with the particle thus increasing fg
severd times V88x so far there is no quantitative hydrodynamic theory of the latter
effect. The addition of surfactart strongly increases f,. The latter effect has been
used in Petkov et al. W2Xto measuee the surface viscosity of adsorption monolayers
from low molecular weight surfactants which exhibit fast kinetics of adsorption.
For these surfactants the surface viscosily is too low to be accessibé to the
conventiond experimentd methods However, the motion of a sphere of radius
200] 300 mm turns out to be sensitive to the friction within the adsorption layer
thick no more than 2 nm. of surfactants such as sodium dodecy sulfate SDS and
hexadecyl-trimethyl-ammonium-bromice HTA B.. To demonstrate that, in Fig. 12
we presert experimentd data from Petkov et al. W2Xfor the velocity of a particle
Fig. 9. plotted vs the capillary force F s., calculated by means of Eq. 2.7. and Eq.
28.. One sees Fig. 12. that agan the data for €vs. F s. comply with straight
lines, whereas the plots of €/s time t are non-linear the inset in Fig. 12.. From the
slopes of the straight lines in Fig. 12 the drag coefficient f; was determined; the
obtained values of f; are also shown in Fig. 12 Note, that the addition of
surfactart increases f, from 0.66 up to 1.6. This effect, converted in terms of
surface viscosity gives h,s 1.5 and 2.0= 10" ° kgr s for the surface viscosit/ of
dens SDS and HTA B adsorption monolayers respectively W2X

Note that if the kinetics of surfactant adsorption is not fast enough to damp the
surface elastic effects the drag coefficient f; can be influenced not only by the
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| | a pure water f; =0.67, R, =222 um
05 L[=SDS  f=1.60,R,=2164m
: o HTAB  f,= 1.6, R,=259 um
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Fig. 12 Experimental data from W2xfor the velocity €of floating glass spheres plotted vs the capillary
force F calculated from Eq. 2.8.. The slope of each experimentd line gives the value of the surface
drag coefficient, f;. Data about the type of the solution, the determined f; and the particle radius R,
are given in the figure. The inset shows the experimentd plot of € cmr s vs time s, which becomes
linear when plotted as €vs. F.
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surface viscosity but also by the surface Gibbs. elasticity. The complete dynamic
problem, involving the effects of surface viscosity surface elasticity and dynamics
of surfactart adsorption has not yet been solved theoretically.

3. Energy approach to the lateral capillary interactions

Having reviewed the experiments on capillary forces let us come badck to the
theory. Our purpose below is to give the derivation of the most popular asymptotic
formula for the lateral capillary forces Eg. 2.1., and to demonstrate that this
equation is applicable to both flotation and immersion forces with particles
attached to single interfaces or confined in thin liquid films, see Fig. 1. The cause
of the capillary interaction is the overlap of the deformations around suc two
particles. Hence, the key to the theoretical description of this interaction isto solve
the Laplace equation, governing the meniscus shapeg for a given configuration of
particles at an interface or in a thin film.

3.1 The linearizal Laplace equatim for fluid interfaces and thin films

Let zs Zz x,y- be the equation of the deformed fluid interface. The interfacial
shape obeys the Laplace equation of capillarity W3x

=z
= ? 1—”—/5 W, z.y P z.%Xs 3.1
1g <,2¢
=S eX_—Xq ey:/ 3.2
see also Finn W4x and Kralchevsky et al. W5X Here =, is the two-dimensional

gradient operator in the plane xy. Note that Eq. 3.1. is expressé in a covariant
form and can be specified for any type of curvilinear coordinates in the plane xy
not only Cartesian ones.. The pressures P, and P,, on the two sides of the
interface can be dependert on z becau® of the effects of hydrostatic pressue and
disjoining pressure see below.

As an example let us conside a sphericd particle which is entrapped into a
wetting liquid film, Fig. 13. The upper surface of the liquid film is planar far from
the particle; this plane is chosen to be the level zs 0 of the coordinate system.
The thickness of the plane-paralld liquid film far from the particle is h,. The
pressue inside and outside the film in phases | and I1. can be expressd in the
form vt4,21,76,7%

P,zs P%y r,gzq P hyq z., P, z.s PXy r,gz, <,z<< 1
3.3.
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Here g is the acceleration due to gravity, r, and r,, are the mass densities in
phases| and Il, P,> and P, are the pressures in the respective phases at the level
zs 0; P is the disjoining pressure which depends on the local thickness of the
wetting film. The terms r, gz, and r, gz, expres hydrostatic pressure which is
predominant in thick films, i.e. for hy G 100 nm, in which the disjoining pressure
P the interaction of the two adjacert phases across the liquid film. becomes
negligible. In fact, it is the gravity which keeps the interface planar far from the
particle when the film is thick. On the contrary, when the film is thin, the existence
of a positive disjoining pressue repulsion between the two film surfaces. keeps
the film plane] parallel far from the particle. The condition for stable mechanical
equilibrium of this film is

P>s P%q hy-, x h . 0 3.4.
S No

see e.g Kralchevsky W1X Expanding the disjoining pressue term in Eq. 3.3. in
series one obtains

ho,qg zzs  hy,-q ’zq ... 3.5.

Usually the slope of the meniscus around particles, like that depicted in Fig. 13, is
smal enough and the approximation <, z2€< 1 can be applied. Then combining
Egs. 3.1] 3.5. one obtains a linearized form of Laplace equation:

Drg y *
=?zs g%z, g*' — 4 Dr' ryy r,;<,z<< 1 3.6.

Note that P*- 0. The disjoining pressue effect is negligible when the film is thick

enough to havey P* h,. < Drg. In the latter case the upper film surface behaves
as a single interface it does not “feel' the lower film surface.. The quantity ¢ ! isa
characteristic capillary length, which determines the range of action of the lateral

capillary forces. In thick films PXis negligible. ¢ tis of the order of millimeters,

e.g.q” 's 2.7 mm for water] air interface. However, in thin films P”*is predomi-

nant. ¢ 'can be of the order of 10] 100 nm, see Kralchevsky et al. V21X

3.2 Flotation force energ approad in superpositio approximation

The simpler derivation of Eq. 2.1., baseal on energy considerations was given by
Nicolson V8xlong ago for floating particles. Following his approach let us conside a
floating sphericd particle of massm;, which creates an interfacial deformation, see
Fig. 14. For a single particle Eg. 3.6., written in cylindrical coordinates reduces to
the modified Bessé equation, whose solution for smal meniscws slope. has the
form w8x

z; r-s rsinc,K, gr-s Q Ky, agr.  is 1,2 3.7.
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Fig. 13. Colloidal sphere partially immersed in a liquid layer on a substrate;z r . describes the shape
of the meniscws formed around the sphere; P, and P,, are the pressures inside the liquid layer and in
the upper fluid phase; h, is the thickness of the non-disturbed liquid layer; the latter is kept
plane-paralld by the gravity, when the layer is thick, and by a repulsive disjoining pressue when the
film is thin.

where r; isthe contad line radius and c; isthe meniscus slope angle at the contact
line, and Eq. 2.2. has been used K is the Macdonald modified Bessé. function
of zero order, see Janke et al. 88X Abramowitz et al. V89X Korn and Korn V80X

The force due to gravity, Fy;,, which is exerted on the i-th particle is 1.2 is
counterbalancel by the vertically resolved surface tension force, acting per unit
length of the three-phas contad line:

Fgi.s 2psrsinc;2psQ; is 1,2. 3.8
cf. Fig. 14 and Eq. 22.. Here Fy s m;gy F, with F, being the buoyancy
Archimedes force; expressiam for F, for floating particles can be found in lvanov
and Kralchevsky W9X

Now let us conside particle 2 situated at a horizontal distance L from particle 1.
Following Nicolson V8Xwe assune that due to the meniscis created by particle 1,

Fig. 14. A heaw sphericd particle creates a concawe meniscts on an otherwise horizontal fluid
interface of tension s, Fy, is the net force due to gravity a combination of particle weight and
buoyang.; ¢, isthe meniscis slope at the particle contad line of radius r,.
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the mass-cente of particle 2 is situated at a distance z, L. below the horizontal
plane zs 0, see point 2 in Fig. 14. The work carried out by the gravitational force
to bring particle 2 from level zs Odowntolevel zs y z L. isV8,1%

DW,s y Fy,2z; L-s y 2psQ;Q,K, gL. 3.9.
where at the last step Egs. 3.7. and 3.8. hawe been used Having in mind that

dDW,  dK, x.

F 1
SY T dx

sy K; x 3.10

one easily obtains Eq. 2.1. differentiating Egq. 3.9.. This derivation of Eq. 2.1
makes use of many approximations the most obvious of them being <, z4%< 1
and r;< L. In particular, it has been implicitly assumel that for ;< L is 1,2
the meniscws shape is a superposition of the axisymmetrc menisd around each
particle in isolation, described by Eq. 3.7.. These and other approximations are
discussé in Section 3.4, where a more generd formulation of the energy approach
can be found.

3.3 Immersim force enery approadi in superpositio approximation

Let us consida a couple of vertical cylinders each of them being immersed
partially in Phas |, and partially in Phas 1l. For each of these cylinders in
isolation Fig. 15. the shape of the surrounding capillary meniscis is given by Eq.
3.7.. The contad angle a; at the three phas contad line of the i-th cylinder
is 1,2. obeysthe Young equation:

SinY S;;S scosa;s ssinc;s sQrr; is 1.2 3.11

cf. Fig. 15and Eq. 2.2.. Here s;, and s;,, are surface free energies per unit area
of the boundary of the i-th cylinder with Phases | and Il, respectively The two
cylinders are assumeal immobile in vertical direction.

Let us assune that Cylinder 1 isfixed at the z-axis Fig. 15. and let us conside a
process in which the vertical Cylinder 2 is moved in horizontal direction from
infinity to some finite distanceL L 4 r,,r,.. At such adistance L the level of the
liquid meniscus around cylinder 1 rises with z, L., see Fig. 15. Thus the surface
area of cylinder 2 wet by Fluid 1 increases whereas the area wet by Fluid 2
decreasesAs a result, the energy of wetting of cylinder 2 will change with

DW,f y 2pryz; L. s,y Sy,-8 ¥y 2psQ;Q,K, qL- 3.12.

where at the lagt step Egs. 3.7- and 3.11. hawe been used Finally, identifying the
capillary force with the derivative of the wetting energy, F s y dDW,, r dL, one
easily obtains Eq. 2.1. differentiating Eq. 3.12.. Thisderivation of Eq. 2.1. makes
use of the approximations r;< L, <, z<4< 1, and the superposition approxima-
tion. In the case of sphericd particles the variation in the position of the contact
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Fig. 15. A vertical cylinder rod. of radius r; creates a convex meniscus on an otherwise horizontal
fluid interface of tension s, the boundaries of the cylinder with the phases | and Il hawe solid-fluid
surface tensions s;, and s, ,; a, is the three-phase contad angle; c, is the meniscis slope at the
particle contad line.

line on the particle surface is accompanied with a variation of the contad line
radii, r, and r,, and of the slope angles ¢, and c,; these effects are taken into
accourt in Kralchevsky et al. vt4,1§ 20,22,2)X

In spite of being approximate, the derivations of the expressim for F, which are
presented in Sectiors 3.2 and 3.3, clearly demonstrate the difference between the
physicd origin of the flotation and immersion forces Indeed, the flotation force is
defined as a derivative of the gravitational energy W, see Eq. 3.9., whereas the
immersion force is equd to the derivative of the wetting energy W,,, see Eq. 3.12..

3.4. Generd expressio for the grard thermodynamd potential

The grand thermodynamic potential of a systan of N particles attached to the
interface between phases | and Il can be written in the form Vt4,20,2%

Vry,...,y-s qu W,q W,q cond. 3.13
N

W,s  mgz®y He, dav 3.14
is 1 Ys 111 Vv
N

W, s SivAiy, W,s sA, 3.15
is 1Ys I,

where r,, r,,...ry are the position vectors of the particle mass centers and m;
is 1,2,..N. are the masse of the particles, Z; is the projection of r; along the
vertical, P, andV, Ys |1, IlI. are pressue and volume of the Y-th fluid phase; s
and A are the interfacial tension and the area of the boundary the meniscus
between fluid phases | and Il; A;, and s,, are area and the surface free energy
density of the boundary between particle “i' and phase’Y'; the additive constart in
Eg. 3.13. does not depend on ry, ry,...ry; W, W, and W, are respectively the
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gravitational, wetting and meniscws contribution to the grand potential V. Then
the lateral capillary force between particles 1 and 2 is determined by differenti a-
tion:

-V
F's y —, r1ps fiy r,< 3.16.

12

When the distane between two particles varies the shape of the meniscus
between phases | and Il and consequently W,,. alters; during the sare variation
the areas of the particle surfaces wet by phases | and 11 also vary, which leads to a
change in W,,; last but not least, the change in the meniscus shape is accompanied
by changes in the positions of the mass centers of particles and fluid phases which
gives rise to a variation in their gravitational energy accounted for by W,. Egs.
3.13] 3.16. are applicable also to thin films; one should take into accourt the fact
that in such a case the meniscus surface tension depends on the local thickness of
the film, ss s z., so that 1,8

ds 1r 2 L
S Y 1d <, 2%, thin films. 3.17.

where, as usual, P is the disjoining pressure In other words, the disjoining
pressue effect is "hidden' in the meniscus energy term, W, in Eq. 3.13..

The explicit form of Egs. 3.14. and 3.15., and the relative importance of W, W,
and W,,, depend on the specific configuration of the system For example in the
ca® of smal floating particles at separations L 4 r,,r,, it turns out that W, f
y Wyr 2y W, and then Vs W,q W, g W,f Wy 2f DW,, where DW, is given
by the Nicolson's expression Eq. 3.9..

In the framework of the energyapproach the treatment of flotation and immer-
sion lateral capillary forces is different, insofar as in the former case V is
dominated by W, whereas in the latter caseV is dominated by W,, cf. Sectiors 3.2
and 3.3 On the other hand, there is an equivalent force approach consideral in
Section 4. which provides an unified description of the flotation and immersion
forces.

3.5. Interactiors at fixed slope and fixed ele ation

In some cases the distance between two particles attached to an interface can
decrea® at constart values of the slope angle ¢; and contad radius r; is 1,2..1In
sudh a cas the capillary charge Q; s r,; sinc; is also constant A typical exampk is
the capillary interaction between two vertical cylinders rods of radii r; and
contad anglesa;s pr2y c; is 12.. Other exampk is the capillary interaction
between smal floating particles, for which it can be proven \20Xthat they approach
eadh other at approx. constart capillary charge Q,. In all these cases the average
elevation of the contad line,
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1
h L. —Edi, 3.18
Ci

depends on the distance L between the two particles; here C; denotes the
projection of the contad line on the horizontal plane xy. The following expression
for the interaction energyDV has been derived for such cases V4,19, D%

DV L.f yps Qw, L.y hyx c¢;s cond. r;s cond.. 3.19.
is 1,2

where hy s h; L& ..

In other cases like that depicted in Fig. 3, the elevation of the contad line, h;,
remains constart when the particles approach each other. In suc cases the
average meniscus slope of the contad line,

_ 1 )
sinC, L. ——[EdIA?=,z, 3.20.
2pr; ¢

depends on the distance L between the two particles; here A is a running outer
unit normal to the contour C;. The following expressia for the interaction energy
DV has been derived for the latter cae V21,5%

DV L.f ps h,r,®inC; L.y sinC.X h;s cond., r;s cong.. 3.21
is 1,2

whereC; s C;, L@ " ..To calculate the capillary force from Egs. 3.19. or 3.21
one is to first solve the Laplace equation, along with the respective boundary
conditions, and then to determine h; L. or C; L. by meansof Egs. 3.18. or 3.20..
Note also that Eqs. 3.19. and 3.21. are valid for smal meniscis slope, <, z4< 1.

4. Force approach to the lateral capillary interactions
4.1 Integrd expressiosfor the capillary force

In the force approach which is alternative to the energy approach from Section
3. the lateral capillary force exerted on each of the interacting particles is
calculated by integrating the meniscus interfacial tension s along the contad line
and the hydrostatic pressure P throughout the particle surface V8] 21X

Fis Fis'\q F'», is 2,..., 4.1

where the contribution of interfacial tension is

Fis' U, ?E dims 4.2.
Li
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and the contribution of the hydrostatic pressue is
Fir U, ?Esdsy npP. 4.3.

Here U, isthe unit operator tensar. of the horizontal plane xy; in Eqgs. 4.2
and 4.3. this operator projects the respectie vectorial integrals onto the xy-plane;
L; denotes the three phase contad line on the particle surface Fig. 16. and dl isa
linear element; m is an outer running unit normal to the contaa line; the vectorm
is also tangential to the meniscws surface and has the direction of the surface
tension force exerted on the particle along the contad line. Likewise, S; denotes
the particle surface with outer unit running normal n; ds is a scala surface
element, the vectar 'y n' has the direction of the outer pressue exerted on the
surface of eadh particle. In Refs. V18,19,2Xit has been proven, that the integral
expressiors Egs. 4.1., 42. and 4.3.. are compatible with the Newton's third law,
i.e.F s y F? asit mus be.

Note that the interfacial bending moment can also contribute to the lateral
capillary force, see Kralchevsky et al. V25X and Eqg. 6.16. below, although this
contribution is expectal to be important only for interfaces and membranes of low
tension s.

As an example let us conside two particles entrapped in a liquid film on a
substrate see Fig. 16. If the contad lines L, and L, were horizontal, the integrals
in Eqs. 4.2. and 4.3. would be equd to zero becaug of the symmety of the force
distributions. However, due to the overlap of the interfacial perturbations created
by each particle, the contad lines are slightly inclined, which is enough to break
the symmetly of the force distribution and to give rise to a non-zero net integral.
force exerted on ead of the two particles.

The existen@ of inclination of the contad line can be clearly seen in Fig. 17,
which represents three photographs of thin vertical glass rods partially immersed in
water; the photographs have been taken Velev et al. 84X with the experimental
setup sketchal in Fig. 4. One sees that the contad line on an isolated rod is

Fig. 16. lllustratio n of the origin of capillary force between two spheres partially immersed in a liquid
film: the net horizontal force F 1 exerted on particle 1 is a sum of the surface tension vector s
integrated along the contad line L, and of the pressue distribution integrated throughout the particle
surface S; the same for particle 2., see Egs. 4.1.] 43..
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Fig. 17. Photographs taken by Velev et al. 84X of two partially immersed vertical hydrophilic glass
rods of radii r;s 315mm and r,s 370 mm. Note that the inclination of the three-phase contad lines
on the rods increases when the distance between them decreases.

horizontal Fig. 17a.; when two suc rods approach each other inclination of the
contad line appears Fig. 17b. and grows with the decrea® of the distanae between
the rods Fig. 17c..

Imagine now that the upper part of the rods shown in Fig. 17 is hydrophobic,
whereas the lower part is hydrophilic. In such a case the three-phas contad line
can stick to the horizontal boundary between the hydrophobic and hydrophilic
regions and the contad line will remain immobile and horizontal no inclination! .
when the two rods approach each other. Nevertheless in such a cas a lateral force
of capillary attraction will also appea \21xbecau® of the contad angle hysteresis:
the meniscus slope varies along the circular contad line of each rod. The meniscus
slope is the smalleg in the zone between the two vertical cylinders rods; then the
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integration in Eq. 4.2. yields an attractive net force, see Kralchevsky and
Nagayana \21Xfor more detalils.

It is worth noting that for smal particles, r,,r,< @ %, the contribution of the
pressue to the capillary force is negligible 9,20

FP< Fis<forr,rp< 4.4.

As establishal by Allain and Cloitr e W9x the pressue contribution can prevail for
zr.4 gt is 12, ie. for large Bond numbers however, this is not the case
with colloidal particles, for which Eq. 4.4 is applicable.

It isnot obviousthat the energy and force approachesbased on Eqgs. 3.13] 3.15
and Eqgs. 4.1] 4.3., respectively are equivalent Numerical coincidenae of the
results provided by these two approaches has been establishal in Kralchevsky et al.
VE9,20X Analytical proof of the equivalene of the two approaches has been given
in Kralchevsky and Nagayama \21xfor the case of two vertical cylinders.

4.2. Asymptotc expressio for the capillary force

As demonstrated in Fig. 16, the appearan® of a smal inclination of the contact
line gives rise to the lateral capillary force. The mere superposition approximation
is too rough to provide a quantitative estimate of this fine inclination. Indeed, the
meniscs shape in superposition approximation does not satisfy the boundary
condition for the constany of the contad angle at the particle surface A
guantitative description can be obtained by solving the linearized Laplace equa-
tion, Eq. 3.6., in bipolar bicylindrical. coordinates t,v. in the plane xy, see e.g.
Korn and Korn V80X

asinht asinv AL

s —MM, s —— 5.
coshty cosv y coshty cosv

yt,FtFt,, ypFvVvFDp 4.6.

The elementary lengths along the t- and s-lines of the respective orthogonal
curvilinear coordinate network are B0X

a2

dis 'g.dt, di,s 'g,dv, g.s g.S : 47.
coshty cosv.

where g,, and g,, are components of the metric tensor. In Fig. 18 the circumfer-
encesC, and C,, of radii r, and r,, represert the projections of the contad lines
L, and L, on two interacting particles onto the plane xy see e.g Fig. 16.. The
x-axis is chosen to pass through the centers of the two circumferences The
coordinate origin is determined in such a way that the tangents OA; and OA, to
have equd lengths, a, see Fig. 18; in fact this is the geometricd meaning of
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Fig. 18 Introductio n of bipolar coordinates in the plane xy, see Eq. 4.5.: the x-axis passe through
the centers O; and O, of the contad line projections C; and C,; the coordinates origin O islocated in
sudh a way that the two tangents, OA; and OA,, have equd length a.

parameter a in Egs. 45. and 4.7.. From the two rectanguler triangles in Fig. 18
one obtains

sy a’s r?, is 12. 4.8.

The two circumferences in Fig. 18 correspord to fixed values of the parameter t, as
follows: ts t, and ts t,, where t, and t, are related to the geometrical
parameters as follows:

cosht;s srr;, sinht;s arr, is 1.2. 4.9.

A substitution of Eq. 4.9. into Eq. 4.8. yields the known identity cost?t,y
sinht;s 1.

Let us conside the capillary force F % exerted on particle 2. In view of Egs.
4.1] 44. one can write

F2f F2-f sEd u, 2m. 4.10.
C2

where approximation for smal meniscus slope has been used to reduce the
integration along the contad line L, to integration along its projection C,. By
means of geometricd considerations one can derive VL9X

dz
U, ?ms e, asinc2 g e,cosc, 4.11

where ¢, isthe meniscus slope angle at the contad line of particle 2, see e.g Fig.
1; e, and e, are running unit vectors of the coordinate lines; in our casee, is
tangentia to the contour C,, wherease, is normal to it Fig. 18.. Now, let us
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substitute Eq. 4.11. into Eq. 4.10.; the result reads

dz
F2f sschEdI dl e S ssmczl;ipdv dvze"

4.12
where zs z, v. describes the shape of the contad line on the surface of particle
2.1n Eq. 4.12. we have used the assumptian that ¢, f const, which isrigorous for
vertical cylinders, but is a good approximation also for smal sphericd particles; the
integral of the term with e, in Eq. 4.11. is equd to zero. Using the relationships
between curvilinear and Cartesian coordinates one obtains VB0X

1 - X -y
&S —— —( e,— 4.13
g, -V Yov

\

where e, and e, are the unit vectors of the x- and y-axes With the help of Egs.
4.5] 4.7. and 4.13. one can transform Eq. 4.12. to read

E2 EEf i H q sinht ,sinv  dz, 414
‘s e,F,; ssinc vV——— = :
xrx B Y 2o cosht,y cosv dv

4.3 Shape of the contad line on the particle surface

Solving the Laplace equation in bipolar coordinates and using the method of the
matched asymptotic expansiors one can derive the following expressia for the
shape of the contad lines on the surfaces of the two interacting particles V22X

2q
ziv.f h.q QK, —/ —/< 1, €z28 < 1 4.15.
Sy rcosv

i/ J;i,js 1, 2,; here h; is the elevation of the contad line for an isolated
particle cylinder.; h; is independert of v. The term with K, in Eg. 4.15
expresse the perturbation in the shape of the contad line on the particle "i*, which
is due to the presene of the particle *j' at a finite distance L s s,q s,. Next we
expard Eq. 4.15. in seriesfor rrs< 1 then s f s,f af Lr2:

ziv.s h.q QW, qL.-y 2rgK,; gL.cosvq ...X is 12 4.16.

Differentiatin g Eq. 4.16. one obtains

dz;
d—vf 2r,Q;gK, gL.sinv. i/ jii,js 1,2 4.17.
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Finally, we substitute Eq. 4.17. for is 2 into Eq. 4.14., which along with Eq.
2.2. yields

_ sin?v dv
F.f y 25sQ,Q,0K; qL.smhtzH

_—f 2 K, qgL.
N costt,y cosv y 2psQ;Q,0K; g

4.18
At the lagt step we have used the identity VI 9X
sinv  dv
ypms 2pexpy t,- 4.19.
and the approximation
2sinht,expy t,.f 1 for t,G2 ryrs,< 1 4.20.

see also Eq. 49..

As could be expected the derived asymptotic expressia for the lateral capillary
force, Eq. 4.18., is identical to Eq. 2.1.. Note that during the derivation of Eq.
4.18. it was not necessay to specify whether the capillary force is of flotation or
immersion type, or whether we ded with a single interface or with a thin liquid
film. We have used only the integral expressim for the capillary force, Eq. 4.10.,
which isvalid in all aforementioned cases as well as Eq. 4.15. for the shape of the
contad line. The latter equation accounts for the overlap of the interfacial
deformations created by the two particles cylinders. irrespective of the origin of
the deformation: weight of the particle or capillary rise wetting.. Consequently,
the abowe derivation of the expressia for the capillary interaction by means of the
force approach once again confirms the generd conclusion that all kind of lateral
capillary forces are due to the overlap of perturbations in the interfacial shape
created by attached bodies.

Note that Eg. 4.18. is an approximate asymptotic formula, which is valid for
comparatively long distances between the particles L4 r,,r,.. More accurate
analytica expressiors for the capillary force, which are valid also for short
interparticl e separations can be found in Kralchevsky et al. V4,18 22X

5. Capillary forces betwee particles at a spherical interface, film and membrane
5.1 Origin of the “capillary charge in the case of sphericinterface

The sphericd geometry provides some specific conditions, which differ from
those with planar interfaces or plane] parallel thin films. For example the capillary
force between two diametrically opposel particles is zero irrespective of the range
of the interaction determined by the characteristic capillary length ¢’ 1. Moreover,
in the case of sphericd thin film the volume of the liquid layer is finite.
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As already discussed the particles attached to an interface thin film, mem-
brane. interact through the overlap of the perturbations in the interfacial shape
created by them. Of courseg this is true also when the non-disturbed interface is
sphericat in this case any deviation from the sphericd shape has to be considered
as an interfacial perturbation, which givesrise to the particle “capillary charge) see
Section 2. As a rule, the effect of gravity is negligible in the cas of spherical
interfaces otherwise the latter will be deformed., and consequently it is not
expectal the particle weight to cause any significant interfacial deformation. Then
a question arises Which is the origin of the interfacial perturbations in this case?

Let us conside an exampk depicted in Fig. 19a a solid sphericd particle
attached to the surface of a sphericd emulsion drop of radius R,. Sud a
configuration is typical for the Pickering emulsions which are stabilized by the
adsorption of solid particles and have a considerabk importance for the practice
V81] 83X The depth of immersion of the particle into the drop phase and the radius
of the three-phase contad line, r, is determined by the value of the contad angle
a Fig. 19.. The pressue within the drop, P,, is larger than the outside pressure
P, becau® of the curvature of the drop surface The force pushing the particle
outside the drop along the z-axis. is

FourS PTEP; 5.1.
on the other hand, the force pushing the particle inside the drop is due to the outer
pressuie and the drop surface tension resolved along the z-axis Fig. 19a.:

F.S préP,q 2pr.ssinu, 5.2.

Here u, is a centra angle sinys rr R,. At equilibrium one must have
Fi.s F,, then combining Egs. 5.1. and 5.2. one obtains the Laplace equation
P,y P,s 2sr R, which is identically satisfied for a sphericd interface. Thus we

Fig. 19. a. Sphericd particle attached to the surface of an emulsion drop of radius Ry; a isthe three
phase contad angle; r. is the contad line radius; P, and P,, are the pressures inside and outside the
drop. b- Particle of radius R, entrapped between the two lipid bilayers composing a sphericd vesick of
radius Ry; z is the running thickness of the gap filled with water. between the two detached bilayers.
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arrive at the conclusion that the force balance F,s F,, isfulfille d for a spherical
interface, without any deformation.

The sane conclusian can be drawn on the bask of the Laplace equation. Indeed,
the configuration of a sphericd particle attached to an emulsion drop must have
rotational symmetry. It is known V84Xthat for an axisymmetric surface intersecting
the axis of revolution the Laplace equation, has a single solution: sphere gravity
deformation negligible.. If a secord particle is attached to the drop it can acquire
the same configuration as that in Fig. 19 only the radius of the sphericd surface
will slightly increase due to the volume of the drop phase displaced by the second
particle. In other words the force balance F,,s F,, is fulfille d for eadh separate
particle and the drop surface remains spherical However, if there is no deviation
from the sphericd shape then lateral capillary force between the particles cannot
appeatr. If aggregatian of particles attached to such an emulsion drop is observed it
should be attributed to other kind of forces.

After the lagt ‘negative example let us conside another illustrative exampleg in
which both deformation and lateral capillary forces do appear. Pouligny and
coworkers V85X have studied the sequene of phenomera which occur when a solid
latex microsphere is brought in contad with an isolated giant sphericd phospho-
lipid vesicle They observed a spontaneots attachmert adhesim. of latex particles
to the vesicle which is accompania by complete or partial wetting wrapping. of
the particle by lipid bilayer s.. In fact, the membrare of such a vesick can be
composal of two or more lipid bilayers As an example in Fig. 19 we have
depicted a possibke configuration of a membrane consisting of two lipid bilayers;
the particle is captured between the two bilayers The experimentd observations
show that such two captured particles experience a long range attractive force V86X
There are experimentd indications that in a vicinity of the particle the two lipid
bilayers are detachad Fig. 19b. and a gap fille d with water is formed between them
V86X The latter configuration resembles that depicted in Fig. 1f, and consequently,
the observal long range attraction could be attributed to the capillary immersion
force V86X Similar configurations can appea also around particles, which are
confined in the sphericd film intervening between two attached emulsion droplets,
or in the globular emulsion films. In these cases the interfacial deformations are
causal by the confinement of the particles within the film.

Looking for an exampk in biology, we should note that the cytoskeletm of a
living cell is a framework composel of interconnected microtubules and filaments,
which resembles a “tensegrity architectural systan composel of long struts joined
with cables see e.g Ingber V87,88X Moreover, inside the cell a gossame network of
contractile microfilaments pulls the cell's membrane toward the nucleus in the core
V88X In the points where the microfilaments are attached to the membrane,
concawe ‘dimples will be formed, see Fig. 20a On the other hand, at the points
where microtubules the ‘struts’. touch the membrang the latter will acquire a
“pimple’-lik e shape see Fig. 20b. Being deformations in the cell membrane these
“dimples and “pimples will experiene lateral capillary forces, both attractive and
repulsive, which can be employed to create a more adequae mechanicd model of
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Fig. 20. Deformationsin the membrare of a living cell due to a. a microfilament pulling an inclusion
inward and b. a microtubule pushing an inclusion outward.

a living cell and, hopefully, to explain the regular "geodest forms' which appea in
some biological structures V88X

Coming bad to simpler systemsin which lateral capillary forces can be opera-
tive, we should mention the configuration of two smal particles Fig. 21., which are
confined in a liquid film wetting a bigger sphericd solid particle. The problem
about the capillary forces experienced by two particles like those in Fig. 21 has
been solved in Kralchevsky et al. V24X Since the developed formalism is applicable
also to the other systens mentioned above in Section 5.2 we give an outline of this
formalism.

5.2 Forces betwea particles entrappel in a sphericé film

Let us conside the configuration depicted in Fig. 21: there is only one de-
formable surface and the two particles are identical. The non-disturbed spherical
liquid film can hawve a stable equilibrium thickness h, only due to the action of
some repulsive forces positive disjoining pressue. between the two film surfaces.
For that reas a thin film, i.e. a film for which the effect of the disjoining pressure
P is not negligible, has been considered in Kralchevsky et al. V24X

The radial coordinate of a point of the deformed film surface can be presented
in the form

rs Rygq z uw. 5.3

where u and w are standard polar and azimutha angles on the reference sphere
rs R, Fig. 21. and z u,w. expresss the interfacial deformations due to the
presene of the two particles. We assune smal deformations, <& R,< 1 and
<, z<4< 1, where =,, denotes surface gradient operator in the reference sphere.
For such smal deformations the Laplace equation for the film surface can be
linearized V24X

=fzy g°zs Qr RZ 5.4.
2 2, 2 R,sinu,si 55
sy —YyY — , Qs Rgsinugsinc,, 5.

q y s y RS y SORO Q 0 C c

0
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Fig. 21. Two particles of radius R, confined in a liquid film around a larger sphericd particle; u, and
u, are angles characterizing the distanae between the two particles and the position of the three-phase
contad line on the particle surface; a and c are contad angle and meniscis slope angle; R, is the
radius of the non-disturbed sphericd fluid interface and hy, is the thickness of the non-disturbed liquid
film.

where ¢’ ! is the characteristic capillary length, Q is the capillary charge, s, and
P, are the surface tension and disjoining pressure of the non-disturbed spherical
film of thickness h,,.

To conveniently integrate Eq. 5.4. specid bipolar coordinates on a sphere have
been introduced. The connection between the Cartesian coordinates Xx,y,z and the
sphericd bipolar coordinates r,v ,t. are 24X

r 12y 1sinht r 12y 1sinv r coshty | cosv.

—————, VS , ZS 5.6.
| coshty cosv y | coshty cosv | coshty cosv

The surfaces rs const are spheres the lines vs const on each spherers
const. are circumferences which are counterparts of the meridians; the lines
t s const are circumferences-counterpars of the parallels of latitude, see Fig. 22a.
In each point on the sphere the t-line is orthogonal to the respective v-line. In our
casers R, and / s cosuyyr cosy, see Fig. 21 for the notation. The contad lines
on the two particles correspord to ts " t., where V24X

t.' arctanh| cofu,y cosu,.” rsinu,| u,- u,F pr2. 5.7.

[

Thus the domain of integration acquires the simple form of a rectangle see Fig.
22b:

ypFVvFqgp, yt.FtF gt.. 5.8.
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In sphericd bipolar coordinates the linearized Laplace equation Eq. 5.4. has the
form v24x

2 2 )
| coshty cosv.’ 7z —t_2/S aR,-> 12y 1AV t. 5.0.

where & z R,q Qr g?R3.. In Ref. 4XEq. 5.9. has been solved numerically
using boundary conditions for i. fixed contad angle and ii. fixed contad line.
Then the lateral capillary force, F, exerted on eadc particle Fig. 21. has been
calculated by mears of integral expressiors stemming from the force approach see
Section 4 above For example the expressia for F corresponding to fixed contact
line reads V24X

1 A
Fs vy sOROHdv lcoshtcosvy 1.|———5 —
0 2y 1. -1

2sinu, A

_ 5.10.
| cosht,y cosv -t

q

ts t,

Next, from the calculated values of F one can determine the capillary interaction
energy:

pw L.s HYF L.dL 5.11.
L

where L s 2uy,R, is the length of the shorted. arc on the reference sphere
connecting the centers of the two particles Fig. 21.. The additive constart in the
energy is determined in such a way, that DW's 0 for two diametrically opposed
particles, i.e. for Ls pR,.

The calculated in Kralchevsky et al. V24X dimensionles interaction energy,
DV\s DWr SoR3-, is plotted againg the dimensjonles distance, As Lr PRy,
in Figs. 23 and 24 2ur p F AF 1.. Note that DV is independert of s, and R,.
The right-hand side scak in Figs. 23 and 24 shows the values of DWr kT Kk is
Boltzmann constant, T is temperature. for typical parameters values: R,s 1 mm,
SpS 30mNrm, Ts 298 K. At a given Ry, the size of the particles is determined
by the angle v, which for the curvesin Figs. 23 and 24 takes values 1§ 28 and 33
i.e. the particles are small, r,.< R,. One sees in Figs. 23 and 24 that the
interaction energy can be of the order of 10] 100 kT. Physically DWr kT4 1
means that the capillary attraction prevails over the thermal motion and can bring
about particle aggregation and ordering in the sphericd film. Such a situation is
typical for the lateral capillary force of immersion type, see Section 2 above.

Note that the parameters values in Figs. 23 and 24 are chosen in such a way, that
the shape of the fluid interfaces to be identical in the state of zero energy; i.e. for
two diametrically opposed particles. This provides a bass for quantitative compar-
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Fig. 22 a. Bipolar coordinate lines on the unit sphere the lines t s const are analogows to the
parallels, while the lines v s const connecting the “poles resembk meridians, cf. Eq. 56.. b. The
parameterization of the reference sphere,rs R, in Fig. 21, by means of sphericd bipolar coordinates
reduces the integration domain to a rectangle.

ison of the plots of DW vs. Ain Figs. 23 and 24, calculated by using the two
alternative boundary conditions. The curves in Fig. 23 are calculated assuming
fixed contact angle one sees that the interaction energyDW is always negative i.e.
corresponds to attraction. On the other hand, the curves in Fig. 24 are calculated
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Fig. 23. Calculated in Kralchevsky et al. V24X dimensionless energy, DWks DWr soR2., of capillary
interaction between two particle plotted vs the dimensionless interparticle separation As Lr pr Rg-
for the ca® of fixed contad angle the different curves correspord to different values of u; denoted on
the figure; the other parameters values are c.s 58and gR,s 5. The right-hand-side scak of DWr kT
shows the interaction energy in the specid cas of Rys 1 mm,s;s 30 mNrmand Ts 29 K.

assumirg fixed contact line. In the latter ca® the interaction energy changes its
sign at comparatively large interparticle distances attractive at short distances
becomes repulsive at large separations.

The fact that that the interaction energy can change sign in the cas of fixed
contact line, but the energy is always negative in the cas of fixed contact angle is
discussé in Kralchevsky et al. 24X It is concluded that the non-monotonic
behavia of the capillary interaction energy Fig. 24. isa non-trivial effect stemming

Fig. 24. Calculated in Kralchevsky et al. V24X dimensionless energy, DWks DWr sORg., of capillary
interaction between two particles plotted vs the dimensionless interparticle separation As Lr pr Ry-
for the ca® of fixed contad line and qR,s 5; the different curves correspord to different values of u,
denoted on the Fig. 24; for each curve hr R, is fixed and equd to the respective values of h.-r R,
0.00389 0.005% and 0.007MD. for the curves in Fig. 23. The right-hand-side scak of DWr kT is as in
Fig. 23.
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from the sphericalgeometry of the film coupled with the boundary condition of
fixed contad line; such an effect is difficult to anticipate by physicd insight. Note
that in the ca® of planar geometry the capillary force between identical particles
is always monotonic attraction.

6. Lateral capillary forces betwee inclusions in lipid membranes
6.1 Perturbatian of the lipid molecules due to inclusionsin the membrane

The experimernt shows that some integral transmembrare. proteins can form
two-dimensiond ordered aggregates in native membranes V89] 94X To explain the
driving force of this process a theory of lipid-mediated interactions between the
membrane proteins has been developeal in severd works W5] 98X This theoretical
approach is basal on experimentd findings that proteins incorporated in mem-
branes perturb the neighboring lipid molecules V@9] 101X and especialy affect the
fluidit y of their hydrocarbon chains Mor e recent experiments performed by means
of ESR and NMR methods V102] 104X demonstrated that the degree of ordering
and fluidity of the hydrocarbon chains of lipid molecules bound to membrane
proteins is not very different from those of free molecules in contract with the
initial hypotheses V85,%6%

Other idea about the origin of the membrane-mediatal interactions between
inclusions stems from the experiments by Chen and Hubbell V105X who have
observed aggregation of the transmembrare protein rhodopsin in cases in which
there has been a mismatch between the width of the hydrophobic belt of the
protein and the thickness of the hydrophobic interior of the lipid bilayer, see Fig. 3.
One can conclude that the perturbation of the bilayer thickness in a vicinity of an
incorporated protein may give rise to protein] protein attraction. This effect was
studied both experimentally vi06] 110Xand theoretically Vt11] 114,25,4X Lewis and
Engelman V07X showel that bacteriorhodopsin forms aggregate in vesicles pre-
pared from lipid s of different chain length. only when the mismata is greater than
1 nm for thinner bilayers Fig. 3a. and 0.4 nm for thicker bilayers Fig. 3b..
Likewise, protein aggregation at considerabke hydrophobic mismatch was detected
with other natural proteinsV106,108,10xand synthesizel polypeptides V08X

In Kralchevsky et al. V285Xwe proposed a theoretical approach to the membrane
mediate interaction between inclusions which is basal on an extensin of the
theory of the lateral capillary forces described above The extensim is needed
becaug the mechanicd properties of a lipid bilayer differ from the properties of a
common thin liquid film. For that reason prior to the calculation of the capillary
force, an appropriate ‘sandwich model of the lipid membrane has been developed,
which is described briefly below.

6.2 Sandwit modd of a lipid bilayer

A lipid bilayer drawn to scak is shown in Fig. 25. One can distinguish a
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hydrophobic hydrocarbon chain region sandwicheal between two hydrophilic re-
gions of the lipid polar headgroups It is generally acceptal that a lipid bilayer
behaves as a two-dimensionaliscous fluid at body temperature. This two-dimen-
siond fluidit y is manifested when inclusions are moving throughout the membrane
W 15X On the other hand, the bilayer exhibits elastic properties in processes of
dilatation or bending, both of them being accompanial by extensian or compres-
sion of the hydrocarbon chains of the lipids. In other words, a bilayer can exhibit
different rheological behaviar fluid, elastic or hybrid. depending on the mode of
deformation. This is not surprising, becau® a bilayer is neither a three-dimen-
sional, nor a two-dimensiond continuum and the hydrocarbon region is neither an
isotropic liquid, nor a solid. A natural approach to the mechanics of such a
complex body is to use different constitutive relations connecting stress and strain.
for the different independert modes of deformation. The displacemert vector u
can be expressé as a sum of components due to the independert modes V25X

us usxretchingq ubendingq usqueezing 6.1.

In the cae of bending or uniform stretching the bilayer is modeled as an
incompressibk elastic body sandwichel between two Gibbs dividing surfaces mod-
eling the two headgrouy regions see Fig. 25.. Then the following expressiors for
the bilayer elastic parameters have been obtained V25X

Kes 2sq 2E;q 3 hg 3l h stretching elastic modulus. 6.2.
ks 2k.y 32B,q iB*hq 3Ez;h?q 3l h® bending elastc modulus.  6.3.

k,s 2k.q 2Byhy %I h® torsion elastic modulus. 6.4.

Here K, isthe stretching elastic modulus of the bilayer as a whole; s and Eg are
the interfacial tension and the Gibbs elasticity of a lipid monolayeron a hydrocar-
bon] water interface at the same temperature, composition of the aqueous phase
and area per molecule as for the bilayer; P is disjoining pressue which is expected
to originate mostly from the van der Waals forces V25X h is the thickness of the
hydrocarbon interior of the lipid bilayer, which is modeled as an incompressible
elastic plate having shea elasticity /; Bs B,q B q ... isthe series expansion
of the bending moment of the bilayer surface for smal values of the relative
dilatation as DAr A of the interfacial area A; k. and k_ are the bending and
torsion elastic moduli of the bilayer surfaces to be distinguished from k, and k,,
which characteriz the bilayer as a whole..

The deformation of a bilayer of non-disturbed. thickness h around a cylindrical
inclusion sa a transmembrare protein. having a hydrophobic belt of width I,
consiss of a variation of the bilayer thickness at planar midplane Fig. 26.. Suc a
mode of deformation correspondsto the squeezingperistaltic. mode observel with
thin liquid films V116X The extensian of the lipid hydrocarbon chains along the
z-axis is greater for molecules situated close to the inclusion Fig. 26.. The region
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Fig. 25. A lipid lecithin. bilayer drawn to scak after Israelachvil V117X.

of the hydrocarbon chains of a separae lipid molecule one of the many small
rectangles depicted in Fig. 26. exhibit an elastic respon® to extension] compres-
sion; therefore each of them can be modeled as an incompressibk elastic body. On
the other hand, lateral slip between molecules neighboring rectangles in Fig. 26.
should not be accompaniel with any elastic effects becau® of the two-dimensional
fluidit y of the bilayer. Both these requirements are accounted for in the following
mechanicd constitutive relation for the stress tensor ¢; V25X

-u
t,s 2l —ZZ; tys ypd;, i/ zz ijs xyz 6.5.

Here d; isthe Kroneker symbol, p has the meaning of pressue characterizing the
bilayer as a two-dimensiond fluid; u, is the z-componert of the displacement
vector u; the coordinate systam is depicted in Fig. 26. The mechanicd conditions
for hydrostatic equilibrium and incompressibility yield:

—Us o, ijs 1,23; =?2us 0 XS X, XS VY, X3S Z., 6.6

where t;; is to be substituted from Eq. 65.. Thus the mechanicd problem is
formulated: Eq. 6.6. represert a se of four equations for determining the four
unknown functions u,, uy, u, and p. Considerations of symmetly imply that u,
musgt be an odd function of z which is to satisfy the boundary condition

u,s z x,y- forzs hr2, 6.7.
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Fig. 26. Sketd of the deformation around a cylindrical inclusion membrane protein. of radius r, and
width of the hydrophobic belt |,; h isthe thickness of the non-disturbed bilayer and h, is the mismatch
between the hydrophobic regions of the inclusion and the bilayer after Kralchevsky et al. v@5x.

where zs z x,y. describes the shape of the upper bilayer surface In Kralchevsky
et al. @5Xit is proven that z x,y. can be found as a solution of the equation

=izs 9’z 6.8.

which has the same form as Eq. 3.6., but the capillary length ¢ ! is defined in a
different way V25X

1 . . 1r 2 4
@’s 5 - Ky [#2y 8k, 2irhy X]"?h Y 6.9.
C

Here &' s,q Bth, with s, being the surface tension of the non-disturbed
planar bilayer far from the inclusion. The solution of Eq. 6.8. for a single
cylindrical inclusion along with the boundary condition for constart elevation,
zs h, at the contad line Fig. 26., yields

h
zs ———K, - rGr.. 6.10
K0 qrc'

where, as usual, r is the radial coordinate and r, is the radius of the inclusion. For
a couple of inclusions one can solve Eq. 6.8. in bipolar coordinates which are
introduced as explained in Section 4.2 above see Kralchevsky et al. ve5xfor details.

6.3 Capillary interaction betwea inclusions
The force approach Section 4.1. can be applied to calculate the lateral capillary

force, F, between a couple of cylindrical inclusions like those depicted in Figs. 3
and 26:
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Fs 2U, ?Ed m2s. 6.11.
p el

Here C denotes the contad line; the multiplier 2 accouns for the presene of two
identical contad lines upper and lower. on ead inclusion; Eq. 6.11. looks like
Eq. 4.2. with the only difference that for a membrane the surface tension is a
tensor, s, rather than a scala V5%

ss Usqg ayns™™ 6.12

Here s is the scala surface tension, U is a unit tensar in the film surface, a,,

ms 12. are the vectors of a local bask in the bilayer surface, n is the running
unit normal to this surface Fig. 26. and the transversa components s™"™ are
related to the divergene of the tensa of the surface moments, M ""V25%

s""s yM™s vy kg’y Bthz, 6.13
Combining Egs. 6.11] 6.13. one can presert the lateral capillary force asa sum

of contributions, F °- and F B, due to the surface tension and the interfacial
bending moment, respectively V25x

Fs Fsq F& 6.14.
Fss 2Ed u, 2m.s 6.15
Cc
FBs 2k.q’y Bth.Ed m?=z. u, 7n. 6.16
Cc

where = is a gradient operator in the curved surface z x,y.. The latter equations
show that the interfacial bending moment can also give a contribution to the
lateral capillary force: this conclusion has a generd validity, i.e. it holds for any
interface, not only for lipid membranes However, it isto be expected that F & can
be comparabk by magnitude with F °- only for interfaces of low tension, suc as
microemulsions some emulsions and biomembranes otherwise one could expect
that Fs- 4 FB..

In the case of two identical cylindrical inclusionsin a lipid membrare like those
in Fig. 3. one can introduce bipolar coordinates see Section 4.2. in Egs. 6.15. and
6.16. to derive an expressia for the non-zero x-componert of the lateral capillary
force F V25X

2 . -z
F.sy A Y kcqz.lzi‘dv cosht .cosvy 1. o 6.17.

U Ts o

Here aandt, are defined by Eqs. 4.8. and 4.9., where for two identical inclusions
of radius r, we have set s;s s,s Lr2,r;s r,s r, t;s t,s t., with L being
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the distance between the axes of the two cylindrical inclusions Note that the force
F, can be attractive or repulsive depending on whether #y) k.qg? or #- k.g>
The respectiwe interaction energy can be obtained by integration:

DV L.s HF, L.dL 6.18
L

In Kralchevsky et al. V25X an asymptotic formula for DV L. has been derived,
which reads:

.. K, are-y 3ar.K, gL. K, qr.-
DV L.s 4p &y k.g?. qr.h?| — e ¥ 28 9 y — d 6.19.
Ko are- @ Ko L. Ko are-

The numerical test of Eq. 6.19. shows that it givesDV L. with a good accuracy.

To examire the predictions of Eq. 6.19. parameters of the bacteriorhodopsin
molecule have been used: r;s 15 nm and lys 3.0 nm, see Fig. 26 for the
notation. The following values of the bilayer mechanicd parameters have been
used:/ s 2= 10° Nrm? s,s 35mNr mand B's y 3.2= 10’ ** N; with hs 3
nm one calculates Bt hf y 11mNrm, &' s,q Bthf 24mNrmandg’ 'f 3
nm; in this cae the term k.g?>f 0.4 mNr m is negligible compared to #, see
Kralchevsky et al. V5X The mismatch between the height of the cylindrical
inclusion, |, and the thickness of the non-disturbed layer, h, can be characterized
by the quantity h,s I,y h.r 2, see Fig. 26. In the experiments of Lewis and
Engelman V107X |, was fixed and h was varied by using various lipids. The same
experimentd values of h have been used in our calculations they are denoted on
the respective curves in Fig. 27a,h all of them corresponding to the sane value of
[, to the same protein.. The calculated curves of DVr KT vs. Lr 2r,. for h,) O
are shown in Fig. 278 whereas those for h - 0 are shown in Fig. 27b. In general,
one sees that the strength of the lateral capillary attraction increases with the
increase of the mismatch magnitude < ,< Comparing the curves with the same
magnitude, but opposite signs of h, h,s 0.2 for the curve with hs 2.6 nm in Fig.
273 while h, s y 0.2 for the curve with hs 3.4 nm in Fig. 27b., one can conclude,
that has larger magnitude and longer range in the cas of h.- 0 bilayer thicker
than the inclusion.. This result is consonarn with the experimentd observatiors of
Lewis and Engelman V207X

We compare DV with the energy of the thermal motion kT, for 258C. One can
see in Fig. 27 that for both h,) Oand h.- 0 the energy of capillary attraction is
larger than the thermal energy, exceg for hs 26 and 34 nm for which the
mismatah is rather small. In the two limitin g cases of large mismatch,hs 1.55 and
3.75 nm, the interaction energy is large enough at close contact, DV s 5] 10 kT, to
caus®e aggregation of the membrane proteins. It is worth noting that only in the
latter two limitin g cases have Lewis and Engelman Vt07Xobservel protein aggreg-
tion. A more detailed discussiam of the comparisan between theory and experiment
can be found in Kralchevsky et al. V25,48
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Fig. 27. Calculated in Kralchevsky et al. v25Xinteraction energy between two inclusions, DV, scaled by
KT, vs the separation L, scale by r.; the mechanicd parameters of bilayer are | s 2= 10% Nr m?,
SoS 35 mNr mand B's y 3.2= 10’ ! N; the geometricd parameters of bacteriorhodopsin molecule
taken from Henderson W0X are r,s 15 nm, lgs 3.0 nm and the values of h corresponds to the
experimentsin Lewisand Engelman V07X a. Thinner bilayer, hy |,- 0; b. thicker bilayer, hy 1) O.

7. Summary and conclusion

A generd conclusion is that lateral capillary forces appea when the attachment
of particles or other bodies to a fluid phas boundary is accompaniel with
perturbations in the interfacial shape the capillary interaction itself is due to the
overlap of such perturbations. The latter can appea around floating particles Fig.
la., around particles confined in aliquid film Fig. 1b and f., between inclusions in
lipid membranes Fig. 3., between two vertical cylinders Figs. 4 and 17., etc. In the
cas of floating particles the deformations in the menisciws shape are due to the
particle weight. The “flotation' capillary forces appearing in the latter cas decrease
with the sixth power of the particle sizz and become immaterial for particles
smaller than approximately 10 mm. In all other cases the interfacial deformations
are due to the surface wetting properties of particles or bodies which are partially
immersed in the two neighboring phases the resulting ‘immersion' capillary forces
can be large enough Fig. 2. to cause two-dimensiond aggregatian and ordering of
smal colloidal particles, which has been observed in many experiments.
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The asymptotic law of the capillary interaction resembles the Newton law of
gravity, or Coulomb'slaw in electrostatics Eq. 2.3.. The latter analogy enables one
to introduce capillary charges of the attached particles, which can be both positive
and negative This analogy can be further extended to the capillary interaction
between particle and wall, which resembles the image force in electrostatics see
Fig. 8. If a particle is moving bound to an interface under the action of a capillary
force, one can determine the surface drag coefficient and the surface shear
viscosily supposedy the magnitude of the capillary force is known Figs. 9, 11 and
12..

There are two equivalent theoretical approaches to the lateral capillary interac-
tions: energy and force approaches Both of them require the Laplace equation of
capillarity to be solved and the meniscws profile around the particles to be
determined. The energy approach accounts for contributions due to the increase of
the meniscis area, gravitational energy andr or energy of wetting, see Eq. 3.13..
The secord approach is basal on calculating the net force exerted on the particle
which can originate from the hydrostatic pressure interfacial tension and bending
moment, see Eqs. 4.1] 4.3. and Egs. 6.14] 6.16.. In the caz of smal overlap of
the interfacial perturbations, created by two interacting bodies the superposition
approximation can be combined with the energy approach to derive an asymptotic
formula for both flotation and immersion interaction, see Sectiors 3.2 and 3.3. This
formula has been found to agree well with the experiment Figs. 5 and 7.. The
force approacd provides an unified derivation of the same formula Section 4.2..

Capillary interactions between particles bound to sphericd interfaces are also
considered Section 5.. Due to the sphericd geometry and restricted area the
capillary forcesin the latter case exhibit some differences from those in the cas of
planar interface. In particular, it turns out that the capillary force between
identical particles can have a non-monotonic behavia repulsion at long distances
and attraction at short distances. unlike the respective force at flat interfaces,
which is always attractive.

Finally, a similar approach can be applied to quantify the forces between
inclusions transmembrare proteins. in lipid membranes Section 6.. Sud inclu-
sions also give rise to deformationsin the lipid membranes which can be described
theoretically in the framework of a mechanicd model of the lipid bilayer the
‘sandwich model., which accounts for the “hybrid' rheology of a lipid bilayer
neither elastic body nor fluid., see Section 6.2 Lateral capillary forces can appear
also between concawe andr or convex formations ‘dimples and “pimples. in the
membrane of a living cell, which are due to mechanicd stresse exerted by
microfilaments and microtubules belonging to the cytoskeletsn Fig. 20..

In conclusion the lateral capillary forces can appea in a variety of systens with
characteristic particle size from 1 cm down to 1 nm; in all cases the capillary
interaction has a similar origin overlap of interfacial deformations. and is subject
to a unified theoretical treatment.
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