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From a physical point of view, many different effects
In this paper we propose a theory for the recently discovered connected with the mass transfer may exist. Let us mention

phenomenon of spontaneous cycling dimpling. The latter is re- some of them briefly. The diffusion of acetic acid and ace-
sponsible for the high stability of non-equilibrium aqueous emul- tone, directed from the surrounding oil phases toward the
sion films when surfactant is transferred across the interfaces to-

aqueous film, was studied experimentally in refs. (1, 2) .ward the surrounding oil phases. Our treatment is based on the
Substantial destabilisation was observed, which could be alubrication approximation for the thin film hydrodynamics, with
consequence of Marangoni–Gibbs instabilities. The latteraccount for the surfactant fluxes due to convection and diffusion.
manifest themselves in a growth of capillary waves at theA fourth-order differential equation is derived for the time evolu-
interfaces, eventually causing film rupture. Such instabilitiestion of the surface shape. This equation is solved numerically, and

the results are compared with experimental profiles (determined can appear on a single liquid surface as well, giving rise to
by means of interferometry) . Very good agreement is observed. It spontaneous emulsification (3, 4) .
is proved that the surface viscosity and the surface diffusion are In contrast to refs. (1, 2), very stable and thick films have
insignificant for the dimple growth. Quite essential is the Maran- been recently reported (5), in the case when surfactant is
goni effect: the exhaustion of surfactant from the region around transferred from the oil to the film. The effect was attributed to
the film center gives rise to gradients of the interfacial tension osmotic swelling, due to the higher concentration of surfactant
which set the interface into motion, and consequently, liquid is

micelles in the film interior, compared to that in the aqueousdragged into the film, feeding the dimple. q 1997 Academic Press
meniscus. As the diffusion of the big micellar aggregates isKey Words: thin liquid films; mass transfer ; surface flow; dimple
slow, and the film diameter is much larger than its thickness,growth; Marangoni effect.
the osmotic pressure gradients force the liquid to rush from the
Plateau border into the film (5). As a consequence, intensive
circulation and exchange of mass with the meniscus take place

1. INTRODUCTION and can be directly observed (5).
Diffusion of solvent (water) across lipid bilayers was

The thin aqueous films between oil phases represent a found to be important for the stability of two apposed bio-
convenient model system for investigations on the stability membranes against fusion (6). If the osmotic differences
of oil-in-water dispersions. A film is formed when two emul- are such as to remove water from between the bilayers (more
sion droplets (of not very small size) approach toward each concentrated NaCl solution in the aqueous drops) , then fu-
other. Until recently, relatively little effort has been spent sion occurs. In the opposite case, if there is an osmotic flow
to study the behavior of such films in non-equilibrium condi- of water into the space between the membranes (the film),
tions, when surfactants or other solutes are being transferred fusion never happens (6) .
from, to, or across the film. On the other hand, common In general, the behavior of non-equilibrium films with mass
non-ionic surfactants are often soluble both in water and in transfer is quite complicated, and to a large extent specific,
oil, and are initially put in one of the phases. Thus, immedi- depending on what kind of substance is transferred, and to
ately after formulation of the dispersion a process of surfac- which direction. Each particular case is to be analyzed with
tant redistribution starts. It can last for several hours, and care, since different physical effects may superimpose. Let
even up to days, until the equilibrium is reached. This is a us now concentrate on the situation when a surface active
reason why the transient non-equilibrium phenomena can solute diffuses from the continuous phase (film) to the dis-
have important practical implications. persed phase (oil) , across the interfaces. As pointed out by

Hartland (7), this should lead to stabilization. Because the
volume of the film is small, the solute concentration there1 To whom correspondence should be addressed. E-mail: theodor.

gurkov@ltph.cit.bg. falls more rapidly than in the bulk of the continuous phase,
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314 DANOV ET AL.

and hence, the interfacial tension is greater around the film parison with experimentally determined profiles is carried
out and very good agreement is observed. The analysis givescenter and smaller at the periphery and in the meniscus. A

tensile restoring force emerges, which is directed opposite to the possibility to figure out which physical properties of the
system are relevant for the phenomenon.the surfactant density gradient (8) (i.e., from higher to lower

surface pressure) . It sets the fluid interface into motion, and
liquid is dragged toward the film center. This is a manifesta- 2. MATHEMATICAL FORMULATION OF THE PROBLEM
tion of the well-known Marangoni effect (7, 8) and is ex-
pected to provide high stability. Such a qualitative picture Let S be the upper surface of a thin emulsion film with
has been confirmed by recent experiments (9), and moreover, circular symmetry. It is defined by the following equation
it turns out that the real processes are far more complex. (see Fig. 1)

In the paper of Velev et al. (9) a fascinating cyclic phe-
nomenon was encountered during observations of aqueous S : z Å h(r , t) , [1]
emulsion films between oil phases in the presence of non-
ionic surfactant (soluble both in water and in oil) . When the where t denotes time, and r and z are the radial and vertical
surfactant is initially dissolved in the film phase and diffuses coordinates in the cylindrical coordinate system Orwz . R is
across the interfaces towards the oil, its transfer induces spon- the film radius; the thickness along the periphery is h0 Å 2h
taneous growth of a lens-like thicker formation (dimple) (r Å R , t) , and remains constant. We shall assume validity
around the film center. The thickness along the periphery of the lubrication approximation, which states that h(r , t)
remains more or less constant. Upon reaching a certain size, ! R . With the typical dimensions of the films this is always
the dimple flows out into the meniscus, and a new one starts fulfilled (see below). In the lubrication theory the liquid
to form. The process is cyclic and usually goes on for many flow is governed by the equations (see, e.g., ref. (13))
hours. Its driving force was proven to be the surfactant mass
transfer (9). When the latter ceases, the film quickly thins
down and eventually ruptures. In view of those findings, the 1

r

Ì
Ìr

(rnr) /
Ìnz

Ìz
Å 0 [2]

phenomenon is likely to be responsible for the stability of
emulsion systems with non-equilibrium distribution of sur- Ìp

Ìr
Å h

Ì 2nr

Ìz 2 ,
Ìp

Ìz
Å 0 [3]factant. It should be noted that the films containing such

dimples can be very thick, even in the presence of a large
amount of added electrolyte (up to 300–400 nm with 0.1 M

p is the pressure inside the film, h is the dynamic viscosity,NaCl). No other sources of stabilization are operative in
and nr and nz are respectively the radial and vertical velocitythese conditions except purely hydrodynamic ones.
components (nz ! nr) . We work at low Reynolds number,A clear distinction must be made between the cyclic dim-
and in quasistatic approximation. The latter means that thepling reported in ref. (9) and the so-called hydrodynamic
derivatives Ì /Ìt in the Navier–Stokes equations are ne-dimple (10, 11). The latter appears only when the film is
glected, and all physical quantities depend on time implicitly,thinning and is not connected in any respect with mass transfer
through h(r , t) . Equations [2] and [3] can be integrated bythrough the phase boundaries. The film surfaces are curved
using the kinematic boundary conditions on the surface S :under the action of the pressure gradients and the viscous

friction. At a certain stage of thinning the hydrodynamic dim-
ple irreversibly disappears and the film becomes plane-paral- nr Å u, nz Å

Ìh

Ìt
/ u

Ìh

Ìr
at S [4]

lel. A comprehensive review of studies devoted to this phe-
nomenon can be found in ref. (11). Recently Hartland et
al. (12) have solved numerically the differential equation where u is the radial component of the velocity at the surface.
governing the shape as a function of time during the drainage The solutions are symmetrical for positive and negative val-
of thin liquid films. In contrast to the hydrodynamic dimple, ues of z , and in this case we can write the following condi-
the cyclic dimple discovered in (9) has the following charac- tions at the midplane of the film
teristic features: (i) it is driven entirely by the surfactant
redistribution; (ii) the film region around the periphery does Ìnr

Ìz
Å 0, nz Å 0 at z Å 0. [5]not thin at all; (iii) the processes go on in a cyclic manner

for several hours, until the concentration reaches equilibrium.
The aim of this article is to develop a detailed theoretical

Ivanov and Dimitrov (11) have shown that the solution ofdescription for the progressive growth of a cyclic dimple.
the problem [2] – [5] isWe use the lubrication approximation for the thin film hydro-

dynamics and take into account the surfactant diffusion and
fluxes. A differential equation for the time evolution of the p Å q(r , t) , nr Å

1
2h
Ìq

Ìr
(z 2 0 h 2) / u [6]

interfacial shape is formulated and solved numerically. Com-
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315GROWING DIMPLE IN EMULSION FILMS

FIG. 1. Sketch of an emulsion film with dimple.

Here q is the pressure in the film (it does not depend on z) .
h
Ìnr

Ìz
Å Ìs
Ìr
/ hS

Ì
Ìr F1

r

Ì
Ìr

(ru)G at S . [8]After integrating the continuity equation [2] from 0 to
h(r , t) , using the conditions [4] and [5] for nz and inserting
the general solution [6] for nr , we end up with the following The balance of the normal component of the stress tensor
equation for the shape of the interface S on S yields

0 Ìq

Ìr
Å Ì
Ìr Fsr Ì

Ìr Sr
Ìh

ÌrD / P(h)G at S . [9]
Ìh

Ìt
/ 1

r

Ì
Ìr

(rhu) Å 1
3hr

Ì
Ìr Srh 3 Ìq

ÌrD [7]

In Eqs. [8] and [9], s is the interfacial tension and hS is aThe unknown functions u(r , t) , Ìq /Ìr in Eq. [7] have to
characteristic surface viscosity, which represents the sum ofbe determined from the other boundary conditions at S .
the dilatation and shear viscosities, hs Å hd / hsh (cf. Appen-The inertia terms have been discarded from the Navier–
dix) . P(h) is the disjoining pressure, whose origin is con-Stokes equations in the film, as the motion is slow. In the oil
nected with different intermolecular interactions (electro-phase the balance between the viscous and the inertia terms
static, van der Waals, etc.) leading to direct forces betweenleads to introducing a characteristic thickness of the layer
the two film surfaces. P is negligible for relatively thickwithin which the velocity changes significantly. As Stokes
films, say, for h ú Ç100 nm. In the particular system ana-(14) and Lord Rayleigh (15) have shown (see also (13)),
lyzed in the next section of this paper P Å 0, but in principlethis thickness can be estimated as dn É

√
n0t , where n0 is the

there may exist thinner non-equilibrium films for which Pkinematic viscosity and t is the time scale of the tangential
will be important.motion. In our case t coincides with the characteristic period

We estimate the role of the surface viscosity taking theof the oscillations. Hence, simple evaluation reveals that in
ratio of the respective terms in Eq. [8]:the oil phase dn É 1 cm @ h , which means that the velocity

gradients are negligible. Therefore, the viscous stresses from
the side of the oil will not contribute to the balance of the hS

Ì
Ìr F1

r

Ì
Ìr

(ru)GYSh Ìnr

Ìz D É hSh0

hR 2 . [10]
surface stresses on S . On the other hand, Ivanov and Traykov
(16) and Traykov and Ivanov (17) have observed a strong
influence of the oil phase viscosity upon the process of thin- Our parameters are hs É 1003 surface poises (g/s) , a value

typical for low molecular weight surfactants (8) , h É 1002ning of an emulsion thin liquid film. However, in their case
the characteristic time was much smaller than t in the present poises (water) , h0 É 3.5 1 1005 cm, and R É 3 1 1002

cm (see the next section). Then, the right-hand side of Eq.problem, when oscillating dimple exists. In particular, dn É
h for the systems studied in (16, 17). [10] gives 3.9 1 1003 , which is much less than unity. One

can draw the conclusion that the surface viscosity is insig-In view of these considerations one can deduce that the
balance of the tangential component of the stress tensor at the nificant. Then from Eqs. [6] and [8] we obtain a simpler

boundary condition,surface S acquires the following form (see the Appendix):
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h
Ìq

Ìr
Å Ìs
Ìr

at S . [11]
Ì 2c2

Ìz 2 Å PeS Ìc1

Ìu
/ U

Ìc1

Ìr D 0 1
r

Ì
Ìr Sr Ìc1

Ìr D . [17]

Equation [9] implies that Ìp /Ìr was supposed to be zero The condition for film symmetry leads to Ìc /Ìz Å 0 on the
in the oil phase, close to the interface (cf. Appendix, Eq. plane z Å 0.
[A.6]) . This is a reasonable assumption (11), since the We need Eq. [17] in order to determine the diffusion flux
motion in the oil is caused only by the moving surface which of surfactant, j f , directed from the film toward the surface
drags the adjacent liquid. Hence, the pressure gradients S . Up to linear order in Ìh /Ìr , j f is given by
should be small.

Let us now consider the distribution of the surfactant con-
j f Å 0DnrÇcÉzÅh Å 0DS Ìc

Ìz
0 Ìh

Ìr

Ìc

ÌrD at S , [18]centration in the aqueous phase, c(r , z , t) . The diffusion
equation in the volume of the film reads (11)

see Appendix, Eq. [A.2] . The two terms in the right-hand
side of Eq. [18] are of comparable magnitude, because Ìc /Ìc

Ìt
/ nr

Ìc

Ìr
/ nz

Ìc

Ìz
Å DF Ì 2c

Ìz 2 /
1
r

Ì
Ìr Sr

Ìc

ÌrDG , [12]
Ìr @ Ìc /Ìz (cf. Eq. [16]) , but Ìh /Ìr is small. After integra-
tion of Eq. [17] from 0 to h /h0 over z , using Eq. [6] to

where D is the bulk diffusion coefficient. We introduce the substitute for U(z) , we return to the physical variables and
following dimensionless variables: find the value of the diffusion flux, j f ,

u Å t

t
, r Å r

R
, z Å z

h0

, U Å nr

R /t
, V Å nz

h0 /t
. [13] j f Å 0h

Ìc

Ìt
0 uh

Ìc

Ìr
/ h 3

3h
Ìq

Ìr

Ìc

Ìr

Here t denotes the time scale of dimple growth. According / D

r

Ì
Ìr Srh

Ìc

ÌrD at S . [19]
to Eq. [13], we can cast Eq. [12] into dimensionless form
in terms of u, r, z , U , and V :

The characteristic distance of diffusion penetration in the oil
phase is much greater than the film thickness. Hence, in zeroÌc

Ìu
/ U

Ìc

Ìr
/ V

Ìc

Ìz approximation the diffusion flux into oil, j0 , does not depend
on r and is of the order of the flux from the side of the film,
j f . Actually, the mass transfer between the phases will leadÅ 1

Pe F1
e

Ì 2c

Ìz 2 /
1
r

Ì
Ìr Sr Ìc

ÌrDG [14]
to a gradual change of both the bulk concentration, c0 , and
the flux, j0 . This process can be analyzed by solving the
diffusion problem in the system. In principle, there will beThe small quantity e is defined as e Å h 2

0 /R 2 . The Peclet
a slow change of all physical quantities related with c0 : thenumber is
adsorption of surfactant, G0 , the interfacial elasticity, G0 ,
etc. However, it is experimentally established that this

Pe Å R 2

Dt
[15] change goes on for many hours, i.e., it is very slow compared

to the characteristic time of dimple growth, t. We shall
assume that during the evolution of a dimple, which takesFor the characteristic parameters of the problem, R É 3 1
times of the order of minutes, the parameters referring to c01002 cm, DÉ 51 1006 cm2/s, and tÉ 100 s, one calculates
(namely, j0 , G0 , and G0) remain constant.Pe Å 1.8, and therefore we have to consider the case when

According to Eq. [16], the surfactant adsorption at thethe Peclet number is not small. Bearing in mind that the film
surface, G, can be expressed as an expansion:is being continuously fed with fresh liquid from the menis-

cus, it is natural to regard the solution of Eq. [14] as a slight
perturbation to the concentration in the bulk aqueous phase, G Å G0 / S ÌGÌc D0

(c 0 c0) at S , [20]
c0 . Further, it will be assumed that c0 remains constant during
the evolution of the dimple (see the discussion below). We
seek a function c(r, z , u) in the form as far as we consider weak perturbations with respect to c0 .

The adsorption is supposed to have reached its equilibrium
c Å c0 / ec1 / e 2c2 / rrr [16] value, G0 , for the corresponding c0 . Equation [20] is valid

when local equilibrium is established at any moment of time
between the adsorption layer and the subsurface where theAfter substitution of Eq. [16] into Eq. [14], the terms which

are of same order of magnitude with respect to e can be equated. concentration is c . Then G is an explicit function of c only.
Such is the situation with diffusion controlled adsorption, whichThus, one obtains that c1 depends only on r and u, and
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317GROWING DIMPLE IN EMULSION FILMS

is likely to be the case in our system, described in the next the radial component of the velocity, u , we eliminate (c 0
c0) and arrive at the following relationship on the surface Ssection, as we have non-ionic surfactant (no barrier for adsorp-

tion). The surfactant mass balance equation on S reads (11)

u Å 0DSh

G0

Ìq

Ìr
0 j0r

2G0

at S , [26]ÌG
Ìt
/ ÇIIr(GvS 0 DSÇIIG) Å jf 0 j0 . [21]

where G0 is the surface elasticity:

Here DS denotes the surface diffusivity; for the other symbols
see the Appendix. When combined with Eqs. [7] , [19], and G0 Å 0S Ìs

Ì ln GD0

. [27]
[20], Eq. [21] yields

Now we substitute u in Eq. [7] with Eq. [26]. ComparingÌ
Ìt HF S ÌGÌc D0

/ hG(c 0 c0)J / 1
r

Ì
Ìr the terms which contain Ìq /Ìr , one encounters the dimen-

sionless parameter

1 HruFG0 / SS ÌGÌc D0

/ hD(c 0 c0)GJ 3hDS / (G0h0) Å 9 1 1003 ! 1,

with G0 Å 10 dyn/cm and DS Å 1004 cm2/s. We conclude
that the influence of the molecular surface diffusion is negli-0 1

r

Ì
Ìr HrFDSS ÌGÌc D0

/ DhG Ì(c 0 c0)
Ìr J

gible. Hence, using Eq. [9] we derive the final form of the
differential equation for the surface profile, h(r , t) ,

0 1
r

Ì
Ìr F rh 3(c 0 c0)

3h
Ìq

ÌrG / j0 Å 0 at S . [22] Ìh

Ìt
/ 1

3hr

Ì
Ìr Hrh 3 Ì

Ìr Fs0

r

Ì
Ìr Sr

Ìh

ÌrD / P(h)GJ
The characteristic film thickness, h0É 3.51 1005 cm, is much
less than (ÌG /Ìc)0É 1.31 1003 cm, the latter being estimated Å j0

2G0r

Ì
Ìr

(r 2h) . [28]
from the equilibrium interfacial tension isotherm of nonylphe-
nol ethoxylate (with 40 ethylene oxide groups), close to CMC.

One can write the following boundary conditions for Eq.In the quasistatic approximation, we neglect the time derivative
[28]:(see above) and Eq. [22] acquires the form

Ìh

Ìr
(r Å 0, t) Å 0 at t § 0 [29]1

r

Ì
Ìr

(ruG0) 0 1
r

Ì
Ìr HrFDSS ÌGÌc D0

h(r Å R , t) Å h0

2
,
Ìh

Ìr
(r Å R , t) Å 0 at t § 0. [30]

/ DhG Ì(c 0 c0)
Ìr J / j0 Å 0 at S . [23]

The thickness of the film along the periphery, h0 , remains
It can be shown that the coefficient of surface diffusion, DS , fixed. The fourth boundary condition can be found from the
is greater than or of the same order as that in the bulk of requirement that Ìh /Ìt for r Å 0 be finite at any moment
the film, D (18). Hence, the term Dh in Eq. [23] may be of time. This gives
discarded, and after integrating over r we obtain

Ì 3h

Ìr 3 (r Å 0, t) Å 0 at t § 0. [31]
uG0 0 DSS ÌGÌc D0

Ì(c 0 c0)
Ìr

/ j0r

2
Å 0 at S . [24]

It is possible to define the initial condition at t Å 0 as a
In view of Eq. [16], at weak perturbations, one may repre- plane-parallel film of thickness h0 :
sent the interfacial tension as

h(r , t Å 0) Å h0

2
at 0 £ r £ R . [32]

s Å s0 / S ÌsÌc D0

(c 0 c0) at S , [25]

In the general case only numerical solutions of the problem
[28] – [32] can be obtained.where s0 is the value unperturbed by the dimple growth (i.e.,

at c0) . Inserting Eq. [25] into [11] and using Eq. [24] for We would like to mention here that the formulated govern-
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318 DANOV ET AL.

ing equations and the boundary conditions on the interface, ple reaches its stationary shape which does not change any
longer.S , are valid also in the meniscus region which is adjacent

to the film (as long as the lubrication approximation retains Our aim is to compare the outcome of the theory with
experimentally determined profiles. For that reason, we in-its applicability) . The experimental observations have re-

vealed that the thickness at the film periphery remains con- vestigated oscillating dimples in a system which consisted of
an aqueous solution of the non-ionic surfactant nonylphenolstant during the evolution of a dimple. This gives us the

opportunity to impose the boundary conditions, expressed polyoxyethylene (40) (supplied by The Dow Chemical
Company), and a styrene phase (Merck, stabilized againstby Eq. [30], along the rim. Thus, the hydrodynamic problem

in the film is defined, and we avoid the necessity of consider- polymerization). This surfactant is soluble both in water and
in oil. Its concentration was 1:30 parts by weight (3.23%ing explicitly the meniscus region.
wt, 0.0163 M). 0.1 M electrolyte, NaCl (Merck, p.a. grade),
was added to the aqueous phase. We used water purified by3. NUMERICAL RESULTS AND COMPARISON
a Milli-Q system (Millipore) . Emulsion films were formedWITH EXPERIMENT
in a glass capillary immersed into the oil. The experimental
method is described in detail elsewhere (9) . MicroscopicWe shall consider relatively thick films, h0 É 300 nm and
observations were carried out in reflected monochromaticabove, when the disjoining pressure, P, can be disregarded.
light (wavelength 546 nm). The interference picture wasEquation [28] is cast into dimensionless form using Eq.
recorded by videocamera, and the images were processed[13].
with the help of Targa/ 16/32P grabbing board. From the
Newton fringes (see Fig. 3) we obtained the profile of theÌH

Ìu
/ a

1
r

Ì
Ìr HrH 3 Ì

Ìr F1
r

Ì
Ìr Sr ÌH

ÌrDG J film thickness, following the method developed by Dimitrov
et al. (20).

As the surfactant was initially dissolved in the aqueous
Å b

1
r

Ì
Ìr

(r 2H) , [33] film, it diffused across the interfaces toward the oil. The
transfer induced spontaneous cyclic dimpling, with a period
of the order of 1–2 min. The dimples consecutively flowed

where H Å h /h0 , and the parameters a, b are defined as out of the film (cf. Fig. 3) , and new ones formed. We
monitored the time evolution taking the shapes at different
moments. Let us mention here that the theory in its presenta Å 1

3
ts0

h

h 3
0

R 4 , b Å j0t

2G0

. [34]
form does not account for the cyclic nature of the processes,
it always gives a stationary final shape. In reality, steady
state dimples were observed experimentally when the filmEquation [33] is a nonlinear partial differential equation of
diameters were smaller than a certain limiting value (9) . Asfourth order. The time and the radial coordinate are discret-
a rule, if the mass fluxes are very intensive, the stationaryized with increments Du, Dr, and a semi-implicit numerical
state cannot be reached because instabilities occur in thescheme is employed (see, e.g., ref. (19)) . The highest order
film (see below), and the dimple is expelled at some criticalderivatives are expressed at the time moment (u / Du) ,
size. After that a new dimple appears and that is how thewith central differences of accuracy (Dr)2 . The resulting
oscillations come about. Nevertheless, we believe that thelinear set of equations is solved by Gauss–Jordan elimina-
theory presented here describes realistically the process oftion with full pivoting. The point r Å 0 needs special treat-
dimple growth. Figure 4 shows experimental data (the largement. After expanding Eq. [33] in series at r r 0, one finds
symbols) for one film with dimple. Those data were fitted
with the theory by inserting the first curve as initial conditionÌH(0, u)

Ìu
/ a

8
3
Ì 4H

Ìr 4 Z
rÅ0

H 3(0, u) for the computation. One may estimate the film thickness
along the periphery, h0 , from the intensity of the reflected
light and the order of interference. Thus, h0 É 350 nm in
our case. Besides, R Å 320 mm. Then, with s0 Å 5 dyn/cm,Å bF2 H(0, u) / Ì

2H

Ìr 2 Z
rÅ0
G . [35]

and h Å 0.01 g/(cmrs) for water, we can fix a according
to Eq. [34]. The value of the interfacial tension, s0 , was
measured by means of du Nouy platinum ring method. AsIt is evident that the solution ultimately depends on two

parameters, a and b. In general, the profiles H(r, u) exhibit far as t is concerned, the form of Eqs. [33] and [34] sug-
gests that for scaling purposes we can choose an arbitrarya steady state after some characteristic time. Figure 2 illus-

trates this behavior. Computed shapes are plotted at different constant with dimension of time, which is not bound to
coincide with the real characteristic time of the dimplingtime moments, with fixed values of a and b (chosen to

correspond to typical parameters of films, as an order of process. Indeed, both a and b depend linearly on t, which
means that we can multiply Eq. [33] by any numerical fac-magnitude). After a relatively fast initial evolution, the dim-
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319GROWING DIMPLE IN EMULSION FILMS

FIG. 2. Illustration of the time evolution of the dimple, calculated with the following parameters: a Å 0.3, b Å 20.0.

tor, say x, and get the same results for H(r, (u /x)) . We assume that G0 refers to saturated adsorption because the
surfactant content is well above the critical micellar concen-prefer to assign large numbers to (xt) because then the

dimensionless time, (u /x) , is small. This allows faster cal- tration. With G0 Å 1.17 1 1014 cm02 , Eq. [34] yields j0 Å
9.13 1 1012 cm02

rs01 . This value can be used to qualita-culation with higher accuracy. Typically, (xt) Å 104 s is
used, and the final results are converted back to real time. tively estimate the kinetics of saturation of emulsion drops

with surfactant which has been initially dissolved in theWith fixed a Å 0.06815 we varied b (as an adjustable
aqueous phase. Simple assessment reveals that in an oil drop-parameter) in order to obtain the best fits drawn in Fig. 4.
let of radius 5 mm the concentration will increase with 5.5All curves correspond to one and the same value of b Å
1 1003 M for 1 min (if the flux remains constant) . Evi-390.0. It is seen that the agreement between theory and
dently, in such a system the mass transfer is relatively fast.experiment is very good for the four time moments after the

Having found a and b, we use them to run a computationinitial state. Thus, our model provides adequate description
starting from initially flat film. The results are shown in Fig.of the dimpling kinetics, using only one fitting parameter.
5. The first experimental profile is recovered at t Å 37.5 sThe surfactant adsorption, G0 , can be determined from the
from the beginning. Thus we determine the time momentisotherm of the equilibrium interfacial tension. The latter
which corresponds to the first curve in Fig. 4. This time iswas measured by us as a function of the concentration. We
in agreement with what was found by observation in the real
system. It has to be mentioned that, actually, the dimples do
not start growing from a perfectly plane-parallel film. As a
matter of fact, after the preceding dimple has flown out, the
surfaces remain slightly bulged, which is the real starting
shape. However, at this stage the dimples are not circular
and the interferometric measurements cannot be performed
with sufficient accuracy.

We made some theoretical investigations of the flow prop-
erties inside the film during the non-stationary process of
dimple growth. The radial velocity component on the sur-
face, u , is a linear function of r , as is evident from Eq. [26]
(the term with the molecular surface diffusion turned out to
be negligible) . Moreover, u has negative sign, which means
that the flow near S is directed toward the film center. The
vertical velocity on S , nz , can be obtained from Eq. [4] .
Using the slope of the shape at each point, Ìh /Ìr , one may
switch to tangential and normal velocity components with

FIG. 3. Interference picture, in reflected monochromatic light, of a film
respect to S , nt and nn . These are plotted in Fig. 6 forcontaining dimple. Black and white fringes correspond to thicknesses in
different times after a flat initial state. The values of themultiples of l / (4n) , l is the wavelength of the light, n is the refractive

index of the aqueous phase. (The dimple just starts flowing out.) parameters, a, b, are the same as in the real system (and in
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FIG. 4. Experimental and theoretical profiles of a growing dimple. a Å 0.06815, b Å 390.0, h0 Å 350 nm, R Å 320 mm.

Figs. 4 and 5). To define dimensionless quantities, u is p(oil) is positive in the region where the shape of the dimple
is convex (cf. profiles in Fig. 4) . In addition, the pressurescaled by R /t and nz is scaled by h0 /t. At longer times the

tangential velocity increases, and the normal velocity tends near the film center changes only slightly with time after,
say, 40 s from the initial state. On the contrary, p(film) isto zero. This has to be expected because in stationary condi-

tions nn should vanish on S . The normal motion is maximum smaller than p(oil) where the surface is concave, in a zone
closer to the periphery. Moreover, p(film) decreases substan-at the film center, where the tangential velocity is always

zero due to the symmetry. It is interesting to note that nr (r tially as the stationary state is approached. This may be the
reason why in the real system the dimple flows out andÅ R) is time independent.

We determine the pressure according to Eq. [9] , dis- cannot reach a steady shape. Very high negative pressures
close to the rim can induce instabilities. We have to mentioncarding the term with P. Up to the leading order, s Å s0

is assumed. One can express q(r , t) in integrated form, since also that the theory does not consider the meniscus region
near the film. In reality, the contact angle is small and massp(film) Å p(oil) when the interface is flat. The present

model implies that the pressure at the oil side does not de- transfer takes place there, which can influence the behavior
of the flow around the periphery.pend on r . For scaling purposes we use the characteristic

Next, we compute the profile of the radial velocity insidepressure dimension, hR 2 / (th 2
0) . Figure 7 shows the pressure

the film as a function of the vertical coordinate. Accordingdistributions at different time moments, with the same values
of the parameters as above. Generally speaking, p(film) 0 to Eq. [6] , this profile is parabolic. Data are plotted in Fig.

FIG. 5. Fit of the first experimental profile with computations which start from a plane-parallel film, a Å 0.06815, b Å 390.0.
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321GROWING DIMPLE IN EMULSION FILMS

FIG. 6. Tangential and normal velocity components on the surface of the dimple at different times during its evolution (20, 40, 60, and 80 s) .

8 for a given time moment, 60 s after the initial state, at lead to dimple expulsion. Figure 10 presents a very simpli-
fied sketch of the vortex. The drawing is not to scale (wefour different radial distances. In other words, we take four

vertical cross-sections of the film. Near the central region recall that even with dimple h /R Ç 1002) .
In the stationary state the overall liquid flux should be zerothe velocity changes sign along the z-line. This is an im-

portant finding which proves the existence of a vortex. In- through any cylindrical surface r Å const. More precisely,
deed, the flow near the surface is directed toward the film

*
zÅh (r )

zÅ0

nr(r Å const, z)dz Å 0.center (negative nr) , whereas close to the plane z Å 0 the
fluid moves to the opposite (positive nr) . Around the film
periphery the vortex disappears due to the liquid influx from We checked this, plotting nr (z) at r /R Å 0.5 (Fig. 11), with
the outside. This behavior is time dependent. At the early a Å 0.06815 and b Å 390.0, at time t Å 350 s, when the
stage of the dimple growth there is no vortex at all, as the dimple has supposedly become steady. From Fig. 11 we see
interior of the film is being filled up with fluid. Figure 9 that this is indeed so.
illustrates the changes in the radial velocity at z Å 0. Obvi-

4. CONCLUDING REMARKSously, the vortex shows up after Ç40 s of time evolution.
It occupies larger parts of the film as the dimple grows and We solved theoretically the problem for the spontaneous

growth of a dimple in emulsion film with surfactant massmay have a share in causing instabilities which ultimately

FIG. 7. Pressure distribution in the growing dimple (at 20, 40, 60, and 80 s) .
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FIG. 8. Radial velocity distribution in the film, nr (z) , 60 s after the initial state, at r /R Å 0.1, 0.3, 0.6, and 0.7.

transfer. It has been proven that the molecular surface diffu- tion decreases and the interfacial tension rises with diminish-
ing values of the radial coordinate, r . The occurring interfa-sion and the surface viscosity are insignificant for the phe-

nomenon, in the conditions of a typical system. Moreover, cial tension gradients set the fluid surface into motion. Thus,
liquid is dragged into the film, feeding the dimple.the diffusion flux of surfactant from the film phase toward

the interface turns out to be negligible. (The bulk diffusion A differential equation which describes the time depen-
dence of the dimple shape is formulated. Numerical compu-coefficient, D , does not enter into the final equation for the

shape, Eq. [28], and in the boundary conditions.) The sur- tations have been performed and the results are compared
with experimental data measured interferometrically. Veryface convection, that is, the inward flow along the interfaces,

directed from the meniscus to the film, provides a continuous good agreement is observed. The main factor which affects
the dynamics of the process is the surfactant flux across thesupply of new surfactant. A major role can be attributed

to the Marangoni effect, connected with interfacial tension interfaces, toward the oil phases. The interfacial tension,
the thickness of the film, its diameter and the equilibriumgradients (see Eq. [11]) that bring about surface motion

directed opposite to the pressure gradients (cf. Fig. 7 for adsorption are important parameters. Quasistationary shapes
are possible for not very big diffusion fluxes. Otherwise,p(film)). As a fluid element moves to the film center, along

the interface, it continuously loses surfactant because the large negative pressures develop near the film periphery and
eventually lead to instability in the real system. The analysislatter goes to the oil phase. Therefore, the surface concentra-

FIG. 9. Radial velocity in the plane z Å 0, at different times (20, 40, 60, and 80 s) .
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FIG. 10. Simplified sketch of the vortices in the dimple, at late stages of its time evolution (not to scale) .

of the flow properties inside the film reveals the appearance ÇIIrTII / P(nrez)ez Å nr(T1 0 T2)ÉzÅh , [A.1]
of vortices which show up after a certain initial period of
dimple growth. where ÇII is the two-dimensional gradient operator on S , TIIPerhaps the most important and striking feature of these is the surface stress tensor on S , and T1 and T2 represent
emulsion films is their thickness. Being of the order of 350 the bulk stress tensors in the film (subscript 1) and in the
nm, and even larger, it cannot be explained by any direct oil phase (subscript 2) . In Eq. [A.1] T1 and T2 are taken
surface forces. The disjoining pressure is completely negligi- at z Å h , that is, on the surface S. n is the unit normal to
ble, especially in the presence of 0.1 mol/ l of inorganic S , directed outward from the film, ez is the unit vector along
electrolyte. The stabilising effect is likely to be due to purely the z-axis (Fig. 1) . The disjoining pressure is denoted by
hydrodynamic reasons, in particular, to net repulsion when

P, it accounts for the molecular interactions in the thin film.
the pressure is integrated along the liquid/ liquid interface. The term with P in Eq. [A.1] is non-trivial, the reader may

consult ref. (21) for the general derivation. In our case theAPPENDIX
form of this term corresponds to a symmetric circular film
(Fig. 1); see also ref. (22).Here we outline how Eqs. [8] and [9] can be derived. In

the absence of inertia effects the general form of the stress We shall decompose Eq. [A.1] into tangential and normal
projections with respect to S , using the fact that h ! R . Thebalance on S (Fig. 1) reads

FIG. 11. Radial velocity, nr (z) , at r /R Å 0.50, in the stationary state of the film (at 350 s after the initial moment); a Å 0.06815, b Å 390.0.
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following exact relations hold between the unit vectors n , It is now straightforward to insert Eqs. [A.3] – [A.6] into
[A.1]. The projection of Eq. [A.1] along er leads to Eq. [8] ,et , er , and ez (Fig. 1):
and the ez projection yields Eq. [9] . For the sake of brevity
the subscript 1 is omitted in the main text.

n Å 1√
1 / (Ìh /Ìr)2 S0 Ìh

Ìr
er / ezD ;
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