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Recently Eriksson and Ljunggren (Langmuir 1995, 11, 2325) established theoretically that in some
cases the Young contact angle equation corresponds to a maximum of the energy of the system (that is
an unstable equilibrium) rather than to a minimum. In fact, these authors have found out an apparent
paradox in the classical field of interfacial thermodynamics. Indeed, it is known from the experiment that
bubbles or droplets attached to smooth solid surfaces tend to form an equilibrium contact angle, θ, whereas
it is shown in ref 1 that under some conditions the fluid particles should avoid formation of an equilibrium
contact angle because of anunstable equilibrium. Belowwe extend the analysis ofEriksson andLjunggren
to demonstrate that the conditions for the stability of particle attachment are different depending on
whether the fluid particle contains an independent component, i.e. a component whose chemical potential
is independent from those of the components in the surrounding medium. The results show that the
equilibrium contact angle corresponds to an unstable equilibrium only when (i) 90° < θ < 180° and (ii)
the independent component is missing. In all other cases the equilibrium contact angle corresponds to
the stable configuration of the attached fluid particle. These conclusions can be important not only for
the specific problem about the bridging cavities as an explanation of the hydrophobic surface force but also
for the whole broad field of wetting and spreading.

1. Introduction

There has been a recent discussion about the possible
role of bubble nucleation between two hydrophobic
surfaces as they approach each other.2 It is expected that
a spontaneous capillary condensationof avapororgaseous
bridge between two surfaces would pull the surfaces
together with a strong force due to a resolved surface
tensioncomponentandanegativeLaplacepressurewithin
the bridging cavity.3 Ducker et al.4 found out additional
experimental evidence in favor of this hypothesis and
estimated the resulting hydrophobic surface force. How-
ever, Eriksson and Ljunggren1 pointed out that these
cavities are not mechanically stable between perfect
hydrophobic surfaces. In particular, these authors dem-
onstrated that the Young equation for the contact angle
of a gas bubble attached to a hydrophobic solid surface
corresponds to amaximum of the grand thermodynamic
potential, i.e. to an unstable equilibrium. Note that in
the conventional theory of nucleation the critical nucleus
is supposed to bemechanically stable though it is unstable
with respect to the chemical (diffusion) equilibrium.5,6
Therefore, the existence of mechanically stable bridging
cavities is a prerequisite for a possible cavity nucleation
and growth in the gap between two hydrophobic surfaces.
As known,7 there are three basic necessary conditions

for the full thermodynamic equilibrium of a system: (i)
thermal equilibrium (no heat flow), (ii) mechanical equi-
librium (no convective flow), and (iii) chemical ordiffusion
equilibrium(nodiffusive transport of components). Below

we assume that thermal equilibrium is present. We will
focus our attention on the conditions for mechanical
equilibrium and stability. In particular, we investigate
under which conditions the Young equation corresponds
to a stable orunstable equilibrium. It turns out that these
conditions can be different depending on whether an
independent component is present or not present within
the fluid particle.
As mentioned in the abstract, we call an independent

component a component contained in the fluid particle
whose chemical potential is thermodynamically inde-
pendent from those of the components in the surrounding
medium. For example, it can be a component insoluble
in the surrounding medium. In the case when all
components within the fluid particle are soluble in the
medium, it is also possible to have independent compo-
nents if the system is out ofdiffusive equilibrium. Indeed,
if a slow process of diffusion across the phase boundary
is present, the transported component inside the fluid
particle can be treated as an independent component in
so far as its chemical potential is different from that in
thesurrounding fluidphase. Sinceusually themechanical
equilibrium is establishedmuch faster than the diffusive
one, we may investigate the equilibrium shape of the
attached fluidparticle irrespective of the lackof adiffusive
equilibrium.
For the sake of simplicity we will consider the attach-

mentof abubble ordroplet toa flatplate (negligiblegravity
effects; Figure 1). The same system is investigated in the
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Figure 1. Sketch of a fluid particle attached to a solid surface.
P1 and P2 are the pressures inside and outside the particle; r
and θ are its curvature radius and contact angle.
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article by Eriksson and Ljunggren1 (eqs 26-29). The
approach can be further extended to describe bridging
cavities.

2. Basic Equations
The variation of the grand thermodynamic potential of

the system reads

where ∆p ) P1 - P2 (Figure 1) is the capillary pressure,
γ andAl are the surface tension and the area of the liquid/
gas interface, As is the area of the solid/gas interface, ∆γ
) ω1 - ω2 is the difference between the surface densities
of the grand potential for the solid/fluid 1 and solid/fluid
2 interfaces, V is the volume of the attached particle of
fluid 1, andNi and µi denote the number of molecules and
the chemical potential of the i-th component (1 e i e k).
Let us denote

Then some geometrical considerations yield

where r is the curvature radius of the fluid interface.
Further we consider a process taking place at δµi ) 0 (i
) 1, ..., k). Then we substitute eqs 3 and 4 into eq 1 and
in the resulting expression set the coefficientsmultiplying
the independent variations, δr and δx, equal to zero to
derive

Finally, from eqs 5 and 6 one derives

In this waywe establish that both the Laplace andYoung
equations correspond to a local extremum of Ω, i.e. to the
equilibrium position of the attached fluid particle at the
solid substrate (Figure 1). Our purpose below is to
investigate under which conditions this equilibrium
position is stable (Ω is minimum) or unstable (Ω is
maximum).

3. Particle Attachment at Fixed Chemical
Potentials

Let us first imagine a processwhich takes place at fixed
chemical potentials of all components. Such a process
canhappen if all componentspresent in thebubble/droplet
are soluble in the surrounding outer liquid phase, and in
addition, the process should be slow enough for the
diffusion equilibrium between the inner and outer fluid
phases to bepermanently present. Because of theGibbs-
Duhem equation, one has ∆p ) ∆p(µ1, ..., µk), i.e. ∆p is
constant during an isothermal process at fixed chemical
potentials. The same is true for γ and ∆γ. For such a

process eq 1 can be explicitly integrated to yield

Note also that fixed∆p and γmeans fixed r because of the
Laplace equation: r ) 2γ/∆p.
When the fluid particle is a bubble of pure vapors of the

surrounding liquid, then r canbedeterminedas a solution
of the equation

stemming from the Gibbs-Thomson8 and Laplace equa-
tions; here p∞ is the equilibrium vapor pressure for r f
∞ (flat interface), pout is the pressure in the liquid phase
surrounding the particle; v1 is the volume permolecule in
the latter liquid phase, k is the Boltzmann constant, and
T is the temperature. Note that eq 10 has a solution for
r only if pout e p∞.
Following Eriksson and Ljunggren,1 we substitute eqs

3, 4, and 7 into eq 9 to derive

Equation 11 is visualized in Figure 2. Equation 12 shows
that the grand potentialΩ has two extrema: at x) 0 and
at x) ∆γ/γ. Moreover, (i) for∆γ/γ > 0,Ω has amaximum
at x ) 0 and a minimum at x ) ∆γ/γ; (ii) for ∆γ/γ < 0, Ω
has a minimum at x ) 0 and a maximum at x ) ∆γ/γ; (iii)
for ∆γ/γ ) 0, the two extrema merge into an inflection
point at x ) 0.
Next, we discuss the physical importance of these

extrema of Ω. In particular, we have to establish which
of the two extrema (that at x ) 0 or that at x ) ∆γ/γ), or
both of them, corresponds to the physical condition for
the mechanical equilibrium of the system. With this end

(8) Ono, S.; Kondo, S. In Handbuch der Physik; Flügge, S., Ed.;
Springer: Berlin, 1960; Vol. 10.
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Figure 2. Plot of Ω̃/πγr2 vs x for various values of ∆γ/γ for a
process of particle attachment at fixed chemical potentials, see
eq 11; A1, ..., A4 denote the points at which the Young equation
(eq 8) is satisfied.
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in view, we first bring eq 11 in the following alternative
form:

where sgn(x) denotes the sign of x. Then the condition for
the extremum of the grand potential can be expressed in
the form

Thereare two sufficient conditions for eq13 tobe satisfied:

and

On the other hand, there is only one mechanical degree
of freedomof a circular contact line on a solid surface: the
variation of the radius of the circumference. According
to the variational calculus, the number of the equations
derived by energy minimization is equal to the number
of the independent variations.9 Consequently, there can
be only one equation expressing the condition of mechan-
ical equilibrium at the contact line. Therefore, only one
of eqs 14 and 15 could express the condition for the
mechanical equilibrium. This is eq14,whichgives exactly
the Young equation, which expresses the condition for
the mechanical equilibrium, as can be rigorously proven
by means of variational calculus (see ref 9, eq 1.46).
The other sufficient condition, eq 15, simply expresses

the fact that at constant radius, r, the parameter y (and
the contact area, As ) πr2y) is maximum for x ) 0; this
is a geometrical relation rather than a condition for the
mechanical equilibrium.
Hence, in agreement with Eriksson and Ljunggren,1

we conclude the following:
For ∆γ/γ > 0 there is a stable position of the attached

particle determined by the Young equation, eq 8, with an
acute contact angle, 0 < θ < 90°, cf. Figure 1.
For ∆γ/γ e 0 there is no stable position of the attached

particle corresponding to the mechanical equilibrium in
so far as the Young equation, eq 14, does not correspond
toaminimumof thegrandpotentialΩ. This isanontrivial
conclusion. Indeed, all configurations of attached fluid
particleswith obtuse contact angles cannot be stable.Note
that this conclusion holds only for fluid particles which
do not contain an independent component.

4. Attachment of a Particle Containing an
Independent Component

Second, let us imagine another process with a bubble/
droplet containing (at least) one component which is
insoluble in the outer fluid. For example, this can be an
oil droplet or anucleus of a bubblewhich is out of diffusion
equilibriumwith the surrounding liquid. Such a nucleus
can grow or diminish due to the diffusion of gas (different
from the liquid vapors) dissolved in the liquid. Such a
“nonequilibrium” bubble is a typical object of the theory

of nucleation. Of course, we suppose that mechanical
equilibriumispresentbutdiffusion (chemical) equilibrium
is absent. According toGibbs,10 in theabsence of chemical
equilibrium the gas inside a bubble and the gas dissolved
in the surrounding liquid can be treated as two different
components. Let the gas inside the bubble be component
1. Wewill call component 1 the “independent” component
because its chemical potential is independent from the
chemical potentials in the outer phase. Instead of eq 1
we will use the expression

where Ω̃ ) Ω + µ1N1. The integration of eq 16 for δN1 )
0 and δµi ) 0 (2 e i e k) leads to

In contrast to the previous case, now ∆p varies along the
process and the first term in the parentheses cannot be
directly integrated to yield -∆pV.
4.1. Case of the Liquid Droplet. To simplify the

treatment, we assume a process at constant V, γ, and ∆γ
(the condition δV ) 0 is appropriate for a liquid drop).
Then eq 17 can be integrated to yield

Substituting eq 4 into eq 18, one obtains

Since δV ) 0 (i.e. V ) constant), x and r are not inde-
pendent parameters. By using eq 3, we eliminate r from
eq 19:

where r0 is the radius of thenondeformedspherical droplet
of the same volume V. The differentiation of eq 20 along
with eq 3 yields

One sees that the Young equation, γx - ∆γ ) 0,
corresponds to the extremum of Ω̃. Moreover, one easily
derives

that is, the extremum is minimum. In other words, the
Young equation corresponds to a stable equilibrium for
every value of the contact angle (-1 < x < 1) in the case
of liquid droplets. Equation 20 is visualized in Figure 3
for the same values of ∆γ/γ as in Figure 2. One sees that
for all curves with -1 < ∆γ/γ < 1 there is a minimum
determinedby theYoung equation (eq 8). Thedivergence
of Ω̃ at xf -1 is due to the fact that for xf -1 the droplet
is flattened against the wall at constant volume and
consequently its surface energy becomes infinite. Note
also that for∆γ/γ f 1 theminimum is rather shallow and
corresponds to a weak attachment.

(9) Finn, R. Equilibrium Capillary Surfaces; Springer Verlag: New
York, 1986.

(10) Gibbs, J. W. The Scientific Papers of J. W. Gibbs; Dover: New
York, 1961; Vol. 1.
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4.2. Case of the Gas Bubble. We assume that we
knowthe thermal equationof state of thegas in thebubble:

Equations 3, 7, and 23 imply that there is only one
independent variation on the right-hand side of eq 17. Let
us choose the independent variable to be x. Then r ) r(x)
and

In view of eqs 5-7 one can derive

The combination of eqs 24-26 yields

see eq 4. One sees that the Young equation (eq 8) is again
a condition for equilibrium, i.e. extremal Ω̃. To check
whether theequilibriumis stable orunstable,we calculate
the derivative

From eq 4 one obtains

If dr/dx were zero, eq 28 would reduce to the result of
Eriksson and Ljunggren.1 However, in the present case
dr/dx * 0; our aim below is to estimate this derivative.

For an ideal gas one can write

where p is the pressure inside the bubble and N1 and N2
are the numbers of molecules of the gas and the liquid
vapor, respectively. Note that we consider the caseN1 )
constant, that is that the mechanical equilibrium is
established much faster than the diffusion equilibrium
with respect to component 1. On the other hand, N2 )
N2(V), but fortunately, N2/N1 , 1 at temperatures lower
enough than the boiling temperature of the liquid. Thus
for the saturated vapors of water in air one has

For the smallest bubble radii, r < 10 nm, the equilibrium
vapor pressure is even lower because of the curvature
effect, as predicted by the Gibbs-Thomson equation.8
Therefore we can neglect N2 in eq 30 to derive

Further, with the help of eqs 7 and 31 we obtain

On the other hand, from eq 3 one derives

Combining eqs 32 and 33, we get

where

Note that q is a quantity of bounded variation:

The lower limit, q ) 1, corresponds to r f 0, cf. eq 30; the
upper limit, q ) 3/2, corresponds to pout f ∞ at finite r.
The substitution of eq 34 into eq 29 yields

At the last step we exchanged q with its upper limit, 3/2.
Finally, combining eqs 37 and 28, we obtain

that is, theYoungequationagain corresponds to the stable
equilibrium. It is curious to note that eq 38 is very similar
to eq22despite thequitedifferentwaysof theirderivation.

5. Concluding Remarks
In summary, the Young equation always expresses a

necessary condition for the mechanical equilibrium of a
fluidparticle attached to a solid surface. This equilibrium

Figure 3. Plot of Ω̃/πγr02 vs x for various values of ∆γ/γ for a
process of attachment of a liquid droplet, see eq 20; A1, ..., A4
denote thepointsatwhich theYoungequation (eq8) is satisfied.
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is stablealwayswhenan independent component ispresent
within the fluid particle. If the independent component
is absent, the Young equation corresponds to a stable or
unstable equilibrium depending on whether the contact
angle θ is acute (∆γ/γ > 0) or obtuse (∆γ/γ < 0).
The latter conclusions, applied to the nucleation of

bubbles at a solid surface, imply the following. A nucleus
(except the critical one) is always out of diffusive equi-
librium with the surrounding phase. Then the gas in a
bubble nucleus can be treated as an independent com-
ponent, as was discussed in the Introduction. Conse-
quently, we may draw the curious conclusion that the
configuration of such an attached bubble nucleus is
mechanically stable (see eq 38), due to the fact that the
nucleus is out of diffusive equilibrium.
The role of the hydrophobic surface can be (at least) to

decrease the work of nucleation (formation of the critical
nucleus): as shown in ref 5

where whom and whet are the works of homogeneous and
heterogeneous nucleation and f(θ) is a factor accounting

for the shape of the attached fluid particle (Figure 1).
Note that f(θ) monotonically decreases with the increase
of θ (i.e. with the increase of the solid surface hydropho-
bicity in the case of bubbles).
Finally we note that the existence of a negative line

tension (neglected in theabove considerations) in all cases
leads to the appearance of a local minimum in the Ω vs
x curves (corresponding to a stable attachment) in close
vicinity to the point x ) 1. Variational derivation of the
Young equation with line tension can be found in ref 11;
see also ref 12.
At a subsequent step this analysis can be extended to

bridging cavities.
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whet ) whomf(θ); f(θ) ) 1
4
(1 + cos ϑ)2(2 - cos θ) (39)
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