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The lateral capillary interaction between two particles immersed in a spherical thin 
liquid film is investigated. The interfacial shape, the lateral capillary force and the 
interparticle interaction energy are calculated by using the numerical solution of the 
linearized Laplace equation of capillarity. Orthogonal bipolar coordinates on a sphere 
(inducing biconical coordinates in space) are introduced as a helpful instrument for 
solving this problem and other problems of similar geometry. We consider two types 
of boundary conditions at the particle surfaces: fixed contact angle and fixed contact 
line. We established that for particles of fixed contact angle the capillary interaction 
energy depends monotonically on the interparticle distance whereas for particles of 
fixed contact line the interaction energy exhibits a maximum. The numerical results 
show that in both cases the capillary interaction is much larger than the thermal energy 
kT and can induce aggregation and ordering of submicrometre particles. These 
theoretical findings can be important for understanding the properties of Pickering 
emulsions (stabilized by particles) and liposomes or biomembranes containing 
incorporated membrane proteins. 

1. Introduction 
The lateral capillary interaction between particles attached to a liquid-fluid interface 

is due to the overlap of the menisci formed around each of the particles. In the case of 
floating particles of diameters greater than about 10 pm the interaction occurs because 
the gravitational potential energy of the particles decreases when they approach each 
other (Nicolson 1949; Chan, Henry &White 1981; Paunov et al. 1993). This force is 
proportional to R6 (R is the particle radius), so it decreases fast with particle size and 
becomes negligible for R < 10 pm. It was recently established that the situation is quite 
different when the particles, instead of being freely floating, are partially immersed in 
a liquid layer (Kralchevsky et al. 1992, 1993; Kralchevsky & Nagayama 1994). In this 
case the energy of lateral capillary attraction is proportional to R2 and turns out to be 
much larger than the thermal energy kT even with particles of diameter about 10 nm. 
This effect is related to the particle three-phase contact angle, i.e. to the intermolecular 
forces, rather than to gravity. The physical importance of these ‘immersion’-type 
lateral capillary forces is that they bring about the formation of two-dimensional 
arrays (2D-crystals) from both micrometre-size colloidal particles (Denkov et al. 1992, 
1993) and submicrometre particles, including protein globules (Yoshimura et al. 1990; 
Nagayama 1994). It is worthwhile noting that these forces can be directly measured 
(Camoin et al. 1987; Velev et al. 1993). 
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FIGURE 1. Sketch of three possible configurations of particles protruding from a spherical liquid film: 
(a) two particles immersed in a thin liquid film on a solid spherical substrate; (b) two particles 
included in a vesicle; (c) two membrane proteins incorporated into a lipid bilayer. 

The available theoretical studies of lateral immersion forces are restricted to particles 
confined in planar liquid layers. The present article is devoted to the calculation of such 
forces for the case of spherical liquid layers. The spherical geometry implies some 
specific conditions not present in planar films. For example, the volume of the liquid 
layer is finite. In addition, the capillary force between two diametrically opposed 
particles is always zero irrespective of the range of the capillary interaction determined 
by the capillary length, q-l, see equation (2.10) below. 

Examples of systems containing spherial layers are shown in figure 1. A solid particle 
(substrate) covered with a liquid film between the substrate and the outer fluid phase 
is sketched in figure 1 (a ) ;  such configurations can appear in some suspensions. Smaller 
particles incorporated in the liquid layer interact through the perturbations in the 
shape of the liquid-fluid interface caused by them. 

Figure 1 (b) shows a similar system, but with two liquid interfaces : the spherical film 
is between an emulsion droplet and the outer fluid phase. In this case the particles 
immersed in the film deform both fluid interfaces. 

A spherical lipid bilayer (vesicle) containing incorporated membrane proteins is 
depicted in figure 1 (c) .  The difference in the thickness of the hydrophobic zones of the 
protein and the bilayer gives rise to interfacial deformations and protein-protein 
interaction (Israelachvili 1977). The peculiarity of this system is that the hydrocarbon 
core of the lipid bilayer exhibits some elastic behaviour and cannot be treated as a 
simple fluid (Petrov & Bivas 1984). 

In summary, we deal with relatively small particles contained in a liquid phase; 
hence, we can assume that the effect of gravity on the interfacial shape is negligible. At 
these conditions the (non-disturbed) spherical liquid film may have stable uniform 
thickness only due to the action of some repulsive surface forces inside the film 
(Derjaguin, Churaev & Muller 1987; Israelachvili 1992). For this reason we will 
consider only thin liquid films below, i.e. films in which the effect of the surface forces 
(the disjoining pressure) is not negligible. 

As mentioned above, the aim of the present study is to calculate the lateral capillary 
force between two particles which are partially immersed in a spherical film. To solve 
this problem we first need to find the shapes of the fluid interfaces, which depend on 
the boundary conditions at the particle three-phase contact lines. We will consider two 
types of boundary conditions at the particle surface: (i) fixed contact angle, and (ii) 
fixed contact line. Case (i) corresponds to equilibrium wetting; for example, if the 
particle is well wettable by the liquid of the film, the contact angle will be zero 
irrespective of the position of the contact line. Case (ii) occurs when the contact line 
is attached to some edge or to the boundary between hydrophobic and hydrophilic 
zones on the particle surface, see e.g. figure 1 (c). 
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A variety of systems and configurations is possible; in the present study we restrict 
our considerations to the simpler case depicted in figure 1 (a), where there is only one 
deformable interface and the two particles are identical. We believe the methodology 
developed in the present article can be further extended to more complicated systems, 
like those depicted in figure 1 (b) (two deformable interfaces) or 1 (c)  (film with elastic 
behaviour). 

The paper is structured as follows. In $2 we formulate the mathematical problem and 
calculate the interfacial shape by numerical integration of Laplace equation of 
capillarity. In $ 3  we determine the force and energy of capillary interaction as functions 
of interparticle separation by integrating the stresses exerted on the particle surfaces. 
The numerical results are presented and discussed in $4. 

Note that here we solve the hydrostatic problem, i.e. we suppose that the two 
interacting particles are kept fixed at a given distance apart by some external force. Of 
course, if the external force is removed, the two particles will move towards each other 
under the combined action of capillary attraction and viscous friction. The solution of 
the hydrostatic problem considered below is a prerequisite for the solution of the more 
sophisticated dynamic problem. 

To calculate the meniscus shape and the lateral capillary forces in the case of a planar 
film it is convenient to use bipolar coordinates in the plane (Kralchevsky et al. 1992). 
Analogously, in the case of a spherical film it is convenient to utilize orthogonal bipolar 
coordinates on a sphere, which induce biconical coordinates in space (see the 
Appendix). We believe this system of curvilinear coordinates introduced by us is of 
independent interest as it can be applied to the solution of various problems of 
hydrodynamics, the theory of elasticity and capillarity. In the Appendix we derive the 
respective expressions for the metric tensor, Christoffel symbols, rate-of-strain tensor 
and Navier-Stokes equation in terms of these coordinates. 

The method for calculating the lateral capillary forces developed below as well as the 
curvilinear coordinates introduced may be applied to any physical problem dealing 
with particles attached to a spherical fluid interface or thin liquid film. Such problems 
can appear in the theory of Pickering emulsions, which are stabilized by the adsorption 
of small particles onto the surface of emulsion droplets (Levine & Bowen 1991), cf. 
figure l (b ) .  Another field of application is the hydrodynamics of ‘froth flotation’, 
studying hydrophobic particle attachment to rising air bubbles (Dukhin, Ruliov & 
Dimitrov 1986). Similarly, the spherical bipolar coordinates can be useful for the 
calculation of the hydrodynamic interaction between membrane proteins incorporated 
in spherical lipid bilayers (vesicles, figure lc) or biomembranes (cf. Bussel, Koch & 
Hammer 1992). 

2. Calculation of the interfacial shape 
2.1. Description of the system 

Let us consider a spherical solid substrate of radius R, covered with a liquid film (F) 
between the substrate (I) and the outer fluid phase (11), figure 2. The wetting film (F) 
is spherical in the absence of incorporated particles because of the existence of 
repulsion (disjoining pressure) between the two film surfaces (Derjaguin et al. 1987; 
Israelachvili 1992). 

The presence of particles which are partially immersed in the film (figure 2) leads to 
a deviation of the outer film surface from sphericity. Below we restrict our 
considerations to film thicknesses and particle sizes much smaller than R,. An auxiliary 
system is depicted in figure 2(a), in which the two particles have a very special shape: 
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FIGURE 2. (a) Sketch of two ‘cork-shaped’ particles and (b) two spherical particles of radius R, 
protruding from a liquid layer on a solid spherical substrate of radius R,. r ,  is the radius of the three- 
phase contact line, the angles Oa and 8, characterize the particle positions and sizes, h, is the elevation 
of the contact line above the level of the reference sphere of radius R,. Note that in both (a)  and (h) 
$? is defined as the angle between the normal to the segment ON and the tangent to the meniscus. 

part of a slender cone with vertex in the substrate centre. For brevity such particles are 
called below ‘cork-shaped particles’. It will be demonstrated below that the 
consideration of this system is useful for the subsequent treatment of the more realistic 
system with two spherical particles depicted in figure 2(b). Correspondingly, the 
further considerations based on ‘ cork-shaped’ particles are extended to spherical 
particles in $4 below. In addition, it should be mentioned that the shape of some 
membrane proteins can be represented approximately by truncated cones (Israelachvili 
1 992). 

The deviation of the outer film surface from sphericity is caused by the capillary rise 
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of the liquid along the particle surface in order for an equilibrium contact angle, a, to 
be formed. For given values of the radii of the substrate and particles, and for a fixed 
volume of the film, there is one special value, a,, of the contact angle (figure 26), which 
corresponds to a spherical interface between the film and phase I1 (a, = 7c/2 for the 
configuration in figure 2a). We denote the radius of this sphere by R, and will call it 
the reference sphere. It is shown dashed in figure 2. For a c a. the film will be deformed 
as shown in figure 2. In this case the radial (normal) resultant of the capillary forces 
will press the particles against the substrate. (If a > a, the capillary forces will tend to 
detach the particle from the substrate; this case is not considered in the present study.) 

The radial coordinate, r ,  of a point on the deformed film surface can be represented 
in the form 

(2.1) 
where 8 and q5 are the polar and azimuthal angles in spherical coordinates. We assume 
small deformation : 

l5/4?l -+ 1 and IVr,5I2 < 1, (2.2) 
where V,, denotes surface gradient operator on the reference sphere. At static 
conditions 5 obeys the Laplace equation of capillarity (see Landau & Lifshitz 1984; 
Kralchevsky & Ivanov 1990), which can be linearized in view of (2.2): 

y = R, + a& $1 

Here PI, is the pressure in the outer fluid (ZZ), PR is the reference pressure in the thin 
liquid film (for a definition of PR see (2.18) below), I7 is the disjoining pressure, and y 
is the interfacial tension of the boundary film/phase 11. Both II and y depend on the 
film thickness 

h = h,+L, h, = Ro-R, = const. (2.4) 

2.2. Disjoining pressure and film surface tension 
In view of (2.2) one can use the relation between y and Zl for a plane-parallel film 
(Ivanov & Toshev 1975) 

where ym is the surface tension of the bulk liquid phase (infinitely thick film) and the 
integral term expresses the work (per unit area) performed by the surface forces to 
bring the two film surfaces from infinity to a finite distance h. Then if 5 < ho one can 
use the expansions 

IT= n,+17'<+ ..., (2.6) 
(2.7) y = yo -no [ - g i y Z + .  . . , 

where 

By substituting (2.6) and (2.7) in (2.3) and keeping the linear terms one obtains 

V;, 5- q2C; = 2AH, 5 Ro, (2.9) 

where 

and 
1 1 1 1  - A H  = --- - = -((PR+IZ,,-PII). 

R, R' R 2y, 

(2.10) 

(2.1 1) 
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The derivative of disjoining pressure is negative, IT < 0, for a stable film (Derjaguin 
et al. 1987). Moreover, we assume that 117’1 is large enough to have q2 > 0; 4-l has the 
meaning of capillary length, which determines the range of the lateral capillary forces. 
For R, --f 00 (2.10) reduces to the respective expression for a planar thin liquid film in 
the absence of gravity (cf. Kralchevsky et al. 1992). 

AH in (2.1 1) represents the change in the mean curvature of the film surface due to 
the deformation created by the two particles immersed in the film. R can be interpreted 
as the outer radius of an imaginary spherical layer of thickness h,, whose internal 
pressure is equal to the pressure inside the perturbed film. 

2.3. Interfacial deformation and ‘ capillary charge ’ 
To estimate AH we will make use of the fact that the volume of the liquid film does not 
change in the investigated range of capillary pressures, i.e. liquid can be regarded as 
incompressible. The volume 

(2.12) 

is to be equal to zero (the integration is over the region So representing the radial 
projection of the deformed interface on the reference sphere). V, = 0 is a rigorous 
equation for the configuration in figure 2(a) and an approximated expression for the 
configuration in figure 2(b); in the latter case the approximation consists in neglecting 
some volumes shown shaded in figure 2 (b), which are small enough when R, < R,. By 
means of (2.2), (2.9) and (2.12) one obtains 

0 = V, x [ ds{ = q-2 [ ds(V;,[-2AH). (2.13) 
J SQ J SQ 

Using the Green-Gauss-Ostrogradsky theorem (Weatherburn 1939 ; Brand 1947 ; 
McConnell 1957) one obtains 

(2.14) 

where C, (k = 1,2) are orthogonal projections of the two contact lines onto the 
reference sphere of radius R,; dl is linear element, v is a unit normal to C, which is 
simultaneously tangential to the reference sphere; note that v is directed toward the 
interior of the region encircled by C,, k = 1,2. Then 

dlv. V,, 6 = 2nrO tan y?c, r ,  = R, sin O,, (2.15) 

where tan drc is the average meniscus slope at the contact line and r, is the radius of the 
radial projection of the contact line on the reference sphere. (For the configuration in 
figure 2 (a)  9, = n/2 - a = const. and one can directly write v.  V,, 5 = tan 1c.,.) 

k* 

From (2.2) and (2.13H2.15) we derive 

(2.16) 

where 

is called the ‘capillary charge’ 
deformation created by each 

Q 3 r ,  sin ec z ro tan 9, (2.17) 

(Paunov et al. 1993) since it characterizes the interfacial 
of the particles and the resulting capillary interaction 
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between them. (In particular, for planar geometry the lateral capillary force between 
two particles of capillary charges Q, and Q ,  obeys asymptotically a two-dimensional 
analogue of Coulomb’s law: 1; = - 2 q Q  Q,/L with L being the interparticle distance; 
the term ‘capillary charge’ originates from this analogy with electrostatics.) A 
comparison between (2.16) and (2.1 1) yields an expression determining the reference 
pressure inside the film : 

PR = PII-nn+---. 27, YoQ (2.18) 

Equations (2.17) and (2.18) show that both Q and PR depend on the boundary 
condition at the particle three-phase contact lines. 

2.4. Curvilinear coordinates and boundary conditions 

Ro R: 

t = (c+ +-zAe>/R ,  
V X  = q25. 

By introducing the variable 
(2.9) obtains in the form (2.19) 

(2.20) 
The geometry of the system implies the introduction of bipolar coordinates (7, c) on 

the reference sphere. These orthogonal curvilinear coordinates are described in detail 
in the Appendix. The geometrical parameters R,, 8, and 8, (figure 2) are assumed 
known. By means of (A 7) in the Appendix and some geometrical considerations one 
determines the parameter h of the bipolar coordinates: 

(2.21) 

Note that 1 < h < G O ;  in particular h = 1 when the two particles in figure 2(a) touch 
each other, while h = co when the particles are diametrically opposed. 

The contours C, and C, (representing the lines of intersection of the cork-shaped 
particles with the reference sphere) correspond to r = k 7, = const. ; the corresponding 
value of parameter 6 (see the Appendix) we denote by &. Some geometrical 
considerations yield tC = cot8,; then by using (2.21) and (A 14) one determines 

). (2.22) 
(cos2 BC - cos2 8,)1’2 

sin 0, 
7, = arctanh [ (A2- 1)1/2cot S,] = arctanh 

In terms of the spherical bipolar coordinates (2.20) takes the form 

( A C O S ~ ~ - C O S C T ) ~  = (qR,)2(h2- l ) [ ( e , ~ ) ,  (2.23) 

cf. (A 29) and (A 31) in the Appendix. Let us first consider the configuration depicted 
in figure 2(a). In the case ofjixed contact angle the boundary conditions at the contours 
C, and C, read 

v.V,, 5 = ( - l ) k  tan $, at contour C, (k  = 1,2), (2.24) 
where v has the same meaning as in (2.15). By using (A 28) and (A 29) one transforms 
the boundary condition (2.24) to read 

sin $c(h2 - l)ljZ 
( A  cosh 7, - cos g) 

(fixed contact angle), (2.25) 

k = 1,2. As mentioned earlier, an alternative boundary condition ofjixed contact line, 
t; = h, = const., can be used. In this case by means of (2.15)-(2.17), (2.19) and (A 23) 
we obtain 

(2.26) 
- = “+--rdcrgl h 1 (fixed contact line), 

C I T = T c  R, q 2 R ;  r=rc 
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FIGURE 3. (a) Bipolar coordinate lines on the unit sphere. The lines 7 = const. (6 = const.) are 
counterparts of the parallels, whereas the lines v = const. (7 = const.) connect the two poles and in 
this respect resemble meridians. (b) The integration domain on the reference sphere reduces to a 
rectangle in bipolar coordinates on a sphere. 

k = 1,2. The latter boundary condition is applicable for both configurations depicted 
in figure 2. 

2.5. Calculation procedure and results 
The input dimensionless parameters characterizing the liquid film are ho/R, and qR,. 
The input parameters characterizing the particles are 8,, 8, and h,/& (or a) when the 
contact line (or the contact angle) on the particle is fixed. Then one calculates h and 
7, by means of (2.2 1) and (2.22). The distance between the two particles is characterized 
by the length of the (shortest) arc in the reference sphere connecting the axes of the two 
particles: L = 28, R,. In the numerical calculations we use the dimensionless length 

(2.27) 

As we use bipolar coordinates on the reference sphere the domain of integration of 
(2.23) represents a rectangle in the (g,  plane (see figure 3 a, b), which is bounded by 
the lines = kn and 7 = +7c. Because of the symmetry we consider only a quarter of 

Z = L/(zR,)  = 2 8 , / ~ ;  28,/1~ < L" ,< 1. 
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FIGURE 4. Plot of the calculated meniscus surface around two particles of fixed contact angle, +, = 
20", 0, = 5" and qR, = 3. The dimensionless coordinates are X = x/R, ,  Y = y /R, ,  Z = z/&. (a) 
Particles at a relatively small separation: 8, = 15"; (b) particles at an intermediate distance: Oa = 35", 
and (c) two diametrically opposed particles, 0, = 90". 

this area corresponding to 0 d v < x and 0 d 7 < T ~ ;  the respective boundary 
conditions implied by the symmetry are 

and 

(2.28) 

(2.29) 

The latter condition holds only when the two particles are similar. The rectangular 
shape of the integration domain considerably simplifies and accelerates the numerical 
solution of the problem. We used the classical finite difference scheme of second order 
for discretization of the boundary problem. In this way for each node of the integration 
network we obtained one linear algebraic equation. The resulting set of equations was 
solved by means of the Gauss-Seidel iterative method (Korn & Korn 1968; 
Constantinides 1987) combined with successive over-relaxation (SOR) and the 
Chebyshev acceleration technique (Hockney & Easwood 198 1). 

First we will consider the case of fixed contact angle. For this case the calculated 
meniscus shape c(v,7) around the two cork-shaped particles is depicted in figure 
4(a-c). Figure 4(a)  shows a case of close approach 8, = 1 5 O ,  figure 4(b) illustrates the 



114 

0.010 

0.00s 

h, 0.006 

Ro 0.004 

P .  A .  Kralchevsky, V .  N .  Paunov and K .  Nagayama 

' < \"""=i 
-. 

\ ....... 
........... ............................. \. - - _ _ _ _ - _ _ _ _ _ _ _ _ _  ....... 

' 

0.0°2 I 
I I 

0 0.25 0.50 0.75 1 .oo 
2 

...................................... 
h C  

0.0050 

0 0.25 0.50 0.75 1 .00 
0.0025 

t 
FIGURE 5. The dimensio_nless average capillary elevation, h,/R,, as a function of the dimensionless 
interparticle distance, L. (a) qR, is varied at 8, = 2" and $c = 3"; (b) 0, is varied at qR, = 5 and 
$hC = 5". 

case of an intermediate separation, 8, = 35", whereas figure 4(c) presents the limiting 
case of diametrically opposed particles, 8, = 90". For 8, = 15" and 8, = 35" the 
meniscus intersects the reference sphere in the 'southern' hemisphere (not shown in 
figure 4a, b), where c(:(a,~) changes from positive to negative. The reason is the 
condition for constant volume of the liquid layer, cf. (2.13). 

In figures 5 (a) and 5 (b) the average capillary elevation 

(2.30) 

of the liquid at the contact line C, (figure 2) is plotted against the dimensionless 
interparticle separation, 2. 

The three curves in figure 5(a) correspond to different values of qR,. The values of 
the other parameters (being the same for the three curves) are 8, = 2" and @, = 3". One 
sees that h, 4 0 even for diametrically opposed particles, 2 = 1 ; this is due to the fact 
that the contact line is elevated even for a single particle because of the capillary rise. 
When the distance between the two particles decreases, the elevation h, increases 
because of the overlap of the two menisci. As q-l characterizes the dimension of such 
a meniscus, at fixed the overlap is greater (and, consequently, h, is larger) when 
4-l is greater, i.e. qR, is smaller, see figure 5(a). 

Figure 5(b) represents h,/R, vs. L" for three different values of 8, and a fixed value 
of the particle slope angle, II., = 5". The radius R, is also fixed, but the radius of the 

&g, re) d a  - sin $,sin ee 
7c sin - 1)1'2 Be s , h cosh 7, - cos v q2Ri 

- - 



Lateral capillary interaction between particles 115 

1.5 

1 .o 

0.5 

0 

I \  I 

e 
FIGURE 6 ,  Plot of the contact line inclination angle, qc, against the dimensionless interparticle 
distance, L, for three different values of the angle 0,. The other parameters are the same as in figure 
5 (b) .  

contact line, r, = Rosin8,, increases with the increase of Bc. In contrast with the 
parameter qR, (see figure 5a), the influence of the angle 0, (i.e. of ro/Ro) on the capillary 
elevation, h,, is seen mainly in different values of the level, h,, of the contact line at 

= 1. The behaviour of h,  is qualitatively similar to that of the elevation on a thin 
needle (fibre), see e.g. Kralchevsky et al. (1992); in the latter case h,  GC rosin y?,, i.e. the 
elevation is greater for a needle of greater radius, r,, and higher wettability (greater $,). 
In principle, the volume of liquid displaced by a particle also increases with the increase 
of r,, but this effect is of a higher order (cc ri/R:) and does not affect significantly the 
value of h,, as far as small particles are concerned, cf. (2.16). 

When the contact angle at the particle surfaces is fixed but the contact line is mobile 
the shape of the latter 

C c ( 4  = !x7,? 4 (2.3 1) 

depends on (r, i.e. the contact line is not parallel to the reference sphere. The inclination 
of the contact line can be characterized by the angle qc, defined as follows: 

(2.32) 

where r,  = (R,  + h,) sin 8,. Note that the angle, q,, is zero in the cases of a single particle 
or two diametrically opposed particles. However, in the general case of two particles 
for L" < 1 the angle q, is not zero (see figure 7 below). The dependence of the inclination 
angle on the interparticle distance, L, is illustrated in figure 6 for three different values 
of the angle, Bc (i.e. ro/R,) and fixed value of the particle contact angle (kc = 5"). Note 
that qc is a relatively small quantity even for short separations i. In spite of that, this 
small inclination is the reason for the appearance of strong lateral capillary interaction 
between the particles in the spherical liquid layer - see below. 

When the boundary condition at the particle surface corresponds to fixed contact 
line, (2.26), the problem can be simplified considerably if one seeks a solution in the 
form 

c(cr,7) = A f ( c r , ~ ) ,  A = const., (2.33) 

where the constant A is determined as explained below. The functionflcr, 7)  obviously 
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satisfies equation (2.20) and the boundary conditions (2.28) and (2.29) with finstead 
of c. Then we impose the requirement 

and from the boundary condition (2.26) we derive 

(2.34) 

(2.35) 

Thus, we first solve the boundary problem forfla, T) ,  then we calculate A from (2.35) 
and finally we get [(a,~) from (2.33). 

3. Lateral capillary forces 
3.1. Contributions due to surface tension and capillary pressure 

Let us consider one of the two particles, say the right-hand particle depicted in figure 
2. The capillary force exerted on the particle can be obtained by integrating the 
interfacial tension along the contact line, C, and the pressure throughout the particle 
surface, S (Kralchevsky et al. 1993): 

where p is pressure, n is the outer unit normal to the particle surface and M is the unit 
vector in the direction of the surface tension y ;  m is simultaneously perpendicular to 
the contact line and tangential to the liquid interface. 

As in our case (figure 2)  the particles are pressed against a solid substrate by the 
capillary forces, the resultant of Falong the normal to the substrate is counterbalanced 
by the bearing reaction. Our aim below is to calculate the tangential component of F. 

Let e, be the unit vector of the particle axis (figure 2a). We denote by e, a unit vector 
in the plane (x,z), which is normal to e, and tangential to the reference sphere. Then 
in view of the symmetry of the system our task is reduced to the calculation of the 
projections 

Below we calculate 4 for the cases of fixed contact line and contact angle separately. 

3.2. Bouvldary condition of fixed contact line 

4 = e, . F, F ~ Y )  = e, . F(y), Fjp) = e, . F(").  (3.3) 

In this case 

Then the symmetry of the system implies Fjp)  = 0. However, F i y )  is not zero because 
the meniscus slope 

5 = h, = const. (at the contact line). (3.4) 

tan@ = -- 
xar a < /  T=Tc 

(3.5) 

(,y is defined in (A 29)) varies along the contact line. Let us denote by e,, eT and e, the 
unit vectors of the local basis induced by the biconical coordinates ( r ,  7, a), see figure 
3(a)  and the Appendix. For the points on the contact line one can write (figure 20)  

m = -ee,cos@-e,sin@. (3.6) 
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As the contact line is a circumference, it is convenient to introduce polar coordinates 
( p ,  $) in a plane perpendicular to the particle axis. Let ep and eq be the respective unit 
vectors. Then for the points on the contact line one has 

e, = - e,, cos 8, + e, sin Be, e, = ep sin 8, + e, cos Oc. (3.7) 

(3.8) 

In addition, e,-e, = C O S ~  and e,.e, = 0. From (3.6) and (3.7) one derives 

e, . m = (cos 8, cos $ - sin 8, sin $) cos $. 

Since we work with small deformations, see (2.2), we can write approximately 

cf. (3.5). From (3.2), (3.3), (3.8) and (3.9) one obtains 

I j l =  -y,~,[d$cos$[?(~) 1 a p  
(3.10) 

where rc = (R, + 12,) sin 8, is the radius of the contact line and terms of higher order are 
neglected. 

By solving (2.23) we determine 5 as a function of the bipolar coordinates (7,cr). 

Therefore it is convenient to use for parametrization of the contact line, instead of 
the azimuthal angle q5. Some geometrical considerations yield 

tan4 = 7; Y x’ = xcosO,-zsinO,. (3.11) 
X 

Then from (2.22), (3.1 1) and (A 21) we derive 

d$ - (A2 COSh2 7, - 1)1’2 
d c  

- - 
h C O S ~  7, - cos v 

(3.12) 

(3.13) 

Finally, by using (2.19), (3.1), (3.3), (3.10), (3.12), (3.13), (A 19) and (A 29) one can 
derive 

2 sin 8, F = L - -  ‘ - 1 dc(h cosh 7, cos c - 1) 
- Yo& 

(3.14) 

3.3. Boundary condition of $xed contact angle 
The main difference with the previous subsection is that the contact line does not lie 
in a plane perpendicular to the particle axis. (In general, the inclination of the contact 
line increases when the interparticle distance decreases, see figure 6 above as well as the 
work by Velev et al. 1993.) Consequently, Pi”) is no longer zero and the interfacial 
tension varies along the contact line in accordance with (2.7). (Note that in the case of 
fixed contact line, 5 and y are constant along the contact line.) From (2.7), (3.2) and 
(3.3) one obtains 

Fly) = fc dZ(e, - rn) (yo - n,, C, + . . .), (3.15) 
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FIGURE 7. Sketch of the three-phase contact line of the right-hand-side cork-shaped particle (figure 
2 4 .  a is contact angle, n and b are the normal and binormal to the contact line, m is the running unit 
tangent to the meniscus surface and t is the tangent to the contact line. 

where Q is defined by (2.31). Let t be the running unit tangent to the contact line and, 
as usual, n be the outer unit normal to the particle surface (figure 7). Then 

m = bsin$,+ncosII.,, b = t x n ,  (3.16) 

where $, = ~ / 2  - CL and b it the unit binormal (figure 7). The unit vectors e,, ey and e, 
form an orthogonal basis. One can derive 

n = e, cos 8, cos q5 + ey cos 8, sin q5 - e, sin 8,. (3.17) 
Also 

(3.18) 

where 

t: = (R, + Q z  sin2 8, + - , e, = e, sin 8, cos q5 + eT/ sin 8, sin $ + e, cos Be. (:y 
(3.19) 

By using (3.17)-(3.19) one obtains 

sin2 8, sin @, + cos 8, cos $, cos $. 1 e, .m = --[- d((R(sinq5) . 
d'ccos2 8, sin @ + 

d$ t ,  dq5 

Then (3.15) can be transformed to read 

FP) = - 2y, cos Bc(cos 8, sin $, + sin 8,) 

+&cos 8, 1 dq5 ($1 cos q5 - 2Z7,, ro cos 8, dq5 5, cos $, (3.2 
r0 

where higher-order terms have been neglected. 
Next we consider Fip) .  On substituting (Kralchevsky & Nagayama 1994) 

(3.2 
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in (3.2), by means of (3.3), (3.18) and (3.21) we obtain 

Fip)  = -cos Oc sin 8,[: dq5 cos q5 (. 6”’” r dr + PI, s’ r dr), (3.22) 
RO+& 

where rl and r2 satisfy the relationship rl < Q(q5) < r2 for any q5; the exact choice of rl 
and r2 is not important because Fip)  does not depend on them. Indeed, after some 
transformations and neglecting higher-order terms, (2.18) and (3.22) lead to 

Flp)  = 2(n0 - 2y0/R0) ro cos 8, dq5 ~ , C O S  q5. 1 (3.23) 

The combination of (3.20) and (3.23), in keeping with (3.1) and (3.3), finally yields 

4 = - 2y0 cos O,(cos Oc sin $, - sin 8,) 

(3.24) 

(in (3.23) we have used integration by parts). Note that the terms with no in (3.20) and 
(3.23) cancel each other. With the help of (3.12) one can transform (3.24) to read 

cos e, 
d a  - dtC (hCOSh7,COS V -  l), (3.25) 

+ ( A 2  - 1)1/2 fi (da ) 
where 5, = [ (v ,T~) ,  cf. (2.19). Finally, we recall that the lateral capillary force 4 is to 
be calculated from (3.14) or (3.25) depending on whether &T, a) is determined by using 
the boundary condition (2.26) or (2.25), respectively. 

4. Numerical results for the lateral capillary forces 
4.1. Numerical results for cork-shaped particles 

Following the procedure described in $2.5 we calculated the meniscus shape, [(T, CT) and 
then by using equation (3.14) or (3.25) we determined the capillary force acting on the 
particles. 

Figures 8 (a) and 8 (b) present the dimensionless capillary force and the corresponding 
interaction energy 

(which was calculated from the curve e(i) by means of numerical integration) against 
the interparticle distance, z, for three different particle sizes characterized by 8,. One 
sees that the capillary force is negative and corresponds to attraction between the 
particles. Taking typical values of the parameters (R, = 1 pm and yo = 30 mN m-l) 
one finds that the capillary interaction energy is of the order of (10-100) kT.  Here kT 
is the thermal energy, with k being the Boltzmann constant and T = 298 K is room 
temperature. Such large values of the interaction energy are usual for immersion-type 
capillary interaction (see Kralchevsky et al. 1992, 1993). Physically A W / k T  9 1 means 
that capillary attraction prevails over the thermal motion and can bring about the 
particle aggregation and ordering. 
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FIGURE 8. (a) The capillary force and (b) the capillary interaction energy of two cork-shaped particles 
of fixed contact angle as functions of the interparticle separation, L. The different curves correspond 
to different angle 19, (i.e. different particle radii). The other parameters are fixed: qR, = 5 and $, = 
5". The right-hand-side scale of A W/kT shows the values of the capillary interaction energy for the 
special case of R, = 1 pn, T = 298 K and 7, = 30 mN m-l. 

Similarly to the values of AW, which allow one to judge whether aggregation will 
happen, the values of l$ in figure 8 (a) enable one to find whether the particle will move 
under the action of the capillary force if the friction force is known. For this reason 
here and hereafter we plot the numerical values of both force and energy us. the 
interparticle separation. 

The counterparts of the curves in figures 8 (a) and 8 (6) are presented for particles of 
fixed contact line in figures 9(a) and 9(6). The values of h,/Ro are chosen to be equal 
to the respective limiting values h,/Ro (at L" = 1 )  in figures 8(a) and 8(b ) .  In other 
words, the menisci in the state of zero energy (diametrically opposed particles) are the 
same for the systems corresponding to fisures 8 and 9. This provides a basis for 
quantitative comparison of the curves for 4 and A m  us. L" calculated by using the two 
alternative boundary conditions. One can see in figure 9(a)  that the capillary force 
changes its sign at comparatively larger interparticle distances : attractive at short 
distances becomes repulsive at large separations. The capillary interaction energy 
(figure 9 b) exhibits a maximum at some interparticle distance which corresponds to 
unstable equilibrium. The right-hand-side scale of figure 9(b) shows the values of the 
capillary interaction energy for a typical set of parameters: R, = 1 pm, T = 298 K and 
yo = 30 mN m-l. 

The fact that the interaction energy can change sign in the case of fixed contact line, 
but the energy is always negative in the case of fixed contact angle, calls for a special 
discussion. First we note that the capillary force stems from the inclination of the 
contact line (see figure 7) in the case of fixed contact angle; mathematically this is 
expressed through the presence of the derivative d[/du in (3 .25) .  
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FIGURE 9. (a) The capillary force and (b) the respective interaction energy of two cork-shaped 
particles of fixed contaciline partially immersed in a spherical liquid layer as functions of the 
interparticle separation, L. The different curves correspond to different values of 8,; h,/R, is equal 
to the respective values of h,/R, (0.00389, 0.00585 and 0.007 19) in figure 5(b). The capillary length 
is fixed: qR, = 5 .  The right-hand side scale of AWIRT is as in figure 8. 

In contrast, one sees that only the derivative a[/a.r is present in equation (3.14) 
expressing the force in the alternative case of fixed contact line. A closer inspection of 
(3.10) or (3.14) shows that the force is attractive when the meniscus slope, (3/337)/x, 
at the point ( T ~ ,  0) is greater than the meniscus slope at the point (7c, n); in the opposite 
case the force is repulsive. This is confirmed by the direct numerical calculation of 
(a[/;la.r)/x. Our final conclusion is that the non-monotonic behaviour of the capillary 
force is a non-trivial effect stemming from the spherical geometry of the film coupled 
with the boundary condition of fixed contact line; such an effect is difficult to anticipate 
by physical insight. Note that in the case of planar geometry the capillary force between 
two identical particles is always monotonic attraction. 

The influence of the cyillary length, q-l, is examined in figure 10 where the 
dependencies e(L) and AW(L) are plotted for three different values of the parameter 
qR,. The larger qR, (the smaller the capillary length), the stronger the decay of the 
capillary force with the distance i. Hence 4-l can be considered as a decay length of 
the lateral capillary interaction. 

4.2. Numerical results for spherical particles 
When the boundary condition for fixed contact line, (3.4), is imposed, E(L) is 
calculated for spherical particles in the same way as for cork-shaped particles. Indeed, 
in both cases the contact line is an immobile planar circumference perpendicular to the 
particle-substrate axis. Hence, the results for spherical particles with fixed contact line 
are identical with those for cork-shaped particles with the same contact line. In 
particular, the force and energy are non-monotonic as in figure 9 above. 

On the other hand, if the boundary condition for fixed contact angle is imposed, the 
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FIGURE 10. (a) The lateral capillary force and (b) the capillary interaction energy of two cork- 
shaped particles of fixed contact angle as functions of the interparticle separation, L. The different 
curves correspond to different values of qR,. The other parameters are 13, = 2" and @c = 3'. 

contact line moves along the particle surface when the interparticle distance is varied. 
Moreover, one can distinguish two effects when the interparticle separation L 
decreases: (i) h, defined by (2.30) increases (figure 5 )  and (ii) the inclination angle 7, 
defined by (2.32) also increases. As demonstrated in figure 6, for not too small L, 
tan 7, 4 1, i.e. the contact line is almost parallel to the reference sphere. This fact allows 
one to utilize an approximate two-step procedure, which has also been used for planar 
interfaces (Kralchevsky et al. 1992, 1993; Paunov et al. 1992). This procedure consists 
in the following. 

As a zeroth approximation we assume that the contact line is perpendicular to the 
axis determined by the angle 8, (figure 2b). In such a case the contact line is a 
circumference of radius r, elevated at an average distance h, above the reference sphere. 

At the next step we replace the sphere by a cork-shaped particle for which 0, and h, 
(as well as $,, 6,, T,, etc.) have the same values. Then we solve numerically (2.23) along 
with the boundary condition (2.25) and determine 8 by means of (3.25). 6 thus 
calculated, which is accurate for the cork-shaped particle, gives a first approximation 
for the lateral capillary force exerted on the spherical particle. Note that when the 
interparticle separation, L, decreases h, increases, r, decreases (figure 2 b), and therefore 
at different values of L the spherical particle is approximated by cork-shaped particles 
of different size (different 0J. This reflects the shrinkage of the contact line on the 
spherical particle with the increase of h,. 

The above procedure is realized mathematically as follows. From figure 2(b) one sees 
that the radius of the contact line, T,, is related to the radius of the reference sphere R, 
and the particle radius R, : 

Y, = R,( 1 + 6, sin 4,) sin 8, = R,  sin (a + BC + $,), (4.2) 
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FIGURE 11. (a) The lateral capillary force and (b )  the capillary interaction energy of two spherical 
particles of fixed contac_t angle protruding from a spherical liquid layer as functions of the 
interparticle separation, L. The different curves correspond to different values of the ratio R,/ho at 
fixed RJR, = 0.05. The other parameters are: qR, = 1 and a = 60". The right-hand-side scale of 
A WfkT is as in figure 8. 

where fi, = LJsin $c. Note that in contrast with h,, h, does not depend on $,. For the 
segment OM one similarly obtains 

IOMl = Ro(1+h,sin@,)cos8, = ~ - h , + R , [ l + ~ o s ( a + f ) , + $ ~ ) ] .  (4.3) 

The angle p = a+8,+ $, is also shown in figure 2(b). From (4.2) and (4.3) one can 
eliminate angle /3 to obtain 

$,(8,) = arcsin (( Y -  l)/hc), 
where 

(4.4) 

Y = (1 - h,/R, + RJR,) cos 8, + [(R,/R,)'- (1 -h,/R, + R,/R,)' sin2 8c]1'2. (4.5) 

The values of RJR,, h,/R,, qR,, a and 8, are input parameters. Then 8, and +, are 
calculated as follows : 

(i) we choose an initial guess for 8, and $,; 
(ii) is calculated by numerical integration of (2.23) along with the boundary 

(iii) then h, = &/sin @, is determined by calculating numerically the integral in 

(iv) $,(8,) is calculated from (4.4) and (4.5); 
(v) 8, is determined by solving numerically equation (4.2). 

(vi) with the parameters values thus determined one calculates 4 from (3.25) for 

condition (2.25), as described in $2; 

(2.30) ; 

The next iteration repeats from point (ii) until convergence is achieved ; 

various 8,. 
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FIGURE 12. The lateral capillary force between two spherical particles as a function of the particle 
contact angle. The interparticle separation is kept constant (sin 0, = 2R,/R0). The other parameters 
are: R J R ,  = h,/Ro = 0.05. The three curves correspond to different values of qR,. 

Following the procedure described above we calculated the force and energy of 
capillary interaction between two spherical particles immersed into a spherical thin 
liquid film. 

The effect of the particle protrusions from the liquid film on the capillary interaction 
is shown in figure 11 (a, b) where the dimensionless capillary force and interaction 
energy are plotted against the interparticle separation, L". The three curves are 
calculated for three different values of the ratio, R,/h,, corresponding to different 
particle protrusions from the film interface. One sees that the larger the protrusions the 
larger the capillary interaction between the particles. The three-phase contact angle, 
a = 60" is the same for the three curves. The right-hand-side scale in figure 11 (b) shows 
the values of the capillary interaction energy for a typical set of parameters : R, = 1 pm, 
T = 298 K and yo = 30 mN m-l. Note that capillary interaction energy between the 
two particles is of the order of (100-300) kT irrespective of the small values of the 
particle radius. 

Figure 12 illustrates the dependence of the capillary force between two spherical 
particles on the particle three-phase contact angle, a, at fixed value of the interparticle 
separation, sin 6, = 2R,/R,. The thickness of the non-perturbed film, h,, is chosen to 
be equal to the particle radius, R,. The different curves correspond to different values 
of qR,. It should be noted that the capillary force between well wettable particles 
(a x 0") is strongest irrespective of the value of qR,. When a tends to 90" the capillary 
force approaches zero as could be expected since the deviation of the outer film 
interface from sphericity becomes negligible. 

The effect of the particle radius, R,, on the capillary interaction is explored in 
figure 13 where the dimensionless capillary force is plotted vs. the ratio RJR,.  The 
three curves correspond to different values of qR,. One sees that the capillary attrac- 
tion between the two particles increases markedly with the increase of the particle 
radius, R,. 

The comparison of figures 12 and 13 with figure 10(b) shows an intriguing difference. 
One sees that when qR, increases, the force between spherical particles becomes 
stronger (figures 12 and 13), whereas the force between cork-shaped particles gets 
weaker (figure lob). The physical explanation of this fact is the following. In the case 
of cork-shaped particles the increase of qR, brings about a faster decay of the menisci 
on the two particles, which leads to a smaller overlap of the two menisci and to a 
weaker lateral capillary force. In the case of spherical particles the latter effect is 
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FIGURE 13. The lateral capillary force between two spherical particles of fixed contact angle as 
a function of the particle radius. The relative interparticle separation is kept constant: sin@, = 
2R,/R0 = const. The three different curves correspond to different values of qR,. The other 
parameters are ho/Ro = R,/R,. 

overcome by another effect in the opposite direction, namely when qR, increases, the 
contact line moves from the top of the sphere downwards (h, decreases), then both the 
slope of the spherical surface and angle $, increase, which leads to a stronger attractive 
force as predicted by equation (3.25). Of course, h, decreases with the increase of qR, 
for cork-shaped particles also, but angle ?+he does not change. 

5.  Concluding remarks 
The capillary interaction of two particles partially immersed into a spherical liquid 

film on a solid spherical substrate is investigated. The study of this system with one 
deformable interface is the first step toward the investigation of more complicated 
systems with two deformable surfaces such as a spherical emulsion film or a spherical 
lipid bilayer (vesicle) containing inclusions. The main points of this study are the 
following : 

The shape of the perturbed liquid film is determined by solving numerically the 
linearized Laplace equation of capillarity in bipolar coordinates on a sphere, (2.23). 
Two types of boundary conditions at the particle surfaces are considered: fixed 
contact angle and fixed contact line. 
Two types of particles are considered : cork-shaped and spherical particles. 
Expressions for calculating the lateral capillary force are derived, (3.14) and (3.25), 
corresponding to the two types of boundary conditions. 

The capillary interaction energy corresponds to attraction and is much larger than the 
thermal energy kT for typical parameters values, and the range of the interaction is 
determined by the capillary length, q-l- see figures 8,9, 11 and 13 ; hence the capillary 
interaction can bring about particle aggregation and ordering. 

For particles with fixed contact angle the capillary interaction energy is a monotonic 
function of the interparticle distance, whereas for particles with fixed contact line (and 
not too small qR,) the interaction energy exhibits a maximum, i.e. the two particles 
have two stable states (together in aggregate and diametrically opposed) - cf. figures 8 
and 9. 

Orthogonal bipolar coordinates on a sphere (inducing biconical coordinates in 
space) are introduced as a helpful instrument for solving this and various other 
problems - see the Appendix. 
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Appendix. Bipolar coordinates on a sphere and biconical coordinates in 
space 

Here we propose a system of bipolar curvilinear coordinates on a sphere, which 
represent two special families of mutually orthogonal circumferences. They induce a 
system of biconical coordinates in space. Expressions for the spacial metric tensor, 
Christoffel symbols and the basic differential operators are derived. The rate-of-strain 
tensor as well as the Navier-Stokes and continuity equations are expressed in terms of 
these curvilinear coordinates. The latter can find application to any problem in 
continuum mechanics dealing with particles attached to a spherical interface or liquid 
film. 

A.l. Bipolar coordinate network on a sphere 
Let us consider a sphere of radius r .  The origin of the Cartesian coordinate system is 
located in the centre of the sphere (figure 14a). Let us also consider a plane defined by 
the equation 

This plane intersects the x-axis at the point x = z,& see figure 14(a). In addition, the 
plane cuts a circumference (MN in figure 14a) on the sphere. Thus by varying 6 at fixed 
zo one obtains a family of circumferences on the sphere, each of them corresponding 
to a given 6 for 

(A 2) 

In fact, this is one of the two families of coordinate lines of the bipolar coordinate 
system; the poles are the points A, and A, on figure 14(a) corresponding to 6 = t,,,. 

The equation of a circumference 6 = const. can be derived by introduction of polar 
coordinates (0, q5) on the sphere: 

z = Z,-(l/QX. (A 1) 

-5,,, 6 6 6 t,,,. 

x = rsinBcosq5, y = rsinesinq5, z = rcose. (A 3 H 4  5 )  

C O S ~  = h-(l/g)sinBcosq5, (A 6) 

where h = zn/r > 1. (A 7) 

Then from (A l), (A 3) and (A 5 )  one derives 

The coordinates of the two poles are (0 = Oo,q5 = 0) and (0 = On, q5 = n), where 
C O S ~ ,  = r/zn = A-l. Then from (A 6) one derives 

(A 8) 

The second family of coordinate lines, which are also circumferences, represent 

(A 9) 

(A 10) 

- ( A 2  - 1)-1/2.  
L a x  - 

intersection lines of the plane 

z = z,-(l/y)y (z, = rcose ,  = rh-' = const.) 

with the sphere of radius r for fixed z1 and variable 7 :  

-m < 7 < +m, 
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FIGURE 14. Cross-sections of a reference sphere of radius r with the coordinate planes (x ,  z )  (a) and 
( y ,  z) (b). The segments MN and EG represent projections of 6- and pircumferences in the plane of 
the drawing. For [ = Em,, the &circumferences degenerate into the points A, and A,, which are the 
poles of the bipolar coordinate network. 

see figure 14(6). In fact, for each 7 the plane (A 9) passes through the straight line 
A, A, determined by the two poles (figure 14a). The substitution of (A 4) and (A 5) 
into (A 9) yields the equation of the 7-circumferences in (0, $)-coordinates : 

cosd = A-l-(l/~)sindsin$. (A 11) 

It is interesting to note that these two families of coordinate lines (the 6- and 7- 
circumferences), which are illustrated in figure 3, are mutually perpendicular : the proof 
is given in §A 2 below. 

One can eliminate the azimuthal angle $ between (A 6) and (A 11): 

p(h - COS e l 2  + 7 2 ( ~ - 1  - cos el2 = 1 - C O S ~  e. (A 12) 

Equation (A 12) is a quadratic equation for cos 8, whose solution reads 

(h~2+A-1~2+{[ l - (h2-1)~2][1  +(l-A-2)$]}1'2). (A 13) 
1 

1 f E 2 + T / 2  
cose = 
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Let us introduce the variables 7 and r as follows 

tanh 7, 
1 

6 = (h2- 1)liZ 

-m<7<+00, -7c<r<7L, (A 15) 

cf. also (A 2), (A 8), (A 10) and (A 15). The substitution of (A 14) in (A 13) after some 
algebra yields 

For use in applications it is useful to know the radii of the coordinate circumferences. 
Considering the mutually orthogonal chords EG and KH (figure 14b) one can write 
(EFI 9 (FGI = IKFI. IFHI. In addition 

IKF( = r+z,sinw, 

where R,  is the radius of a a-circumference and the other notation is shown in figure 
14(b). Thus one obtains 

As tano = 7 (figure 14b), from (A 14) and (A 17) one obtains 

lEFl = lFGl = R,, (FHl = r-zZ1sinw, 

RZ = r2( I - X 2  sin2 0). (A 17) 

a 
R, = 

(A2 - cos2 r ) 1 ’ 2  
(a = r (A2 - I)’/’). 

Similarly, for the radius of a  circumference one can derive 

a 
( A 2  cosh2 7-  1)lI2* 

R, = 

In the limit of a planar surface (A+ 1 for fixed a)  both R, and R, reduce to the 
respective radii for the planar bipolar coordinate network (see e.g. Korn & Korn 1968). 

A.2. Metric tensor, Christoflel symbols and diferential operators 
Substitution of (A 5 )  into (A 1) and (A 9) yields 

x = &(A- cos O), y = yr(A-’ -cos 0). (A 20) 

Then by substituting cos0 from (A 16) into (A 5)  and (A 20) one obtains 

(A 21) 
r(h2 - 1)lI2 sinh 7 r(A2 - l)llz sin g r(cosh 7 - h cos a) 

X =  Z =  
~ C O ~ ~ T - C O S ~  ’ ’= Acosh7-cosg’ h C O S ~  7 - cos 

O < r < c o ,  - m < r < m ,  - x < a < n .  

In fact (A 21) gives the connection between the Cartesian coordinates (x, y ,  z )  and the 
biconical coordinates ( r , a , ~ )  in space. The latter are induced by the bipolar 
coordinates on a sphere in the same way as the bicylindrical coordinates in space are 
induced by the bipolar coordinates in a plane. In our case the coordinate surfaces 
r = const. and 7 = const. represent two families of mutually orthogonal cones. 

By differentiation of (A21) one can derive the components of the metric tensor 
(McConnell 1957) : 
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x1 = x, xg = y ,  x3 = z ;  u1 = r ,  u2 = 7, u3 = cr. Thus one obtains 

In this way we prove that the biconical coordinates are orthogonal. The relationship 
between the spatial polar and the biconical coordinates is 

[“ - 1)l” sin Bcos 4 
A-cosf3 

r = r, 7 = arc tanh 

1 for hcosB > l,cos$ > 0 

for AcosB> l ,cos$<O 

0 for hcosB< 1 

[ (A2 - 1)liz sin 8 sin $ 
1-hcosB 

CT = arctan 

By differentiating (A 23) one can derive expressions for the Christoffel symbols by 
using standard equations (McConnell 1957). The non-zero Christoffel symbols are 

All other Christoffell symbols are equal to zero. The gradient of a scalar function 
p(r,  7, cr) reads 

where 
a 

a = r(h2 - l)l’z, 
= h cosh 7 - cos u’ 

and e,, e, and e, are the unit vectors of the local basis. The divergence of a vector 
u = 6,er+6,e,+6,e, is 

For V’p one obtains 

A.3. Basic equations of hydrodynamics 
The rate-of-strain tensor is 

where (VU)* denotes conjugation 

D = # 7 v +  (VU)’], 

a 
V = g i -  and u = g“v, = e,6, 

a U z  
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are the gradient operator and the velocity vector (9" (k = 1,2,3) are vectors of the 
contravariant local basis of the curvilinear coordinate system (u', u2, u3)) ; summation 
over the repeated indices is assumed; vk and Ck are the covariant and physical 
components of u. (From a formal viewpoint the results in the present subsection hold 
also if D and u are interpreted in terms of theory of elasticity, namely as the strain 
tensor and displacement vector, respectively). Equation (A 32) can be presented in the 
form 

In the case of orthogonal coordinates one can write (Korn & Korn 1968) 

V k  = (gkk)1'20k. (A 35) 

By using (A 23), (A 25)-(A 27), (A 34) and (A 35) one obtains 

where 

A 

D = ei ek Dlk, (A 36) 

The continuity equation and the Navier-Stokes equation for an incompressible fluid 
are (Landau & Lifshitz 1984) 

v . u  = 0, (A 40) 

where p is mass density, p is pressure and p is the dynamic viscosity coefficient. The 
form of the continuity equation (A 40) in spherical bipolar coordinates follows directly 
from (A 30). Similarly, V p  in (A 41) can be expressed by means of (A 28). Further one 
derives 

a6 e aoT fi,aoT I 1 

ao o ao, o,ao, 1 1 
ar X ~ C T  r r u  a 

e;(u- V v )  = i ? , l + ' - + - - + - G  6 +-(d~AsinhT-i376,sin~), 

e , . ( u . V u )  = 0 , ~ + ~ - + - - + - 8  0 +-(s,2sincr-0,BUhsinhr). 

(A 43) ar xi37 x a ~  r ' a 

(A44) 

To derive an expression for V2u we use the general formula 
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where g is the determinant of the metric tensor (cf. McConnell 1957). Then after some 
calculations one obtains 

e;V2v = (A 47) 
a 

e, - V2u = V26,+- z y ,  iao, . --+--smo---sinhr)-$(h2cosh27-cos2~), hao, (A 48) x r a v  a &  a c b  

where V20,(k = r ,  7, (T) is to be calculated by means of (A 3 1). It is worth noting that 
(A 46), (A 47) and (A 48) hold for every vector v, not necessarily satisfying (A 40). 
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