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The present paper treats the problem of the slow motion of a
spherical particle, partially immersed in a viscous liquid. It relates
to the theory of Brenner and Leal concerning the surface diffusivity
of a large Brownian particle and provides important basic informa-
tion on the so-called “drag-out problem.” The numerical investiga-
tion yields the local velocity and pressure distribution, the hydro-
dynamic resistance, and the surface diffusion coefficient. The com-
putations are carried out for low Reynolds and capillary numbers
considering a stationary floating macroparticle on a viscous lig-
uid-gas interface. Results are presented for different values of
surface dilatational and shear viscosity and contact angles.
Brownian motion of the particle is taken into account by integ-
rating the resultant second-order partial differential equations
with an alternating direct implicit method. The numerical results
reveal for all contact angles a strong decrease of the surface diffu-
sion coefficient when the surface viscosity increases.
Press, Inc.
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1. INTRODUCTION

Almost 90 years ago Einstcin (1) oblained a formuta for
the diffusion coefficient for solid spheres in the dilute limit
in his classic paper *““Eine neuve Bestimmung der Molekiildi-
mensionen,”” This relation was later generalized by Kubo
(2) for cases with more complicated hydrodynamics, consid-
ering hydrodynamic resistance. These works have been put
forward by many researchers, see the review in (3, 4). The
theory of Einstein was extended by Brenner and Leal (5,
6) for the diffusion of surfactant molecules, modeled as
noninteracting Brownian spheres at the interface between
two immiscible fluids. The calculation of the surface diffu-
sivity of these spheres has been reduced to an expression
completely analogous to the corresponding bulk diffusion
ceefficient formula. In (7) the diffusion and resistance coef-
ficients of macroparticles floating on a liquid—gas interface
were treated from the viewpoint of Einstein’s theory and the
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reciprocal theorem. Good agreement with the experimental
data for the movement of polymer (melanin) particles on a
surfactant free water—air interface was shown in this paper.
The effect of surfactants on the Brownian motion was dis-
cussed in (8) and a formula for the surface diffusion coeffi-
cient was proposed in (9). Another viewpoint of these prob-
lems was discussed in { 10) in order to interpret experimental
measurements of the surface diffusion motion. Information
on the diffusion coefficient, the dilatational elasticity, and the
viscosity of a surface layer was provided. A simple Kelvin—
Voight model, in which the elastic and viscous stresses are
additive, was assumed for the material behavior of the layer
during dilatational deformation. The results in (8~10)
showed that the reduced mobility of the particle results in
lowering the surface diffusivity. The surface diffusion coef-
ficient is directly proportional to the surface diffusivity with-
out surfactants and inversely proportional to the hydrody-
namic resistance of the individual sphere. This is why an
accurate determination of the hydrodynamic resistance of a
spherical particle partially immersed in a viscous liquid layer
is one of the more important problems of hydrodynamics.
Faxén (11) developed the method of reflection for a
sphere moving between two parallel planes in a viscous fluid.
A great deal of work was done in obtaining first- and higher-
order wall corrections for particles in flows that are bounded
by plane or cylindrical walls (12). However, the method
mentioned above and the obtained solutions are not valid
for arbitrary distances from the wall and when the particle
is floating on a liquid—gas interface (13). Dean and O’Neill
(14, 15) showed that the force and the torque acting on a
spherical particle, which moves or rotates in a viscous fluid
at an arbitrary distance from a plane parallel to the solid
interface, can be accurately determined. The limiting behav-
ior when the sphere is almost in contact with the wall was
obtained rigorously in (16-18). An important step for un-
derstanding this problem was made by Yang and Leal (19),
who presented analytical results for the motion of a viscous
Newtonian fluid drop in the presence of a plane, deformable,
interface in a velocity range where inertial effects may be
neglected. Numerical sclutions, obtained via the boundary—
integral technique, were used in (20) to consider the effect
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of a linear axisymmetric straining flow on the existence of
steady-state configurations in which a neutrally buoyant
spherical particle straddles a gas—liquid interface. The au-
thors determined the critical capillary number, beyond which
an initially captured particle is pulled from the interface
by the flow, and its dependence on the equilibrium contact
angle.

Most of the publications in this area are based on the
hypotheses that the interface is nonviscous. When there are
insoluble or soluble surfactants in the sclution, the interface
has a viscous behavior. Boussinesq (21) postulated the exis-
tence of a surface viscosity, conceived as the two-dimen-
sional equivalent of the conventional three-dimensional vis-
cosity possessed by bulk-fluid phases. Boussinesq’s theory
was generalized to material interfaces of arbitrary curvature
in the papers of Sternling and Scriven (22, 23). The effects
of bulk and interfacial rheological properties and surfactant
adsorption—~desorption kinetics on the rate of drainage of
foam and emulsion films were studied in (24, 25). The
strong influence of the surface viscosity on the drag and
torque coefficients of a spherical particle close to the viscous
interface and in the liquid layer, bounded by the viscous
interfaces, when the radius of the particle is of the same
order of magnitude as the thickness of the liguid film was
discussed in (26, 27). The effect of Gibbs® elasticity and
surface viscosity on the drag coefficient of an emulsion drop-
let in adsorption-controlled Marangoni flow was presented
by Levich (28) and Edwards et al. (29). They showed that
in this case only the dilatational surface viscosity influences
the drag coefficient. The effect of GGibbs’ elasticity is usnaliy
neglected when the concentration of insoluble surfactants
is small, the diffusion of soluble surfactants is fast, or the
concentration of soluble surfactants is greater than the criti-
cal micellar concentration. In these cases we can calculate
the flow in the frame of Newtonian volume and surface
rheology not taking into account the equations for the surfac-
tants mass balance.

The general approach, along with some important techno-
logical and biological applications, is considered in several
monographs {4, 29-32). Here we mention only some of
them: the thin film coating, the drag-out problem, the mate-
rial properties of the red bload ceil membrane and its physio-
logical functions (10), etc.

The present paper discusses the problem of determining
the drag force and torque exerted on a solid particle floating
on a viscous liquid—gas interface for low Reynolds and cap-
illary numbers. The free surface-excess pressure tensor con-
siders the Boussinesq (21) and Scriven (23) constitutive law
for a Newtonian interface. It is proved in detail in Section 2
that the problem for Stokes” flow in a coordinate system
of revolution with specific bicylindrical coordinates in the
meridian planes can be reduced from three dimensions to
two dimensions, which is convenient for numerical investi-
gations. For viscous interfaces, the boundary conditions con-
tain second-order derivatives of the velocity, for which no
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liquid

FIG. 1. Geometry of the system.

analytical solution is known. The diffusion coefficient for
floating macroparticles is treated from the viewpoint of Ein-
stein’s theory of diffusion. In order to illustrate the strong
influence of the surface viscosity on the hydrodynamic resis-
tance and the dependence of the surface diffusion coefficient
on the equilibrium contact angle, the drag and the torque
coefficients, the velocity and the pressure distribution are
presented in Section 3. The dilatational and shear surface
viscosity numbers are varied over a wide range. A slight
dependence of all parameters on the dilatational surface vis-
cosity and a strong dependence on the shear surface viscosity
could be found.

2, THEORETICAL ANALYSIS

A. Basic Equations and Boundary Conditions

We consider the stationary slow motion of a solid spheri-
cal particle partially immersed in a viscous incompressible
fluid, floating on a viscous liquid—gas interface in the frame
of low Reynolds number hydrodynamics. Then the pressure
p and the local fluid velocity v obey Stokes’ equations for
creeping motion,

V-v=0 7nVv=Vp, (1]
where 7 is the dynamic viscosity and V is the volume gradi-
ent. The solid spherical particle with radius a and surface
Sp performs translational motion along the Oy axis (see Fig.
1y with the characteristic velocity V. The boundary condi-
tion on the interface $; depends on the type of the interface.
For a free interface the friction is equal to zero (7, 9, 19).
For a Newtonian viscous liquid interface S, (23, 29), we
consider the Boussinesq—Scriven constitutive iaw and define
the surface-excess stress tensor 8 in the following form:

S = UIs + (T’d - nsh)(vs'vs)ls
+ nsh[(vsvs)'ls + Is'(vsvs)T]- [2}

In [2], o is the thermodynamical interfacial tension, 7,
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and n, are, respectively, the interfacial shear and dilatational
viscosity at a given point of the interface, L, is the unit
surface idemfactor, v, is the surface velocity, and V, is the
surface gradient. Equation [2] is the two-dimensional ana-
logue to the comparable expressions for the bulk-phase pres-
sure tensor P,
P=—pl + Vv + (Vv)']. [3]
In [2] and [3], (V.v,)" and (Vv)7 are conjugates of the
tensors (V,v,) and (Vv), respectively. In all practical cir-
cumstances the surface-excess mass density is small com-
pared to the bulk-phase mass density and the equation for
the interfacial momentum transport reduces to the balance
of the forces acting on the material interface
vs's = lls'<P>, [4]
where n, is the unit normal to the viscous liquid interface
and (P} is the jump of the volume stress tensor P. In addition
we must take into account the usual kinematic boundary
condition.
The resultant force F due to the siress exerted by the
surrounding fluid on the surface of the spherical solid particle

Sy and the torque M experienced by the body surface are
sums of the volume and interface friction

-

]

P-nds, + f S-1dL,,
Ly

M= (rg X Pynd§, + j (ro X 8)1dL,, [5]
Lo

3o

where 1y is the position vector of a point relative to an origin
at the center of the particle (Fig. 1), n is the vector of the
running unit normal to the particle surface Sy, and 1 is the
unit vector tangential to the interface and perpendicular to
the particle contact line L. For free and viscous interfaces
the boundary conditions [4] depend on the capillary number
C = nV/g. This number is very small for Brownian macro-
particles and all our considerations below will be performed
in the case for which the boundary conditions can be linear-
ized. As shown in (20, 33), for small particles, the interface
can be assumed to be a plane. For example, for glass particles
with a diameter smaller than 0.05 cm the equilibrium shape
of the interface is practically indistinguishable from a plane
surface for all contact angles and normal water solutions.
This is why we will not take into account the deformation
of the interface.

B. Mathematical Model of the Problem

The system of equations [1] and boundary conditions [2] —
[4] are difficult to compute directly numerically using the
velocity—pressure formulation or the vorticity formulation.

The difficuities connected with the specific form of the equa-
tions are discussed in (26, 27). The usual bicylindrical coor-
dinate system (27) is not applicable for the numerical inves-
tigation of our problem because the contact line of the parti-
¢cle is a singularity in this coordinate system. Therefore we
have transformed the problem to the equivalent well-defined
system of second-order partial differential equations with
known boundary conditions in a rectangular region using
specific bicylindrical coordinates.

We denote Oxyz as a system of Cartesian coordinates, ¢ a
meridian angle, any plane for which ¢ is constant a meridian
plane, and r and z, respectively, radial and vertical coordi-
nates in a cylindrical coordinate system Orz (Fig. 1). All
dimensionless coordinates are introduced by scaling with the
particle radius ¢. Let d = 1 + cos « be the dimensionless
immersion depth, b = sin « the dimensionless contact radius,
o the contact angle, and x; and x, the specific bicylindrical
coordinates in the meridian planes connected with the
Cartesian coordinates with the following expressions:

(1 — x3)bcosyp (1 — x3)bsin ¢
T 14 2xc08 x4y + x5

?

1 + 2x,c08 x, + x5

2 x,8in x,b

zZ [6]

"1+ 2xc08 x, + x%

In this coordinate system the lines x, = const are the circum-
ferences

b2

rP+(z+beotx) = -———,
sin?x,

where the projection of the particle surface Sy is the coordi-
nate line x, = —« and the projection of the interface §; is
the coordinate line x;, = 0. The lines x; = const are the
circumferences

4b*x3

1+x22

2 2

z° + I‘—b = N
( l—xﬁ) (l—x%)z

where the axis of revolution is the coordinate line x, = —1
and the contact line of the particle is transformed to the
coordinate line x, = 0. The typical coordinate lines and
vectors are shown in Fig. 2 for a contact angle of 45°,
After eliminating the pressure from Stokes’ equations [1],
one obtains a general equation for the vorticity vector w

w=iVXv, VXVXxXw=0 i7]

As outlined before, for small capillary numbers the problem
has linearized boundary conditions for a floating motion.
The solution of the equations contains therefore only one
mode of a Fourier expansion. Hence, the dimensionless pres-
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FIG. 2. S8pecific bicylindrical coordinates x, and x, in the plane Orz for
a contact angle of 45°. The circle of radius 1, corresponding to the line x;
= —a, represents the projection of the particle surface, where b is the
contact radius and d is the immersion depth.

sure g, the velocity, and the vorticity components in the
given coordinate system can be presented in the following
general form;:

v . . .
p= LA g sin p, ¥ = V(usin @, 1,510 @, 0,008 p),
a
v .
W= s (wicos @, wocos o, w,sin ). [8]
a

The components of the velocity in the meridian plane are
connected with the components of the vorticity in this piane
as follows:

vy = h _3__ (rv,) + 2£ Wy,

axl b
a 2r
() =h2€r;(rvw) _—'z;'wl. [9]

The boundary conditions [2] - [4] contain second-order de-
rivatives of the velocity, which makes the computation of
the problem a bit cumbersome. Following the two vorticity —
one velocity formulation given in (26, 27), we use vortici-
ties w; and w, and velocity v,. Then from [1] and [7] -
f9] the equation of continuity and the partial differential
equations for the components of the vorticity vector can be
written in the following form:

8%, % o o
—Z + 33 —£ + 34, —2 + (34, + D, —£
ax? 2 ox2 ' ax, (3x2A; )2 Xy
2 Ow, 2 ow,  6A,
et —— o — W
bh, dx, bhy ~ 9x»  bh
2x2

+ b_h| (24, — A;dw, =0

3w,
ox?

3w,
2
GX2

+ 34, DM 4 Ay + D 0
axl ¢ )

X2

+ x3

7]
+ 212A3 a_%' + Blwl + 312A1A3W2 =0,

X1
62W2 2 az'Wz aW'Z awz
+ x5 ——+ A — + (3x,4, + I)x
ax? 7 ox? ‘ax,-(” )2x2
o
+ Bow, — 2x2(A, + Ay) 24
axl

~2nd, ‘zi — A(As + 44w, = 0. [10]
X

Let us transform the boundary conditions of the prob-
lem for the defined functions. For a solid spherical parti-
cle floating with constant relative translational velocity
in Oy direction the no-slip condition on the particle sur-
face gives the boundary condition for the dimensionless
meridian velocity component and from [9] we can obtain
the Dirichlet boundary condition for the dimensionless
vorticity components at the surface Sp. At infinity the
values of the two vorticities w, and w, and the velocity
v, go to zero. For all types of interfaces (free and vis-
cous) the linearized kinematic boundary condition (the
normal component of the velocity is equal to zero) from
[9] reduces to the Dirichlet boundary condition for w,
for a given value of v,. For a free interface, the friction
is negligible and the normal derivatives of the meridian
compenent of the velocity and the first component of the
vorticity are equal to zero on it. For a viscous interface
the tangential components of the linearized stress bound-
ary condition [2] - [4] using the definitions [8]1-[9] and
Eq. [10] can be reduced to the following system of sec-
ond-order partial differential equations for the velocity
component v, and vorticity component w, at the interface
x, = 0:

X _ (k + BV,
6x1

2
X i x3 J v;, + (X045 + 3x4, + 1) %,
612 6x2

L ST -
b ox;
awl 62w1
_('9‘;1’ + XQA3W2 = Eh][l% ax%
Aw, 4x3
+x2(x2A2 +sz3 + I)EZ—'(I—:x—%)z'W,] , [11]
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FIG. 3. Velocity field in the plane x = 0 for contact angles of (a, b) 45° and 20° (c, d); (a, c) free interface, (b, d) K = E = 10.

where K = na/na and E = ny/na are the dilatational and
the shear surface viscosity number, respectively. In the case
of very small surface viscosity numbers one can obtain from
[11] similar solutions for the free interface. From [10] the
asymptotic behavior of the meridian component of the veloc-
ity and the components of the vorticity on the axis of revolu-
tion (x; = —1) defines the boundary condition: the first
derivative of v, and w, normal to the axis and the vorticity
component w, are equal to zero. From an asymptotic analysis
of Eq. [10] one can derive the following boundary conditions
on the contact line at x, = O:

v, =1, w =—sin(x + a)T‘:,
wy = — cos(x; + a) —F. (12]

In Eqgs. [9]1-[11] the metrical functions and other coeffi-
cients are known functions of the coordinates defined by

A = 2x,81n x,
YT+ 2xc08 Xy + 23
A= — 2[2x; + (1 + x3)cos x;]
? (1 — xD){(1 + 2xc08 x;, + x3)
1 2
A3 - - i

x(1 + 2xyc08 X, + x3)
B, = A? — x2AZ — x3A3, By =-1-— 3A1T,
1

h! = -
ZbXZ

(1 + 2x,c08 x; + x3),

1
hy = % (1 + 2x,c08 X1 + x3).
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FIG. 5. Pressure distribution on the interface for a contact angle of 45° in the cases: (a) free interface, (b)Y K = E = 10.
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Using the definitions [8] and [9], one can compute the
physical components of the velocity and the pressure distri-
bution using the meridian plane of Stokes’ equation.

After a detailed analysis of [2], [3], and [5], we proved
that in our case only the y component of the drag force and
the x component of the torque exerted by the surrounding
fluid were nonzero. The general form of them is

F, = fmnaV, M, = mmna®V, [13]
where the dimensionless drag coefficient f and the dimen-

sionless torque coefficient m are evaluated by the following
solutions:

0
h, or hy B, or v,
st | JrB Ly 2Py S
f f f—] { ’ hz 3x1 4 4 h2 3x1 T 6XQ a—xl :

m=m —fu (r&%+
sV - h26x,

In [14] the additional interface drag and torque coefficients
Jfw and mg, are equal to zero for a free interface and for a
viscous interface they can be evaluated from the following
solutions:

ar
h — —£ )dx,. [14
rlaxzaxl) 2. [14]

o N
. = bE —* + B(K + E) —,
/ ar ( )Br

m, = —fecosaatx, =0, x, = 0. [15]

The normal component of the linearized stress boundary
condition [2]-[4] gives the equation for the first Fourier
mode deviation of the shape S;. The disturbances of the
surface shape are proportional to the capillary number C and
in our cases the effect of the deformation of the interface
is of second-order. For our numerical computation of the
equations we used the modified alternating direction implicit
method proposed in (26} for a similar problem, a moving
particle in a viscous liquid layer, which gives the possibility
to compute with second-order implicit time- and space-vari-
able interpolation.

3. NUMERICAL RESULTS AND DISCUSSIONS

A. Velocity and Pressure Distribution

In order to illustrate the influence of the surface viscosity
on the overall velocity and pressure distribution, we com-
puted the flow field for a particle floating on the interface
for two different contact angles. The particle is moving in
Oy-direction with velocity 1. However, as the effects in the
vicinity of the particle are difficult to interpret, we plotted
the velocity field of the fluid relative to the particle, ie., v
— 1. In Fig. 3 the velocity field in the vicinity of the particle

is shown for four different cases: (a) a free interface (K =
E = 0), @ = 45° (b) a highly viscous interface (K = E =
10,0 =45 (c) K=E=0,0a =20%and () K = E =
10, & = 20°. One can see that the size of the stagnation area
in front and behind the floating particle close to the interface
increases with increasing surface viscosity, The size of the
stagnation area does not strongly depend on the contact
angle, At & = 20° it is of course larger than at & = 45° and
it vanishes as the contact angle tends to 90°.

In Figs. 4a and 4b we plotted the isobars corresponding
to the velocity fields of Figs. 3a and 3b. Here the effects are
more pronounced and therefore easier to understand. The
isobars denoted with (.3 and 0.5 are hardly distinguishable
in both plots, but one can clearly seec how the fluid gets
‘““‘caught’’ between the interface and the particle surface for
the case of high viscous interface (see Fig. 4b). The location
of the stagnation point also depends on the surface viscosity
as well as on the contact angle. For a contact angle of 90°,
it is on the three-phase contact line but for smaller contact
angles it moves in positive Oz direction when the surface
viscosity drops. In order to demonstrate the three-dimen-
sional character of the problem, the pressure distribution on
the interface for the same conditions as in Figs. 3a and 3b
are shown in Figs. 5a and 5b. The pressure distribution on
the interface is antisymmetric to the plane y = 0, as can be
seen from Eq. [8].

B. Drag and Torque Coefficients

With sufficient insight into the characteristic features of
the flow field, one can understand the effects governing the
behavior of the drag and torque coefficients. In Fig. 6a the
drag coefficient is shown as a function of the contact angle
for four different surface viscosity numbers: (1) K = E =
GL(QDK=E=1,3)K=E=5(4)K=E=10.Fora
free surface {curve 1), the absolute value of the drag coeffi-
cient at a contact angle of 90° is exactly 3, corresponding
to 50% of the value of Stokes’ solution for a particle moving
in an unbounded fluid. However, decreasing the contact
angle down to 20° leads to an increase of the drag force of
almost 50%. In contrast, for high surface viscosity (curves
3 and 4) the drag coefficient is almost independent of the
contact angle. This is due to the fact that in this case the
hydrodynamic resistance is determined by the stagnation
arca which for viscous interfaces is almost as large for high
contact angles as for lower ones.

The torque coefficient presented in Fig. 6b for the same
conditions as in Fig. 6a is not very sensitive to changes of
the contact angle for low values of K and E. In this case
the torque is determined by the friction between the lower
half of the sphere and the surrounding fluid. Decreasing the
contact angle only slightly decreases the torque, because of
the stagnation zone covering the additional surface of the
particle which is in contact with the fluid. For interfaces
with high values of surface viscosity numbers (curves 3 and
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FIG. 6. Dependence of (a) the drag coefficient and {b) the torque coefficient on the contact angle: (1) free interface, (2) K =E= 1, (3) K =E

=5(4)K=E=10

4), a considerable influence of the contact angle on the
torque coefficient could be found. At 90° the friction force
exerted by the viscous interface on the particle acts directly
toward the center of the sphere. Hence, the torque coefficient
15 almost the same as for a low viscous interface. For lower
contact angles the force of the viscous interface results in a
remarkable torque, acting in opposite direction to the friction
force of the bulk fluid. In fact, the effect caused by the
interface is so strong that the torque coefficient changes its
sign and consequently, the particle rotates in the opposite
direction. When the particle is further immersed into the
fluid, the absolute value of the torque coefficient decreases
again, which appears reasonable when compared to the case
of a sphere moving close to a viscous interface considered
in {27).

A better understanding of the dependence of the drag and
torque coefficient on the surface viscosity numbers can be
gained from Figs. 7a and 7b, where the four curves represent
different contact angles: (1) 307, (2) 50°, (3) 70°, and (4)
90°. For all cases the drag coefficient shows an almost linear
drop when the surface viscosity increases with a stronger
influence of the contact angle at low values of K and E than
at higher values. In contrast, the torque coefficient remains
almost constant until a critical value of the surface viscosity

FIG. 7. Dependence of (&) the drag coefficient and (b} the torque coefficient on the surface viscosity number K = E: (1) &

(3 a =70°(4) ax = 90°.

numbers about 1, from which a similar linear dependence
on the surface viscosity can be perceived.

For most practically important cases, the dilatational and
the shear surface viscosity number are of the same order of
magnitude. Only in extreme cases, such as some biological
membranes, can they differ by several orders of magnitude.
However, it is quite common that they differ by a factor
from 0.2 to 5 and therefore we investigated the individual
effects of the different types of viscosity. In Fig. 8 we plot the
drag coefficient as a function of the shear surface viscosity
number for three different contact angles: (a) 20°, (b} 60°,
and (c) 80°, In addition, four curves for different dilatational
surface viscosities are presented in each plot: (1) K = 0,
(2) K=1,(3) K =5, and (4) K = 10. It becomes quite
clear that the linear drop perceived in Fig. 7a is almost only
due to the influence of the shear surface viscosity. This is
an important result of our analysis for a partially immersed
particle, as in (29) it was proved that for a viscous droplet
moving in an unbounded fluid the motion is only influenced
by the dilatational surface viscosity. The effects of the indi-
vidual viscosities having been singled out, Fig. 8 represents
a powerful tool to determine the dilatational surface viscosity
in ranges where the surface shear viscosity is known through
measurements of the drag coefficient of a floating particle.

E=K

3¢, (2) a = 50°
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FIG. 8. Dependence of the drag coefficient on the shear surface viscos-
ity number for contact angles of (a) 20°, (b) 60° and (c) 80°% (1) K =0,
(2)K=1(3)K=5(4)K = 10

For many practically relevant cases, this might be easier
than the maximum bubble pressure method (see (35) and
(36)). In addition, it is known that for ny, < 1 sp the
dilatational viscosity has no influence on the particle
motion. Therefore, from measured drag coefficients we can
also determine shear viscosities of the order of 0.001 sp. It
would be interesting to compare such results to measured
values gained with a knife-edge surface viscosimeter (see,
e.g., (34)).

C. The Surface Diffusion Coefficient

Considering the drag-out problem for certain applications
where particles float on the surface of the liquid or are dip-

coated, quantitative information on the surface diffusion co-
effictent might be of constderable practical importance. Fol-
lowing (5-9) the surface diffusion coefficient D of a parti-
cle floating on a viscous interface in the frame of Einstein’s
theory can be written in the form

kT

DS = L]
fmna

(16]

where k is Boltzmann’s constant and T i$ the temperature.
In Fig. 9 we plot the ratio of this surface diffusion coefficient
relative to the surface diffusion coefficient Dy, for a free
interface. The curves in Fig. 9a represent ditferent values of
the surface viscosity numbers: (1) K = E =1, (2) K =E
= 5,{(3) K = E = 10. The absclute value of D, is of course
smaller for smaller contact angles than for large values of
«. However, the slope of the curves indicates that the mobil-
ity of a particle on a viscous surface changes less signifi-
cantly with the contact angle than the mobility of a particle
floating on a free interface. In addition, one can see that the
relative change of the surface diffusion coefficient is more
pronounced for contact angles larger than 45° than for
smaller values. Figure 9b gives a better impression of the
dependence of the relative surface diffusion coefficient on
the surface viscosity numbers for four different contact
angles: (1) 30° (2) 50°, (3) 70°, and {4) 90°. Apparently,
the most important decrease of the mobility of the floating
particle takes place in the range 0 < K, E < 5, with a less
significant drop for higher values of K and E.

4. CONCLUSIONS

The mode! presented for computing drag, torque, and sur-
face diffusion coefficients makes it possible to investigate
the influence of the surface viscosity on the motion, the
hydrodynamic resistance, and the surface diffusivity of the
large Brownian particle floating on the viscous interface. It
can be used for small Reynolds and capillary numbers and
a linear Newtonian viscous interface model when the weight
of the particle is not high enough to cause a deformation of
the interface.

Qur calculations revealed that the drag and torque exerted
on a floating particle depend heavily on the surface viscosity
as well as on the contact angle. In particular we could prove
that for contact angles of less than 90°, the particle can be
forced to rotate in different directions when traveling along
the surface, depending on the surface viscosity number. The
information provided for the dependence of the drag coeffi-
cient on the shear and dilatational surface viscosity number,
respectively, can be utilized to determine the dilatational
surface viscosity when the shear viscosity number is known.
Moreover, when the shear surface viscosity is much smaller
than 1 sp and hence the influence of the dilatational surface
viscosity vanishes, our calculations can also be used to deter-



SURFACE VISCOSITY EFFECTS ON THE SURFACE DIFFUSIVITY 45

08} \1

0.6

2 V]

05

D,/Dg

04|

0ar

b 10

g2 l— : L : L 1 L L
20 a0 40 50 G0 70 a0 80

contact angle (deg)

FIG. 9.

2
08

g ol
Q .l

L
O o5}
o4l

02

E=K

(a) Dependence of the ratio of the surface diffusion coefficient D, and the free surface diffusion coefficient Dy, on the contact angle: (1)

free interface, (2) K= E=1,(3)K=E =35, (4) K = £ = 10, (b) Dependence of the ratio of the surface diffusion coefficient D, and the free surface
diffusion coefficient Dy, on the surface viscosity number X = £; (1) @ = 30%, (2) & = 50°, (3} a = 70°, (4) a = 9F,

mine the shear surface viscosity from measurements of the
drag force coefficient,

Finally, our calculations of the surface diffusion coeffi-
cient provide useful background information for the drag-
out problem with particles or certain cases of dip coating.
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