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The drag coefficient, 8, of spherical particles attached to a
pure air-water interface is determined. The method is based on
the measurement of the particle velocity ¥, under the action of
a well-defined lateral capillary force F. The capillary force is
created by controlled deformation of the water surface by means
of a Teflon barrier whose vertical position can be precisely ad-
justed. The magnitude of the force is calculated by means of the
theory of capillary interaction between a sphere and a vertical
wall (Kralchevsky et al., J. Colloid Interface Sci. 167,47,1994).
The drag coefficient is calculated from the ratio 8 = F/ ¥V at small
Reynolds numbers. The dependence of the drag coeflicient on
the particle size and the three-phase contact angle is determined.
For small spheres, which do not create substantial deformation
of the fluid interface, 8 is always smaller than the Stokes coef-
ficient, 85 = 6#na (n is the water viscosity and a is the particle
radins}. For large spheres, however, 8 can be greater than fs.
This higher hydrodynamic resistance can be explained by the
presence of a curved meniscus around heavier particles. The
measured values of 3 are compared with theoretical calculations
and very good agreement is reached. It is demonstrated that the
method is sensitive to the presence of adsorbed surfactants and
that it can be used for the determination of the surface viscosity
of adsorbed layers. © 1995 Academic Press, Inc.

Key Words: drag coefhcient; floating particle; capillary force;
three-phase contact angle; surface diffusion.

1. INTRODUCTION

The dynamic behavior of a particle attached to a fluid
interface has at least two aspects of interest to the colloid
scientist. On the one hand, such a configuration appears in
some important technological processes. For instance, par-
ticle attachment to the air-liquid interface is an important
step in the flotation process (1). On the other hand, the
hydrophobic properties of the adsorbed particles { expressed
via their three-phase contact angle) are believed to play an
important role in the stability of foams and emulsions con-
taining solid or fluid particles (2-4). In coating technology
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the particles can be either part of the coating material {(e.g.,
latex ) or contaminants which cause defects in the final coat-
ing (5). As pointed out by Brenner and Leal (6, 7), small
spherical particles represent a very convenient model system
for the analysis of the equilibrium and the dynamic behavior
of adsorbing molecular species (e.g., low-molecular-weight
surfactants). In a detailed theoretical study, Brenner and
Leal (6, 7) demonstrated how the macroscopic description
of the surface adsorption and diffusion can be deduced from
a rigorous microscale consideration.

The equilibrium properties of adsorbed particles are rel-
atively well understood. The equilibrium three-phase contact
angle of a single solid particle attached to a fluid interface is
determined by the minimum of the total interfacial energy
and satisfies the Neuman-Young relationship (8). Theoret-
ical expressions are availabie for the capililary pair interaction
energy between adsorbed particles (9-11). Experiments with
particles floating in a Langmuir trough were performed { 12—
14), aimed at determining the three-phase contact angle or
other equilibrium properties. In contrast, quantitative studies
of the dynamic behavior (diffusion, friction, etc.) of particles
attached to a fluid interface are scarce. This results (at least
in part) from the theoretical and experimental difficulties
which one has to overcome {15). Brenner er a/. (6, 7, 16~
18) considered in general form the problem of determining
the diffusion coefhcient D and the drag coefficient 8 of a
spherical particle attached to the fluid interface. They showed
that the generalized Einstein relation connecting these two
coefficients is valid, in this case D = k7/ 3 (kT is the thermal
energy ). For some particular values of the three-phase con-
tact angle, the diffusion and drag coeflicients were theoreti-
cally calculated (19, 20). In a recent study Danov ef al. (21)
calculated the drag coefhicient for a wide range of three-phase
contact angles of the particle using the “two vorticities—one
velocity” formulation for different values of shear and di-
latational surface viscosities. Estimates of the effect of ad-
sorbed surfactants on the dynamics of particle motion were
proposed (22, 23). We are aware of only one experimental
study where the coeflicient of surface diffusion of adsorbed
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particles was determined {20), However, because of the small

size of the diffusing particles the three-phase contact angle

was not determined and controlled in this study. Also, the

polvdispersity of the sample has not allowed the comparison
" of these experimental results with theoretical calculations.

Another area where the dynamic properties of adsorbed
particles can be important is the process of two-dimensional
cluster formation and growth (see Refs. (24-26) and the
literature cited therein). In these studies the structure of the
aggregates and the kinetic mechanism of their formation are
subjects of primary interest.

In the present study we determine the drag coefficient 8
of relatively large particles (of submillimeter radius) by
measuring the particle velocity under the action of a well-
defined external force. Compared to previous studies, our
method has a number of advantages. First, larger particles
allow precise determination of the sphere diameter and the
three-phase contact angle. As a result a comparison with
available theoretical results {21) is possible without using
any adjustable parameters. Second, the measuring method
is much faster and, therefore, it is less mfluenced by dis-
turbing factors like thermal convection (27). Third, the force
exerted on the particle is controlled and a set of experiments
at different forces arc performed. Fourth, as shown below,
the method can be applied to systems containing adsorbed
surfactant molecules. As a result the rheological propertics
of the monolayer can be investigated. Once the drag coeffi-
cient is known, the diffusion coeflicient can be determined
by means of the Einstein relation.

It should be noted that this study became possible only
after the recent advances in the theoretical and experimental
investigation of the lateral capillary forces (28-34}. in these
papers expressions for the capillary force and the interaction
energy between a particle and a vertical wall {or between
two particles) are derived and experimentally verified. It is
demonstrated that the capillary interactions are quite strong
and of a very long range.

This paper is organized as follows. In Section 2 the ex-
perimental setup and the materials are described. In Section
3 the data processing procedure is explained. The experi-
mental results are presented and discussed in Section 4. The
conclusions are summarized in Section 3.

2. EXPERIMENTAL

2.1. Marerials

Most of the measurements were carried out with hydro-
phobized submillimeter glass spheres. Two different proce-
dures for hydrophobization of the glass beads are used. In
one set of experiments the hydrophobization is accomplished
by immersion of the precleaned particles for 4§ h ina 1072
M solution of cetyltrimethylammonium bromide (CTAB).
The surfactant concentration is = 10-fold the critical micelle
concentration (CMC). During this period physical adsorp-
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tion of the cationic surfactant onto the negatively charged
glass surface takes place. The three-phase contact angle of
the particles prepared by this method is close to 50° (see
Section 3.2 for the method of determining the contact
angle}. In a second set of experiments the compound
1,1,1,3,3,3, hexamethyldisilazane (Sigma, USA} is used as
the hydrophobizing agent. This substance provides a chem-
ical bonding between hydrophobic methyl groups and the
glass surface as a result of a chemical reaction. For hydro-
phobization we put some guantity of glass particles on the
bottom of a small closed glass beaker. After that we drop a
few droplets of the hydrophobizing agent close to the beads
inside the beaker and wait for 24 h, The disilazane evaporates
from the drops and condenses on the glass particle surfaces.
The three-phase contact angles, obtained in this way, are
close to 90°. Besides glass beads, measurements were per-
formed with a hydrophobic copper sphere, a product of
Stanley Co. (Japan). The sphere has a radius of 0.518 mm
and its measured three-phase contact angle was 78°,

The water for the experiments is obtained with a Milli-Q
Organex system (Millipore ). Before each of the experimental
runs the Teflon barrier, glass cell, and glass particles are
cleaned by immersion in hot chromic acid for not less than
24 h. This procedure is followed by abundant rinsing with
water. Hot chromic acid is also used for cleaning the cuvette
and the instrumental glassware.

Sodium dodecyl sulfate (SDS), from Sigma, is used to
form a monolayer of surfactant molecules on the air-water
interface in one of the experiments. The surfactant is taken
from a recently obtained batch quantity and the solutions
are prepared 24 h before the experiments. The surfactant
concentration is 4 X 1072 A, which corresponds to fivefold
the critical micellar concentration (35).

2.2. Experimental Setup and Procedure

In Fig. | the schematics of the expertmental equipment
used is shown. It presents a modification of the setup de-
scribed earlier (32), where it was used for the measurement

Fi1G. 1. Experimenial setup for determination of the drag coefhicient of
a particle attached to a fluid interface: (1) spherical particle, {2) movable
Teflen barrier, (3) fluid interface, (4) micrometric screw, (5) horizontal long-
focus microscope, (6) vertical long-focus microscope.
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of the lateral capillary image force between spherical particles
and a vertical wall. The equipment contains horizontal and
vertical microscopes (Carl Zeiss-Jena, Germany ). Through
the vertical microscope the motion of the particle can be
observed and recorded by using a CCD camera and video
recorder (SLV-RS, Sony). The horizontal microscope allows
the measurement of the particle dimensions in order to cal-
culate the three-phase contact angle at the particle surface
(see Section 3.2 below).

Before each experimental run, the aqueous phase is poured
inside the vessel and 1ts surface 1s cleaned from impurities
by suction of the liquid via a pipette connected to a vacuum
pump. After cleaning, the hydrophobized glass particle is
put on the air-water surface by using a glass capillary holder.
The Teflon barrier (see Fig. 1) is connected to a micrometric
table which allows measurement of the depth of barrier
movement downward. In order to achieve sufficient accuracy
we repeat the initial adjustment of the zero level (where the
barrier touches the water surface, A/ = 0, see Fig. 1) 20-30
times and take the average number from the micrometer
scale. Then the barrier is moved downward until a certain
depth, H, is achieved. This leads to a deformation of the
water surface and results in a lateral capillary force exerted
on the particle (31), which brings about particle movement
toward the wall of the barrier. The video recording of the
moving particle is then processed frame by frame using a
Videoplan 2 computer from Zeiss (Germany ), and the dis-
tance between the particle and the wall is measured as a
function of time. When the particle reaches the wall the Tef-
lon barrier is lifted by using the micrometric screw. Due to
the change of the meniscus slope at the Teflon surface, the
particle is repelled and again moves away from the wall.
Then the Teflon barrier can be moved downward again and
the measurement can be performed at a different depth H.
When experiments with SDS are carried out, the system is
left to relax for not less than 2 min before each measurement
in order to accomplish equilibrium between the surfactant
monolayer and the bulk solution.

In order to reduce evaporation during the experiment, the
equipment is placed in an isolating transparent box saturated
with water vapor.

3. DATA PROCESSING

3.1. Capillary Force and Drag Coefficient

The physical origin of the capillary interaction between a
floating particle and a wall lies in the fact that the wall per-
turbs the interfacial deformation created by the particle (31).
The range of the capillary interaction can be characterized
by the so-called capillary length, ¢!,
£3.13

q* = Apgly, Ap=p— pu,

where v is the interfacial tension, p; and py ar¢ the mass
densities of the two fluid phases, and g is the gravity accel-
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eration. Thus for a water-air interface (Ap = 1000 kg/m?,
v =72 mN/m) one has ¢7' = 2.7 mm.

According to the theory developed by Kralchevsky et al.
(31), when the particle-wall separation is large compared
to the particle diameter, the capillary force exerted on the
particle 1s given by the following asymptotic expression:

F = —my[ 203K (2¢x)

+ 20,gHe™ + g(r.gHe™#)*]. [3.2]
Here, O, = rysin ¥, is the so-called “capillary charge” of the
floating particle, r; is the radius of the three-phase contact
line at the particle surface, and ¥, is the meniscus slope
angle at the particle three-phase contact line (see Fig. 2).
K (2¢gx) is a modified Bessel function of the first order. H
is the depth of immersion of the Teflon barrier with respect
to the plane z = 0, and x is the distance between the particle
center and the wall surface. In our study the capillary charge
of the particle was calculated through the expression (11,
31)

]

b 4
0, = 5 qz{(Rz - ?2)[9% - EDzR% - r%hE:l , [3.3]

where R, is the particle radius and

(o2 — o)

DZ = >
(o1 — p11)

[3.4]

where p, is the particle density. In Eq. [3.3], b, is the depth
of particle immersion inside the lower phase (Fig. 2). It was
directly measured as explained in Section 3.2 (the depen-
dence of b, on the particle—wall separation is a higher-order
effect for the particles studied ). The quantity A, is the mean
elevation of the particle contact line with respect to the hor-
izontal surface z = (). In our calculations we used the asymp-
totic expression (31)

hy = hy, + H exp(—gx) — 0,Ko(2gx}, [3.5]

FIG. 2. Sketch of a spherical particie attached to a fluid interface. R, is
the particle radius and a; 15 the three-phase contact angle.
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where /., corresponds to a singie particle situated far away
from the wall. /1,,, was calculated by using Derjaguin’s for-
mula (36},

M2 = szln( 13.6]

qurZ) ’

v. = 1.781071- - -
Masceroni and

in Eq, [3.6] is the constant of Euler-

Orey == q* R32—4 Dy + 3c08 a; — cos® az)  [3.7]

1
6
is the limiting value of @, for x — oo (see Ref. (11)).
In order to obtain the trajectory of the particle, it is nec-
essary 1o solve the equation of motion,
mi=F — fx, [3.8]
where 3 is the particle drag coeflicient and Fis given by Eq.
13.2]. The drag force is expressed as

Fy= —Bx = —fyByx, [3.9]

where

B, = 6n1R, [3.10]
is the Stokes drag coefficient for a spher¢ immersed in an
unbounded fluid and f; denotes the dimensionless drag coef-
ficient for a particle floating on the interface. In final form,

F

x=;~ﬁ,%x. [3.11]

This nonlinear differential equation can be solved numeri-
cally by transforming it into a system of two differential
equations of the first order,

V= F/mkjﬁgf V.
" [3.12]
X=V.

The numerical solution of these two differential equations,
at fixed boundary conditions, gives us the motion law of the
particle, x(2) and V{z), as well as the value of f; considered
as an adjustable parameter.

In the present study the drag coefficient is determined by
comparing the measured dependence of the particle—wall
separation, x, vs time, 7, with the theoretical function cal-
culated by means of numerical integration of the particle
motion equation. As a merit function in the minimization
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procedure we used the so-called “random middle deviation
of squares” (RMDS),

1 N
RMDS =+ 3 (1 [3.13]

2
KXink
- 7
k=1

xexp,k

where N 1s the number of experimental points taken into
account, and Xy and X, are the theoretical predictions
and the experimental results at a given time.

3.2 Determination of the Particle Three-Phase Contact
Angle

The quantities R», b,, and r» are directly measured by
using the horizontal microscope (Figs. | and 2). Then one
can use either the values of R, and &, or the values of R,
and r, to calculate «; and the meniscus slope angle ¥, by
using a simple iterative procedure described in Section 3 of
Ref. (32).

4. RESULTS AND DISCUSSION

Experimental data measured as explained above are shown
in Figs. 3-5. Figure 3 shows the measured trajectories x(¢)
of a glass sphere of radius R; = 0.229 mm and a three-phase
contact angle of «, = 48.7°, The different symbols correspond
to different values of the immersion depth /. The larger the
H_ the greater the capillary force F at a given separation x
(the two upper curves in the figure intersect because the initial
moments at { = 0 correspond to different initial values x(¢
= ()}). The value of the dimensionless drag coefficient de-
termined from the minimization of RMDS (Eq. [3.13]) is
f3=0.68 £0.02. It is seen from the figure that the theoretical
curves and the experimental points agree very well except

1.5
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FIG. 3. Trajectories of a spherical glass particle of radius R, = 0.229
mm and three-phase contact angle «; = 48.7°. The symbols denote exper-
imental points and the solid lines are calculated by means of the numerical
procedure described in Section 3.1 with the dimensionless drag coefficient
fi = 0.68 + 0.02. The different curves correspond to different magnitudes
of the water surface deformation, H.
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FIG. 4. Velacity of a spherical glass particle (the same as in Fig. 3) as
measured expenimentally (the symbols} and calculated (the solid curves)
from the numerical procedure with f; = 0.68 £ 0.02,

for the region of the smallest separations (x < 8 mm). The
poorer agreement in this region is most probably due to the
following reasons: (i) the particle velocity (and the corre-
sponding Reynolds number) becomes so high that inertial
hydrodynamic eftects become important; (ii) the capillary
force at separations gx ~ 1 may not be accurately calculated
from Eq. [3.2], which is an asymptotic expression valid at
{gx)? > 1; and (iii) the presence of the Teflon barrier may
influence the hydrodynamic flow around the particle and
thus may change the value of f3, due to hydrodynamic in-
teraction between the particle and the wall. That is why in
the minimization procedure we use only the points above
the horizontal dashed line in Fig. 3 corresponding to x > 8
mm, i.e., Re < 0.8, where the asymptotic expression for the
capillary force is justified. In this region the perturbation of
the hydrodynamic flow around the particle due to the Teflon
barrier can be neglected because the distance between the
bead and the barrier is about 40 times the particle radius (it
is well known from hydrodynamics that this interaction
obeys an inverse proportional law with respect to the distance
oc 1/x).

In Fig. 4 the measured and calculated particle velocities
are compared. The experimental points are in excellent
agreement with the theoretical curves for all experimental
runs. The measured particle velocity is plotted in Fig. 5 as
a function of the capillary force calculated by using Eq. [3.2].
The dashed straight line in the figure corresponds to the sim-
ple proportional law of particle motion (negligible inertial
effects),

F=—BV=—fV,

with f3 = 0.68. At larger separations the points of all exper-
imental runs lie on the straight line because the particle ac-
celeration term (mX) on the left-hand side of Eq. [3.8] is
negligible compared with the capillary and drag forces.
However, at small separations (larger capillary force) one
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FIG. 5. Velocity of a glass particle as a function of the capillary force
calculated by means of Eq. [3.2). The slope of the straight line corresponds
to drag coefficient f, = 0.68 without inertial effects.

observes a deviation of the experimental points from the
straight line, due to a contribution of the acceleration term
in the force balance (Eq. [3.8]}. The points in that region
are very well described theoretically when one accounts for
the acceleration term, as in Eq. [3.12]—see Figs. 3 and 4.

In a similar way, we processed the experimental data for
glass spheres of different three-phase contact angles and the
final results are summarized in Table 1. It is seen from Table
1 that the dimensionless drag coefficient f; of the glass beads
on pure water decreases with the increase of the particle three-
phase contact angle and is always smaller than unity. The
theoretical analysis performed by Brenner and Leal (6, 7)
shows that the dimensionless drag coeflicient of a particle
attached to a planar fluid interface is a function only of the
ratio of the viscosities of the two fluids and of the three-phase
contact angle. Therefore, for pure water-air interfaces and
light particles (which slightly deform the interface} f; does
not depend on the particle size, The function f3( ;) is nu-
merically calculated in Ref. {21) and is plotted in Fig. 6
together with our experimental results. As seen from the fig-
ure, the agreement between theory and experiment is very
good. One should note that no adjustable parameters are
used in this comparison.

The experiments with the heavier copper particle, however,
showed that fj can be larger than unity (i.e., that the dimen-

TABLE 1

Measured Drag Coefficients of Glass and Copper Particles
with Different Three-Phase Contact Angles

System type a; () R, (mm) i sSD
1. Glass bead 48.7 0.229 0.68 +0.02
2. Glass bead 53.0 0.231 0.66 +0.03
3. Glass bead 82.0 0.222 0.54 +0.05
4. Copper bead 78.0 0.518 1.77 +0.05
5. Glass bead + surfactant 52.0 0.216 1.60 —
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FIG. 6. Comparison of the experimental results {the circles) for the
dimensionless drag coefficient with the theoretical calculations from Ref.
21).

sional drag coefficient 8 can be larger than the Stokes coef-
ficient). As an illustration, in Fig. 7 two measured trajectories
of the copper sphere (R, = 0.518 mm and a, = 78°), cor-
responding to two different values of H, are plotted. The
solid curves are calculated by using the procedure from Sec-
tion 3.1, and the values f3 = 1.75 for the upper curve and f
= 1.83 for the lower curve are determined. As explained in
Ref. (38), this high drag coefficient can be considered as a
result of the increased hydrodynamic resistance in the curved
meniscus region formed around the heavier particle, The
main reason for the increased hydrodynamic resistance, re-
sulting in a higher surface drag coefficient of the particle, is
the movement of the curved meniscus around the particle
together with the particle itself. This leads to a bulk motion
of the fluid, and the dissipation takes place not only at the
immersed surface of the particle, but in the whole region
below the curved meniscus. For that reason, the surface drag
coeflicient becomes almost three times bigger than the ex-

1.7 T : .
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%.U 0.2 0.4 0.6 0.8 1.0
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FIG. 7. Trajectory of a copper particle with radius R, = 0.5178 mm
and three-phase contact angle ., = 78° at two different depths of immersion
of the Teflon barrier: A = (.942 mm and # = 1.031 mm. The solid lines
are calculated with dimensionless drag coefficient fj = 1.73 (the upper curve)
and fy = 1.83 (the lower curve).
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FIG. 8. Comparison of the experimentally measured (the symbols) and
the theoretically calculated (the solid curves) velocities of the copper bead
for the data shown in Fig, 7.

pected value at the same three-phase contact angle (when
only the friction of the particle surface beneath the water—
air interface 1s considered). The lower the deformation of
the meniscus, the lower the difference between the measured
dimensionless drag coefficient and its theoretically predicted
value. The limiting case is the situation where there is no
meniscus deformation around the particle. In this case the
measured values coincide very well with the theoretical ones
(see Fig. 6). The measured and calculated velocities for the
same experimental runs are compared in Fig. 8. Again, a
very good agreement is observed.

Finally, we present results for the drag coefficient of a
particle moving along the air-water interface when a mono-
layer of adsorbed surfactant molecules is present. The ex-
perimental data were measured with a disilazane hydro-
phobized glass bead of radius R; = 0.216 mm, whose contact
angle a was determined to be 52°, The results are presented
in Figs. 9 and 10 and in the last row of Table 1. The trajectory

0.a — T

0.7} h
E
o
S osl
[ =
o
]
)

05}

0-4 L L —_—

)} 1 2 3 4
time (s)

FIG. 9. Trajectory of a spherical glass particle of radius R; = 0.216 mm
and three-phase contact angle @, = 52.0° in the presence of 4 X 1072 M
sodium dodecyl sulfate. The symbols denote experimental points and the
solid line is calculated by means of the numerical procedure described in
Section 3.1, with dimensionless drag coefficient f; = 1.60.



DRAG COEFFICIENT OF SPHERICAL PARTICLES

0.20 . . :
0186 .
3
__5, 012+ 1
o
g oo8f 1
D
>
0.04 L .
0.00 . - :
o 1 2 3 4
time (s)

FIG. 10.  Velocity of a spherical glass particle in the presence of surfactant
{compare with Fig. 9) as measured experimentally {the symbols} and cal-
culated (the solid curves) from the numerical procedure with f; = 1.60.

of the particle, plotted in Fig. 9, is described fairly well by
the above theoretical expressions (Eqs. [3.11] and [3.12])
with an adjustable parameter f3 = 1.60. The good agreement
between theory and experiment is also demonstrated in Fig.
10, where the data are plotted as particle velocity vs time. It
is seen that the presence of a surfactant monolayer increases
the dimensionless drag coefficient f; from 0.663 (theoretical
for pure liquids; see Fig. 6) to 1.60. This considerable dif-
ference can be interpreted as a result of the surface viscosity
of the SDS adsorption layer {37). Qur data suggest that the
developed method is very sensitive to the presence of sur-
factant molecules adsorbed on a surface.

5. CONCLUSIONS

The main new results of this study can be summarized as
follows:

(1) A relatively simple and precise method for the deter-
mination of the drag coefficient 8 of a spherical particle at-
tached 10 a liquid interface has been developed. The accuracy
and reproducibility of the data correspond to a relative error
in 8 smaller than 5%.

{ii) Measurements of the drag coefficient of submiliimeter
glass spheres on a pure water surface at different three-phase
contact angles were performed. The measurements show that
for these particles 3 1s smaller than the Stokes coefficient g,
= 6mnR; and decreases with the three-phase contact angle
ay . For such light particles the dimensionless drag coefficient
Ja = B/8, is a function of «; and does not depend on the
particle size. The comparison of the experimental results for
Jalez) with available theoretical calculations shows a very
good agreement (see Fig. 6) without using any adjustable
parameter.

(1ii) The experiments with heavier copper spheres show
that & can be larger than the Stokes coefficient 8,. This non-
trivial result can be explained by the higher hydrodynamic
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resistance in the curved meniscus formed around the heavy
particles.

(1v) The presence of an adsorbed monolayer of surfactant
molecules increases appreciably the surface drag coefficient
of the particles. This fact suggests the attractive possibility
of investigation of the rheological properties of the mono-
layer.

The proposed method can be applied without substantial
maodifications to the following important systems: a water
surface covered with a nonsoluble or soluble surfactant (in-
cluding proteins) and the interface between two liquids (e.g.,
water and oil), From the drag coefficient one can calculate
the surface diffusion coefficient by means of the Einstein
relation.

ACKNOWLEDGMENTS

The authors thank Professor Peter A. Kralchevsky and Dr. Hans Raszillier
for their most helpful discussions. This research was supported financially
by Volkswagen-Stiftung. The authors gratefully acknowledge this support
of their collaborative research.

REFERENCES

1. Schulze, H. J., “*Physico-chemical Elementary Processes in Flotation.™
Elsevier, Amsterdam, 1984,
2. Aveyard, A. R., Cooper, P., Fletcher, P. D. I, and Rutherford, C. E.,
Langmuir 9, 604 (1993).
3. Denkov, N, I, Kralchevsky, P. A., lvanov, I. B, and Wasan, D. T., J.
Colloid Interface Sci. 150, 589 (1992}
4. Tambe, D. E., and Sharma, M. M., J. Colloid Interface Sci, 157, 244
(1993}).
5. Chevalier, Y., Pichot, C., Graillat, C., Joanicot, M., Wong, K., Maquet,
I., Lindner, P., and Cabane, B., Colloid Polym. Sci. 270, 806 (1992).
6. Brenner, H., and Leal, L. G., J. Colloid Interface Sci. 65, 191 (1978).
7. Brenner, H.,, and Leal, L. G., J. Colloid Interface Sci. 88, 136 (1982).
8. Tadros, Th. V., and Vincent, B., in “Encyclopedia of Emulsion Tech-
nology” (P. Becher, Ed.), Vol. 1, p. 129. Dekker, New York, 1983.
9. Nicolson, M. M., Proc. Cambridge Philos. Soc. 45, 288 (1949).
10. Chan, D.Y.C, Henry, J. D, Jr,, and White, L. R., J. Colloid Interface
Sei. 79, 410 (1981),
11, Paunov, ¥, N, Kralchevsky, P. A., Denkov, N. D, and Nagayama, K.,
J. Colloid Interface Sci. 157, 100 (1993).
12, Aveyard, R., Binks, B. P, Fletcher, P. D, I, and Rutherford, C. E,, J.
Chem. Soc. Faraday Trans., in press.
13. Armstrong, A. J., Mockler, R. C., and O’Sullivan, W. 1., J. Phys. Con-
dens. Matrer 1, 1707 (1989),
14. Clint, J. H., and Taylor, S. E., Colloids Surf. 65, 61 {1992); Clint, J., and
Quirke, N., Colloids Surf A: Phys.-Chem. Eng. Aspects 78, 277 (1993).
15. Kim, 8., and Karrila, S., “Microhydrodynamics: Principles and Selected
Applications.” Butterworth-Heinemann, Boston, 1991.
16. Goldman, A. J., Cox, R. G., and Brenner, H., Chem. Eng. Sci. 22, 637,
653 (1967).
17. Schneider, Y. C.. O'Neill, M. E., and Brenner, H., Mathematika 20,
175 (1973).
18. Majumdar, S. R., O'Neill, M, E., and Brenner, H., Mathematika 21,
147 (1974).
19. Wakiva, S., Colloid Eng. Res. Rep. 6 (March 30, 1957).
20. Radoev, B., Nedjalkov, M., and Djakovich, V., Langmuir 8, 2062 (1992),
21. Danov, K. D., Aust, R., Durst, F., and Lange, U., J. Colloid Interface
Sci., in press.



154
22,
23.
24,
25.
26.

27.
28.

29.

30.

PETKOV ET AL.

Mileva, E., and Nikoclov, L., J. Cofloid Interface Sci. 161, 63 (1993).

Dimitrov, K., Radoev, B., and Avramov, M., Langmuir 9, 1414 (1993).
Meakin, P,, Faraday Discuss. Chem. Soc. 83, 113 (1987).

Jullien, R., Botet, R., and Mors, P. M., Faraday Discuss. Chem. Soc.
83, 125 (1987).

Hoérvilgyi, Z., Medveczky, G., and Zrinyi, M., Colloids Surf. 60, 79
{1991).

Mysels, K. J., Langmuir 8, 3191 (1992}.

Kralchevsky, P. A., Paunov, V. N_, Ivanov, I. B, and Nagayama, K.,
J. Colloid Interface Seci. 151, 79 (1992).

Kralchevsky, P. A., Paunov, V. N., Denkov, N. D., Ivanov, [. B., and
Nagayama, K., J. Colloid Interface Sci. 155, 420 (1993).

Paunov, V. N., Kralchevsky, P. A., Denkov, N. D., Ivanov, L. B., and
Nagayama, K., Colloids Surf. 67, 119 (1992},

31

32.

33

34.
35,
36.
37

38,

Kralchevsky, P. A., Paunov, V. N, Denkov, N. D., and Nagayama, K.,
J. Colloid Interface Sci. 167, 47 (1994).

Velev, O. D, Denkov, N. D., Paunov, ¥. N., Kralchevsky, P. A., and
Nagavama, K_, J. Colfoid Interface Sci. 167, 66 (1994).

Kralchevsky, P. A, Denkov, N. D_, Paunov, V. N,, Velev, Q. DD, Ivanov,
1. B., Yoshimura, H., and Nagayama, K., J. Phys. Condens. Matter 6,
1(1994).

Velev, O. D, Denkov, N. D, Paunov, V. N,, Kralchevsky, P. A, and
Nagayama, K., Langmuir 9, 3702 (1993).

Lindman, B., and Wenerstrom, H., Top. Curr. Chem. 87, 1 (1980).
Derjaguin, B. V., Dokl Akad. Nauk USSR 51, 517 (1946},

Davies, J. T, and Rideal, R. K., “Interfacial Phenomena.” Academic
Press, London, 1963.

Danov, K. D., Durst, F., and Raszillier, H., submitted for publication.



