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Abstract—The present paper provides a short literature survey of the treatment of particle motion in fluids
as a basis of the author’s own work in this field. The work relates to the motion of a small solid particle inside
a thin liquid film. The particle motion is treated numerically to provide information of interest to thin film
liquid coating. The numerical computations yield information on the local velocity and pressure distribu-
tions, but also integral information expressed in drag and torque coefficients. The computations are carried
out for stationary flows of low Reynolds and capillary numbers and results are presented for different values
of surface dilatation and shear viscosities. Translational and rotational motions of the particle are
considered by integrating the resultant second-order partial differential equation with an alternating direct
implicit method. The numerical results reveal in all cases the strong influence of the surface viscosity on the
motion of the solid particle in the viscous liquid layer when the radius of the particle is of the same order of

magnitude as the thickness of the liquid film or when the particle is close to the liquid—gas interface.

1. INTRODUCTION

The motion of a single particle in a fluid has fasci-
nated fluid dynamists for more than a century and
analytical treatments have been put forward by many
researchers. Stokes (1851) derived the formula for the
friction force exerted on a spherical particle moving
with constant velocity in an unlimited incompressible
viscous fluid. Kirchhoff (1876) gave the solution for
a spherical particle slowly rotating in an unbounded
fluid with the same fluid properties as employed by
Stokes (1851). Rybczynski (1911) and Hadamard
(1911) generalised Stokes’ (1851) (low-Reynolds num-
ber) solution for the settling velocity of a solid sphere
and derived the solution for the case of a spherical
fluid droplet. However, experiments [cf. Lebedev
(1916) and Silvey (1916)] performed shortly after-
wards revealed that fluid droplets of sufficiently small
radius settled as if they were solid spheres, obeying
Stoke’s original formula. Boussinesq (1913), in an at-
tempt to resolve this discrepancy between theory and
experiment, postulated the existence of a surface vis-
cosity, conceived as the two-dimensional equivalent
of the conventional three-dimensional viscosity
possessed by bulk-fluid phases. The solution for
a neutrally buoyant rigid sphere suspended in a
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homogenous shear flow that extends to infinity was
probably first obtained by Einstein (1956) in his
theory of the viscosity of particle suspensions.

The theory of Einstein (1956) was extended by
Jeffery (1922) to nonspherical particles, where a new
feature arises due to the orientation of the particle
relative to the principal axes of shear. Jeffery’s (1922)
classic analysis of the periodic rotation of an ellipsoid
of revolution suspended in a simple shearing motion
of a viscous fluid. The status of knowledge in this field
was summarised and theory and experiment were
compared by Goldsmith and Mason (1967).

Up to the mid-1960s a great deal of work was done
in obtaining first- and higher-order wall corrections
for particles in flows that are bounded by plane or
cylindrical walls [cf. Happel and Brenner (1965)]. The
force and torque exerted on the particle were ex-
pressed in a power series according to a/l, where a is
the particle radius and [ is the distance between the
centre of the particle and the wall. Following this idea,
Lorentz (1906) derived the motion of a sphere perpen-
dicular to a flat wall up to a/l. Faxén (1921) developed
the method of reflection for a sphere moving between
two parallel planes in a viscous fluid. Using his
method Wakiya (1956) considered the cases of motion
in Poiseuille- and Couette-flow. As was pointed out
by Hetsroni (1982), the method employed by Wakiya
(1956) does not yield physically correct results for
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small distances from the wall. An important step for-
ward towards a solution of the particle motion near
a wall was made by the theoretical work of Dean and
O’Neill (1963). They showed that the force and the
torque acting on a spherical particle, moving in a vis-
cous fluid at an arbitrary distance in a plane parallel
to the wall, can be accurately determined. The limiting
behaviour when the sphere is almost in contact with
the wall was obtained rigorously by O’Neill and
Stewartson (1967), Goldman et al. (1967) and Cooley
and O’Neill (1968). Instead of the exact solution of the
problem these authors derived asymptotic formulae
for the force and torque and corrected some inaccur-
acies made in the previous work of Dean and O’Neill
(1963) and O’Neill (1964). Ranger (1978) considered
the problem of a disk rotating with axial symmetry in
the presence of a flat interface separating two im-
miscible fluids of different viscosities. O’Neill and
Ranger (1979) derived the exact solution for the velo-
city field induced by a sphere rotating close to the
interface between two immiscible viscous fluids.
Shapira and Haber (1988, 1990) studied the low
Reynolds number hydrodynamics of a droplet mov-
ing in a quiescent fluid between two parallel plates
and the hydrodynamic interaction between a droplet
immersed in Couette flow and the containing walls.

For many years the Boussinesq (1913) solution,
based upon his surface viscosity postulate, was ac-
cepted as the basis to explain the anomalous droplet
settling-velocity results, encouraging the development
of a plenteousness of instruments for measuring sur-
face viscosity, as well as other rheological properties
of fluid interfaces [cf. Joly (1964)]. The work by
Sternling and Scriven (1959), together with Scriven’s
(1960) paper, wherein Boussinesq’s theory was gener-
alised to material interfaces of arbitrary curvature,
marked a turning point toward today’s modern un-
derstanding of interfacial rheology [cf. Edwards et al.
(1991)].

The effects of bulk and interfacial rheological prop-
erties and surfactant adsorption-desorption kinetics
on the rate of drainage of foam and emulsion films
was studied by Zapryanov et al. (1983) and Malhotra
and Wasan (1987). The effects of Gibbs elasticity and
surface viscosity upon the drag coefficient of an emul-
sion droplet in adsorption controlled Marangoni flow
was presented by Levich (1962) and Edwards et al.
(1991). The effect of Gibbs elasticity is usually ne-
glected when the concentration of insoluble surfac-
tants are small or the diffusion of soluble surfactants is
fast. In these cases we can calculate the flow in the
frame of Newtonian volume and surface rheology.

One of the most convenient numerical method for
solving this class of problems is the method of finite
elements. It was utilised by Brebbia (1978) and
Fletcher (1984) for solving the problem of the motion
of a cylinder between two walls. The latter problem,
however, is two-dimensional, in contrast to a spheri-
cal particle (instead of cylinder) moving between two
interfaces. That is why the solution proposed by
Brebbia (1978) and Fletcher (1984, 1991b) is not ap-

plicable to the problem considered here, which is
essentially three-dimensional. To complete the above
given summary of the literature on studies of particle
motion in fluids, some of the more recent publications
need to be mentioned. The general approach, along
with some important technological and biological ap-
plications, is considered in several monographs [cf.
Hunter (1987, 1989), Russel et al. (1989)]. The hydro-
dynamics of suspensions containing solid particles
was developed by several authors [cf. the review of
Davis (1993), and the papers of Brenner (1973),
Brenner and Leal (1982), Uijttewaal (1993), Uijttewaal
et al. (1993), as well as the book of Kim and Karrila
(1991)]. Experimentally gained rheological results
show that the behaviour of hydrosols containing solid
and fluid colloid particles can be rather different. The
differences mainly arise from the interfacial fluidity.
There are two types of viscosity behaviour: shear and
dilatational. In real emulsion and microemulsion sys-
tems and in thin liquid films containing particles {(de-
fects) one can distinguish also two types of elasticity
(shear and dilatational). To investigate theoretically
these properties it is necessary to solve the drag and
torque coefficients of an individual particle.

The present paper discusses the problem for deter-
mining the drag force and torque exerted on a solid
particle in a viscous liquid layer for low Reynolds-
and capillary numbers when the free surfaces-excess
pressure tensor obeys the Boussinesq (1913) and
Scriven (1960) constitutive law for a Newtonian inter-
face. In thin film coating and in many other cases
involving suspensions and emulsions, the particles of
interest have a diameter of about 1 um or less and the
relative velocity is of the order of a few cm/s or less.
Hence, for liquids such as water or commonly used
solvents, the assumption of low Reynolds- and capil-
lary numbers holds in most practical important
cases.

It is proved in detail in Section 2 that the problem
for Stokes’ flow in a cylindrical coordinate system of
revolution can be reduced from three-dimensions to
two-dimensions. The presented problem has no ana-
lytical solution because there is no analytical con-
formal transformation of the considered region into
a square. In Section 3 Stokes’ equations and bound-
ary conditions are transformed to an equivalent well-
defined system of second-order partial differential
equations with known boundary conditions using the
“two vorticities-one velocity” formulation. A numer-
ical procedure is invented based on the alternating
direction implicit (ADI) method in Section 4. Using
this procedure the drag force, torque coefficients, velo-
city and pressure distribution are obtained in Section
5 for all elementary motions which are components of
the stationary velocity and pressure distribution. The
numerical results reveal the strong dependence of the
surface viscosity numbers on the motion (rotation and
translation) of the solid particle in the viscous liquid
layer when the radius of the particle is of the same
order of magnitude as the thickness of the liquid film
or when the particle is close to the surface.
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2. DESCRIPTION OF THE MODEL

2.1. Basic equations and boundary conditions

Let us consider a solid spherical particle with radius
a, performing either a translational motion along the
Oy axis or a rotation around the Ox axis. (It can be in
a state of rest as well.) The particle is immersed in
a viscous fluid between two parallel viscous interfaces
S; and S, [see Fig. 1(a)]. It is supposed in all cases
that the deformations of the interfaces S, and S, are
small [i.e. the interface capillary numbers, defined by
€q. (10), are small] and that the stationary motions are
slow (small Reynolds number). Therefore, the flow is
considered as a viscous, incompressible creeping
motion which obeys the Stokes’ equations:

V.v=0, nViv=Vp n

where p is the pressure, 7 is the dynamic viscosity and
v is the local fluid velocity.
The boundary condition on the surface S, of the

solid particle is [see Fig. 1(a)]
at o 2)

Y=Y,

where v, is the velocity of the particle. In order to
account for the influence of the surfactants, we con-
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Fig. 1. (a) Geometry of the system. (b) Mapping of the
numerical grid from the curvilinear system of revolution
onto the r, z-plane.
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sider the Boussinesq—Scriven constitutive law for the
Newtonian interfaces S; and S,. Then the Newtonian
surface-excess stress tensor S can be defined in the
following form [cf. Scriven (1960) and Edwards et al.
(1991)]

S= Uls + (”d - r’sh)(ls:Ds)Is + znshDs' (3)

In eq. (3) ¢ is the thermodynamic interfacial tension,
ns» and n, are, respectively, the interfacial shear and
dilatational viscosities at a given point of the interface,
I, is the unit surface idemfactor. Thus D,, which
constitutes the symmetric portion of the surface velo-
city dyadic

D, = ;[(vs vo) I + 1 (sts)T} )

represents the rate of relative displacement.of surface
points, where v is the surface velocity and V;, is the
surface gradient. Equations (3) and (4) are the two-
dimensional analogs to the comparable expressions
for the bulk phase pressure tensor and the three-di-
mensional rate of deformation tensor respectively.
Because in all practical circumstances the surface-ex-
cess mass density is small compared to the bulk-phase
mass density, the equation for the interfacial mo-
mentum transport reduces to the form

Vi-S =n,-(P) )

where n; is the unit normal to the liquid—gas interface
and (P} is the jump of the volume stress tensor P

P= —pl+n[Vv+ (VW] (6)

at the liquid-gas interface. It provides the explicit
interfacial stress boundary condition for a Newtonian
interface.

The resultant force F, due to the stresses, exerted by
the surrounding fluid on the surface of the spherical
solid particle S, and the torque M experienced by the
body surface are [cf. Happel and Brenner (1965)]

F=J P-ndS,, M:J (roxP)-ndS, (7)
So o

where r( is the position vector and n is the outward
pointing unit normal. Since the problem under con-
sideration is linear for small capillary and Reynolds
numbers, the stationary particle motion in the liquid
flow can be presented as a superposition of transla-
tional and rotational elemeniary motions. Hence, the
hydrodynamic drag forces and torques of particle
translation and rotation are counterbalanced by those
connected with the external forces

F.+F +F =0, M, +M,=0 (8)

where F,,, F, and M,,, M, are, respectively, the drag
force and the torque of translation and rotation and
F, is the external force (for example buoyancy force
parallel to the undisturbed surfaces).

2.2. Fourier separation ansatz and parameters
We denote Oxyz as a system of Cartesian coordi-
nates. With respect to this system, ¢ is a meridian
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angle, any plane for which ¢ is constant a meridian
plane, r and z are, respectively, radial and vertical
coordinates in a cylindrical coordinate system Orgz
[see Fig 1(a)]. Dimensionless variables along the r-
and z-coordinate are introduced by scaling with the
particle radius a. Then the equations of the liquid—gas
interfaces and particle surface can be written as

S,‘: Z=2zy+ Qkhk(r) Sin(p (k = 1,2),
S(): VZ + Z2 =1 (9)

where z, and z, are the vertical coordinates of the
planes, Q, and Q, are the capillary numbers, defined
by

(10)
Ok

hy and h, are the disturbances of the lower and upper
liquid-gas interfaces, and 4, and o, are the lower and
upper interface tensions. For slow motions the char-
acteristical velocity V, is small and the capillary num-
bers are small parameters, e.g. for water solution the
capillary number is equal to one when the relative
velocity of the particle is about 72 m/s.

All the cases considered above have such linearized
boundary conditions for the elementary metions so
that the solution of eqs (1)—(6) contain only one mode
of the Fourier expansion. Therefore, the dimension-
less bulk velocity components R, F and Z and the
dimensionless pressure P can be presented in the
following general form:

v, = Ve R(r, z) sin ¢, v, = Vi F(r,z)cos ¢

v, =V,Z(r,z)sing, p= La*— P(r, z) sin g.

(1)
The characteristic velocity V, is the relative velocity
for the translational motion and wa, with w being
angular velocity, is the rotational motion. Insertion of
the ansatz (11) into the flow equation (1) and the
application of the boundary conditions (2)—(5) yields
a two-dimensional system of partial differential equa-
tions for the unknowns R, F, Z, P and S,. However,
a straightforward attempt to solve this system of
equations leads to computational difficulties con-
nected with the specific form of the tangential compo-
nents of the linearized stress boundary conditions for
the lower and upper liquid interfaces. This reduces
through the ansatz to a system of second-order differ-

ential equations:
OR d(6R R F
(— =Kt B+ =

0z or\or  r ¥

+E 18F+F R
Nrar 12 2

oF ¢ {0F F R
1V —=E, — [ — 4 ———
( )82 k6r<6r+r r>

1¢R

+ (K + Ep) R_F
* k ré’r+r2 r?

(12)

Z=0 at§, (k=12

where K| and K, are dilatational viscosity numbers, E;
and E, are shear viscosity numbers on the lower and
upper liquid—gas interfaces, defined by

Ek=’fsh,k, ___M

A (k=1,2).
na na

(13)
These computational difficulties, which are discussed
by Fletcher (1991a, b), can be avoided by the “two
vorticities—one velocity” formulation outlined in the
next section. Concluding this section, we point out
that, by substitution of eq. (11) into eq. (7), the drag
force F and torque M can be written in the form

F.=0 F,=fnnaV,, F,=0

(14)
M,=0

M, = mnya®V,, M, =0,

where the dimensionless drag coefficient f'is

f=J —P+6—R+6—E—9Z sin20do
0 or or Oz

+Jn i 06R+ i BOZ+sin66F+Z
sin @ — + sin 0 — —
o 6z or 0z

x cos 0d8 15

and m is the dimensionless torque coefficient, deter-
mined by

[ 0R 02 sinf + 352 oF cos @
"=\t 3z or
csinzodo— | |(R4+2Z,E
o|\0z or 0Oz

xsinf + Z} cos? 0do. 16)
The integration of (15) and (16) is performed along the
boundary of the particle r = sin ), z = cos 0. It is inter-
esting to note that in this cases the drag force in the
x and z directions is zero and that only the x compon-
ent of the torque remains. In the case of a spherical
particle moving with constant relative (translation)
velocity in an unlimited incompressible viscous fluid
we obtain the well-known Stokes’ (1851) formula, i.e.
f=6 and m = 0. In the case of rotating a spherical
particle with a constant angular velocity with respect
to the Ox axis in unlimited fluid the solutions (19), (20}
give the Kirchhoff’s (1876) formulac f = 0 and m = 8.

3. “TWO VORTICITIES-ONE VELOCITY” FORMULATION
OF THE PROBLEM

After eliminating the pressure from Stokes’ equa-
tions one obtains a general equation for vorticity

VxVxVxyv=0. (17

Let the functions { and ¥ be connected with the r and
z components of the vorticity vector with the follow-
ing expressions:

(18)
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After substituting in eq. (17) the definitions (11) and
(18) we can derive the following system of second-
order differential equations:

2y 1oy

or? r6r+§7—0
R s (19)
a0 200
6r2+r6+822_r2 ré’z_O

for the functions { and . From (11) and (18) the
equation of continuity of (1) can be written in the form

*F 30F *F 13y ¢y 1Y

- . (20
or? +r6r+az ror r? roz =0. (20)

This is a second-order differential equation for the
first Fourier mode of the ¢ velocity component F. By
use of definition (18} one can compute the axial and
radial components Z and R. Finally, the pressure is
derived from (1), (18) and (20) to be

5!//'//

T o 62

For solving the system (19), (20), it is necessary to
transform the boundary conditions of the problem. At
first from eqs (12) and (18) we may calculate the
tangential stress and kinematics boundary conditions
in the “two vorticity-one velocity” formulation. The
final form of these conditions on the liquid—gas inter-
faces are

21

16F X+ E 0°F 3 0F
(_)6 (Ky + By 6r2+r8r
K, 0
——"—‘/’—(K,(+2Ek)fz-
r or

(=D (22)

o ”lﬁ 1oy
oz ot or
é
—(rF)={ at$ (k=1,2)

éz

They represent a non-homogeneous system of sec-
ond-order differential equations for F and . From
eqs (19) and (20), one can obtain the boundary condi-
tions on the axis of the revolution

oF
—=0, y=0, (=0
or
At infinity the values of all functions F, { and  go to
zero. Equations (2) and (22) give the Neuman bound-

ary condition at the solid particle surface.

atr =0. (23)

4. NUMERICAL METHOD FOR SOLVING THE PROBLEM

Different numerical methods for solving similar
problems are proposed in literature [cf. Brebbia
(1978), Fletcher (1984, 1991a, b)]. We use the Alternat-
ing Direction implicit (ADI) method to solve the
resultant set of equations. Let ®° be the value of
functions at the time ¢,, ® *- the value of functions at
the time ¢, + 6¢/2, ®'- at t, + 6¢. Then the linear
equation

(8

o = L [®]+ L[] (24)
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in the first half time step yields

+ 0
—L[o* L,[®° 2
%) [@7]1= 312 + L[] (25)
and in the second half time step it results in
P! 20 — @°
— L[] =~ L,[D°]. (26
512 [ ]= 32 [®°]. (26)

In eqs (25) and (26) the linear operators L, and L,
consist only of the derivatives of r and z, respectively.
The numerical scheme gives the second-order time
interpolation. The time iteration step are repeated
until reaching the numerical stationary values of the
functions. In our case at every half step the problem is
to be solved by two stages because the boundary
conditions (22) contain derivatives with respect to
rand z as well.

At to + 6t/2 the first iteration step leads to a sec-

ond-order system of equations for F* and y ¥ in the
volume of the film
F* 62F*+36F4r toy* y*
ét/2 orr r ar r ér r?
F° 2?F° 18L°
= = 27
sip b ( 027 r 62) @

w-# 62\[/+ 16!// 3 wo N (32!//0
ot/2 or? roér ) 812 0z2
with the usual boundary conditions on the axis of
revolution, at infinity and on the spherical surface.

The boundary conditions on the liquid-gas interfaces
reduce to the following second-order system of equa-

tions:
(//-# azl//+ 1 a'!l+
[Ek< arr v or ):l

WO

o
s ’k< >

51/2
o Lk, v g (CF 30 28)
ot/2 , M\ ar? r or (
_Kody! vt F° OF°
2E (= F ).
y oy K2 TS ~ 512 (=1 oz

At to + 81/2 the second iteration step gives a sec-
ond-order equation for {* in the volume of the film

(" " regr y  (°
8t/2 or* r or ) 812
220 20y
+<5zz>—r 0z @9

where the values of the function y * are already deter-
mined by egs (27) and (28), with Dirichlet boundary
conditions on the solid surface and at the liquid—gas
interfaces, where the values of the function F* are
already determined by eqs (27) and (28). Equations
(27)—(29) are solved numerical using the second-order
interpolation of the functions in r direction and
a modified Thomas band matrix method [cf. Jennings
(1977].

The third iteration step at t, + 6t computes for
other combination of the functions — F! and (! in
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the volume of the film. In this case the system of
equations has the following form:

L 62{1 —2C+_CO aZCO
st/2 \oz2 ) st2  \ oz
(30)

F! o*F' 1a¢! _2F*—F° 0?F° 19¢°
8t/2 \8z2 radz) 812 éz2  r oz
with the usual boundary conditions on the axis of

revolution and on the spherical surface. The bound-
ary conditions on the liquid—gas interfaces have the

following form:
F! JOF! 2F* — F° oF°
0z
(1)

5t)2 iz 5t/2

2

oz

Cl

(rFHYy=0 atS (k=12).

The fourth iteration step at t, + 4t computes for
the function ! in the volume of the film for given
values of F! and {. In this case the equation can be
written as follows:

wl alwl B 2w+ _ wO 621110 (32)
81/2 8zt | 12 dz?
with usual boundary conditions on the axis of the
revolution and on the spherical solid surface. From
egs (22) and (26) we can obtain the boundary condi-
tion on the liquid—gas interfaces
1 Fil 1 2 + __,,0 i 0
‘[/_+(_ 1) l =L«_¢+(“ 1 i
ot/2 0z ot/2 0z
at S, (k=1,2). (33)
Equations (30)-(33) are solved numerical using the
second-order interpolation of the functions on z direc-
tion and modified Thomas band matrix method [cf.
Jennings (1977)].

The mapping of the numerical grid from the cur-
vilinear coordinate system of revolution onto the r,
z-plane in the vicinity of the particle is shown in Fig.
1(b).

5. NUMERICAL RESULTS AND DISCUSSIONS

S.1. Velocity and pressure distribution

Considering the coordinate system sketched in Fig.
1(a), the numerical results plotted in Figs 2-9 repres-
ent a situation where the lower surface S, is posi-
tioned at z; = — 1.5, the upper surface S, is at
z, = 2.0 and the particle radius is 1.

From experimental investigations, it is known that
the dilatational and the shear surface viscosity num-
bers are of the same order of magnitude for all practic-
ally relevant cases. Hence, Ky = E; and K, = E, were
assumed in all cases. To keep things simple, the upper
viscosity numbers were kept constant at K, =
E, = 0.1 which corresponds to low surface viscosity
or an almost free surface. As a value of 10.0 corres-
ponds to high surface viscosity, K, and E, were varied
between 0.1 and 10.0.

K. D. DANOV et al.

In Fig. 2(a) the velocity vectors in the plane x =0
are plotted for the case, when the lower and upper
viscosity numbers are identical, hence K, = E; =0.1.
The relative motion of the particle in the thin liquid
film can best be imagined when assuming an external
force, i.e. due to an electric or magnetic field, acting
upon the particle. Another, perhaps more important
effect, which one should bear in mind when talking
about the movement of small particles is Brownian
motion. At large distances, the velocity of the undis-
turbed liquid film relative to the particle is 1 and it is
interesting to note, that for low surface viscosity num-
bers the influence of the particle is rather far reaching.
Even at a distance of 5 times the particle radius the
velocity in the plane x = 0 is about 0.5. In contrast,
when rising the lower viscosity numbers to
K, = E; = 10.0 the disturbances caused by the fluid
are damped out very fast, as can be seen in Fig. 2(b).
For later discussions of the magnitudes of the drag
and torque coefficients, it is important to bear in mind
that the boundary layer around the particle is much
thinner for higher surface viscosity numbers than for
smaller.

In order to demonstrate the three-dimensional
character of the problem, Fig. 3 shows the velocity
distribution in the plane z =0 which is of course
symmetrical to the plane x = 0 as can be seen from eq.
(11). The low velocity gradients indicate that this plot
refers to the same values of K; and E, as in Fig. 2(a).
The pressure distributions which correspond to the
velocity field of Fig. 2(a) and (b) are plotted in Fig. 4(a)
and (b), respectively, for —3 < y < 3. The high pres-
sure gradients in Fig. 4(a), when looking at the region
directly below the particle, are only due to the smaller
distance to the surface when compared to the region
above the solid sphere. Figure 4(b) illustrates the addi-
tional influence of the higher surface viscosity num-
bers. Here, the effect is as pronounced as expected,
which could not be seen from the velocity plots. The
pressure distribution corresponding to Fig. 3 is shown
in Fig. 5, which is a confirmation of the expected
antisymmetric character of the pressure in this plane.

The results for the same variations of the lower
viscosity numbers K, and E, as before for the case of
a rotating particle are shown in Figs 6 and 7. The
velocity in the plane z = 0 has three components and
the flow is not symmetric. Again a small effect of the
distance of the particle from the surface and a large
effect of the surface viscosity numbers can be realized
when comparing the plots. The absolute values for the
pressure are of course smaller than in the previous
case except for the region very close to the particle,
where the velocity gradients are of the same order of
magnitude as before. The smaller influence of the
rotating particle in the surrounding liquid can best be
seen from the pressure distribution in the plane z =0
in Fig. 8.

Clearly, the presented pressure distributions will
lead to deformed interfaces which are plotted in Fig.
9(a) and (b) for the moving and the rotating particle,
respectively. In both cases the interfaces have low
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viscosity numbers. The absolute value of the deforma- -5 -4 -8

tion is proportional to the capillary number. In these
plots the deformation is however enlarged, in order to 4
give a better impression of the shape of the deformed
surface. The numerical solution and the definitions (9)
ensure that the film thickness increases before the 2
leading edge and decreases behind the trailing edge of
the solid particle in the case of translational motion,
because the pressure inside the film is greater before
the particle than behind it. In the case of rotation, the
shape of the interfaces is more attractive because the
particle drags the liquid and the pressure distribution -2
inside the film is very complicated. In both cases the
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Fig. 5. Pressure distribution for a spherical particle in the -5
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absolute value of the disturbances on the far interface
is less than on the near interface.

5.2. Drag and torque coefficients

The most interesting outcome of our analysis is the
influence of the surface viscosity numbers and the
distance of the particle from the interface on the drag
and torque coefficients as defined by eqgs (14)—(16).
This could eventually be the basis for the computation
of the diffusion coeflicient for small particles when
moving parallel to an interface of arbitrary viscosity.
Besides a better understanding of the behaviour of, i.e.
magnetic suspensions under the mfluence of a mag-
netic field as used in some coating applications can be
achieved.

Figure 10 shows the drag coeflicient f for a particle
with radius 1 moving in the centre of a liquid film
(m = 0) for four different film thicknesses of (a) 2.2, (b)
2.4, (c) 3.0 and (d) 4.0. The surface viscosity numbers
are kept identical at the upper and lower surface and
varied from 0.1 to 10.0. In all cases, the absolute value
of the drag coefficient increases with increasing sur-

10.0.

face viscosity numbers. However, for high surface
viscosity numbers the absolute value of the drag coef-
ficient is higher for thinner films, whilst for surface
viscosity numbers below approximately 2, particles in
thinner films apparently experience less drag than in
thick liquid layers. This can be explained by the fact,
that at high surface viscosity numbers the influence of
the surface is dominating, hence the particle gets
slowed down the more, the closer it is to the “rigid”
wall. If the surface viscosity numbers are low, then the
mass of the liquid which is influenced by the particle
through friction is the governing effect. Therefore, in
thinner liquid layers, when less liquid is present in the
vicinity of the particle, the drag reduces. Apparently,
there is a critical value of the surface viscosity num-
bers of about 1.8, at which the nature of the domina-
ting effect changes. Furthermore, it is worthwhile to
note that the absolute value of the drag coefficient
reaches almost exactly the value for Stokes’ solution
of a particle moving in a unbounded liquid (/= — 6)
at this critical surface viscosity numbers.

For the case of particle rotating in the centre plane
of a stationary liquid layer (/= 0) of varying thick-
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ness [(a) 2.2, (b) 2.4, (¢) 3.0 and (d) 4.0 as before], the -5

torque coefficient is plotted in Fig. 11. Let us first look
at curve (a), where the distance of the particle from the 4
interfaces is of the same order of magnitude as
the thickness of the velocity boundary layer around
the rotatirg particle. In this case the influence of the zr
surface properties is very pronounced and the torque
coefficient can even reach higher values than
Kirchhoff’s solution for an unbounded liquid (m = 8).
In all other cases m is less than 8 and the torque 1
coefficient generally decreases with decreasing surface

viscosity numbers and increasing film thickness. 2 r

Whilst the former effect is as expected, the latter sl

uF
Fig. 8. Pressure distribution for a spherical particle in the -5
plane z=0 for z; = — 1.5 and z, =20, K; =0.1 and

Ey=01,K,=01and E, = 0.1
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requires a somewhat closer look. When interpreting
the influence of the film thickness two effects have to
be taken into account:

e the further away the particle is from the surface,
the smaller will be the influence of the surface
viscosity and hence the absolute value of the
torque coefficient should drop;

e however, an increasing film thickness means,
that the particle is surrounded by more liquid
and hence the torque coefficient should increase
and reach Kirchhoff’s solution.

From the curves (b)—(d) in Fig. 11 one can con-
clude, that the absolute magnitude of the limited film
thickness is larger than the effect of the increased
surface viscosity, as m is smaller than 8. However, in
the range of film thicknesses under consideration, the
change of the influence of the surface viscosity is
stronger than the effect of the additional liquid sur-
rounding the particle when increasing the film thick-
ness. Hence, the torque coefficient drops for thicker

liquid layers down to certain value at which the effect
reverses and will eventually for very thick films reach
Kirchhoff’s solution.

Another interesting question is the behaviour of
drag and torque when the particle is situated outside
of the center plane of the film. Figures 12 and 13 refer
to a situation where an absolute film thickness of 4 is
assumed and the distance of the particle center from
the upper interface z, is varied from 1.04 to 2.0. The
surface viscosity numbers on both surfaces are 0.1, 1.0
and 10.0 in the cases (a)—(c), respectively. One has to
remember, that our investigation is still limited to
elementary motion, meaning that the moving particle
is not “allowed” to rotate although the induced torque
would induce such secondary motions. This is neces-
sary to single out the effects which govern the realistic
situation where translational and rotational move-
ment are present simultaneously. Figure 12(a) shows
the drag coefficient for a moving particle. For low and
moderate values of the surface viscosity number the
drag coefficient remains virtually constant except for
the case when the particle gets very close to the
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interface, so that the amount of liquid which slows the
particle down is substantially reduced on one side. At
high values of K, and E, the effect is opposite because
then the “rigid” wall is dragging the particle. The
behaviour of the torque coefficient appears to be quite
clear when looking at the curves for low and moderate
viscosity (a) and (b). When the particle is in the centre
plane (z, = 2), mis of course zero. When the particle is
closer to the wall, the drag on both sides of the particle
is different and hence a certain torque is acting on the
particle. The negative sign of the torque indicates that
for low and moderate surface viscosity numbers the
drag on the side which is closer to the interface is
lower. For K, = E, = 10.0 the effect is similar down
to 1.4 but then the value changes to positive values,
indicating that for small distances the drag on the side
closer to the high viscous interface is greater than on
the side where the viscous interface is further away.

For a rotating particle, understanding the behav-
iour of the drag coefficient {§ straightforward. From
Fig. 13(a) one can see, that starting from a value of
f=0, when the particle rotates in the center of the
plane (z, = 2), f increases slowly when the particle
approaches the wall. Then, at z, = 1.1 there is a very
steep increase for all three different viscosity numbers.
The higher the surface viscosity number is, the longer
remains f approximately constant and the steeper is
the final drop. From the plots of the velocity field we
know, that for high viscosities the boundary layer is
thinner, hence the interaction with the interface is
important only at small distances and because of the
higher gradient the effect in this region has to be
stronger than for lower viscosity numbers. The torque
coefficient plotted in Fig. 13(b) is for all particle posi-
tions higher for larger viscosity numbers as expected.
When the particle gets closer to the wall it can acceler-
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Fig. 10. Influence of the surface viscosity numbers on the

drag coefficient in the case of moving particle: (a)

z23=—z;=11, (b)) z,=—2;,=12, {¢) z,=—2z, =15
and (d) z, = —z; = 2.0.
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Fig. 11. Influence of the surface viscosity numbers on the
torque coefficient in the case of rotating sphere: (a)

Z=—z;=11, (b) z,= -z, =12, (¢} z,=—2z, =15
and (d) z; = — z, = 2.0.

ate the small amount of remaining liquid between the
particle and the interface more and more easily, so
that the torque coefficient finally drops. However, as
the absolute value of m is smaller than 8 in the whole
region, the particle experiences less torque than in
unbounded fluid.

5.3. The stationary motion
The realistic behaviour of a particle moving under
the influence of a buoyancy force along the Oy axis
can be described by a superposition of the two ele-
mentary motions considered before. For a transla-
tional motion with drag coefficient f,,, torque coeffi-
cient m,, and stationary translation velocity ¥ and
a rotation around the Ox axis with drag coefficient f,,
torque coefficient m, and stationary angular velocity
Wg, €9g. (8) has the following form:
4
JumnaVy + fianaloy = — Ena3 Apyg
(34)
myrna® Vy + meanaloy = 0
where g is the acceleration due to gravity and Ap is the
difference of the densities of particle and liquid. From
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Fig. 12. (a) Dependence of the drag coefficient in the case of
a moving particle on the distance from the upper liquid-gas
interface: (i) K, =E, =K, =E, =01, (ii) K, =E, =K,
=E,=10,(i) K, = E;, = K, = E, = 10.0. In all cases the
dimensionless film thickness is 4. (b) Dependence of the
torque coefficient in the case of a moving particle on the
distance from the upper liquid-gas interface: (i) K, = E; =

K,=E,=01, (i) K, =E,=K,=E, =10, (iii) K, =

E, =K, =E,=100. In all cases the dimensionless film

thickness is 4.

eqs (35) we compute ¥ and wy of a particle in
a viscous liquid film for the same conditions as in Figs
12 and 13. The velocities in Fig. 14 were normalized
with Stokes’ solution for the same particle in an un-
limited fluid:

a*Apg
P

Figure 14(a) reveals that for high surface viscosity
numbers the particle moves considerably slower than
in an unbounded liquid. In contrast, for low and
moderate values of K, and E, the velocity is up to two
times larger. If the particle is very close to the wall it
can get even further accelerated. However, in all cases
the change in surface viscosity has a strong global
effect on the whole film and only directly at the
surface additional effects occur. The scaled angular
velocity plotted in Fig. 14(b) shows in general less
pronounced effects, but for high surface viscosity
numbers the direction of rotation can change, when
the particle is very close to the surface. This might for
example be important for understanding some special
effects in curtain coating in the area where the falling
film hits the web and hence the viscosity of the surface
changes dramatically in one point.

2
Stokes = 5 (35
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Fig. 13. (a) Dependence of the drag coefficient in the case of
a rotating sphere on the distance from the upper liquid—gas
interface: (i) K, =E;=K,=E, =01, (ii) K, =E, =
K,=E, =10, (i) K, = E, =K, =E, = 100. In all cases
the dimensionless film thickness is 4. (b) Dependence of the
torque coefficient in the case of a rotating sphere on the
distance from the upper liquid—gas interface: (i) K, = E, =
K,=E, =01, (i) K,=E, =K, =E, =10, (iii) K, =
E, =K, =E, =10.0. In all cases the dimensionless film
thickness is 4.

6. CONCLUSION

The presented model for the computation of the
drag force and the torque, acting on a solid spherical
particle moving in a thin liquid layer allows the in-
vestigation of the influence of surface viscosity effects
and the film thickness on the particle movement. It
can be applied for small Reynolds and capillary num-
bers, when the film is bounded by viscous liquid-gas
interfaces which obey the Boussinesg—Scriven consti-
tutive law.

From the analysis performed within the scope of
this paper the following conclusions can be drawn:

e Whilst the drag force, acting on the particle,
tends to be lower in liquid layers than in an
unbounded liquid in the absence of surfactants,
the presence of, i.e. protein isolates can increase
the drag coefficient by almost an order of magni-
tude.

e Although the absolute effect of the surface vis-
cosity is already very impressive, it is even more
interesting that the change of the drag force
acting on the particle does virtually not depend
on its position within the film. Hence, changing
the surface viscosity means changing the global
properties of the whole film.
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Fig. 14. (a) Influence of the surface viscosity numbers and
distance from the upper liquid-gas interface on the station-
ary translation velocity ¥, in the presence of the buoyancy
force: (i) Ky=E; =K;=E,=01, (i) K, =E; =K,
=E, =10,(ii) Ky = E, = K, = E, = 10.0. In all cases the
dimensionless film thickness is 4. (b) Influence of the surface
viscosity numbers and distance from the upper liquid—gas
interface on the stationary angular velocity g in the pres-
ence of the buoyancy force: (i) Ky = E; = K; = E, = 0.1, (ii)
K, =E =K,=E, =10, (i) K, =E, = K, = E; =100.
In all cases the dimensionless film thickness is 4.

e Following on from this, it was found that par-
ticles moving in a liquid film, ie. due to the
presence of a buoyancy force, can move twice as
fast or twice as slow as in an unbounded liquid,
depending on the surface viscosity number.

e Finally, some special effects which occur very
close to the viscous interface, such as the possi-
bilities of different directions of rotation of the
particle, depending on the surface viscosity and
the distance of the particle from the surface could
be identified. These might be of considerable
importance for technological applications.
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