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We consider an emulsion system in which the two intcrrelated
processes of flocculation and coalescence take place simulta-
neously. The flocculation is described in terms of von Smolu-
chowski's theory, whereas the coalescence is related to the rup-
ture of the liguid films between the drops. Since the latter process
takes place in aggregates, we wopt for it a kinetic scheme which
formally resembles that of parallel chemical reactions. A set of
differential equations governing the overall kinetics is formulated
and solved for several particular cases. The rate constants of
flocculation and coalescence stand as model parameters. Solu-
tions for the number of single drops vs time are obtained in the
asymplotic regimes of fast and slow coalescence. In the case of
linearly built aggregates we derive an explicit expression for the
total number of drops in the system. For arbitrary aggregates
the complete set of kinetic differential equations is solved nu-
merically. The results are compared with those obtained by other
authors through particular averaged models of Aocculation and
coalescence. The theory can be employed to investigate (he role
of different factors for the emulsion stability: the solubility of
the surfactant, the adsorption and the Gibbs elasticity of the
layer, the surface viscosity etc. @ 1994 Academic Press, Inc.

1. INTRODUCTION

In real emuisions one can distinguish two different physical
processes Icading to destabilization. The first onc is floccu-
lation (reversible aggregation of the drops) which leads 1o
emulsion creaming since the aggregates are subject ta buoy-
ancy force. The sccond process, coalescence, takes place when
the thin liquid fayer between two neighboring drops is rup-
tured. This process is irreversible and leads 1o separation of
the dispersed phase. Because of the tremendous practical
importance of these phenomena, many studies have been
devoted to the kinetic stability of emulsions in view of the
flocculation and coalescence processes.

The system without coalescence was explored by Smo-
luchowski (1, 2). A recent investigation performed by El-
minyawi ¢f al. (3) accounts for the possible fragmentation
of the aggregates—reversible redispersion of the drops into
the continuous phase. Bak and Heilmann (4) found a so-
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lution of the infinite set of Smoluchowski equations in the
particular case when the aggregates cannot grow larger than
a given size. A special choice of the rate constants provides
an explicit solution (4). The time evolution of drop size
distribution in dilute, homogeneous dispersion was analyzed
by solving population dynamics cquations {5). The eflects
of Brownian motion, thermocapillary migration, and gravity
sedimentation were studied in this article. All these models
(1-5) do not account for the coalescence stage and for the
possible flat film formation upon droplet aggregation. It was
shown theoretically that plane parallel films can be obtained
even between droplets of micron and submicron size due to
direct interdroplet interaction (6).

Hartland and Gakis (7) and Hartland and Vohra (8) were
the first to attempt a model that relates the lifetimé of single
films to the rate of phase separation in emulsions of fairly
large drops (around 1 mm) in the absence of surfactant.
Their analysis was exiended further by Lobo et al. (9) to
quantify the coalescence within already creamed or sedi-
mented emuision (or foam) with drop sizes less than 100
pm and also to account for the presence of surfactants, which
are commonly used as stabilizers.

Several authors investigated the simultaneous existence of
flocculation and coalescence (10, 11). The treatment was
based on the notion that the average number of drops per
aggregate changes with time due to both flocculation with
other particles (aggregates) and coalescence inside the ag-
gregate ( 10). Alternatively, the overall rate of change of the
number of individual particles (free and in aggregates) was
set to be proportional to the average number of contacts
between the drops in the aggregates (11).

The role of direct droplet interactions and Brownian mo-
tion on the coalescence rate in dilute homogeneous emulsions
of micron and submicron size was theoretically studied in
Ref. (12). The processes of film formation, thinning, and
rupture were included as consecutive stages in the Smolu-
chowski scheme and the coalescence rate in the beginning
of the process was calculated. Expressions for different types
of interaction between two deformed droplets were obtained
in Ref. (13).
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The approach developed in Refs. (12, 13) allows the cal-
culation of the rate constants of the two consecutive pro-
cesses: aggregation ( flocculation ) and film thinning and rup-
ture (coalescence), when only two-particle interactions are
considered and the parameters of the system (drop size, in-
terparticle interaction, shear viscosity of the solvent, etc.) are
known. The rate constant of flocculation is known to be
influenced by the size of the particles or aggregates (5). On
the other hand, the rate of coalescence in an aggregate es-
sentially depends on the number of particles inside it and
the packing type, i.e., on the number of contacts between
the drops. That is why it is too much oversimplified to present
the whole process of diffusion, flocculation, and coalescence,
including higher order aggregates, by using a single averaged
parameter for drop fusion and another constant for aggre-
gation.

For that reason, in this paper we consider a complete ki-
netic scheme accounting for the possibilities of flocculation
and coalescence in and between the aggregates. We assign a
rate constant to each elementary act and thus we define a
full ser of kinetic differential equations describing the system.
The scheme of the coalescence in the aggregates formally
resembles that of parallel chemical reactions.

2. FORMULATION OF THE PROBLEM AND
MATHEMATICAL MODEL

We consider here an emulsion system in which two in-
terrelated processes—flocculation and coalescence—take
place. It will be assumed that the flocculation can be described
in terms of Smoluchowski’s theory (1, 2}—Fig. 1.

Let the coalescence proceed according to the following
scheme: Any aggregate (flock) composed of n particles can
partially coalesce to become an aggregate of i particles (1 <
i < n), with the rate constant being k™ —Fig. 2. (A single
particle can be formed when i = 1.) This aggregate { is further
involved in the flocculation scheme, which makes the floc-
culation and coalescence processes interdependent. There-
fore, the system exhibiting both flocculation and coalescence
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Model of flocculation according to the Smoluchowski scheme.
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FIG. 2. Coalescence in an aggregate of # particles to become an aggregate
of i particles, with a rate constant k', | < i< n.

will be described by a combination of the schemes | and 2.
In such a system the single particles formed through coales-
cence, although larger in size, are kinetically equivalent to
the initially present single particles. Similarly, no distinction
will be made between the aggregates { formed by collision
of smaller aggregates and those formed through coalescence
in larger ones.

A possible exhausting of the single particles or aggregates
can be considerad. For example, at a certain size any particle
or aggregate can emerge or sink due to buoyancy force. The
set of kinetic equations for this model system is

dv oo
7‘= -2 Z kifo + 2 ke'v — q
t i=1 =2
dv, > ;
7 kll %*‘2 Z k?”ugv;
t i=1
+ 2 kc L E kg‘lVZ_‘h
=3
d . n—1
; S kT Vi — 2 2 kr v
i i=1 =1
o ) 1 )
¥ 3 k= 3 ki,

i=n+1 i=1
(1]

We introduce the notation, »,, number of the single par-
ticles; »;, number of the aggregates comprising I particles (i

=2,3,...);» total number of single particles plus all kinds
of aggregates,
v=2 v (2]

k¢, the rate constants of collisions of size i drops with size
Jj drops, per unit volume. The collision kernels between drops
for Brownian, gravity, and Marangoni-induced collisions are
given by Wang and Davis {5) and some models for the rel-
ative diffusivity are discussed in Ref. (14). k' is the rate
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constant of coalescence of an aggregate of »n particles to one
composed of i particles (1 < { < #) or to a single particle (/
= 1). g, is the flux of single particies out of the system and
g; 1s the flux of aggregates of i particles (7 L
denotes time.

After summing up the equations in the set [1] we obtain
the total number of particles and aggregates v {Eq. [2]),

oo

-2

=1 j=1

o)

dv

o ky’ vy

‘R [3]

where the total flux of single particles and aggregates ¢ is
defined as

[4]

In the particular case of ¢ = 0 and equal flocculation rate
constants we find the Smoluchowski relation (1, 2)

= Yo
a 1+krb’0[= [5]

with »y being the total amount of particles in the initial mo-
ment / = 0 and k; being the characteristic flocculation rate
constant. Equation [1] represents an infinite set of nonlinear
differential equations. At infinite time of coalescence (k2 =
0) and without flux of particles it coincides with the set of
Smoluchowski which has a sole exact solution:

_ wplkeper) !

i = ) l'=1,2,....
PP F kyvgt) !

[6]

If exhausting of particles takes place due to buoyancy force,
then an increase in the aggregate size would lead to a rapidly
increasing flux. Therefore, aggregates of size above a given
definite size, corresponding to a number of particles N, will
not be actually present in the system. Then the problem [1]
is reduced to a finite number of equations:

dv, N—-1 y N
7 =-2 2 kf‘l.V]I"j + 2 k::’lyi_ d1

{ =1 =2
d 1,1 7_ pine 20 y i2 2.1

=k i 22kf Vz”i"'zkc’ vi— k@

d =1 i=3
dVN N—1 Nt N—-1 .
i Z k! Viln—i— > k?'JVN_QN- [7]

i=1 i=1

The set [7] is to be processed under initial conditions

11(0) =w, 1 (0)=0,1=2,3,..., N. [8]

ET AL.

Given the values of the parameters, the problem [7], [8]
can be solved numerically with the desired precision {17,
18). Elminyawi ¢f g/ (3) have proposed numerical solutions
to the Smoluchowski aggregation—fragmentation equation
in the absence of particle exhausting. The method allows
solving the set [7] up to N = 100.

The time dependence of the total number of particles in
the system, vy, is of major importance when emulsions are
under consideration. ¥t comprises the number of individual
particles moving freely plus the number of particles included
in all kind of aggregates:

o
rr= > Iy

i=1

(21

We multiply the kth equation in [1] by & and sum up for
all .

If i and j are arbitrary indices, then at i # j the equation
i + j will contain a flocculation production of aggregates

(1 + e+ v,

The loss of aggregates according to the ith equation is
—2ki i,

and from the jth equation
-—2k§’jjv,-vj.

Therefore,

2y’ jwiy; = 0.

k;"j(i + (v + vy) — Zk?jt'v,-vj -

‘.M i = j the flocculation production from the 2/th equation
is
Zk?iiv,g ,
and the loss from the /th equation is
2kt iv?,
50

2 iv? — 2k w? = 0.
As a result of these considerations we come to the con-
clusion that the flocculation terms will disappear from the

equation for »1. Namely,

o k-1

>k Z kb~

k=2

dVT Zk Z kf;.'ka—

k=1 =k+1

gr, [i0]

=1
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where the total flux of particles, gr, defined as the flux of
individual particles plus the flux of all particles included in
aggregates, is given by

M8

ar = ig;. [11]

F

Let us introduce a total rate constant referring to complete
coalescence of the ith aggregate:

i—1
=2 (i—kyk¥, i=2,3,....

k=1

(12]

After rearranging the sums in Eq. [10] we find

dVT

df = _Z ki,Tvi - qT-

i=2

[13]

It should be noted that in the theory of Smoluchowski the
total number of particles »r remains constant and equal to
the initial number vy. Here Eq. [13] reflects the decrease in
v owing to (i) coalescence and (ii) exhausting of particles
through the flux.

Equations [12, 13] allow obtaining a solution for vy pro-
vided the coalescence constants k:* are known. Explicit
expression for these constants can be written if the aggregates
are built up linearly. Such an assumption was used in Refs.
{10, 11) for small aggregates, and it also holds if the drops
form a fractal-like structure—see, e.g., Fig. 2 in Ref. (15).
In a linearly built aggregate consisting of i drops there will
be (i — 1) liquid films between neighboring drops. Corre-
spondingly, a simultaneous rupture of ({ — &) films will lead
to a disappearance of (i — k) drops and an aggregate com-
prising & individual drops will be produced. Hence,

. =1y .
kit = a(l‘ k)P""(l - Py,

[14]
i —

where P is the probability for rupture of a single film. @ is a
constant of proportionality between k%* and the probability
for simultaneous rupture of (i — k) films chosen arbitrarily,
when the rest of {( k — 1) films in the aggregate remain stable.

k2 = aP. [15]

From Eqgs. [12], [14], and [15] we have

tr=k'(i—1). [16]

With this expression for k%, using also Eqs. [2] and [9],
we transform Eq. [13] to read

L Y

0 [17]

This differential equation can be solved if we recall that »(¢)
is given by Eq. [5]. The result is

kz,l kz,]
vr(t) = voexp(—k2'0){1 + ——exp{ - =
kery kevg

1+kpqt 1 kz,]
Xf exp(#y)dy]. [18]
1 ¥y kfb’o

The rate constant for coalescence of a doublet, k2, has the
meaning of inverse lifetime of the liquid film between the
drops.

We can avoid the assumption of linearly built aggregates
by introducing an alternative expression for k¥, instead of
Eq. [14]. If all acts of coalescence between two drops in an
arbitrary aggregate have equal probability, we can write

kik = qpik, [19]

For k2! we recover Eq. [15]. From Eq. [12] it follows that

i—1

kix=a 3 (i— k)P
k=1
k2

=g ppll P - DR

[20]
In the limiting case of small probabilities, P < 1, Eq. [20]
gives that all coalescence rate constants are equal, kit ~
kZ'. Conversely, if P is close to unity, then we have ki ~
k2 i(i — 1)/2 with a sufficient accuracy, and the rate con-
stants k.1 do not depend on the probability P.

3. TIME DEPENDENCE OF THE NUMBER OF
SINGLE PARTICLES AT FAST AND
SLOW COALESCENCE

For the rate constants k:' both Eqgs. [14] and [19] give

kil = KPR, [21]
where Eq. [15] was also used. If there are no fluxes due to
buoyancy and all the flocculation rate constants are about
the characteristic flocculation rate k¢, then we can combine
the first equation in the set [1] with Eq. [21]:

@ = 2kvp + k2 Dy PR
dt i=2

[22]
Two limiting cases can be distinguished:

(1) Rate of coalescence much greater than that of floc-
culation, k™ » kv, (rapid coalescence );

{2} rate of flocculation much greater than that of coales-
cence, kevg > k2 (slow coalescence ).
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3.1. Fast Coalescence

We can admissibly suppose the probability for coalescence
of two particles to be very close to 1. Then Eq. [22] becomes

d
bl . —2kevv + kg"(u — ),

dt (23]

where the total number of single particles and aggregates v
is expressed through Eq. [5]. The differential equation [23]
along with the initial condition [8] can be solved to give

V]zl»’[l—'

At short times, when k2'f < 1, v, is given by the approx-
imate equation

kfl’() 1 - exp(—kg‘zf)
kg'l 1+ kfvgt

[24]

Yo
no~

)2(1 + LkrpghZ't?y, [25]

(1 + kewot

and at large time intervals we have from Eq. [24] that », is
close to v.

Since Eq. [24] is very important, we develop below another
physical interpretation for it, Let us assume that aggregates
composed of three, four, etc., particles cannot be formed just
because of the rapid coalescence inside the aggregates. From
the set [7] at ¥ = 2 and without fluxes, ¢, = 0, ¢ = 0, we
obtain

d.Vl -

d[ 2kag +k2]
dv
-a[—zakful K2y, [26]

We now introduce here a small parameter € = kewg/ k2! <
1, dimensionless time = k2!¢, and dimensionless variables
v{ = v, /vy, vs = v2/vy. The problem [26] with initial con-
ditions [8] is then expressed in an alternative form:

dvy dvs
Th= 2w, =)o,
vi(0)=1, »(0)= [27]
In the set [27] the small parameter ¢ mq]tiplies the non-
linear terms and consequently we can apply the scaling
method (16): We define a local time scale 7, = 7 and a
global scale 7, = er. The solution is being sought as an
asymptotic series with respect to the small parameter:

vi=rvglry, 72) T er{ (v, m2)+ ...,

(28]

vi=era (T, T3} + . ...

After substituting the series [28] in [27] and equating the
first-order terms containing ¢ we find the set of equations
for the first asymptotic approximation

81/' ay’ ’ ’
aTll'D =0, 61-21‘1 = (v{p)* — w3y,
rip(0,0) =1, »3,(0,0)=0 [29]

The general solution of [29] can be determined up to an
arbitrary function A4(7;) for which A(0)} = | and

vig=A(2), vip=A(m)[l —exp(—7)]. [30]
The equations for the second approximation with respect to
the small parameter, »| ;, are found to be

vy, a"10
: = -2 +
ar, ars (vi0) + v31,
v{1{0,0)=20 [31]

From [30] the general solution of [31] is obtained as

vy = (j/i+A )T, + A exp(—7r)Y—1]. [32]

It tends to infinity as 7| = oo and therefore it should be

dA

—+42=0, A4A0)=1. [33]
dr
The solution of Eq. [33] 1s
Alm2) =173 . [34]

From Eqgs. [28], [30], [32], and [ 34] it follows that up
to a second order with respect to ¢ we have

1
(l +T2)

vi = )zlexp( ) — 11 [35]

It can be pointed out that returning to physical variables
in Eq. [35] gives exactly the result [24]. Consequently, the
first and the second physical interpretations mentioned gbove
are equivalent { within a reasonable accuracy). The second
approach provides also the asymptotics at long times, », close
to ». Therefore, for rapid coalescence, if the aggregates in the
systermn are only doublets, Eq. [ 24] gives the correct solution
for », both at short and at long times (the assumption P =
| put forward to derive Eq. [24] is justified ).

3.2, Slow Coalescence

In this case the general rﬁ_-lation between the rates of the
Iwo processes is kevg 3 k™. If the exhausting of particles
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can be neglected, g, = g, =- -
[1] in the following way:

- = {}, we can present the set

dv =] kt]
Tl + ZkallJ = kaO 'zz kfyo i
dv > kil
7{2 - k[‘l’l + Zk[‘l}zl’ = kflﬂ’() Z kryo
k21
—k
o — kv 0
dv, " = ki
— —ky nai + 2kgpy =k
7 E:l vy FVnt o y %1 kfvo
n—1 knr
—k
¥ Z krl'o

[36]

On the right-hand side of Eq. [ 36 ] we put the terms of higher
order with respect to the small quantity k2" / (ko). The left-
hand side coincides with the set of Smoluchowski. Therefore,
the solution of Eq. [ 36] can be sought as a small correction
to the solution of Smoluchowski—Eq. [6]:

vo(kevot) ™

O+ kgt

- [37]

From the first equation {36] and from [37] we can derive
an equation for the perturbation in the number of individual
particles

dy| 2 ki wlkenet) !
— + 2k k .
dr eviv = kv Z kr”o(l ¥ koo t)‘+' , [38]
which is being solved under the initial condition
vy = 0. [39]

We apply here the method of variation of arbitrary con-
stant ( 16) and seek for a solution of Eq. [38] in the form

-
1=

3 (0.

(1+k of) [40]

The function f{¢) should obey the differential equation

ar

INE:
k-

i,l( kfl’(}r

i—1
o) -

=2

From Egs. [39] and {40] we find the initial condition for
J()

f10y=190 (42]
If k%' is given by Eq. [21], then the right-hand side of Eq.
[41] can be summed up analytically and the differential
equation considerably simplifies:

df 21 kevot
& _ g2 . 4
dt kc 1 +(l - P)kflfgl [ 3]

After solving Eq. [43] with the initial condition Eq. [42],
inserting into Eq. [ 40 } and after that substituting in Eq. [37]
at i = 1, we finally come to the following result for the number
of single particles in the case of slow coalescence:

k2
1—pP

kg.l
(1 = P)’kyvy

y = 20 [1
! (1 +kfb'0f)2
X In[l + (1 - P)kfvot]}. [44]

From Eq. [44] it follows that at short times, k¢vgt <€ 1,
the relation [25] holds. In other words, irrespective of
whether the coalescence is fast or slow, the behavior of # at
short times is one and the same—the flocculation is rate-
determining. This is physically understandable since before
any coalescence can take place, the particles should first floc-
culate. In the limit of long times, k2!t » 1, the asymptotic
expression

kf.Vg t kfllo(l - P)

[45]

Py = Vg

is applicable. The number of individual particles is essentially
dependent on both the coalescence and the flocculation rate
constants.

4. AVERAGED MODELS FOR A SYSTEM WITH
FLOCCULATION AND COALESCENCE

We compare below three averaged models developed by
van den Tempel (10) and Borwankar et al. (11) with the
predictions of our model. The conditions under which our
theory reduces to the averaged models and the relation be-
tween the rate constants in the models are discussed.

4.1. Model of van den Tempel (10)

It falls within the most cited and widely accepted models
for flocculating and coalescing systems. We investigate here
what the conditions for its applicability are. According to
van den Tempel, if

[46]
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FIG. 3. Relative change in the total number of drops vs time: initial number of primary particles vy = 1 X 10' em™; flocculation rate constant k¢
=1 X 107" ¢m?/s; curve 1, the numerical solution of the set [1] with P = 0.5 in Eq. [20]; curve 2, the model of Borwankar et a/. (11} for diluted
emulsions: curve 3, the model of van den Tempel (10), Eq. [48]: (a) coalescence rate constant £2' = 1 X 107 s (D) A2 = 1 X 107257 () k2 = |
X 107257

is the average number of particles per aggregate, correspond-
ing to the Smoluchowski theory (the index “S” denotes
Smoluchowski distribution ), then

A v — ko - 1),

i [47]

k% measures the rate of coalescence { i(}). The assumption
of linearly built aggregates (see Section 2 above) was used
in Ref, ( 10) to establish Eq. {47]. The latter can be rearranged
by substituting for s and accounting for v from Eq. [5] and
for »§ from Eq. [6]:

dv kevot — 1
_Tzkfyo r*o

d kivol + (v

l kflfo[ -1

48
! kfi’of + 1 [ ]

x[k2+

Up to a second order (inclusive) and at short times, & vol
< |, the solution of Eq. [48] reduces to

vr = wo(l — keuohli?). [49]
Atlong times, k¢pgt 3 1, and for fast coalescence, k& » kg,
Eq. [48] can be simplified to give

B o= .

7 {50]

On comparison of Eqs. [13], [17], and {50] we come to
the conclusion that in van den Tempel’s theory a certain
hypothesis has been set up. When the coalescence is fast,
and at long times, k;pof > 1, the total rate of coalescence
kZ is an averaged constant parameter:

o
_Z kerw
kf _ =2

vt —

= const = k2. [51]

This parameter characterizes the relative change in the total
number of particles »7 with time. The oversimplification put
forward by van den Tempel lies in using v} from the Smo-
luchowski distribution to define m—Eq. [46].
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FIG. 4. Relative change in the total number of drops vs time: initial number of primary particles vy = 1 X 10'? cm™; coalescence rate constant k2!
=1 % 107 s7'; curve 1, the numerical solution of the set [1] with P = 0.5 in Eq. [20]; curve 2, the model of Borwankar et af. (11) for diluted emulsions;
curve 3, the model of van den Tempel { 10), Eq. [48]: (a) flocculation rate constant &y = 1 X 107" em?/s; (D) A= 1 X 107 P em¥/s; {c) ky= L X 107'°

cm?/s,

4.2. Models of Borwankar et al. {11)

These authors propose two separate models of coalescence:
{a} in emulsions of low volume fraction (diluted systems),
and {b) in concentrated emulsions. As in Ref. (10), the
treatment is based on considering the average number of
particles in aggregates, but the assumption of 3 put in Eq.
[46] is avoided.

{a) In diluted emulsions, if particles are not exhausted
due to fluxes, Borwankar et a/. (11) suppose the hypothesis
[51] to be valid during the whole process of flocculation and
coalescence. When k. is proportional 1o the number of
particles in the jth aggregate minus one, kit = k2(i — 1),
Eq. [51] holds identically. We see from Eq. [16] that this is
exactly the case of linearly built aggregates, with k2 = k21,
Therefore, the model proposed in Ref. (11)is in accordance
with the general treatment developed here as long as linear
aggregates are under consideration. The numerical solution
for vy found in Ref. (11) coincides with our Eq. [18]. In
addition, it is evident from Eq. { 50] that for rapid coalescence
the models of van den Tempel and Borwankar et af. give
the same results. This fact is illustrated in Fig. 4c (see next
section).

{b) Another hypothesis has been raised by Borwankar et
al. (11) for concentrated emulsions when considering co-
alescence without exhausting of particles due to fluxes. This
hypothesis states that the mean rate of coalescence with re-
spect to the number of particles engaged in aggregates keeps
constant value,

o«
2 keay;
=2
kp - s
br— M

[52]

where p is the average number of films per particle.

In particular, if ki = kpi, Eq. [ 52] is identically satisfied.
In other words, the total coalescence rate constant of an ag-
eregate composed of 7 particles 1s set to be proportional to
the number of particles in this aggregate. Such an assumption
can be conceived by analogy with Eq. [16], since within the
approach of Ref. (11) (p.{) corresponds to the number of
contacts between neighboring particles in the ith aggregate.
From Eqgs. [13] and [52] it follows that

d vt

=L = —kp(or = w)

dr (53]
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FIG. 5. Relative change in the total number of drops vs time: initial

number of primary particles v, = 1 X 102 cm™*; flocculation rate constant
k= 1% 1073 cm?/s: coalescence rate constant 42" = 1 X 1072 s7%; curve
{, the numerical solution of the set [1] with P = 0.50 in Eq. [20]; curve 2,
P = 0.80: curve 3, P = 0.95; curve 4, the model of Borwankar et af. (11)
for diluted emulsions.

—see Eq. [18] in (11). Equation [53] can be solved with
the initial condition p(0) = »y. The exact solution is easily
found provided that v, (¢} is known:

vt = rgexp(—kpt) + kpf 1)
0

X exp[—kp(i — T)]dr. [54]
Up to the second order (inclusive) and at short times, & ¢ yof
< |, the solution [54] acquires the form
vr = pol 1 — kevphpt®). [55]
We have used the method of the infinite asymptotics (4} to
obtain that at long times, kpf » 1, Eq. [ 54] becomes
vr ~ v (1), [56]

5. NUMERICAL COMPARISON BETWEEN

DIFFERENT MODELS OF FLOCCULATION
AND COALESCENCE

We present here numerical solutions of the complete set
of kinetic differential equations [1) at various values of the
rate constants of flocculation and coalescence. In fact, we
have two independent parameters to describe the coalescence
process in the case of arbitrary aggregates: &' and the prob-
ability for film rupture, P—see Egs. [19], [20]. Once k2
and P are known, all the rate constants k:* in the set [1] are
unambiguously defined via Eq. [19].

We make numerical comparison using the results of van
den Tempel (10) and those of Borwankar er a/. (11) which
correspond to low volume fraction emulsions. In order to
choose the parameters properly, we apply the relation

kg = k2! [57]
found in Section 4.2 for linearly built aggregates. The same
values of k2! are considered as those used by Borwankar et
al. (11) for kZ. The rate constant of flocculation can be es-
timated as (10)

4
kg~ AT 1 X 107" ¢m?/s.
3n

[58]

More precisely, Eq. [ 58] gives the characteristic value for
k¢, which is actually operative when the flocculation process
does not include passing through a potential barrier. In the
case of barrier flocculation & could be smaller by several
orders of magnitude,

We present in Figs. 3-5 data for the relative change in the
total number of emulsion drops, ry/vy (or 1/ 1y In the no-
tation of Borwankar ef a/. (11)) as a function of time. Figures
3a~3c refer to kv = 0.1 87! and the coalescence constant
k2! varies between 0.1 s~' (Fig. 3a) and 0.001 s~' (Fig. 3c).
It is seen that the agreement between the exact solution and
the results of Borwankar er a/. (11} is better for faster co-
alescence. The van den Tempel curves deviate considerably
from the other two solutions.

Figure 3b shows that at long times the data of Borwankar
et al. (11) coincide with the sclution of the set [1]. No co-
incidence is observed in Fig. 3c because in that case the time
is not long with respect to the coalescence, 0 < k21 < 4.
Figure 4b presents v¢/py for the same values of k;yy and
k! as in Fig. 3¢, but up to very iong times. Under these
conditions, the agreement between curves | and 2 is con-
firmed.

Figures 4a—4c¢ illustrate the influence of the flocculation
rate constant at fixed &2!. If the flocculation is very fast
compared to the coalescence, the differences between the
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FIG. 6. Relative change in the number of single drops vs time: kg =
1 X 1072575 curve !, solution of Smoluchowski, Eq. {6]; curve 2, fast

coalescence, k&' = 1 X 107! 57!, Eq. [24]; curve 3, slow coalescence, k2!
=1X 10735, Eq. [44] with P < 1.
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predictions of the three models are tremendous—Fig. 4a. At
maoderate times the curves deviate by orders of magnitude.
On the contrary, if the coalescence is faster than the floc-
culation, then ail the data exhibit a perfect agreement—Fig.
4c. Indeed, it was proved in the previous section that for fast
coalescence the theories of van den Tempel, Borwankar et
al., and the present one should give identical results. In this
case the structure of the aggregates becomes irrelevant and
the predictions of the model (11}, which are strictly appli-
cable to linearly built aggregates, match the numerical so-
lution of [1].

We have chosen the probability for a film rupture, P, 10
be 0.5 for our curves in Figs. 3 and 4., This choice is somewhat
arbitrary. The question about the connection between Pand
the hydrodynamics of the thinning interdroplet films is to
be investigated in a future work.

Figure 5 illustrates the role of the parameter P for the
behavior of the numerical solution. Obviously, at very long
times P is uninfluential, We mention that £ = 0 means com-
plete absence of coalescence and k5% = 0, then the set [1] is
reduced to that of Smoluchowski.

Figure 6 shows the solutions for the normalized number
of single particles, », /v, referring to fast and slow coales-
cence. We use Egs. [24] and [44] with P < 1, respectively.
The Smoluchowski result is given by Eq. [6]. It is evident
that the effect of the coalescence is well pronounced even if
the process is slow. At times shorter than the characteristic
time for coalescence there still exists an appreciable deviation
of ¥, from the Smoluchowski curve.

6. CONCLUSIONS

In this work we develop a kinetic modet for the simulta-
neous processes of flocculation and coalescence in emulsion
systems. A set of differential equations is formulated and the
analytical solution is analyzed in several asymptotic cases.
For linearly built aggregates, explicit expression for the total
number of individual drops results from the theory. In the
cas¢ of arbitrary aggregates we solve the kinetic equations
numerically, using three model parameters-—the rate con-
stants of flocculation and coalescence, and the probability
for rupture of an interdroplet film.

We discuss the averaged models proposed by other au-
thors. They do not assign rate constants to each possibility
for coalescence in the aggregates, but deal with certain av-

eraged characteristics of the process. Nevertheless, for the
particular case of linear aggregates the existing theory (Ref.
(11))is in complete agreement with the general treatment
proposed here. For aggregates of more complex structure,
we compare the numerical solutions of the complete set of
kinetic equations with the outcome of the averaged theories.

It turns out that if the coalescence 15 much faster than the
flocculation, the predictions of the different models coincide.
This finding is in consonance with the fact that in the case
of rapid coalescence the flocculation is rate-determining and
the structure of the aggregates is immaterial—large aggregates
cannot form. Conversely, for slow coalescence the results of
the averaged models considerably deviate from the exact so-
lution. At very long times and irrespective of the values of
the kinetic parameters, the model of Borwankar ef al. (11)
is close to the numerical solution.
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