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The capillary meniscus interaction between a floating sub-
millimeter particle and a vertical wall is experimentally studied.
1t is proven that the interplay of the capillary image foree from
one side and the gravity and buoyancy forces from the other
side can lead to the appearance of a stable equilibrium position
of the particle at a finite distance from the wall. The dependence
of the equilibrium separation on the particle size, three-phase
contact angle, and other parameters is investigated and compared
with the theory developed in the first part of this study. The
agreement between the experimental results and the theoretical
predictions is very good. A simple method for determination of
the three-phase contact angle of millimeter- and submillimeter-
size parlicles, Mloating attached to a fluid interface, is described.

© 1994 Academic Press, Inc.

1. INTRODUCTION

The lateral capillary forces acting between bodics attached
to a fluid interface have been the subject of many theoretical
studies (1-11). In contrast, there are only a few studies where
these forces have been measured experimentally (2, 11, 12).
Gifford and Scriven (2) reported the qualitative features of
the interaction between two fong cylindrical capillaries float-
ing on a water surface (the cylinder axes being parallel to
the surface ). Camotin of af. (12) measured directly the cap-
iltary force between two plastic spheres of millimeler size
attached 1o vertical holders. These authors showed that the
lateral capillary force decays approximately exponentially
with the particle separation. They investigated also the mag-
nitude of the capillary force as a function of the vertical
position of the particles (controlled by the holders) with re-
spect to the fluid surface. The lack of information about
some important parameters (interfacial tension and three-
phase contact angle) in Ref. (12) does not allow direct com-
parison of the experimental results with the théory. Another
feature of these experiments is that the spheres are attached

! To whom correspondence should be addressed.

0021-9797/94 $6.00
Copyright © 1994 by Academic Press. Inc.
AN rights of reproduction in any form rescrved.

to vertical holders, so their vertical positions are kept constant
when the interparticle separation is varicd. Hence, an im-
mersion-type lateral capillary force (6, B) was measured, It
should be distinguished from the flotation-type lateral cap-
illary force which appears between freely floating spheres of
millimeter and submillimeter size and is governed mainly
by the gravitational energy of the particles due to the change
in their vertical position (1, 3, 6).

In Ref. (11) immersion-type lateral capillary forces be-
tween two vertical capillaries, or between a vertical capillary
and a wall, were directly measured and compared with the
theory. Both attractive forces (between two hydrophilic bod-
ies) and repulsive forces (between a hydrophilic and a hy-
drophobic body) were studied. The agreement between the
experimental results and the theoretical predictions was very
good. As discussed in Refs. (4, 5, 11) the interaction between
two vertical cylinders models the one between two spheres
of fixed “capillary charge™ as defined in Eq. [ 2.6} in the first
part of this study (13).

One can conclude from this brief literature review that
until now there has been no quantitative experimental study
of flotation-type latcral capillary forces, i.e., forces acting
between floating bodies.

In the first part of this study { 13) we studied theoretically
the capillary interaction between a floating spherical particle
and a wall. It is established that analogously to electrostatics
the particle~wall interaction is similar to the interaction of
the particle with its mirror image with respect to the wall.
This capillary image force can be attractive when the contact
angle at the wall is constant, or repufsive when the position
of the contact line at the wall is fixed. The total capillary
interaction includes {along with the capillary image force)
the contributions of the particle weight and the upthrust. It
is shown that at certain parameters of the system the total
capillary interaction energy has a minimum as a function of
the interparticle separation. In such case the particle acquires
a stable equilibrizm position at a certain distance from the
wall. At this distance the repulsive capillary image force
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{which prevails at small separations ) exactly counterbalances
the effective attractive net force due to the combination of
weight and upthrust. This theoretical prediction suggests an
experiment for verification of the derived expressions for the
lateral capillary forces by direct measurement of the equilib-
rium particle-wall separation as a function of some appro-
priate parameter,

The main goal of this study is the verification of the theory
of the capillary image forces against experimental results. As
shown below, the agreement between the theory and exper-
iment is very good. Since the capillary image force is equiv-
alent to the interaction between two floating spheres (the
particle and its mirror image ), the results obtained represent
not only the particle~wall interaction but also the interaction
of two floating particles. In addition, a simple and precise
method for determination of the three-phase contact angle
of floating spherical particles of millimeter and submillimeter
size is formulated.

The article is organized as follows: in Section 2 we describe
the methods and materials used, in Sections 3 and 4 the
procedures for calculating the particle three-phase contact
angle and the theoretical curves are outlined, and in Section
5 the experimental results are presented and compared with
the theory. The conclusions are summarized in Section
6. The notations are the same as in the first part of this
study (13).

2. EXPERIMENTAL

fa) Materials

The experiments were performed on the surface of pure
water exiracted from a Millipore Milli-Q Organex system.
Surface tension measurements of the water have determined
a value of 72.0 = 0.3 mN/m. Before the measurements were
performed, the liquid surface was additionally cleaned by
sucking with glass pipette.

Two types of particles floating on the water surface were
studied, The first type was drops from high-purity (6N grade)
mercury produced by Mitsuwa’s Pure Chemicals (Japan).
The second type of particle was copper beads of millimeter
size (Stanley Co., Japan}).

The glass vessel holding the liquid, the Teflon barrier, and
the instrumental glassware were cleaned by immersicon in
chromic acid for not less than 24 h, followed by abundant
washing with deionized water and vacuum drying.

(b) Methods

A schematic description of the experimental setup is pre-
sented in Fig. 1. The particle { 1) floats on the water surface
(3). The water is poured inside a wide glass dish of diameter
90 mm (not shown in the figure). The deformation of the
water surface is created by the movable Teflon barrier (2).
The barrier is 88 mm wide and its lower edge is carefully
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FIG. 1. Experimental setup for measurement of the equilibrium position
of a floating particle in the neighborhood of a wall: (1) spherical particle,
(2) movable Teflon barrier, (3) water surface, (4) micrometric table., (5)
precise micrometric screw, (6) long focus microscope.

straightened and polished. The alignment of the plate with
respect to the water surface is controlled by means of the
micrometric table (4) with four degrees of freedom. The
vertical movement of the plate in these experiments ought
to be very precise in order to create and control the defor-
mation of the surface. A special micrometric screw (5) with
a precision of +0.6 um has been used for that purpose. It
allows accurate measurement of the changes in the depth of
plate immersion, I {Fig. 1}, but not of the absolute value
of H itself. The unknown additive constant is determined
by means of the least-squares method when the data are fit
for H—see Section 4 below.

For each given depth of immersion, /, the floating particle
rests in an equilibrium position at some distance, s¥*, from
the wall. In this position the capillary image force, repelling
the particle from the wall, is exactly counterbalanced by the
gravity force {including the upthrust). The measurement of
the distance, s*, between the plate and the floating particle
is carried out by means of a wide-view, long-focus microscope
(Citoval 2, Carl Zeiss, Jena) situated above the dish with the
liquid. The precision of measurement of s* is better than
+20 pm.

In order to determine the three-phase contact angle we
observed the position of the floating particle {copper bead
or mercury drop) in a spectroscope cuvette (50 X 18 X 30
mm) partially filled with water. Photographs, like that shown
in Fig. 2, are taken through the vertical optical walls of the
cuvette. The geometrical parameters characterizing the par-
ticle position {equatorial radius, radius of three-phase contact
line, and depth of immersion into the water) are measured
from the photographs by means of optical densitometer and
are used for calculation of the contact angle.

The temperature was kept at 25 + 0.5°C during the ex-
periments.
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FiG. 2. Photograph of the immersed part of a mercury drop floating attached to a water-air interface. From the equatorial radius and the depth of
immersion of the drop one can calculate precisely the three-phase contact angle.

3. DETERMINATION OF THE THREE-PHASE
CONTACT ANGLE o,

{a) Determination of e for Spherical Particles

The contact angle at which the water surface meets the
particle surface is an important parameter for the capillary
interaction, We assume that the interfacial tension, 7y, the
mass densities of the two fluid phases, p; and py, and that
of the particle, p,, are known, From the photographs we
measure the particle radius, R,, the radius of the three-phase
contact line, r,, and the depth of immersion into the lower
phase, b, (see Fig. 3). Then one can use either the values of
R and b, or the values of R, and r, to calculate «, and the
meniscus slope angle ¥, by using a simple iterative procedure.
If the pair of parameters R, and b, is known, the procedure
is the following:

(i) r; and the part of the particle volume which is im-
mersed in the lower phase, V;, are calculated from the geo-
metrical relationships

= [0{2R; — bz)]u2
Vi=wbh3(Ry ~ bs/3).

[3.1]
[3.2]

(i1) An initial value for the meniscus slope angle at the
three-phase contact line, :,bgm,is prescribed: we use 1//(20)= 0.

(iii) The subsequent approximation for the capillary
charge, (), is calculated from the equation

k+1 . k
$ = posin y5Y,

[3.3]

(iv) The next approximation for the particle contact line
elevation, #,, is determined from a counterpart of Derjaguin’s
formula (14),

B = 0 n {4/ [yegra(1 + cos y$)]},  [3.4]

where y. = 1.781071 . . . is the constant of Euler—Masceroni,

g* = (p — o)/ v [3.5]
g is the gravity acceleration, and v is the surface tension of
water.

{v) The next approximation for - is obtained from the
vertical force balance (see Refs, (6, 15))

. 2 4
pi = arcsm[;? ( V,— 3 Dy R3 — wr§h§k+l))], [3.6]
D .

where

Dy =(p2 = pu)/{p — pu)- [3.7]
(vi) If |1 — ybtzk)/ ¢§"+” = e the iteration process is re-
peated from point (iii), Here ¢ is the relative error which
was fixed in advance. We used ¢ = 10°%,
(vii) Finally o, is determined from the geometrical re-
lationship
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FIG. 3. Sketch of a spherical solid particle (a) and a mercury drop (b) attached to a fluid interface.

, &
ay = arcsin(r,/Ry) — ¢y Y,

{3.8]

Our computational experience showed that this procedure
is rapidly convergent and it is not very sensitive to the choice
of the initial value {5 .

If the pair of parameters R, and r, is known, the iterative
procedure is the same with the exception of step (1), in which
b; 1s calculated from the equation

by = Ry + (R - r3}'/*sign(b, — Ry), [3.9]
where sign (b, — R;) equals 1 or —1 depending on whether
the contact line is above or below the particle equator.

The use of the pair of parameters R, and b, is preferable
for particles with contact angle o, close to 90°, because it
gives more accurate results (small variation in o leads to a
large change in b,).

(b) Determination of as for Mercury Drops

For mercury drops the procedure for calculating «, should
be slightly modified, because their shape is not a perfect
sphere but is composed of spherical segments—see Fig, 3b.
This is due to the fact that the mercury-air surface tension,
oy, is greater than the mercury-water interfacial tension, ¢,.
(The deformation of the drop due to gravity is negligible
because of the high interfacial tensions—see, e.g., Ref. (15)).

The radii of curvature of these spherical surfaces are deter-
mined from the ratio of the interfacial tensions ¢, and o,.
In our computations we assume that ¢> = 426 mN/m (16)
and v = 72 mN/m. The radius of curvature of the mercury—
waler interface, Ry, and the depth of immersion, b5, are mea-
sured from the photographs (cf. Figs. 2 and 3b). Then the
three-phase contact angle, «,, the meniscus slope angle, ¥,
and o, are determined by means of the following iterative
procedure:

(1) From R, and b, we calculate

r = [b2(2R; — by)]'/? [3.10]
Vi=nb3(R;— by/3) [3.11]
8, = w — arcsin{r,/R)). [3.12]

(11} An initial approximation for 41(20) is given; we use
¥ = 0.

(iii) The subsequent approximations for a; and Q, are
calculated from the expressions

af =g — g, — ¢ [3.13]
§D = posin ¢5°. [3.14]

{iv) From Neumann-Young triangle and geometrical
considerations one can calculate
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o = (3 + 42 + 2veacos a2 [3.15]
g% = arccos[(y cos 5 — ascos 92)/0-(,“”] [3.16]
R = py/sin 61 [3.17]

VD = (a/3)(RETD)?
X [1 —cos 0Y7712[2 + cos 67°7], [3.18]

where R, is the radius of curvature of the drop cap.

(v) hé“” is determined from Derjaguin’s formula—see
Eq.[3.4].

{vi) The subsequent approximation for - is calculated
from the vertical force balance

2
P54 = arcsin Z—qr (V= Dy(V; + V [+
w2

— w3k 13.19]

(vii} If |1 — ‘2"’ / :,{/EHU | = e the iteration process is re-
peated from point (iii). Here ¢ is the relative error which is
fixed in advance. Qur calculations showed that this procedure
is quickly convergent.

4. CALCULATION OF THE THEORETICAL
DEPENDENCE H(s*)

In the first part of this study we derived an expression for
the lateral capillary force, F,, between the floating particle
and the wall—see Eqgs. [5.6]-[5.8], [5.16], and [5.17] in
Ref. (13). At equilibrium F, = §. For a fixed contact line at
the wall surface {which is the case in our experiments) the
deformation of the water surface, {,, created by the wall is
given by Eq. [3.8]in Ref. (13). Then the condition for equi-
librium separation s* at a given H can be written in the form

(v/r2)Y (s* H) - 2nvQ.Hg exp(—gs*) =0, [4.1]

where
Y(s* H)
:.for [20:50(@) + (dGo/de)? + g2RE(e)?]cos ede,
[4.2]

where {o(¢) and {(¢) = {o(¢) + [i(¢) are given by Egs.
[3.8],[3.29], and [5.9] in Ref. (13), Hence Eq. [4.1] is a
transcendental equation which connects H and s*.

To solve Eq. [4.1] and to find H at given s* we used the
following iterative procedure:

(1) The parameters of the system (fluid and particle mass
densities, particle size and contact angle, interfacial tension )
are considered to be known.

(ii) An initial approximation H® is taken (we used
HO = 0),

(iii) Atgiven H® (k=0,1, 2,3, + - -) we calculate the
other geometrical quantities r(zk’, b , fa,k), and Jz(zk) from
the normal balance of the gravity, buovancy, and surface
tension forces—see Section 3d in Ref. (13). For that reason,
the iterative procedure described in Section 6a of Ref. (13)
is applied.

(iv) By using the parameters obtained in point (iii}, the
next approximation for H is determined from a counterpart
of Eq. [4.1]:

H*D = ¥ (5% H*)exp(gs*)/(2rgrs’05"). [43]

(v) If |1 — HWH% )} = ¢ the iteration process is re-
peated from point (iii); € is the relative error of the calcu-
lations (we use e = 107%).

This procedure converges very fast. For the mercury drops
it was modified in order to account for the fact that their
shape is not perfectly spherical. The respective procedure is
described in the Appendix and is used in step (iii) instead
of the procedure for spherical particles.

The computations showed that the calculated dependence
H(s*) is very sensitive to the particle radius but is slightly
dependent on o, for the particles studied experimentally.
Thus, for comparison of the theory and the experiment, we
adopt the following procedure. The contact angle o is mea-
sured as described in Section 3 and is considered as a fixed
parameter for the given type of particles. The particle radius
R: (or R, for mercury drops) is determined by optical mi-
croscopy. Finally, the correctness and self-consistency of the
theory are verified by simulation of the experimental data
with the theoretical curve H(s*) at the values of o, and R,
{or R)) determined in advance.

The calculations showed that the variations of R, (R;) and
o, within the limits of the experimental accuracy, practically
do not affect the calculated values of H at a given separation,
s*, when gs* = 1.5 (for the particles studied }. For that reason
we determined the unknown additive constant in the ex-
perimental data for H by fitting the last four or five experi-
mental points (these with gs* = 1.5) with the theoretical
curve.

5. EXPERIMENTAL RESULTS AND DISCUSSION

{a) The Three-Phase Contact Angle

For determination of the three-phase contact angle we
took pictures of the particles as described in Section 2. Figure
2 presents a photograph of a mercury drop and the water
meniscus stirrounding it. Due to the drop weight the water
surface is curved and the upper part of the drop (which is
inside the air phase ) cannot be seen in the photograph. From
this photograph we measured R, = 423.5 + 2 um, b, = 542
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+ 5 um, and r, = 406.5 £ | um. Following the procedure
described in Section 3b, from the vaiues of R,, b,, and o5
we calculated r, = 406.6 um, a; = 85.3%, and ¢, = 438 mN/
m. The agreement between the measured and calculated val-
ues of r, confirms the sphericity of the mercury-water in-
terface. The value of ¢, determined in this way is lower than
the values of the surface tension of mercury, about 470-484
mN /m, quoted in the literature (16, 17). We believe that in
our experiments the surface tension of the mercury-air sur-
face is reduced due to the absorption of water from the gas-
eous phase (17). The literature values are measured with
mercury in contact with dry atmosphere saturated with only
mercury vapors. Since there is some uncertainty about the
precise value of the mercury-water interfacial tension, ¢, we
performed the calculations for the same drop by imposing
some lower value of o3, say o2 = 415 mN/m (17), instead
of g, = 426 mN/m (16). The calculated values of ry, o,
and y» were exactly the same. Only for the mercury-air in-
terfacial tension was a different value, o; = 427 mN/m, ob-

tained. This means that the drop shape and the other geo-’

metrical parameters, o, and y;, slightly depend on the pre-
scribed value of ¢;. Hence we do not claim that the values
of a) and ¢; are exact. However, in spite of that the geo-
metrical parameters and especially the contact angle, aa, are
determined correctly. In principle o and o, can be deter-
mined from some other method (e.g., pendent drop method)
but this is beyond the purpose of our study.

It should be noted that the calculated meniscus slope angle
at the three-phase contact line, ¢, = —11.5° £ 0.1°, is small
enough to justify the usage of the linearized Laplace equation
of capillarity in our theoretical treatment (the expressions
for { and §, used in Eq. [4.2] are derived in Part 1 (13) for
sin?y, < 1).

For a mercury drop of bigger size we measured R, = 518
*3pm, r; =484 = 5 em, and b, = 701 £ 10 pm. Then we
calculated a; = 87.1° + 1° and ¢, = —17.8° + 0.2°, The
numerical simulations show that the curves H{s* } are weakly
sensitive to the exact value of & for the particles investigated
in our experiments. Thus the variation of a, within +£5°
practically does not change the theoretical curves in the limits
of the experimental error. That is why we used for mercury
in the computations below the mean value of the aforemen-
tioned two experiments, o, = 86°.

Similarly, we measured the contact angle of the copper
beads to lie between 95° and 105° for different particles.
This larger scattering is due to the hysteresis of the contact
angle at the solid surface, which is not perfectly smooth and
homogeneous. The large values of the contact angle indicate
high hydrophobicity of the beads, which is an indication that
they are covered with a protecting organic solid film (by the
producer). When calculating the theoretical curve, shown
dashed in Fig, 4, we used the mean value o, = 100°,

As an ilustration we present the results for one of the
investigated copper beads. From optical measurement we
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FIG. 4. Experimental data {the circles) for / vs s* for a copper bead.
The theoretical dashed curve is calculated with a; = 100° (measured as
explained in Section 3a) and R, = 700 + 10 xwm, measured independently
by microscope.

determined R, = 612 = 5 um, r, = 600 = 5 um, and b, =
728 + 5 um. Following the procedures described in Section
3a we calculated from the pair R, and b; the values @y =
95.1°, r, = 601 um, and ¥, = —16.0°. From the values of
R; and r, we calculated a; = 94.7°, b, = 733 um, and ¢, =
—16.0°. As seen from these figures the agreement between
the measured and calculated values of r; and b, is very good,
which confirms the reliability of the method.

(b) Capillary Image Force

As described above we measured the equilibrium distance,
5*, between the particle center and the wall surface as a func-
tion of the height of the lower edge of the hydrophobic Teflon
plate, H, where H is evaluated with respect to the level of
the horizontal flat interface far from the plate and the particle.

In Fig. 4 the experimental results ( the circles) for a copper
bead are shown. The respective theoretical curve (see the
previous section for the method of its calculation) is also
plotted. The values of the three-phase contact angle a; =
100° and the particle radius R; = 700 £ 10 um, used in the
calculations, were determined by optical microscopy. As
mentioned earlier the variation of the contact angle o with
+5° practically does not change the shape of the theoretical
curve. This low sensitivity with respect to the value of
does not allow the plot of H vs s* to be used as a method
for determining «;.

The experimental data show that the larger the magnitude
of H (i.e., the larger the surface deformation created by the
wall}, the smaller the equilibrium separation. One should
note that s* cannot be smaller than the radius of the floating
particle, because the distance s* = R, corresponds to a direct
contact between the particle and the wall.

Figure 5 shows the results for two mercury drops of dif-
ferent size: R, = 440 + 10 gm (the circles) and R, = 512 =
10 pm (the boxes). Contact angle e, = 86° is used in these
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FIG. 5. Experimental results for H versus $* for two mercury drops of
different size. The theoretical curves (dashed) are calculated with a, = 86°
(measured as described in Section 3b), and R; = 440 + 10 um (lower curve}
and R, = 512 £ 10 um (upper curve), respectively, measured by optical
microscopy.

calcuiations. Although in this case the particles are fluid, the
shape of the curves H(s* ) is very similar to that for the solid
copper beads (Fig. 4}.

The accuracy and reproducibility of the measurements
are about +2 pm for H and 20 um for s*. As seen from
the figures the agreement between the theoretical curve and
the experimental points is very good. It is worthwhile to note
that, except for the additive constant in the data for H, dis-
cussed at the end of Section 4, the theoretical curves in Figs.
4 and 5 are drawn without using any other adjustable pa-
rameter.

At the equilibrium position, 5§ = s* the pure capillary
image force, Fc, is exactly counterbalanced by the gravity
force (weight plus upthrust), Fg. In other words,

F(s*) = Fo(s*) + Fg{s*) = 0. [5.1]
As explained in Part I (13), the pure capillary image force
can be expressed by setting if = 0in Eq. [5.6] in Ref. (13):

Fo(s)=F(s, H=0)

x 2
= lf dy cos so[Zst“o(qo) + (@) + qzr%s*%(gc)] [5.2]
r o de
(see also Egs. [2.1],[5.8],[5.16],and [ 5.17] in Ref. ( 13)).
Equation [5.2] allows one to determine F¢ for the systems
studied. As an illustration, the plot of Fi vs s* for the two
mercury drops (cf. Fig. 5) is shown in Fig. 6. It is seen from
Fig. 6 that the magnitude of the capillary image force is on
the order of 107% N for the particles studied.

6. CONCLUSIONS

In this article we investigate experimentally the capillary
meniscus interaction between a floating spherical particle

and a vertical wall {see Fig. 1). The existence of an equilib-
rium particle-wall separation, s*, predicted in Part I {13),
was proven experimentally. The separation, s*, was mea-
sured as a function of the wall immersion, H. The experi-
mental plots of H vs s* are compared with the theory de-
veloped in the first part of this study (13)—see Figs. 4 and
5. The agreement between the theory and experiment is very
good. A simple method for determination of the three-phase
contact angle of millimeter- and submillimeter-size floating
particles is described.

APPENDIX

Determination of the Geometrical Parameters of a
Floating Mercury Drop Used in the Calculation
of H(s*)

As mentioned earlier, the shape of the mercury drops is
not spherical due to the difference between the interfacial
tensions ¢, and o> (see Fig. 3b), For that reason, the pro-
cedure for determining the geometry of mercury drops float-
ing attached to a liquid interface in the vicinity of a wall 1s
different from that in the case of solid spherical particles,
described in Section 6a in Ref. (13)—see aiso Section 3b in
this study.

Let us assume that we have determined the contact angle,
a3, and the interfacial tensions, ¢, and o2, of the mercury
drop. In addition, the initial drop radius, R; (without devia-
tion from sphericity ), the mass density ratio, D, the surface
tension, v, and the capillary length, g~!, are also known. In
order to determine the drop capillary charge, (2;, as well as
the contact line radius, r;, we use the following iterative pro-
cedure:

(1) The procedure starts with the choice of an initial guess
for ¥, and 2,

0.4
Fe, [N]x105
—— R=465um
0.3) Ri=512pm
0.2
0.1 |-
o, T
0 1000 2000 3000 4000 5000
s* [um]

FIG. 6. Plot of the pure capillary image force, F¢ vs s*, (calculated
from Eq. [5.2]) for the same mercury drops, as in Fig. 5.
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LU 0 .
2 = 0, rg = Rsin a;.

(i1} The next approximation for #, is calculated from the

geometrical relationship

k1 k
6(2+)=1r—a2— (2).

(iii) 0" is calculated from Eq. {3.16], where 8,

k+1
= 65",

(iv) The next approximation for r; is calculated from the

balance of the drop volume,

D _ o (1 — cos 65"2(2 + cos 81%7")
E sin3gtFh
(1 — cos 85 H2(2 + cos 85H1) 173
¥ sin3g5 " '

(v} The volume of the drop situated below the contact

line, ¥}, is determined from the relationship

(k+1)
V(kH)AT"( s )3
¢ LN B
- (hk+1)
3 \sin 65

X (1 —cos 8522 + cos 851,

(vi) Qék‘“) is calculated from Eq. [3.3] with r, = r3
{vii) hg‘“) is calculated from Eq. [3.42]in Ref. (13).
(viii} The next approximation for , is determined

. 4
P = arcsm[ piEn 3 TR3D,

_q
21rr(2k+l)

—x rg’””)%g“*”)]. [A.5]

[A.1]

[A.2]

[A.3]

[A4]

(e b)

(ix) if [1— Qék)/ng”)l < ¢ the iteration process stops,

otherwise, the next iteration repeats from step (ii) e is the
relative error of the calculations.
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