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Abstract

The formation and structure of sedimentation and/or filtration layers built up by charged colloidal particles were
studied, For that purpose a theoretical model based on the force balance on a given particle in the layer was developed.
The colloid stability problem and appearance of coagulation were considered. The hydrodynamic permeability of a
filtration layer, consisting of charged particles, was calculated for different values of the electrolyte concentration,
filtration rate, particle surface potential and radius. A simple expression for estimation of the collective diffusion
coefficient of charged colloidal particles at relatively high volume [ractions was also proposed.
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1. Introduction

Colloidal dispersions have been of increasing
interest during recent years. One reason for this
fact is their relation to different industrial activities:
ceramics fabrication, production of paints and
coating dispersions, biotechnology and many
others. Besides, different challenging (undamental
problems, concerning colloidal suspensions, exist,
The difficulties in the theoretical studies of colloidal
dispersions arise mainly from the complex hydro-
dynamics and the almost inevitable presence of
long-range direct interactions (electrostatic and/or
van der Waals forces). A detailed review on the
recent status of investigations concerning colloidal
dispersions is given in the monographs of Russel
et al. [1] and Russel [2].

The examination of concentrated colloidal dis-
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persions, when long-range direct interactions are
present, allows a wide variety of important phen-
omena to be studied. Information about the struc-
ture and the density of the sediment can be
obtained in the case of sedimentation. The colloidal
stability and coagulation phenomena in the latter
could also be studied.

Another process, where direct interparticle inter-
actions are known to be important, is membrane
filtration. Much experimental evidence shows that
when ultrafiltration of charged colloidal particles
is performed, an anomalously high transmembrane
flux (compared with the case of uncharged par-
ticles) could be observed [3-6]. This is due to the
particle charge because when different species of
opposite charge are filtered, a rapid decrease of the
filtration rate takes place [7]. These effects have
been attributed to changes both of the particle
diffusivity (due to the particle charge [4]), and of
the packing density in the filtration layer, formed
at the membrane surface during the process [3,5,6].
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As a result of the electrostatic repulsion the colloi-
dal particles are at a certain distance from each
other. Different factors, however, may lead to
compression of the electric double layers of the
particles, thus increasing their density in the filtra-
tion layer and hence, the resistance of the latter.

The diffusivity of charged colloidal particles is
also known to be a complex function of the particle
volume fraction. The collective diffusion coefficient
increases linearly with the volume fraction when
the latter is low [8-11]. However, at a higher
concentration of colloids, it starts decreasing thus
passing through a maximum, as was shown theo-
retically by means of numerical calculations
[10,11]. The derivation of an analytical expression
for the collective diffusion coefficient may help
elucidate the physical nature of such behavior.

Our aim in the present paper is to study some
closely related problems encountered with concen-
trated dispersions of charged colloidal particles:
(i) sediment structure with an emphasis on the
coagulation phenomena; (ii) structure and perme-
ability of the filter cake, formed in the course of
ultrafiltration of such suspensions; (iii) dependence
of the collective diffusion coefficient on different
parameters of the colloidal dispersion.

As pointed out by Zharkikh [12], the application
of rigorous statistical mechanics to transport pro-
cesses in concentrated colloidal dispersions leads
to such a complexity in the treatment, that as a
first step, a simple cell model can be used. The cell
model for describing the fluid flow in an ensemble
of uncharged spherical particles, was proposed by
Happel [13], Happel and Brenner [14], and
Probstein [15]. It was modified recently for study-
ing other transport phenomena, €.g. microion
diffusion in concentrated dispersions of charged
colloidal particles [12,16]. The cell model is known
to give good quantitative results for a wide range
of particle volume fractions [12,14] and is qualita-
tively correct for almost any concentration of
colloids [12,16]. The analysis of the colloidal sta-
bility is performed in the framework of the
Derjaguin-Landau-Verwey-QOverbeek (DLVO)
theoretical concepts [17,18]. If the applied outer

force (gravitational, Brownian or viscous) on a
given particle does not exceed the direct force
barricr between two particles (cf. the DLVO theory)
no coagulation should be observed. It is obvious
that the colloidal stability problem is of great
practical importance, especially in filtration, where
the coagulation in the filter cake can lead to a
decrease in the efficiency of the process.

The paper is organized as follows. Section 2
presents the general force balance for a given
particle in the dispersion, which is the basic equa-
tion of our theoretical model; Section 3 deals with
the application of this equation to the particular
cases of sedimentation, ultrafiltration and diffusion
of charged colloidal particles at high volume frac-
tions; some numerical results and discussions are
also mcluded. Section 4 (Concluding remarks) sum-
marizes our main findings,

2. Force balance on an arbitrary particle in a
concentrated dispersion of charged colloidal
particles

In this section we present the derivation of a
general expression connecting the outer (gravita-
tional, Brownian and/or viscous) and the direct
colloidal surface forces with the local structure of
the dispersion. It is based on the force balance on
a given colloidal particle (see Fig. 1). Our approach
is similar to the one applied by Buscall and White
[19] for studying sedimentation. However, these
authors performed a force balance on a certain
volume of the dispersion, which contains many
particles. Our choice of examining a single particle
allows us to express all the quantities in which we
are interested in terms of the simple pair DLVO
interparticle interactions, the parameters of the
hydrodynamic cell model and the local packing
geometry. The main assumptions which we used
are as follows. (i) The electrokinetic effects due to
coupling between convection and diffusion of small
ions are ignored. This means that the microion
diffusion is much faster than the convection.
Indeed, for convective velocities V'~ 1073 ems™,
ion diffusivity D; & 10 7% cm? s "* and characteristic
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a1/

n+1

Fig. 1. Scheme of the forces acting on an arbitrary particle in
a concentrated suspension: (a) body centered cubic geometry;
(b) hexagonal geometry.

length of diffusion / (of the order of the particle
radius a =~ 10~ % ¢m), we have for the Peclet number
Pe = VI/D ~ 1073, which justifies this assumption.
(i) The force balance is performed only in a
direction collinear with the outer force vector {cf.
Fig. 1). Nevertheless, the variation in the particle
density (due to the outer force) is assumed to take
place isotropically. The meaning of this assumption
will become clearer after some explanations given
below. (iii) Only nearest neighbor interactions are
included. (iv) Transition from discrete to continual
description is used.

The system we consider is shown in Fig. 1. The
distances between the chosen particle in the nth
layer and its nearest neighbors in the upper (n—1)
and lower (n + 1) sublayers are é,_, and J, respec-

tively. Hence, at equilibrium we obtain for the
force balance:

F(xn)+m[f(5n~1)+f(5n)]xo (21)

where F(x,) is the vector of the outer force which
is assumed to have only an x component (the layer
is considered to be infinite in the lateral directions),
f8,-1) and f(3,) are the vectors of the direct
(surface) forces, acting on the nth particle from the
nearest neighbors in the n— 1 and »n + 1 sublayers;
m is the number of the nearest neighbors in the
n—1 or n+1 sublayers, or 2m is the effective
number of all nearest neighbors. Equation (2.1) can
be written in scalar form

F(x,) +mcos [ f(3,-1)—f(0,)] =0 (2.2)

where F and f are the corresponding force magni-
tudes and 8 is the angle between the interparticle
direct force and the outer force (or the coordinate
x; of. Fig. 1 and Eq.(2.9) below). Assumption (i)
implies that & may vary with x, but ¢ remains
constant. This is tantamount to assuming that the
local structure symmetry is not subject to great
changes under the action of the outer force.
Assumption (iv) allows one to write

f(an)_f(&n-l) 6"_5"‘1%9{.@ (23)
571_5"—1 Xy — Xp—1 6x dx )

where
Xy — Xp—1 = [2a+ 0(x)] cos & (2.4)

and a is the particle radivs. Combining the above
expressions with Eq. (2.2) we obtain

of do

F(x) = mcos* 0[2a + 6(x) %6 (2.5)

Equation (2.5) presents the basic expression in our
theoretical model. It relates the forces acting on
the particle with the interparticle distances and
packing geometry, It is convenient to reformulate
Eq.(2.5) in the framework of the cell model
[12-16]. For this purpose we introduce a new
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variable y defined as

'}}3 = (D, ’)J = (2.6)

Sl =

where @ is the particle volume fraction and b=
(dra®/39 )13 = (64 2a)/2y, is the cell radius. y,
corresponds to the close packing value of y (i.e. to
d=0) for a given geometry (see Table 1).
Equation (2.6) leads to

( I+ fi) =l 2.7)

2a ¥
Equations (2.5) and (2.7} along with the identity
o db _of dy 28
06 dx dy dx
give rise to

Lof dy

F(x)=2ayomcos* § - > 3 dx (2.9

This quantity corresponds to the gradient of the

elastic stress in a particulate network, introduced

by Buscall and White (see Eq. (1.7) in Ref. 19).
The product

M =yomcos? (2.10)

characterizes the specific ggometry of local ordering
in the colloidal dispersion (see Fig. 1) and could be
regarded as a free parameter in the interpretation
of experimental data. The values for y,, m, and
cos 6, for certain geometries are summarized in
Table 1.

For the determination of the derivative df/dy a
specific form for the direct interaction potential is

Table 1

Values of the parameters y,, m and cos @ for certain packing
geometrics

Packing Parameter
geometry

Yo m cos §
Simple cubic 0.806 | 1
Body centred cubic 0.879 4 ﬁ/S
Hexagonal 0.904 3 2/3

needed. Alexander et al. [20] solved numerically
the non-linear Poisson-Boltzmann equation,

Vy=— 5 o expley) @.11)

kT 45
for a spherical cell, surrounding the charged colloi-
dal sphere. y(r)=eW (r)/kT is the dimensionless
potential, kT is the thermal energy, € is the dielec-
tric constant, e is the elementary charge, C, is the
number concentration of microions of the type i
and z; is the corresponding microion charge
number. They showed that the interaction energy
between the sphere inside the cell and the other
spheres outside the cell has a Yukawa form
2
U, = L explekn) 2.12)
€ r

where r is the interparticle distance. The particle
charge number z in Eq. (2.12), however, is a renor-
malized effective quantity [20]. It can be related
to the actual particle charge by solving numerically
the Poisson—Boltzmann equation (2.11) with an
appropriate condition at the cell boundary [20].
The screening parameter,

dne?z2C, 4me®
K? = 7 o4 szzc (2.13)

also depends on the renormalized charge z. C, is
the average particle number concentration in the
suspension and C; is the microion concentration
taken at the cell boundary [20] (see also the papers
of Beresford-Smith et al. [21]). The first term on
the right-hand side of Eq. (2.13) accounts for the
contribution of the colloidal particle counterions,
while the second one is due to the added electrolyte.
It is convenient to introduce the Bjerrum length,

2

e
=7 (2.14)

and then Eq. (2,12) becomes

U, exp(—kr)

T z2 4 - (2.15)

Hence the electrostatic force, acting between two
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particles in the dispersion, can be expressed in the
following form

Kr
fu= 22 22D 216)
Using
=2al| 1+ — 0
r= 2 (2.17)
and Eq.(2.7), the electrostatic force can be

expressed in terms of y. Differentiating f,, with
respect to y we obtain

a—fﬂ 722k Txa ox ( 2xa'))o)
& 2ayo(2xaye/y)

¥
« |:2xay0 (Ztcayo ) (Z;cayo ﬂ
Y

(2.18)

As discussed above, the renormalized charge z and
the screening parameter x in Eq. (2.18) differ from
the actual ones. This means that they must be
regarded either as free parameters in the treatment
of experimental data, or the non-linear Poisson—
Boltzmann equation should be taken into
consideration.

For the van der Waals attractive potential
between two spheres, the Hamaker equation
holds [22]

SO (NS S p—
W T 10\ SJa+ 6 4a* | 1+ 8/a+ 624’
8ja+ 6%/4a* )

+2in (2.19)

| + 6/a + 6%/4a?
where A is the Hamaker constant, Performing
algebraic transformations similar to those already
described above for the electrostatic part, the
following expression for the van der Waals contri-
bution can be obtained,

af;'w - _ _é_ ?6(7’}% — 3'))2) (220)
0y 12a yo0§—7*)

A significant simplification can be achieved in

the case of large particles and high concentrations
of added electrolyte. In this case the gap between
the spheres is much smaller than their radius. Then,

the following expressions for the interaction ener-
gies hold [1,17,18]:

2
U, = 8ac [_’EeI tanh ({fﬂ exp(— 1) (2.21)

and

Aa
U= — =~
YW 12 5 (2'22)

yg is the dimensionless particle surface potential
(cf. Eq.(2.11) and the explanations below). The
force derivatives df/0y are

fa kT 2
o = 16¢ey, [xa tanh ( 4)exp(rca)}

« exp(—2xayo/y)

= (2.23)

and

o A
w7 2.2
B - 124 20— (2.24)

Equations (2.18) and (2.20) are preferred when
smaller particles with a low concentration of
electrolyte are considered (xa < 1), while (2.23) and
(2.24) are correct for larger particles at high electro-
lyte concentration (ka > 1).

3. Sedimentation, ultrafiltration and diffusion

In this section the approach described above is
applied to examine the structure and stability of a
sediment or filter cake as functions of different
parameters. The time behavior of the cake perme-
ability, when charged colloidal particles are filtered,
is also investigated. After reaching the sediment
(or filter cake) by means of convective transport,
the particles are supposed to become motionless
and all the changes in the layer structure are quasi-
static. A simple expression for estimation of the
collective diffusion coefficient of charged particles
at relatively high volume fractions is presented.
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3.1. Structure and stability of a sediment built up of
charged colloidal particles

The theoretical analysis of transient settling of
an uncharged hard sphere suspension was per-
formed in a comprehensive manner by Russel et
al. [1] and Davis and Russel [23]. Using the
method of matched asymptotic expansions, they
solved the diffusion problem for the whole region
in which the settling process takes place. Some
experiments with silica particles in organic solvent
were also performed [24,25].

Our approach accounts for the presence of long-
range direct interactions and is based on the use
of Eq. (2.9). The outer force F in the case of gravity
sedimentation is given by

F= gna:’Apg (3.1)

where Ap is the density difference between the
particies and the surrounding fluid and g is the
acceleration due to gravity. The sedimentation flux
for large particles (i.e. the particle convection domi-
nates over the particle diffusion) is

jscd = V@B (32)

where @y is the colloidal particle volume fraction
in the bulk, above the sediment layer, and V is the
particle sedimentation velocity in the bulk, above
the sediment layer, in which the force balance
(Eq. (2.9)) is performed. If the interparticle inter-
actions in the bulk are ignored (the volume fraction
in the bulk is low, @y « 1) and the Peclet number
is high enough, V is given by the well-known
expression for the gravity settling [2,23]

F 2a%Apg

V= =
bnua O

(3.3)

where u is the solvent viscosity. In our case Op =
1073 (see the calculations described below) and
Pex10° (see Ref.23), hence Eg.(3.3) holds. It is
possible, in principle, to account for the influence
of the pair interactions on the sedimentation veloc-
ity ¥ in a rather simple manner [8,9]. However,

for clarity and simplicity the interparticle inter-
actions in the bulk are ignored in the present
consideration.

We can write the following mass balance
equation

L)

dit fys(x, Hdx | = Vg (3.4)

where ¢ is time and L(f) is the time dependent
thickness of the sediment layer.

Equations (2.9), (3.1) and (3.3) give (cf. also
Eq. (2.10))

3wV _19f dy

M oy oy dx (3:3)

It should be emphasized that Eq. (3.5) presents a
balance between the gravity force (see Eq. (3.1))
and the interparticle force (see Eq.(2.9)) and is
valid in the sediment layer only. The gravity force,
however, could be expressed by the bulk sedimenta-
tion velocity (see Eq. (3.3) which should be applied
above the sediment layer), which leads to the form
of Eq.(3.5). If no coagulation is present in the
sediment, after changing (by means of Eq. (3.5)) the
variables in Eq. (3.4) we can write the latter in the
following form

yL(1)

Mdlr Ly
dy

| v dy | = v, (3.6)

?s

where yg is the value of y at the surface of the
sediment layer and can be calculated from the

simple force balance on a particle placed there (cf.
Fig. 1)

4

3 na Apg = m cos 0f (ys) (3.7)
y.(t) is the value of y at the bottom of the sediment
(where x=L). Equation (3.7), which presents a
balance between outer and interparticle forces,
shows that our approach is very similar to that of
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Napper [26] for calculation of the osmotic pressure
of concentrated suspensions of sterically stabilized
particles. At the moment t=0 we assume L=0,
v, =Yg, 1.€. the influence of the particle-membrane
interactions is ignored. If there is no coagulation
of the particles inside the layer, integration of (3.6)
over t yields:

L)
af 3nuv? o
2 = 7B
J gy dr= T (38)

s

which allows the calculation of the time depen-
dence of y,, i.e. of the value of y at the bottom of
the layer. The spatial distribution of y, ie. its
dependence on x, can be found from the integral
of (3.5):

P(x)

M L of
X = 3al j ; -é;dy (3.9

TS

where p(x) denotes the value of y at a distance x
from the surface of the layer. By substituting 0f/dy
from Eqs. (2.23) and (2.24), Eq. (3.9) can be solved
to give an analytical expression for the concen-
tration distribution along the x coordinate

M kT Vs 2
X= Ta¥ {861«1[ . tanh(4) exp xa]

y [exp (—2rayo/y)  exp(=2kayo /ys)]
Y Vs

- o o)
82" | po—1? (o7’

By setting x=L in Eq.(3.9) or Eq. (3.10) and
making use of the value y(t), one can calculate
the thickness L of the non-coagulated layer at a
given moment £.

Equation (3.8) shows that as time passes, the
density at the bottom of the layer y{ increases and
the interparticle distance & decreases (cf. Eq. (2.7)).
As is evident from Fig. 2, the repulsive force f
between the particles, which counterbalances the
weight of the layer, also goes up. If however d can
attain values corresponding to the maxima of the

(3.10)

5.0E-10
4.0E-101 N

3.0E-10 K

fi N

2.0E-10 1

1.0E-10

R
H
i
i

i T—

0.0EQ L it
0.00 004 008 012 016 020

5/2a

Fig. 2. Interparticle force f, acting between two colloidal
spheres, according to the DLVO theory (sce Eqgs. (2.20) and
(2.21) and the comments in text). Yg=100mV; a= 1075 emy
A=10"20] -~ ka=5, —, ka=10; ——, ka=20.

curves of Fig. 2, the long-range repulsive forces
will no longer be able to sustain the equilibrium
and the layer will collapse: at that critical moment,
which we shall denote by ¢, the distance between
the particles will become equal to their diameter
and y will acquire the close packing value y,. The
thickness of the non-condensed layer at the critical
moment will be denoted by x,, and the respective
value of y by y.,. Since the latter corresponds to the
maximum of the force—distance curves, it is deter-
mined by the condition

9. (3.11)

and can be calculated by means of the equations
for the interaction forces, quoted in Section 2. By
substituting ., for . in Egs. (3.8) and (3.9) (or
(3.10)) one can calculate also the critical time ¢
and the critical layer thickness x,,.

After the critical moment, the thickness of the
layer L(f) keeps increasing but only through
increasing the thickness L — x,, of its “condensed”
part with density y3. The latter can be calculated
by setting y =7, in Eq. (3.4) and integrating over ¢
from t,, to t. The result is

Ve
L(t) = Xor = ysB (t = ter) (3.12)
0
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The above procedure of calculation is applicable
both to gravity and centrifugal sedimentation. In
the former case in all equations V must be
expressed through the second Eq.(3.3), which is
valid also for the latter case if the centrifugal
acceleration is substituted for g.

The calculated concentration profiles in the sedi-
ments are shown in Fig. 3. The sedimentation of
particles with radius a=5x 107° ¢cm and density
difference Ap = 0.8 under the gravity force is consid-
ered. Figure 3(a) corresponds to the case of body
centered cubic geometry (y3 =0.8794, or maximal
volume fraction @, = 0.68) of particles with surface
potential ¥s=100mV. The curves correspond to
three different concentrations of electrolyte: xa = 5,
10 and 20 respectively. In the case where ka=>5

1.0
09}
08} -

> 07y

0.8

05}

0.4 2 1 X 1 1 . 1 L L : i : L s 1

() x, cm

1.0

05}

0.4 L 1 PN S 1 I 1 1 . 1 " L \ L L i
2

© T, cm

> 07}

and with body centered cubic geometry at the
sedimentation layer surface (x =0), y5= 04176 (cf.
Eq.(3.7)) and coagulation occurs at y, = 0.8717
(xe =4.3 cm) (cf. Eqgs. (3.10) and (3.11)). This means
that after building a sediment with height equal to
43 cm, the particles placed in the nearest two
sublayers to the membrane will coagulate (cf, Fig. 1).
The increase of the electrolyte concentration leads
to an increase of the surface density of particles
{(rs=0.5606 for xa=10 and yg3=0.6867 for ka=
20). Also, the change in the particle volume fraction
(Le. of y) with the coordinate x is steeper for higher
electrolyte concentrations (see Fig, 3). The coagula-
tion occurs at larger values of x and y. Thus for
ka=10 and body centered cubic packing (y,=
0.8794) we obtained x, =79 cm and y, =0.8745,

1.0
0.9

08

0.6

05}

0.5}

0‘4 ' " 1 . 1 ;. ! L L 1 : 1 1 L |

() T, cm

Fig. 3, Concentration distribution of charged colloidal particles in a sedimentation layer under the force of gravity; x =0 corresponds

to the surface of the layer. a=5x 1075 cm; Ap =0.8; A = 1020 L ——ka=5 ——, ka=10; ~—~, ka =20, (a) ¥, =100 mV

¥

body centered cubic geometry; (b) ¥s= 50 mV, body centered cubic geometry; (c) ¥g=100 mV, hexagonal geometry; (d) ¥ =50 mV,
hexagonal geometry. The horizontal dashed lines correspond to y, (see Table 1),
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while for xa=20 no coagulation takes place for
x<10cm (in this case x,=146cm and y,=
0.8763). These specific features of the coagulation
in the sediment are connected with the type of
DLVO potential used — see Eqgs. (2.21) and (2.22)
and Fig. 2. It implies that addition of electrolyte
moves the force maximum toward smaller inter-
particle distances, but increases its height. Such a
situation is adequate in cases where the surface
potential is constant and the particle curvature
effects are unimportant, An increase of the force
maximum with the electrolyte concentration for flat
surfaces has been observed experimentally [27].

However, we should admit that the electrostatic
energy expression we used (see Eq.(2.21)) is not
strictly applicable in the whole region of particle
volume fraction covered in Fig. 3. According to
Derjaguin et al. [17], Eq.(2.21) is accurate for
8/a<1 and xd >2. Hence, for d/a>1 and body
centered cubic geometry of ordering (in our case
this means y < 0.5863 — see Eq. (2.7)) one should
use a Yukawa (or Debye-Hiickel) type of potential
(ie. Bgs. (2.12), (2.15) and (2.16)), which contains a
renormalized charge number z [20,21]. For the
case of high volume fractions (small interparticle
distances) the situation is even more complex. The
weak diffuse layer overlap condition xé > 2 (which
is necessary for Eq.(2.21) to be valid) requires
»<0.7328 for ka=5, y<0.7995 for xa=10 and
» < 0.8375 for ka = 20 (cf. Eq. (2.7)) and is obviously
violated for certain patts of the curves in Fig. 3.

In order to check to what extent our results will
be valid at small separations and high surface
potentials we performed calculations by making
use of the expressions for the energy and force of
interaction between spherical particles proposed
by Derjaguin et al. [17,18]. We found that the
values for y,, calculated in this way differ by no
more than 0.13% from our result. This supports
the applicability of Egs. (2.21) and (2.23).

3.2. Structure and stability of a filter cake built up
by charged colloidal particles

The approach described and applied above to
sedimentation can be used also for studying filter

cake formation and coagulation during filtration.
Although most of the equations are formally the
same, the meaning of some quantities and thus
certain physical considerations are different, in
particular the following.

(i) The mass balance equation (Eq. (3.4)) is again
valid, but now V, instead of being the particie
sedimentation velocity, will denote the flow velocity
of the liquid. The latter carries, by convection, the
particles toward the membrane, thus creating a
convective flux Vg, In the filtration case we do
not employ an independent equation, like Eq. (3.3)
for calculating ¥, because the flow velocity usually
changes with time as a function of the particle
layer thickness and structure: hence, it must be
either taken from the experiment or calculated in
the framework of the model.

(i) All equations from Section 2 are applicable
and our treatment is based again on the force
balance equation (Eq.(2.9)). However, the outer
force in this case is due to the viscous flow pressing
the particles toward the membrane and each other.
Following Refs. 13—15, we express this force in the
form:

F=dnpaVoly) (3.13)
where ¢(y) is the Happel function

o) = 3+2°
= ) 3y 3y = 28

(3.14)

F is the resistance force, acting on the fluid flowing
through an assemblage of motionless particles,
with superficial velocity V [14,15].

An alternative and simpler expression which
might be useful in some cases for @(y) can be
obtained by using the Kozeny—Carman model
[14,15]. Darcy’s equation in the framework of the
Kozeny—Carman theory reads (P is the applied
pressure)

_ 4a*(1 —y?)* dP

— 3.15
180y°p  dx 313
The drag force is
4 a*dP
=—q—5— 3.16
3" p dx (3.16)
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Eliminating dP/dx between these two equations
and comparing the result with Eq, (3.13) one sees
that the function

3
Prols) = 15 (1 ! yg) .17

is the Kozeny-Carman analog of Eq.(3.14).
Equations (3.14) and (3.17) are compared below,

Comparing Egs. (3.13) (cf. also (3.14)) with the
first Eq. (3.3) one sees that the same results as for
sedimentation will hold provided that (3)Ve(y) is
substituted for ¥ in the equations involving force
balance, Note however that ¢(y) must remain under
the sign of the integral. Thus, the counterparts of
Egs. (3.6), (3.8) and (3.9) now become:

yL(t)

d| M v of
e A 3,18
at | 2mv f oo |7 19
ys(t)
and
yL{t) s af t
M Y J'
Y ayp=| vdr 3.19)
2V, f o0) (
ysl?) 0
Y af
M ]
X = —— -— = 3.20
7l s (3:20)
ysit)

The surface value 95(¢) in the above equation was
found by using the theory of Sherwood [28], who
calculated the viscous force acting on a sphere
placed on a semipermeable half space (i.e. mem-
brane with infinite thickness). For the force balance
of a particle, placed at the filtration layer surface,
we thus obtained

6muab0.645 = m cos 0f (yq) (3.21)

which is the counterpart of Eq, (3.7). Our estimates
showed that the dependence of s On time is very
weak and in the future we shall neglect it.

The hydrodynamic drag force, just like the grav-
ity force, tends to compress the particle layer, so
that again at a given moment t.; coagulation can
occur. The critical value y,, is again determined by

Eq. (3.11) and the respective time t,, and thickness
X are calculated from Egs. (3.19) and (3.20) with
Yer Substituted for y; . The thickness of the coagu-
lated layer L — x,, depends on time as (cf. Eq. (3.12))

'

@
L-x,= y—;’ j V(') de' (3.22)
0

tCl‘

In order to calculate the dependence of the
filtration velocity ¥ on time (which incidentally is
of major interest in membrane science and technol-
ogy) we used the Darcy equation in the form

AP
V= oo (3.23)
(1/ko) + (1/kg)
where AP is the pressure drop, the constant ko 1s
the membrane permeability and k; is the filtration
layer permeability which can be expressed through
the function ¢ and y by means of the equation

[1,2]:

kg = B 7 E— (3.24)

3u | oy’dx
0
Taking into account Egs. (2.9), (3.13), (3.14)

and (3.24), we obtained for our model before
coagulation:

2na*V

yL(t)

M f 2 gf dy

k}r=

(3.25)

dy
vs{t)
Introducing Eq. (3.25) into Eq. (3.23), after simple
calculations we can derive an expression for the
velocity change with time;

yL(t)
koM , 0f
=V — - 26
Vi=Vo- 32 f 7o 3.26)
ys(t)
where
Vo =koAP (3.27)

is the flow velocity at moment ¢ = 0, when no filter
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cake is present. After coagulation has occurred, an
additional term 1/kf which accounts for the contri-
bution of the coagulated part of the layer should
be added in the denominator of (3.23),

Cl2

ki = 3.28

T 3ue(yo (L — xer) (3.28)
being the permeability of the condensed layer (cf.
Eq. (3.24)). After simple calculations, an expression
accounting for both the flocculated and non-
flocculated parts is derived

Yer

3k M
Vo~ e _[ /

V(t) — 3k ys(t)
1+ __&%g OWo)PALL() — X, (1)]

of
2
oy dy

(3.29)

Hence, the decrease in the filtration rate with time
is due both to the non-flocculated part (the second
term in the numerator in Eq.(3.29)) and to the
flocculated part (the second term in the denomina-
tor in Eq. (3.29)) of the filtration layer.

We now have available a set of equations for
the calculation of all quantities of interest. In Fig. 4,
the concentration distribution of the particles in
the layer is shown. The curves in Fig, 4(a) are for
constant filtration velocity ¥V=10"%cms™, and
reveal the influence of the electrolyte concentration
(or xa). The assumed packing geometry is body
centered cubic, and the particle surface potential
is 100 mV and radius a=10"5cm, Comparing
with the case of sedimentation (c[. Fig.3(a)), one
can see that the coagulation in the layer occurs at
much smaller values of x, (about 3 orders of
magnitude lower). The viscous force, however,
which cotresponds to V=10"*cms™! is about
10° times greater than that due to gravity settling
for the particle parameters described above.
Besides, in the case of sedimentation, the higher
the electrolyte concentration was, the higher the
value of x, obtained. Such conformity is not
present when filtration of colloidal particles is
considered. The reason is that the viscous force is
a strong function of y (see Egs. (3.13) and (3.14))
and could overcome even high interparticle force

1.0

0.4 : —— :

0.000 0.002 0.004 0.006 0.008 0.010
(a) x, cm

1.0

0.9

0.8
o 074

06

05|

0'4 L L 1 L 1 L

0.000 0.002 0.004 0.006 0.008 0010
(b) T, cm

Fig. 4. Concentration distribution of charged colloidal particles
in a filter cake.a=10"3cm; 5= 100mV; A= 10" L. (a) V=

10°3¢ms™ Y —, ka=5 ——, xa=10; ——=, ka=20.
() ka=10; —, ¥=10"*cms™;, ——, V=2x10"7?
ems™ !l ---, ¥=5x%10"3cm s~ !, The horizontal dashed lines

correspond to yq (see Table 1),

barriers (cf. Fig. 2) when the particle volume frac-
tion exceeds a certain value. The influence of the
outer force magnitude (ie. the velocity V, see
Eq. (3.13)), however, qualitatively resembles the
sedimentation case. The greater the force is, the
smaller the value for the critical layer thickness x,,
derived — see Fig. 4(b). All considerations concern-
ing the applicability of Eqs. (2.23) and (2.24) in the
vicinity of y,, remain the same as in the case of
sedimentation (see the previous subsection).

The influence of the electrolyte on the gel layer
permeability is shown in Fig. 5. The calculations
are based on Eq. (3.25) which means that only the
non-flocculated part is considered. Three different
concentrations of electrolyte (ka=5, 10 and 20)
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Fig. 5. Change in the filtration layer permeability with the layer
thickness for different concentrations of electrolyte, —, ka =
5 ———,ka=10; , ka =20,

were examined. The particle radius was assumed
to be 107° cm, the surface potential ¥g= 100 mV,
the Hamaker constant 4 = 10~2° J and the packing
geometry was body centered cubic. It is seen that
the greater the electrolyte concentration, the less
permeable the layer. The results are in agreement
with those for the concentration profiles in the
filtration layer (see Fig. 4). After coagulation, the
permeability is not sensitive toward the microion
content and is equal to that for uncharged hard
spheres [29,30] (cf. Eq. (3.28)). It can not be plotted
on the same scale in Fig. 5 because it is much
too small.

Another parameter which can be expected to
influence the filtration layer permeability is the
filtration rate. By increasing the latter the layer
becomes more compressed and hence less perme-
able. This is illustrated in Fig. 6. The values of the
parameters are the same as in the previous figure.
The curve is calculated at constant filtration layer
thickness L =10"% cm which can be achieved in
practice by means of intensive turbulent stirring or
in a cross-flow mode of operation. The filtration
layer permeability sharply decreases with increas-
ing filtration rate, tending to the value for
uncharged hard spheres, shown with the dashed
line. The flocculation effects taking place in the
layer have been accounted for (see Eqs. (3.25)
and (3.28)).

7.5£-10

6.5E-10

5.5E-10

45010 |

Kp, m3/sxN

L . 1 i
E 4 15E-3 25E-3 356-3 456-3 5.56-3
V, em/s

Fig. 6. Filtration layer permeability vs. filtration rate, The full
curve corresponds to a layer consisting of charged particles
while the dashed curve is for uncharged hard spheres. xa = 10;
a=10"%cm; Wg=100mV; A=10"2°J; L=10"2cm; body
centered cubic ordering is assumed.

The dependence of the filtration layer permeabil-
ity on the surface potential is shown in Fig. 7.
Against L=10"2cm, a=10"%cm, xa=10, A=
107%°J, ¥=10"3cm s~* and body centered cubic
geometry is assumed. The calculations are based
on Egs. (3.25) and (3.28). The layer perme-
ability increases with the surface potential due
to the increase in the interparticle repulsion.
Above a certain value of the surface potential,
however, the permeability reaches saturation,
corresponding to an asymptotical value kg=
62x107°cm3s~tdyn™ %,

In Fig. 8 the change in the filtration layer perme-
ability with the particle radius is shown. All the

7.0E-10

6.0E-10

50E-10

Kp, m3/sxN

4.0E-10 |

3.0E~10 |

2.0E~10 . - L :
20 100 1560 200 250 300

v, mV

Fig. 7. Filtration layer permeability vs. surface potential. The
values of the other parameters are the same as in Fig, 6.
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Fig.ﬁ& Filtration layer permeability vs. particle radius; 1/x =
107",

parameters are the same as above. The electrolyte
concentration assumed provides a Debye screening
length 1/ic=10"%cm. It is seen that the filtration
layer permeability passes through a minimum with
the increase of the particle radius. The minimum
is around xa = 1. The reason for such behavior in
our model is that for very small particles the void
fraction in the layer is great because of the domina-
ting contribution of the interparticle spacing (due
to the electrostatic repulsion). However, with the
increase of the particle dimensions the fraction of
solid increases and the contribution of the void
volume due to the repulsive interactions becomes
less significant. After a certain value of the particle
radius, the electrostatic contribution becomes neg-
ligible and the layer starts to behave as if built up
by uncharged hard spheres, but it is known from
the filtration theories for such systems [14,15] that
the permeability increases with the square of the
particle radius. That is why after a given value of
the particle dimensions, the layer permeability
starts to increase again. A very similar dependence
of the filtration layer permeability on the radius of
the colloidal particles subjected to filtration was
observed by Fane [31]. His explanation, however,
was different and was based on the counterbalance
of the Brownian diffusion (dominating for smaller
particles) and particle migration due to hydrody-
namic forces (dominating for larger particles). We
believe that for charged particles probably both
effects are present.
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1.206-8 |
1.00E-8 +
8.00£-9 I
6.00E-0 k
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OOE?QO 200 300 400 500 600 700 80G 900 1000

t, s

Kp, m3/sxN

T

Fig. 9. Filtration layer permeability vs. time. ka=10; a=
1073 cm; ¥g = 100 mV; A = 1072 J; body centered cubic order-
ing is assumed. The [ull curve corresponds to the case of
charged particles and the dashed one to uncharged hard spheres,

Figure 9 presents the case of filtration in an
unstirred batch cell. In this case the filtration layer
does not have constant thickness because of accu-
mulation of particles at the membrane surface. The
change of the filtration layer permeability shown
in the figure is due both to change of the layer
structure (e.g. compression) and its thickness. The
curve was calculated by using Egs. (3.25), (3.28)
and (3.29). The suspension parameters are the same
as above, The initial filtration rate ¥, was assumed
to be 2 x 1073 em s L. The full curve is for charged
colloidal particles, the dashed line is for uncharged
particles, while the small vertical dashed line indi-
cates the moment at which coagulation appears in
the layer. Hence, by optimizing the filtration rate
and duration of the process one can avoid the
coagulation of particles at the membrane surface.

Finally a comparison between the Happel
(Eq.(3.14)) and Kozeny—Carman (Eq.(3.17))
models is performed in Fig. 10. It is seen that for
Pe=100mV, a=10"3cm, A=10"21J, xa=10,
and ¥=10"3cms™! the two models give very
similar results.

3.3. Collective diffusion in concentrated suspension
of charged colloidal particles

In this subsection we study suspensions more
dilute than the sedimentation or filtration cakes
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Fig. 10. Influence of the type of hydrodynamic function ¢(y)
on the concentration profile in a filter cake. ¥g=100mV; a =
107%em; A=10"2J; ka=10; V=10"3cm s™'; ——, Happel
model (Eq.(3.20)); —--, Kozeny—Carman model (Eg.(3.23)).
The horizontal dashed line corresponds to y, (see Table 1),

treated above. Still, the considered particle volume
fractions exceed those at which simple theories
[8,9] (accounting only for pair interactions) could
be applied. Since the particle volume fractions &
of interest to us are lower than 0.20 (i.e. y < 0.58),
the electrostatic potential, proposed by Alexander
et al. [20] can be used (see Eq. (2.18)). The van der
Waals attractive interactions are ignored in the
present consideration because of the relatively large
interparticle distances.

The difference between the present treatment of
diffusion of charged particles and the sedimenta-
tion process studied in Section 3.1 is that (i) the
particles are supposed to be small enough to
perform Brownian motion, and (ii) the hydrody-
namic drag force is represented not by the Stokes
equation (Eq. (3.3)), referring to a single particle,
but by Happel’s equation (Eq. (3.14)), which takes
into consideration also the hydrodynamic inter-
actions in the ensemble of particles. Thus, the total
- outer force F acting on a sphere, moving with
velocity V in the suspension, in this case is a
superposition of the Brownian force and the vis-
cous drag:

kT
F=— ry VO + dnuap(y)V (3.30)

Combined with Eq.(2.9), the above expression

gives the condition for steady motion of the particle

%: V& + 2aM 5% %;: V& = 4nuap(y)V (3.31)
Again, the geometrical parameters yo, m, cosf
account for the local ordering. Equation (3.31)
defines the velocity of motion V of the particles in
the direction of the concentration gradient V.
The corresponding particle flux is:

j=-—Ve (3.32)
It can be represented also by Fick’s first law:
j=—D V¢ (3.33)

where D, is the collective coefficient. Equating
(3.32) and (3.33) and making use of Eq. (3.31), we
thus obtain:

D, 3 2aM Af
Dy 20() (1 T ﬁv) (334
where
kT
Dy = - (3.35)

is the Stokes—Einstein expression [32]. For the
function ¢(y), accounting for the hydrodynamic
interactions, it is appropriate to use, in the case of
diffusion, either the expression given by Happel
[13] (see Eqg.(3.14)) or the empirical relation
[1,2,23]:

3
9=5( — )70 (3.36)

Both expressions for ¢ reduce Eq. (3.13) to Stokes
law at infinite dilution (72 or ¢ —0).

The ratio (3.34) is plotted in Fig. 11 as a function
of @ (or ¥*). The hydrodynamic function ¢{y) is
expressed by Eq. (3.14) (Fig. 9). Body centered cubic
packing was assumed while the parameters of the
particles are the same as in the paper of D’Aguanno
etal. [10] (@= 2.5 x 1077 cm, z, = 20). The calcula-
tion of the particle surface potential ¥q from the
real surface charge z,, for the same system, using
the non-linear Poisson—Boltzmann equation, was
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Fig. 11. Concentration dependence of the collective diffusion coefficient. Wg= 100 mV, a= 1073 cm; ——, ka=02626; ———, xa=
0.5872; (a) body centered peometry; (b) hexagonal geometry, Happel model (Eq. (3.14)); ——, xa = 0.2626; — - —, ka = 0.5872; (c) body
centered geometry, ka = (.2626; —, Happel model (Eq. (3.14)); ———, Eq. (3.36).

described in detail elsewhere [9]. For xa = 0.2626,
the collective diffusion coefficient initially increases
with @, due to the interparticle repulsion, but
above @ =~ 0.08 starts decreasing. This behavior
resembles the result of D’Aguanno et al. [10], but
these authors predicted (by exact numerical calcu-
lations) a plateau region, above a certain concen-
tration which cannot be obtained using our
approximate model. For higher electrolyte concen-
trations (ia = 0.5872), the ratio D,/D, is smaller,
as it should be due to the decreased interparticle
interaction. The fact that the curve gives D./Dy =
1 at & =0.015 is probably due to the breakdown

of this simple model. However, for this concen-
tration range, accurate linear (with respect to @)
theories are available [8,9].

The influence of the geometry of local ordering
is illustrated in Fig. 11(b). All the parameters used
are the same as in Fig. 11(a), but the ordering
geometry is assumed to be hexagonal. The
observed increase of the collective diffusion coeffi-
cient D, with the particle volume fraction @ (as
compared with Fig. 11(a)) is due to the stronger
electrostatic interparticle repulsion in the case of
hexagonal geometry compared to the body cen-
tered cubic.
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The role of the particular choice of the form of
the hydrodynamic function ¢fy) is illustrated in
Fig. 11(c). The model of Happel [13-15] (see
Eq. (3.14)) is compared with Eq.(3.36) [1,2,23]. It
can be seen that the semiempirical expression (3.36)
corresponds to lower hydrodynamic resistance, and
to considerably stronger diffusion than predicted
by using Eq. (3.14).

Concluding remarks

In the present paper we studied some aspects of
sedimentation, ultrafiltration and diffusion in con-
centrated suspensions of charged colloidal par-
ticles. The approach we used is based on the force
balance, performed on a given particle in the
suspension (see Eq. (2.9)). It introduces, however, a
presumption for the particular geometry of order-
ing of the particles in the suspension. Two types
of geometries were examined: body centered cubic
and hexagonal. They were chosen because their
volume fractions of closest packing @ = 0.68, and
@ =0.76 are very close to the experimentally
observed values [23,24]. Using the formulas
obtained (Egs. (2.9), (2.23), (2.24), (3.5), (3.7) and
(3.8)—(3.10)), we derived the concentration distribu-
tion of charged particles in a sedimentation layer.
The influence of different parameters (surface
potential of the particles ¥y, electrolyte concen-
tration, ie. xa, and type of packing geometry) was
studied (Fig. 3).

The critical values of the sedimentation layer
thickness x.,, and time ¢, of coagulation were also
calculated for different values of the parameters.
The applicability of the approximate expres-
sion for the electrostatic energy of interaction
(Egs. (2.21)—(2.24)) was discussed and comparison
with other theoretical models [17,18] was pre-
sented. It was shown that Eqgs. (2.21)-(2.24) can be
used without introducing significant inaccuracy.

The ultrafiltration of charged colloidal particles
was investigated in a similar manner. An important
difference, in comparison with sedimentation, is
that the outer viscous force is much greater com-

pared to the gravity, and is volume fraction depen-
dent. The concentration profiles in a filter cake
were obtained using Egs. (3.10), (3.11), (3.19)~(3.29)
and are shown in Fig. 4. The increase of the viscous
force has the same qualitative effect on the critical
value x,, as the increase of the sedimentation
force in the previous case (cf. Fig. 4(b)). A com-
parison between the cell model of Happel [13-15]
and that of Kozeny-Carman [14,15] was per-
formed (cf. Eqs. (3.14) and (3.17)). A very good
agreement between both models was obtained
(see Fig. 10).

The permeability of a filtration layer built up of
charged colloidal particles was studied using Egs.
(3.25) and (3.28). It was shown that by increasing
the electrolyte concentration one can decrease the
permeability and vice versa (see Fig. 5). The filtra-
tion rate also affects the filtration layer properties.
The greater the rate, the smaller the permeability
(Fig. 6). The influence of the particle surface poten-
tial was also studied. Higher surface potentials lead
to greater permeabilities due to the increase of the
interparticle repulsion. However, above a certain
value of the surface potential, a plateau value for
the permeability is reached (see Fig. 7). The change
of the filtration layer permeability with the particle
radius passes through a minimum (see Fig. 8).
Similar behavior was observed previously [31],
but explained by different arguments. The change
of the permeability with time in an unstirred batch
cell was investigated (Fig. 9); the observed decrease
is due to changes in both the layer thickness and
structure.

A simple formula for the collective diffusion
coefficient of charged colloidal particles at rela-
tively high volume fraction was derived (see
Eq. (3.34)). The concentration dependence of the
collective diffusion coefficient passes through a
maximum, due to the competition between the
repulsive direct interactions and the hydrodynamic
drag forces (see Figs. 11(a)-11(c)). Qualitatively,
similar behavior was obtained for uncharged
hard spheres [11] as well as for charged particles

[10].
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