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- A new method for measuring the film and line tensions y
and k is described. It is applicable to a bubble (or drop)
attached to a liquid surface. Perturbational equations for the
lower bubble surface, the cap of the bubble (the film) and the
external meniscus are derived. The radius of the contact line,
T, and the equatorial bubble radius, R, are measured optical-
ly. The radius of curvature of the film, Rf, is detemined
from the experimental differential interferometric pattem (by
the shearing method) and the equations of the bubble cap and
the extermnal meniscus. The film and line tensions are calcula-
ted from the measured values of r., R and Rg, the equations of
the three surfaces and the conditions for mechanical equilibri-
un. The measured film and line tensions for bubbles in soluti-
ons of sodium laurylsulfate exhibit a strong dependence on the
film curvature and unexpectedly large values of the (negative)
line tension. The results are in qualitative agreement with
the theory of Churaev, Starov and Derjaguin and the results
of Torza and Mason.

INTRODUCTION

The interest in the line tension has been growing during the last de-
cade. To a large extent it was stimulated by the role of the line tension
- in the occurence of a number of processes of practical importance, e.g.

1,2 flotation of ores®, droplets coalescence in

heterogeneous nucleation
emulsions*, microbial adhesion® etc. Line tension effects may prove im-

portant for other phenomena like membrane fusion, plasmapheresis etc. The
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line tension can, in principle, be measured by studying any pﬁenomenon that
is affected by it, e.g. from the rate of heterogeneous nucleation?. This
approach requires, however, knowledge (and/or fitting) of several parame-
ters. Therefore, it is better to detemine the line tension directly from
the conditions for mechanical equilibrium of small particles at another
interface.

The experimental method we used to obtain bubbles of different radii
is essentially the '"shrinking bubble method" of Princen and Mason®. A re-
latively large bubble at the liquid surface is allowed to decrease gradual-
ly its volume due to the escaping gas through the thin film, and its geo-
metrical parameters are recorded optically as a function of the time. The
major outcome of our study was the conclusion that both the film and line
tensions of very small films depend strongly on the geometrical parameters
of the system.

BASIC EQUATIONS

Our final aim is to calculate the film and line tensions y and k res-
pectively from the experimentally measured values of the solution surface
tension ¢, the radius, T, of the contact line, the radius, R, of the '
maximun cross-section of the bubble parallel to the liquid surface, and
the radius of curvature, Rf, of the film (the hat). This is done by using
the force balance equations:

Y/0 (sinqac + simpc)/sine , M

K/o rc{ cosg. + cosy. - (sincpC + siny Jctgd }, (2)

where 0, ¢C and tpc are the angles at which the film, bubble and external
meniscus surfaces meet the plane z=z c - see Fig.1. Here we only summarize
the pertinent equations, derived in ref.7, and show how ¢ and Y. can be
calculated from the measured values of T, R and Rf.

Since the film is part of a sphere, 6 is obtained directly from .

Figure 1. Scheme of a bubble of equatorial radius R, attached to a
liquid surface,
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and R :
sind = r/R; . (3)
Equations for the shape of the surfaces of the bubble and the external

meniscus were derived in ref.7 in temms of the small parameters

B=Ap g b2 / o and e=(Ap g rg / 0)1/2 8]

where b is the radius of curvature at the bottom of the bubble (at z=0),

g is the acceleration due to the gravity, and Ap is the density difference
between the liquid and the gas phase. In our experiments (b * R £ 150 um
and T, S 50 pym) B < 8><10'3 and € < 3x10'2. This allows one to obtain all
nunerical results by iterative procedures. The quantities b and B (see
Equation (4)) are calculated from the measured value of R :

1/b = {1 - B/6 + g%(In2 - 1/6)/6}/R (5

using as zeroth approximation b(°)= R. With this result for 8, one calcula-
tes ¢c as :

T ¢

. _ ¢ _ 1 c_ 1. _ 1
sing. = ¢ - B( 3Ctg— - gsin2¢. - 5sing.)
2 31 2.2 1y P

B™{ ( 7t 7050, gSin 9 31n sin— )sing_

o 2
- 301+ 1etg’(0/2) detgoyD) 1, (6)
using ¢£°)= arc sin (rC/b) as the zeroth approximation.

Since wc is related to ¢, We need a relationship between these quan-
tities. It is provided by the condition for the constancy of the pressure
differences between all points of two horizontal planes situated in the
bulk gas and liquid phases®:

2y 20 _

R - ApgL. (7N
Since L=z - h., where z.= z(¢c), Equation (7) along with Equations (1), (3)
and (4), leads to the desired relationship between be and .

cm g 01+ S - ny - sine (®)

: ; : 7.
In this equation z_ and h. are given by’:

z. = b{ 1+ cosp . * B(-%sin2¢c + %1n sin(¢c/2) -t +cospd/2r)r, (9

hC = rcsinw In 4
Yo vApg/o r (1 + cosy.)

s (10)

where y_ = 1.781 072 418 ... is Euler's number. The zeroth approxhnation'to
be used in Equation (8) when calculating Ve is hc= 0, i.e. ¢£°)= 0.
The set of Equations (1) to (6) and (8) allows the calculation of film
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and line tensions y and k only fram the experimental values of r_, R and Re
at a given time t without making any additional hypothesis. The only assump-
tion that was tacitly made was that the bubble surface and the extemal
meniscus have the same surface tension, o.

EXPERIMENTAL PROCEDURE AND MATERIALS

The experiments were carried out with 0.05% (1 .73><10'3 kmol/m*) solu-
tions of dodecyl sodium sulfate (Fisher Scientific, for high performance
liquid chromatography) and two concentrations of NaCl (Merck, analytical
grade) - 0.25 and 0.32 kmol/m*. All experiments were carried out in a
thermostated room at 22%0.5°C. The surface tensions of the two solutions
used, with 0.25 and 0.32 kmol/m* NaCl, were 32.4 and 31.7 mN/m (dyn/cm)
respectively. The essential part of the measurement cell (the one contain-
ing the solution) consists of a glass cylinder of diameter 1 an and height
1.4 cm whose bottom is an optically plane-parallel glass. The bottom was
fixed to the cylinder with glass powder heated at 500°C without using che-
mical seals. The air bubbles were blown out of a Hamilton syringe. The
optical measurements were carried out with a microscope Epival Interphako
(Carl Zeiss, Jena). The use of the shearing method is described in the next
section. The values of r_ and R were recorded visually every time when the
diameter of the respective circumference became equal to an integer number
of scale divisions. At suitably chosen time intervals (100 - 200 s) the
image was splitted and measurements of R. were perfommed either by taking
photographs or visually, by counting the number of interference rings.

A major experimental problem is that we need for the calculations the
set of values r., R and Rf at a given moment, t, whereas some time elapses
after the registration of each of these quantities. One possible way to
find the required values is by least squares interpolation of the data for
rc(t), R(t) and Rf(t). We interpolated R(t) by the equation

R(t) - aq(t, - )9 + a,(t, - it , an

where t, q, a and a, are constants to be detemined by the minimization
of the dispersion

2
?,(a;, ay, t, @) = §{R(ti) - Ry} . - a

Here Ri is the measured value of R at the moment ti and R(ti) is calculated
from Equation (11). Similar interpolation fommulae were used for r_(t) and
Rf(t) .
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CALCULATION OF THE HAT (FIIM) CURVATURE FROM THE INTERFERENCE PATTERN

The basic principle of the differential interferometry consists in
splitting the original image into two images. The light beams coming from
the two images interfere, thus creating a rather complicated interference
pattem. An example is shown in Fig.2, where the shearing distance d =
= 12.08 pm. The upper part of Fig.3 is a sketch of the cross section (in
the plane x0z) of the two images of the reflecting surfaces splitted at
a distance d along the x-axis. The plane xOy coincides with the contact
line (of radius rc). The lower part of the figure is a sketch of the
resulting interference pattern (cf. Fig.2). One clearly discerns three
regions corresponding to the interference of light reflected by the two
images of the respective surfaces: (i) meniscus-meniscus (moustaches),
(ii) meniscus-hat (rings) and (iii) hat-hat (streaks). In fact, all frin-
ges are loci of points for which the distance between the reflecting sur-
faces satisfies the requirement

]zi(x, n -z, )| = %, = n‘§ 5 n=0,1,2, «.. , (13)

where subscripts '"2'" and '"r" denote left and right hand side images, X is
the light wavelength, and n is the order of interference. The equation of
the hat is

2

L,r

0

z =/R§-(x:d/2)2-y -7, (14)

Figure 2. Differential interference pattern in light reflected from a

bubble, attached to a deformed air/liquid surface (r. = 45.4 m ,
objective 25x). =

1541



' |
| I" I'||| streaks ' I

moustaches ringst [ ¥ :rings: moustaches

'
|
[
|
!
!
|
|
)
'
!
!

i
|
\ \\\M“\“M‘“""""'-..',,, ﬁ ‘nu!llll' HHIII//”//
%\\ ) | | = [ //////

» o oy %,
§ v ";, /é
SR i 2
e S 1% =
= £ t =
= i E =
= E] H =
— Z 3 =
Z, “, & I
7, ", o N
// ' \\

7 O
2 W
m - » Wy
i AN

Figure 3. A sketch of the cross section of the reflecting surfaces, shifted
at a distance d (upper part) and of the resulting interference pattem
(lower part).

where the upper sign refers to the left hand side image, and the lower sign
to the right hand side; Z (Rf 531/2 is the coordinate of the center.
Thus, for region III, Equatlons (13) and (14) lead to

2,2 2.2
X /an +y /bn = (15)

_ _ o2 2,2, \1/2 _ 2,.2.1/2 '
a =b /e , bn = ( Rf snzn/4 ) > & = (1+d /2n) . (16)
Therefore, the streaks are parts of ellipses and the reason why they look
like straight lines is the high eccentricity (1 - 1/8 )1/2 . Equation
(16) allows the calculation of the hat curvature: Rg = ¢ (a’ + z2/4)1/ 2

(Qn, a, and d are known from the experiment).
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Figure 4. A scheme of the reflecting surfaces in the case of complete
splitting (shearing distance d > 2r ap
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The visual detemmination of Re was perfommed with complete splitting
i.e. with T, < d/2 (d was increased to 24.16 um in this case in order to
avoid a gap between photographic and visual measurements). The essence of
the method is to record r_ at the moment when the top ring shrinks to a
point. From Fig.4 it follows that at this moment Dy + QM) = & 0’ where
Q(d) = Qlx=d) is calculated from’

Q) = r’c{ arc cosh(—=2x——) - arc cosh(s

rcsmlbc C) }Simp.c *

1
iny

2 2
Then Rf— (rc +DO)/2DO .

RESULTS AND DISCUSSION

We have processed in full details only 4 experiments - two for the
solution with 0.25 kmol/m* NaCl (rums 1a and 1b) and two for 0.32 kmol/ms
NaCl (runs 2a and 2b). The results are presented in Figs. 5 and 6.

As explained above, when calculating vy and k we used the data for
r., R and Rf (at the same moment t), obtained from the interpolation cur-
ves 1 (t), R(t) and Rp(t) - see e.g. Equation (11). The error bars in
Figures 5 and 6 denote the standard deviations of y/20 and k calculated
by using the standard deviations of the measured radii r_, R and R¢ with
respect to the interpolation curves. The points in the Figures (calcula-
ted from the smooth curves) correspond to the moments, at which Re has
been measured, and represent the most probable values of v/2¢ and «k at
those moments.

Run ta,b - 0.5 kmol/ m3  NaCl
06 Run 2a,b- 0.2 kmol/ m®  NaCl
b
oy
1.04 4 Run 2a
o~
1.02 E%ff:;:-{:\ / Run 2b
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1.001 0.25xmolim® AN T AR
L NN el
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0.98 ;,/ Tl e
Runta /"~ e I S
0.% /‘\\ }
Run 1b / AN T\
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Figure 5. Dimensionless film tension y/20 vs capillary pressure P. = 2y/R £
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Figure 6. Line tension, k, vs reciprocal radius r; of the contact line.

The most striking features in the behavior of /20 vs PC are the large
variations of y (the respective values v, /20 for planar films, i.e. for
Re > o, taken from Ref.9, are shown on the ordinate axis of Fig.5 by arrows)
and the fact that at some capillary pressures y is larger than 20, and
this has not been observed with planar films.

Quite unexpected are the data for K (Fig.6) - besides the large values
of K and the variation of K with T., we must point out the change of sign
of K for both solutions of NaCl and to the smaller absolute values of K
for smaller bubbles i.e. for larger r?. There is a tendency of K to level
off for large bubbles (r(':1 + 0), which is more pronounced on the plot K/O
Vs Rf - Fig.7. .

All these findings reveal that (unlike the surface tension and simi-
larly to the disjoining pressure) y and k are strong functions of the geo-
metrical parameters of the system. This is a new and unexpected result for
y. For the line tension this was predicted on theoretical grounds by many
authors® 9211512513,1% hyt was not observed so far experimentally.

There have been only a few attempts for experimental detemmination of
the line tension for fluid systems with configuration similar to ours. The
authors of Refs. 15 and 16 have studied the same system as us (bubbles
formed from solutions of sodium dodocylsulfate) but their values for k are
different from ours; for example they obtained « = 0.85 nN for 0.32 kmol/m®.
The reason for the discrepancy between our and their results lies probably
in the fact that they used incomplete experimental infommation (they did
not measure the angle 6) and to make up for this deficiency they erroneously
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- Figure 7. Dependence of k/o on Re - the points correspond to runs: la (x),

1b (@), 2a (0), and Zb (e). The “inset shows the same plot for the data
of Torza and Mason* for doublets of emulsion droplets.

assumed that vy and k remain constant for all bubble radii.

Navascues and Mederos? have detemined k from the nucleation rate of
water drops on mercury. They found k varying from ~0.290 to -0.393 nN for
critical radii changing from 20.7 to 25.2 mm. These low values of k should
not be surprising in view of the small size of the nuclei.

The only mesurements with particle size close to ours were carried
out by Torza and Mason®, who detemmined « from the equilibrium configurati-
ons of five doublets of emulsion droplets. They obtained five different
values for k (of the order of 10 nN) and attributed these differences to
scattering caused by impurities in their system. In fact, a closer inspec-
tion of their data reveals that the variation in « may well be due to geo-
metrical factors. Indeed, their radius of curvature 1, , of the interface
between two droplets corresponds to R¢ in our experiments, and if one
plots their data for k vs Rf one obtains, as with our data, a quite good
linear dependence - see inset in Fig.7.

Churaev et al.l?2'% have performed model calculations of « for a
system to some extend geometrically similar to ours: a sessile spherical
drop in equilibrium with a planar thin film. They adopted the simplified
disjoining pressure isotemm shown in the inset in Fig.8. If one assumes
P_ << |I,| and expands their equation for k/r_ in series in temms of 1,/ac
(where a = (I[,- HZ)/t1), one obtains

</t % (ty + 30 /2a%0)P_ - 3M3/8a%0 .
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Figure 8. Plot of «k/ r. vs capillary pressure P..

Therefore, there should be a range of capillary pressures where |</rc is a
linear function of P.- Indeed, our data for «/r. plotted in Fig.8 as a
function of P_ exhibit large linear portions. Hence, our results are in
qualitative agreement with the theory of Churaev, Starov and Derjaguin.
Unfortunately no quantitative comparison of the theory and the experiment
is possible, because there are three unknown parameters: t1 , I, and a.

For the time being we are unable to give a rigorous explanation of
the effects observed by us. Yet, whatever the origin of these effects
might be, we believe we have fimmly established that the attachment of
small bubbles to a liquid surface gives rise to unexpectedly large line
tensions accompanied by corresponding variations of the film tension. Both
effects are pronounced functions of the bubble and film radii. These re-
sults indicate that the conditions for equilibrium of a fluid particle at
another interface are much more complicated than it was believed until
now.
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