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Summary

A general equation describing the hydrodynamic behavior of thin liquid films between
permeable, tangentially mobile, deformable membranes has been derived. The solution of
this equation for the case of circular plane-parallel films with tangentially immeobile surfaces
has been obtained and considered in details. The final formulae for the thinning rate
and the hydrodynamic pressure distribution are presented in an analytical form. It has
been shown that the permeability significantly affects the thinning rate when the dimen-
sionless parameter ¢? = 12uLR?*/h? is of the order of, or greater than unity. Here u is the
bulk film viscosity, L the hydraulic permeability coefficient, and R and h the radius and
thickness of the film, respectively. Analytical expressions for the rate of mutual approach
of two different spherical membranes in the limiting cases of low and high permeabilities
have been also obtained. The numerical estimates have shown that the permeability is
important at very close membrane approach. The possible role of the permeability effect
for explanation of important stages in the process of cell (or vesicle) adhesion and fusion
is pointed out.

Introduction

The rate of mutual approach of two particles (bubbles, drops, solid
particles, cells, vesicles, ete.) in a liquid medium strongly depends on the
geometrical and the physicochemical properties of the particle surfaces
(surface mobility, deformability, etc.). These effects have been investigated
intensively in the last decade (see e.g. [1-—4]). Relatively little attention has
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been paid to the influence of the hydraulic permeability of the surfaces, i.e.,
the possibility of the fluid between the surfaces flowing through them. This
effect does not play any role when the particle surfaces separate two immis-

cible fluids or non-porous solids. Hence, it seems that in most colloidal systems

the hydraulic permeability is not important. However, in some biological
processes, especially in the case of close approach of two membranes, the
surface permeability could strongly increase the approach rate. This may be
important when considering the kinetics of cell (or vesicle) adhesion and
fusion [4,5]. The permeability effect can also play a role in different pro-
cesses involving dynamic interactions between artificial membranes,

The basic purpose of this paper is to present a general formulation of the
problem for the dynamic interactions between approaching permeable and
deformable membranes and to derive simple formulae for the rate of
approach of systems of practical use.

First, we will derive a general equation, valid for the case of approach of
two different particles with deformable, permeable and tangentially mobile
surfaces. Further on, to simplify the mathematical treatment, we will con-
sider in detail only the case of two circular plane-parallel membranes. The
basic result is a formula for the rate of mutual approach as a function of the
driving force, F, the film viscosity, u, the membrane radius, R, the film
thickness, h, and the permeability coefficient, L. The approach rate of spher-
ical membranes is also examined, but because of mathematical difficulties,
it is calculated in an analytical form only for the limiting cases of low and
high permeabilities.

General equation of the hydrodynamics nf thin liquid films between
permeable membranes

We consider the system shown in Fig. 1 — two different particles A and B
with deformable, tangentially mobile surfaces and hydraulic permeability
coefficients L, and Ly approach each other along the axis of symmetry, z.
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B
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P~ memBrane B
Fig. 1. Sketch of a film between two different deformable membranes.
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The liquid flow in the region, where the derivative 0 H/dr (H = HA + H® is the
local distance between the particle surfaces and r the radial coordinate) is
much smaller than unity, is given by the lubrication theory equation (for
details see e.g. [1,4])

aplar = u(d*v,/a2%) (1)
apfoz = 0 (2)
Ve, * 00, /02 = 0, V.v. = [8(v.r)ar]/r, (3)

where p is the hydrodynamic pressure and v, and v, are the radial and the
axial velocity components, respectively.
We assume the following general boundary conditions:

v, = U” at z=H4 (4a)
v, = UB at z=H® (4b)
v, = dHA/ ot + UMAHAor) +La(p—p*) at z=H? (4c)
v, = —aHB/ot— UB(0H®/dr) — La(p —pB®) at z=-H?, (4d)

where p® and p® are the pressures in the particles A and B, respectively. The
hydraulic permeability coefficients L, and Ly represent the velocity of the
fluid through the membrane per unit pressure difference across the membrane
[6]. Taking into account eqns. (2), (4a) and (4b) we have

v, = (22/2u)(®p/ar) + Az + B, (5)
where

A = (UA-U®/H+ (H® - H*) (3plor)]2,

B = UB+HB(UA - UBYH—-HBH*@p/or)/2 .

Inserting eqn. (5) into eqn. (3) and integrating over z from —~HP? to H*, by
means of eqns. (4¢) and (4b), we obtain

—3H /3t~ Lp + Vi = V, [H({UA+U®)/2-H?(3p[3r)/12u], (6)

where L =L, + Ly and V; = L, p® + Lgp® (the subscript { means filtration).
This expression (6) is the general differential equation of the dynamics of
thin viscous liquid films with deformable, tangentially mobile and permeable
surfaces,

Thinning of cylindrical plane-parallel films

In this section we consider the particular case of thinning of a film between
circular, plane-parallel, tangentially immobile membranes with radius R
(Fig. 2), i.e.,
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Fig. 2. A cylindrical film formed between two plane-parallel membranes,

H=h, 08H/dr =20, V =-dhjdt, U”A=UB=20.
Then eqn. (6) reduces to
x2(3%pjax?) + x (3f/ox) — e2x?p + 8x*(V+ V) = 0, (7)

where x = /R, § = pnR?/F, € = 12uLR?/h3, V + V; = (V + V;)/ V..

Here, I is the driving force and Vg, = 2Fh3/37uR* is the Reynolds velocity
of thinning of a film with non-permeable surfaces (see e.g. [4]). We suppose
that the hydrodynamic pressure, p, is equal to the pressure in the bulk liquid
(set equal to zero) at the film perimeter, i.e.,

g=0 atx =1, (8)

The driving force, F, must be equal to the hydrodynamic resistance force
1= f pdx?. (9)
The solution of eqn. (7), finite at r=0 and satisfying the boundary condition
(8), is

p = 8(V+ Vy)[1-Io(ex)/Io(e)] [e?, (10)

where [,, is the modified Bessel function of the first kind, nth order (in eqn.
(10), n = 0). The substitution qu eqn. (10) into eqn. (9) yields the following
formula for the thinning rate, V:

V = -V, +e2I,(e)/81,(¢) . o (11)
For membranes of low permeability (e <€ 1), eqn. (11) reduces to
V=-V:+1+e€%6. (12)
In the opposite case (¢ > 1), eqn. (11) yields

V = -V, +e/4 + €28, (13)
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The combination of egns. (10) and (11) gives the following formula for the
pressure distribution:

p = [1-TIo(ex)/To(e)} o(e)/a(e) . (14)

The asymptotic expressions for low (¢ € 1) and high (e > 1) permeabilities
are

§o= 2(1-x?)+(-1/24 +x?/6 — x*/8)€? for € €1 (15a)
7 = 1-exple(x—-1)]/x"? for e» 1, x~1 (15b)
p=1-(2nrx)"?exp(-¢) for e> 1, ex <1 (15¢)

Rate of approach of spherical membranes

In the thin film approximation, the spherical surface in the region near to
the axis of symmetry (the region of high dissipation of energy} is approxi-
mated by a parabola (see e.g. [3])

H = h+r}2R,, R, = RERZ/(RE+R]), (16)

where R? and R2 are the radii of the spheres. The substitution of this expres-
sion (16) into eqn. (6) at U4 = U® = 0 yields an equation

V4V, +V,[(h+r22R,)@p/er)]/i2u = Lp, V = —dhjdt, (17)

from which the hydrodynamic pressure, p, can be determined. Since the
seneral solution of eqn. (17) is not easy to obtain, we use an iteration proce-
dure to get the approach rate at small permeabilities, The zeroth approxima-
tion (right hand side of eqn. (17) equal to zero) leads to results obtained
earlier (see e.g. [3])

p = Bu(V + Vi)Ry/(h +1?[2R,)?, (18)

excluding the introducing of the constant rate Vy. The substitution of egn.
(18) into the right hand side of eqgn. (17) and the subsequent integration over
r leads to the following expression for the pressure gradient (including the
zeroth and the first approximations)

apjar = —Bu(V + Vi)ri(h + r2/2R,)° + 18u>(V + Vi) LEr/h(h +r?[2R.)*, (19)

where the condition for the lack of singularity at r = 0 is used to determine the

integration constant.
The approach rate, V, should be determined from the integral balance of
forces, eqn. (9), which can be represented in a more convenient form for the

present consideration as:

oo o0 o0

F=nq f pdr? = npr? f—n f r2(apflar) = —m f r2(@pjar)dr,  (20)
0

0 0 0
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where the condition of vanishing dynamic pressure at r ~ <= is used instead of
eqn. (8).

The substitution of eqn. (19) into eqn. (20) gives the final expression for
the approach rate

V+ Ve = (Fh/6nuR2)(1 + 15/ 2nuLR3/2/1280%?), (21)

where the term due to the permeability should be smaller than unity. 1t is
interesting to note that, due to the changed geometry of the approaching
membranes, the permeability influences the approach rate in different func-
tional ways: at fixed radii of the film, R, and the sphere, R, the permeability
effect increases slower with decreasing A for the case of spherical membranes
(as h™5'? instead of h™* for the case of plane-parallel films).

For great permeabilities, eqn. (17) gives a formula, analogous to that for
plane-parallel films (eqn. (13) at e > 1)

V+ V. = FL/zRZ. (22)

The expression (22) is derived by neglecting the viscous resistance (the last
term in the left hand side of eqn. (17) is set equal to zero) and integrating to
finite film radius R = R, when using the equation of the balance of forces (9).
It should be pointed out that at great permeabilities the lubrication theory
approximation is questionable and can only be used with caution.

Discussion ;

One can see from the initial differential equation (eqn. (7)) and the formulae
obtained (10—16) that the basic parameter determining the relative effect of
the permeability on the hydrodynamic behavior of thin plane-parallel films is

¢2 = 12uLR*/h3.

When e? < 1 this influence is small. The opposite is true when e 2 1. It is ‘
interesting to note that this dimensionless group does not depend on the
driving force F. It is expressed through the geometric (2 and R) and the
dynamic (1) characteristics of the system, as well as through the membrane
permeability, L.

Let us suppose that at €2 > 0.1 the permeability must be taken into account.
This is fulfilled at L >1072h3/R2, Ifh ~10 % cm, u ~10"2 p and R ~ 107°
L should be larger than 107!* cm?®/dyn-sec. This is a quite reasonable value —
two orders of magnitude higher than the permeability coefficient of the
erythrocyte membrane (L ~ 107! em?/dyn-sec, [6]). If the fluid flow occurs
through pores with radius r, and length d and the Poiseuille formula is valid,
the permeability coefficient L is given by the simple formula: L = ar3/8ud,
where o is the ratio of the area occupied by the pores to the total membrane ‘
area (a = nwrs, n being the number of the pores in 1 cm?). Assuming o ~ 1074,
r2~ 10" em? u~ 10" p and d ~ 1077 cm, we obtain L ~ 1072 ecm?/dyn-
sec, which is a reasonable value for cell membranes.
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Figure 3 shows the dependence of the dimensionless rate V + V; on the
parameter € according to eqn. (11). The pressure distribution g (x) is shown
in Fig. 4 for three different values ofe: € = 0.1, 1 and 10. It can be seen that
at small e the pressure distribution is identical with that given by the Reynolds
law. With increasing permeability, the pressure decreases and becomes almost
constant, so that the liquid is squeezed out through the membranes. In this
respect, it is important to note that according to eqn. (13) at € > 1, the rate
of thinning, V, is given by an analogue of eqn. (22) (with R instead of R,),
i.e., it is strongly increased and does not depend on the thickness and the
viscosity.

0 1 F; 3 . 5 6 €
Fig. 3. Dimensionless thinning rate, V + V¢, vs. dimensionless permeability parameter ¢

(solid line). The broken lines are calculated from the asymptotic formulae (12) and (13):
the dotted line corresponds to ¢ < 1 and the dashed line to e > 1.

The calculations carried out on the basis of eqn. (21) show that for
spherical membranes the permeability influence can be significant (for R, >107?
cm and L >10"!! em-sec/g) at very close membrane approach (h < 1077 cm).
With increasing permeability, this effect could also play a role for larger separa-
tions and smaller particles.

The permeability mechanisms could play a role in membrane adhesion and
fusion, particularly in the electric field induced cell fusion [7]. Recently, we
have proposed a dynamic thin film model for the kinetics of the electric field
induced membrane fusion [5, 8]. Considering the interacting membranes and
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Fig. 4. Dimensionless pressure, p, vs. dimensionless distance, x, calculated from eqn, (14)
fore =0.1(e),e =1 (%X)and e =10 (=),

the intervening fluid as thin films, we have estimated the time-course of three
possible stages of the fusion process: (1) formation of pores in the interacting
membranes, leading to an increased membrane permeability [8]; (2) destabil-
ization and breaking of the liquid film between the membranes, which is to a
major extent influenced by the increased membrane permeability [5]; and (3)
extrusion of the fluid by the fused membranes [4]. Consequently, the mem-
brane permeability effect can strongly increase the rate of cell and vesicle
fusion.
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