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Strategy to Foam Stabilization by Viscoelastic Layers
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V — bubble volume decreasing because
of Ostwald ripening.

The elasticity of solidified protein adsorption
layers can prevent the ripening in two ways:

(1) Decrease of the surface tension o
— close to tension-free state;

(2) Decrease of the permeability k, of the foam
films to gas due to the solid structure.

‘ ) . ) Fast solidifying adsorption layers are formed
. '\ o N oy from the protein Hydrophobin HFBII isolated
\_1 y \_1 y > from filamentous fungi (e.g. button mushroom).



Bubbles of irregular shape — surfaces solidified by HFBII

B

The bubbles released in
HFBIIl solutions acquire
peculiar non-spherical
shapes;

The adsorption layers of
HFBII solidify like shells, B
which preserve the :

instantaneous bubble
shape. Enhanced surface

rheology! 3 nm thick HFBII layer vs. 3 mm large bubble

[E.S. Basheva, P.A. Kralchevsky, N.C. Christov, et al., Langmuir 27 (2011) 2382.]



Viscoelastic Properties of Protein Layers — Oscillatory Mode
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The surface shear elasticity, E_,, and viscosity, ., can be determined from the
experimental G'and G" only in the framework of an adequate model.



Kelvin Model vs. Maxwell Model of Viscoelastic Bodies

Kelvin model: Maxwell model:
Esh
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Parallel connection of elastic and Sequential connection of elastic
viscous elements and viscous elements

The two models lead to different relations (E,, and n_ ) < (G'and G")
In the case of constant elasticity and viscosity these are:

2 n2
_ G'“+G
Kelvin model:  Ey, =G’ Maxwell model:  E = —,
G
Nsh = G"lw
G’Z —I— G”2
Nsh =

How to determine the adequate model? G'w




Experiments in Angle-Ramp Regime
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From the fit of each curve » = CONSst.

_ For each curve E_, and n, are
we determine:

. constant, but their values are
Esh = Esh (l /4 |) i ]
different for the different curves.

and

Tlsh = Tlsh (71




Combined Maxwell-Herschel-Bulkley Model

Maxwell model:

Herschel-Bulkley approach:
Seek v,, as a power function:

Vch:Q|7|m

Characteristic frequency:

Characteristic frequency, <v,,> (Hz)

Vch = G’ o) = & Results:
G Hsh

Egp =Eq(7]) Nsh = Nsn (| 71)
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(1) Data from both angle-ramp
and oscillatory experiments
comply with the same line.

(2) For oscillatory regime, the
mean shear rate is plotted:

<7>Eﬂ7aa)

pu(m) is a known parameter

(3) Egs ns, and v, depend

on the product vy, w,

rather than on the amplitude y,
and frequency w separately!



Characteristic frequency of the layer’s rheological response
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For a purely elastic layer For a purely viscous layer

Hsh — 90, ESh = const. ESh —> 0,  Hep = const.

E E
=y =—N 50 = Vg =—N o0

Hsh Hsh
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Veh characterizes the degree of softness (fluidization) of the adsorption layer



Comparison of Different Protein Adsorption Layers
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BLG T | Larger v, = more fluid (softer)
layer.

B-casein
m=0.90

N

The increase of v, with the
rate-of-strain indicates

0.1 +
' m =0.80 i fluidization upon shearing.

Among the investigated

Characteristic frequency, <i.,> (Hz)

0017 1hagingtime | proteins, the layers from
— | HFBII are the most elastic,
10° 10+ 103 whereas those from B-casein
Mean rate of strain, <y> (s — the most fluid.

The rheological behavior of the layers from all investigated proteins complies
with the combined Maxwell-Herschel-Bulkley model:
_ ) |
ven =017




Elasticity and Viscosity

Combined Maxwell-Herschel-Bulkley model:

!2 ”2
()= 20

G+ (m+1)G"
<;73h> _ G”O)

(for m = 0, the Maxwell-model expressions)

Unlike v, (linear dependence), E,, and n_,
exhibit a more complex dependence on
the shear rate y, w.

Increasing E;, = predominant restoration
of bonds;

Decreasing E,,, = predominant breakage
of bonds.
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Nonlinear Regime at Higher Amplitudes and Frequencies
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In the case of nonlinear response, both m and Q sharply decrease,
which indicates the occurrence of structural changes in the layer.

Recommendation: Work with not-too-large amplitudes in quasi-linear regime to be
dealing with the same viscoelastic body characterized by constant m and Q.




Stress relaxation at fixed angle after angle-ramp
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Dimensionless time, t/t,

In angle-ramp regime, the rheological response of the

7 7
% % . .
2 % system complies with the Maxwell-Hershel-Bulkley law.
% % .
g 7 (Forced breakage & restoration of molecular bonds)
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| 2R, | g system complies with the Andrade cubic-root law.

(Spontaneous stress relaxation and solidification)



Dimensionless torque, 7/7,

Dimensionless torque, 7/7,

Relaxation Regime: Law and Characteristic Time
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The relaxation of stresses during the
solidification of an immobile HFBIl adsorption

layer follows an Andrade cubic-root law.

rrn - (CHY3] Ar=r-1,
trl

Dimensionless torque, 7/7,

t,q1 =30 min

M+ —
1 0.005 wt% HFBII + B-casein ©o  0.000 wt% |
1.0 | A 0.015wt% |
] v 0.030 wt% |
] = 0.045 wt% |
0.9 + *  0.075 wt% |
] X 0.100 wt% |
08 1 o 0.135wt% |
0.7 +
0.6 1
{ relaxation t, =200 s
0.5 +— ——
0 1 2 3 4 5

(Time, Af)13 (s13)




Dimensionless torque, 7/7,

Long-Time Relaxation and Second Characteristic Time
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Two characteristic relaxation times: £, =30 min and £, =48 min

HFBII layers solidify much faster than those of globular proteins
(BLG, BSA, OVA), which solidify for 10-24 hours.



Conclusions

(1) The rheological behavior of viscoelastic protein adsorption layers
complies with a combined Maxwell-Herschel-Bulkley model.

(2) Only (v, obeys a simple law of Herschel-Bulkley type, (v.,) = Q <)}>m,
in a wide range — more than three orders of magnitude .

(3) Therise of (v,,) indicates an increasing fluidization (softening) of the
layers with the rise of the shear rate, for both HFBIlI and HFBII + 3-casein.

(4) Expressions for calculating E,, n,, and v, from the experimental
G’ and G” are derived.

(5) Itis recommended to work in the quasi-linear regime, in which the layer is
characterized by constant m and Q. At higher frequencies and amplitudes,
structural changes occur, and the layer is eventually broken.
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