
ELASTIC LANGMUIR LAYERS AND MEMBRANES 
SUBJECTED TO UNIDIRECTIONAL COMPRESSION: 

WRINKLING AND COLLAPSE

Presented by: Peter A. Kralchevsky

Coauthors: Krassimir D. Danov and Simeon D. Stoyanov*

Department of Chemical Engineering, Faculty of Chemistry 
Sofia University, 1164 Sofia, Bulgaria

*Unilever Food and Health Research Institute, 3133AT Vlaardingen,
The Netherlands

Presentation at the Joint Meeting of Workgroups 3, 4, 5, 6 of COST Action D43 
with a Special Session: Nanoparticles & Interfaces for Energetics Technologies

CNR – Consiglio Nazionale delle Ricerche, Genoa, Italy 
16–18 March, 2010



Monolayers of Monolayers of LowLow Bending Rigidity: Bending Rigidity: CollapseCollapse

Langmuir trough

Three-layer structures observed upon 
a significant compression of an 

adsorption monolayer, at collapse.

More complex 3D structures
at a greater compression  →



Monolayers of Monolayers of HigherHigher Bending Rigidity: Bending Rigidity: WrinklingWrinkling

Phospholipid monolayer; J. Saccani et al. 
Langmuir 2004, 20, 9190–9197.

Surface-active metalorganic 
complexes, Leontidis et al., J. Colloid 

Interface Sci. 2008, 317, 544–555.
(Brewster angle microscopy)

What determines the wavelength and 
amplitude of wrinkles?

What information can be extracted?



Additional Examples Additional Examples ((Pocivavsek, et alPocivavsek, et al.. Science Science 2008, 2008, 320320,, 912912–916)916)

Polyester film (10 μm) 
on gel substrate

Trilayer (15 nm) of 
colloidal gold 

nanoparticles on water



Wrinkling with Wrinkling with twotwo wavelengthswavelengths

Two characteristic wavelengths: λ1 = 8 μm and λ2 = 63 μm
Monolayers from 200 nm hydrophobized silica particles on n-octane/water interface;

Horozov et al. Colloids Surf. A 2006, 282, 377–386.



Wrinkling with Wrinkling with dropsdrops and and bubblesbubbles covered by covered by proteinsproteins

A. Cox et al., Langmuir 2007, 23, 7995–8002: 
A bubble in 0.7 mM solution of HFBII:

Drop of HFBI solution; wrinkles on its surface. 
Szilvay et al., Biochemistry 2007, 46, 2345.

The hydrophobins, HFBI and HFBII,
are amphiphilic proteins (~ 3 nm) 
produced by filamentous fungi.



The whole bubble is covered with wrinkles of similar wavelength
(A. Cox et al., Langmuir 2007, 23, 7995–8002).



The TwoThe Two--Dimensional Elastic Continuum ModelDimensional Elastic Continuum Model

The surface stress tensor:
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tangential stresses, σ11, σ12,… and 
transverse stress resultants σ1
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Rheological constitutive relation:
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Ed and Esh – surface dilatational and shear elasticities;  Tr = trace
σ0 – isotropic tension;   Is – unit tensor;   d – surface strain tensor.



The Tensor of The Tensor of Surface MomentsSurface Moments ((TorquesTorques))

kc – bending elasticity (rigidity);

– Gaussian elasticity (rigidity);

B0 = –4kcH0 – bending moment 
of the planar interface;

H0 – spontaneous curvature;  b – curvature tensor. 

Helfrich’s rheological constitutive 
relation:

Interfacial balance of the angular momentum yields a relation between 
the surface moments and the transverse stress resultants:
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The Interfacial Balance of the The Interfacial Balance of the Linear MomentumLinear Momentum

In the projections of the linear-momentum balance, we substitute the rheological 
constitutive relation for the surface stress tensor, 

where the surface strain tensor is:
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(u1,u2,u3) – components of the displacement vector.

All terms in the expression for dαβ are of the same order of magnitude, 
and none of them can be neglected!



Unidirectional compression of the surface layer Unidirectional compression of the surface layer (along the (along the xx––axis)axis)

The tangential (first integral) and normal components of the momentum balance are:

Two nonlinear equations for determining ux(x) and ζ(x);  σm – integration constant
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The Full System of EquationsThe Full System of Equations

Boundary 
conditions:

To obtain an unique solution of the problem, we need one additional equation !

For this goal, we will use the physical requirement that the actual shape of 
the membrane must correspond to the minimal energy of the system.
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Wp and Wm – energies of the system in states with planar and deformed membrane.



Calculation of the Energy of DeformationCalculation of the Energy of Deformation

δu and δω denote infinitesimal displacement and rotation.
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Sp – projected area; θ – dimensionless area parameter

Continuum mechanics: The variation of surface energy per unit membrane area is:
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Contributions: gravitational energy, membrane bending and compression;

σm – thermodynamic surface tension.



Results for Results for predominant effect of bending elasticitypredominant effect of bending elasticity ((negligible gravitynegligible gravity))

Linearized problem: Linearized problem: 

The minimum of ΔW(σm) corresponds to half-wave shaped membrane:

–L/2 ≤ x ≤ L/2 and   θ = 1 − NcL/ΔL;    Nc = kcπ2/(EmL2) is a dimensionless number.

The maximum possible wavelength is realized.
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The Linearized Problem in the The Linearized Problem in the Absence of Bending Elasticity  Absence of Bending Elasticity  ((kkcc = 0)= 0)

Solution: Oscillatory profile

For shorter waves, k → ∞, we have ΔWk → min and  ζk → 0 (and σm < 0).

The energetically most advantageous membrane profile is that with 
infinitesimally small wavelength and amplitude (buckling instability).

The finite size of the molecules and the finite kc do not allow too short waves.

At finite kc, the minimum of energy corresponds to a finite wavelength. Find it!
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WrinklingWrinkling at Small Deformations (at Small Deformations (Linearized ProblemLinearized Problem))
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Minimum of energy at [σm(qk)]max, where qk = (2k + 1)π/L,   k = 1, 2, 3, …

(Milnler, Joanny, Pincus, EPL 1989)
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(Danov, Kralchevsky, Stoyanov, Langmuir 2010)



Wrinkling of Wrinkling of LangmuirLangmuir layerslayers upon compression upon compression 
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Bending elastic constant:

Experimental wavelength:

μm8.15≈λ

J109.3 19
c

−×=⇒ k

(close to that for bilayer lipid 
membranes)

Membrane tension: mN/m102.1)4( 42/1
cm

−×−=Δ−= ρgkσ

Film from surface-active metalorganic 
complexes, Leontidis et al., J. Colloid 

Interface Sci. 2008, 317, 544–555.
(Brewster angle microscopy)
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Wrinkling of Wrinkling of hydrophobin hydrophobin HFBI HFBI layerslayers upon compression upon compression 
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Bending elastic constant:

Experimental wavelength:

μm2.43≈λ

J102.2 17
c
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(100 times greater than that 
for bilayer lipid membranes)

Membrane tension: mN/m1093.0)4( 32/1
cm

−×−=Δ−= ρgkσ

Wrinkles on the surface of a drop of 
HFBI solution; Szilvay et al., 
Biochemistry 2007, 46, 2345.

m/s807.9;kg/m1000 3 ==Δ gρ



Numerical SolutionsNumerical Solutions of the of the Nonlinear ProblemNonlinear Problem (Larger Deformations)(Larger Deformations)

In the non-linear case the undulations are not harmonic (sinusoidal) and their 
average wavelength depends on L and ∆L. The case of concave profile at x = 0:



Numerical Solutions Numerical Solutions of the of the Nonlinear ProblemNonlinear Problem (Larger Deformations)(Larger Deformations)

The case of convex profile at x = 0, Toothed profiles:

The criterion for minimal energy can be also applied to the nonlinear problem 
(larger out-of-plane deformations), to find the membrane shape, which is realized 

under given physical conditions. 

However, the application of this criterion is related to heavy computations, which 
are out of the scope of the present study.



Profiles with Profiles with twotwo characteristic wavelengths characteristic wavelengths 

Horozov et al. (2006) obtained 
wrinkles with two characteristic 

wavelengths,
λ1 = 8 μm and λ2 = 63 μm

for monolayers from 200 nm 
silica particles

Predictions of the nonlinear theory at 
larger compressions ΔL/L:



Summary and Conclusions:

(1) The two-dimensional elastic continuum model is used to describe the 
wrinkling of elastic Langmuir layers (membranes) subjected to unidirectio-
nal compression; effects of the dilatational, shear and bending elasticities.

(2) If the gravitational and bending energies are comparable, the membrane 
shape exhibits multiple periodic wrinkles. An expression is derived for
calculating the bending elasticity (rigidity) from the wrinkle wavelength.

(3) This expression, which is independent of L and ∆L, can be used for 
determining the bending elastic modulus of Langmuir films (membranes): 
upon compression in linear regime, the amplitude increases at fixed λ.

(4) To determine the membrane shape at larger out-of-plane deformations, we 
solved numerically the respective nonlinear problem. Depending on the values 
of the physical parameters, the theory predicts various shapes: non-harmonic 
oscillations; toothed profiles, and profiles with two characteristic wavelengths.

Published: K.D. Danov, P.A. Kralchevsky, S.D. Stoyanov, Langmuir 2010, 26(1), 143–155.


