

LABORATORY OF

CHEMICAL PHYSICS ENGINEERING

FACULTY OF CHEMISTRY UNIVERSITY OF SOFIA

FORCED COALESCENCE OF MICRONSIZE DROPS

Slavka Tcholakova, Nikolai Denkov, Assen Hadjiiski <u>Ivan B. Ivanov</u>

AIMS:

- 1. Development of methods for evaluating the stability of micronsize emulsion and peudoemulsion films.
- 2. Studying the relation between stability of single films and the stability of batch emulsions and foams.

Specific Applications:

- 1. Effects of protein adsorption and drop size on the stability of protein emulsions (two methods FTT and centrifugation).
- 2. Determination of the entry barrier for globules of different oilbased antifoams - relation to mechanism of antifoaming.

Film Trapping Technique for Studying Emulsion Films

Capillary Pressure:

$$P_{\rm C} = \Delta P_{\rm A} - \Delta P_{\rm A}^{\rm INI} - \rho_{\rm W} g Z$$

 $\Delta P_A = P_A - P_A^0$ - pressure difference measured by a sensor

- > <u>Quantitative characterization</u> of the coalescence barrier, P_{c}^{CR} for single, micrometer-sized oil drops with large oil phase.
- The <u>effect of drop size</u> on film stability can be precisely evaluated.
- □ Limitation only for relatively low protein concentrations.

Critical Osmotic Pressure:

$$P_{\text{OSM}}^{\text{CR}} = \int_{0}^{H_{k}} \Delta \rho g_{k} \Phi_{\text{OIL}}(z) dz = \Delta \rho g_{k} (H_{\text{OIL}} - H_{\text{REL}}) = \Delta \rho g_{k} H_{k} \overline{\Phi}$$

- A quantitative method for characterization of emulsion stability.
- > Can be applied at much higher protein concentrations.
- Rapid test for comparison of emulsion stability.

Drop Size Effect on Emulsion Stability (FTT)

Oil drops stabilized by β-lactoglobulin (BLG)

The inverse critical pressure is a linear function of the drop radius.

Effect of Protein Adsorption on Emulsion Stability (FTT)

Stability of Emulsion Films

- □ The coalescence barrier increases linearly with $Ig(C_P)$ at low protein concentrations (at constant t_A)
- □ Steeper increase of coalescence barrier at $C_P \approx 0.01$ wt %.
- □ Linear increase of P_{C}^{CR} with the BLG adsorption at Γ < 1.4 mg/m², followed by a steep increase at $\Gamma \approx 1.5$ mg/m².

Relation between Centrifugation and FTT

Emulsion Column in a Centrifuge

 $P_{OSM} = P_{OIL} - P_W$

FTT

$$P_{CAP} = P_{OIL} - P_W$$

Emulsion Stability vs. Protein Adsorption

> The coalescence barrier increases in a step-wise manner with protein adsorption (step at $\Gamma^* \approx 1.5 \text{ mg/m}^2$).

Film Trapping Technique for Antifoams

Attached Air-Water Meniscus for Low Capillary Pressures

Shake Test: Foam Stability

Boundary between Fast and Slow AF - FTT

Correlation between *P*_C^{CR} and Foam Stability for Slow Antifoams (Oils)

- > Above P_c^{CR} = 400 Pa, the upper layer of bubbles ruptures when $P_c^{CR} = \Delta \rho g H_F$. This determines the final foam height H_F .
- > Below P_c^{CR} = 400 Pa, the decrease of P_c^{CR} does not affect the foam stability (drop size < Plateau channel cross-section)

Typical drop radius $R_{\rm D}$ ~10 μ m \Rightarrow Minimum foam height $H_{\rm F} \approx$ 5 cm

Correlation between *P*_C^{CR} and Durability of Fast Antifoams

The antifoam durability decreases when the height of the entry barrier increases

CONCLUSIONS

- 1. A method allowing a <u>direct measurement</u> of the barrier to coalescence of oil drops with an oil/water or air/water interface was developed (FTT).
- 2. The inverse critical capillary pressure to coalescence is a <u>linear function of the drop size</u> for BLG stabilized emulsion films.
- 3. The coalescence barrier increases in a <u>step-wise manner</u> with protein adsorption for BLG stabilized emulsions.
- 4. The measured entry barriers, P_{c}^{CR} , reveal that P_{c}^{CR} <u>determines the boundary</u> between two types of antifoams - fast with P_{c}^{CR} < 20 Pa and slow with P_{c}^{CR} > 20 Pa.
- 5. A connection between P_c^{CR} , the final foam height, and the diameter of the antifoam globules is found and explained theoretically (for slow antifoams).
- 6. A correlation between P_{C}^{CR} and the durability of the fast antifoams is established experimentally.