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Abstract. The calculation of electro-dipping force, acting on a dielectric
particle, attached to the boundary between water and nonpolar fluid,
is important for the characterization of the surface charge density of
micron-size objects and their three-phase contact angles [1]. The problem
was solved semi-analytically, using the Mahler—Fox transformation in the
simplified case of one phase with infinite dielectric permittivity [4]. We
generalize this approach, taking into consideration the finite dielectric
permittivity of the polar phase. We propose a numerical method for
calculating the distribution of the electrostatic potential in all phases
and the respective values of the dimensionless electro-dipping force. The
expression for the weak singularity parameter at the three-phase contact
line is analytically derived. In all studied cases, it is weaker than that in
the model case [2]. The obtained results show that: (i) the electrostatic
potential distribution is close to that in the model case for micron-size
particles, large values of the ionic strength and dielectric constant of the
polar phase; (ii) the force, arising from the electrostatic field in the polar
phase, cannot be neglected for small (nano-size) particles and low ionic
strengths.
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1 Introduction

The interactions between electrically charged colloidal particles, adsorbed at
an oil-water interface, depend on the magnitude of the surface charge density
and the three-phase contact angle. The prediction of the properties of dielectric
particles is of crucial importance for the characterization of a particle monolayer,
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formation of particle-stabilized emulsions and colloidosomes [1]. Experimentally,
it has been established that the electrostatic repulsion is due to the presence of
charges at the particle-nonpolar phase boundary [2,3].

The problem was solved semi-analytically, using the Mahler-Fox transforma-
tion in the simplified case of water phase with infinite dielectric permittivity [4].
The effect of an external electric field, applied to the particle, was discussed in
[5]. Our aim in the present study is to analyze the effect of water phase with
a finite value of the dielectric constant and to calculate the distribution of the
electrostatic potentials in all phases. We solve the Laplace equations in complex
physical domains, using appropriate toroidal coordinates. The developed numer-
ical scheme, which is of second order with respect to space and numerical time,
allows fast and precise calculations.

2 Mathematical Formulation of the Problem

Let a spherical charged dielectric particle of radius R and dielectric constant
ep is attached to the interface between nonpolar (oil, air) and polar (water)
phases with dielectric constants €, and ey, respectively (Fig.la). The particle
position is determined by the central angle o (three-phase contact angle) and
therefore the radius of the three-phase contact line is r. = Rsina. The electric
field intensities, E; (j = n, p, w), are induced by surface charges of constant
surface charge density opn, located at the particle-nonpolar phase boundary,
Spn- The electric fields in the dielectric phases, occupying volumes V; (j =
n, p, w), obey the equations V - E; = 0 and the corresponding electrostatic
potentials have the form E; = —Vy;, where V is the gradient operator. Thus,
the potentials can be modelled as solutions of the Laplace equations in the
volumes, V;. At the boundaries between water and dielectric phases, Sy and
Shw, there are no adsorbed charges, therefore e,n- Vg, = e n- Ve, at S,y and
ewn- Vo, = enn- Vi, at Sy hold true, where n is the outer unit normal vector
from the particle surface (Fig.la). At the charged part of the particle surface,
Spn, we apply the boundary condition egepn - Vo, —penn- Vo, = opy,, where g
is the dielectric permittivity in vacuum [2,4]. The tangential boundary conditions
state that all potentials are continuous functions at the dividing boundaries.
For numerical calculations, it is convenient to reformulate the problem in a
dimensionless form. We use the following dimensionless electrostatic potentials,
b, Py, and Py, and ratios between the dielectric constants, epn and eyn:
(pjs()sn ( El

€p
J =D, 1, W)7 €pn = — 5 Ewn =
TcOpn En €n

P; = (1)
The cylindrical coordinate system Orfz with axis of revolution Oz defines the
radial, vertical and polar coordinates, r, z and 6, respectively (Fig.la). The
complex geometry of the domains is transformed into rectangles (Fig.1b) by
introducing modified toroidal coordinates ¢t and s analogous to those in [2]:
ro 1—-t2 2z _ 2tsins

- — = 2_
T h 1o T h(t,s) =1+t —2tcoss. (2)
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Fig. 1. (a) Sketch of a particle at the interface between nonpolar and water phases.
(b) Toroidal coordinate system (¢, s), in which the physical domains are transformed
into rectangles.

For the curvilinear orthogonal coordinate system, we denote the unit vectors of
the local basis by e; and e,. Let us remark that the introduced ¢ and s are similar
to the classical toroidal coordinates—we transform the original first coordinate
to be in the interval [0,1]. In the new variables, the positions of the interfaces
are: s = 0 and s = 27 from both sides of Spy; s =7 —a at Spn; s =27 —
at Spw. The axis of revolution corresponds to ¢ = 1 and the three-phase contact
line—to the pole, A, where ¢t = 0. The Lamé coefficients, h¢, hs, and hy, of the
toroidal coordinate system are calculated from the following relationships:
2
ht:%rc, hsz%rc, hg =r = ! ht
Using the general formulae for the Laplace operator and directional deriva-
tives in orthogonal coordinates [2], we get

h 0 [t(l—ﬂ)a@j} h 0 (18@-

Te. (3)

) —0mV; (j=npw), (4)

omar | h ot 2o \has
h Ou h Ou
ILVU*_%T,;% at Spn, n~VufR% at Spw. (5)

From the latter, we obtain the dimensionless formulation of the considered prob-
lem for the electrostatic potentials: (i) in the volumes—equation (4); (ii) at the
dividing physical boundaries:

oP 0D,
¢p|s=2‘n’—a = ¢W‘s:2ﬂ'70¢7 EPHT; o EWHW 8:2ﬂ7a7 (6)
0P, 0P,
gpn|3: = gpw‘s: T o = E&wn—(j 5 (7)
0 ? s s=0 ds s=27
oP oP 2t
P S S N W 5
P Ps s T 1+ +2tcosa o & ®)

(iii) at the axis of revolution, ¢t = 1, and at the three-phase contact line, t = 0:

0P,
a—tj:0f0rt:1(j:n,p,w)7@nzﬁpp:@W:Ofort:O, (9)
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Fig. 2. Dependence of singularity parameter v on the contact angle o and ratio ewn:
(a) epn = 4; (b) epn = 0.25. Dashed lines show the model case, studied in [4].

where the electrostatic potentials at the pole A are defined to be equal to zero.

It is shown in [4] that the particulate problem has a weak singularity of the
electric field intensity in the close vicinity of the contact line. The leading order
solutions of Eq. (4) for t — 0 are $; = t”(A;sin(vs) + Bj cos(vs)), where A,
and Bj; (j =n, p, w) are unknown constants and 0.5 < v < 1. The substitution
of these solutions into the boundary conditions (6)—(8) leads to a homogeneous
system of six linear equations for A; and B;. This system has a nontrivial solu-
tion, when its determinant is equal to zero. Thus, we arrive to the following
equation for the singularity parameter v:

2epn(1 — &wn)?
(14 epn)(1 + €wn)(Epn + Ewn)
(1-— 5pn)(l — Ewn)
(14 epn) (1 + &wn)

—sin?(vmr) =

(1 — €Wn)(5pn - Ewn)

2
o™ (V) g Eom F 2wn)

cos? [v(m —a)].  (10)

The model case, studied in [4], follows from (10) when ey, — oo (dashed lines
in Fig.2). The solutions of Eq. (10) for the singularity parameter, v, for two
different ratios epn are shown in Fig. 2. The following conclusions can be drawn
from it. In all cases, the singularity is weaker than that in the model case.
The values of v increase with the decrease of the ratio between the dielectric
constants of water and nonpolar phase, ey,. This effect is more pronounced for
larger values of €y, and more hydrophilic particles.

3 Numerical Method

In order to find a numerical solution of the problem, we apply the alternating
direction implicit method (ADIM), introducing numerical time 7. The continu-
ous function f(7,t,s) describes the electrostatic potentials, ordered as follows:
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b, b, and Py,. In the volumes, f(7,t,s) obeys an equation of the form (4):

OF — g +slr),
h 0 [t —t2)of h o [(10f
= | w e S0 s () O

where the operators T and S act in directions ¢ and s, respectively. For the
discretization of (11), we introduce an uniform mesh with time step §, and
space steps 0y, 0p, 0, by dividing each numerical domain f/j (j = n,p,w) into
squares of length J;. We denote the solution at a given moment 7 by subscript
“0” and at the moment 7 + 26,—by subscript “2”. Using the Crank—Nicolson
method in the ADIM scheme, we obtain the following second order numerical
model:

(U - 578)(U - 5TT)[f2 - fO} = 267T[f0] + 267'S[f0] + 0(53)5 (12)

where U is the unit operator. Firstly, we solve numerically an equation for a func-
tion g(t, s) in the s-direction, and subsequently—an equation in the ¢-direction

(U - 6TS)[Q} = 25TT[f0] + 26Ts[f0] and (U - 6TT)[f2 - fO] =9 (13)

as the derivatives in T and S are approximated with second-order central dif-
ferences with respect to t and s.

The main problem in the ADIM arises from the complexity of the boundary
conditions, applied to the function g. In order to have a second order precision
with respect to ¢t and s, we modify the boundary conditions, assuming the validity
of the Laplace equations in the close vicinity of the dividing surfaces and the
axis of revolution [6]. We use the following approximation:

") = —Tu(z) + 8u(x ;I:égm) —u(x £ 24;) - gu’(x) Lo, (14)
x

x

which relates the second and the first derivative of a given function. For example,
the limit of the operator T at the axis of revolution, taking into account the
boundary conditions (9) and equation (11), yields

0%u ~ —Tu(1) 4+ 8u(l — &¢) — u(l — 26;)

lim T[u] =2 — =
t—1 ot |,_, 207

. (15)

Therefore, we replace the boundary conditions (9) with Eq. (13), in which the
operator T is given by the difference form (15). The result is a modified boundary
condition in relaxed form.
From Egs. (11) and (14), the finite difference representations of the operator
S in the close vicinity of the boundary s = 7 — « are
=7 8u(s — doy) — — 20,
tzanS[u] _ U(S) + U(S o ) U(S )an + u/(s _ 0)7 (16)
~ —Tu(s) + 8u(s + dp) — u(s + 26,)

t*apSlu] = o5 ap —epntt' (s +0),  (17)
p
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where the functions a,(t) and a,(t) are defined with

8o OB\ " 8y O\
an(t) = on <3 — h&s) , ap(t) = epndp (3 + has) for s=m—a. (18)

The sum of Egs. (16) and (17) along with the boundary conditions (8) leads
to the final expression for the finite difference form of the operator S at the
boundary Spn:

_ —Tu(s) + 8u(s — dy) — u(s — 26,)

S — n
[u] 20262 (an + ap) ¢
) u(s 42 2
Tu(s) + 8u(s + 0p) — u(s + 26p) ap + fors=7m—a. (19)
20212 (ay + ap) hian + ap)

Thus, the boundary conditions (8) are replaced by Eq. (13), in which the operator
S is given by definition (19). Following an analogous procedure, we derive the
respective expression for the difference form of S at the boundary s = 27 — «
and on both sides of Syy (s =0 and s = 2m).

Because of the boundary conditions, the considered algorithm reduces the
matrix of the linear algebraic system in the ¢-direction to a five-diagonal matrix.
The respective matrix of the system in the s-direction is again with five non-
zero diagonals, but because of the periodicity of the solution at Sy, its first row
contains two more elements at the end and the last row contains two more ele-
ments at the beginning. We implemented a direct elimination numerical method
in order to solve the system.

4 Results and Discussion

To achieve good precision of the numerical calculations, we discretize each
numerical domain f/j (j = n, p, w) by introducing a 100 x 100 uniform mesh
(see Sect. 3). The time step is chosen to be equal to the minimum of d,, §, and
dw. The illustrative figures (Figs. 3b and 4b) correspond to experimental system
parameters [2] epn = 2 and ey, = 40. If the oil phase has a larger dielectric
constant (for example, castor oil with e, = 4.54), then the system parameters
are epn = 0.874 and eyn = 17.2 (Figs. 3a and 4a, respectively). The mathemat-
ical formulation of the problem assumes that the electrostatic potential at the
three-phase contact line is equal to zero (see Eq. (9)) and the intensity of the
electric field at large distances from the charged particle is equal to zero. Thus,
the calculated potential at infinity has a non-zero value. It is subtracted from
the calculated @; in order to obtain the physical electrostatic potential.

Figure 3 shows the distribution of the physical values of @; in the numerical
domains for three-phase contact angle a = 90°. The considerably higher dimen-
sionless potentials are well illustrated for larger values of the dielectric constant
of the nonpolar phase. At the coordinate lines, s = 0 (Syw) and s = 37/2 (Spw),
the electrostatic potentials are considerably lower than those at coordinate line
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Fig. 3. Distribution of the electrostatic potentials in numerical domains for contact
angle & = 90°: (a) epn = 0.874 and ey = 17.2; (b) £pn = 2 and eywn = 40.

s =m/2 (Spn). As it can be expected, the maxima of the electrostatic potentials
are at the cross-section of the particle-nonpolar interface and the axis of revolu-
tion. The dielectric constant of water is so high that the water phase suppresses
the penetration of the electric field in polar phase.

The calculations in [2,4] are performed, assuming zero values of the poten-
tials at the boundaries of the polar fluid. The magnitude of the electro-dipping
force decreases if the electrostatic potentials of these boundaries are different
than zero. Figure4 shows the distribution of the surface potentials along the
boundaries (solid lines correspond to Spn; dashed lines to Spyw; dot-dashed lines
— to Spw). The increase of the three-phase contact angle (more hydrophobic
particles) leads to higher potentials because of the more charges adsorbed at the
particle-nonpolar fluid interface. The effect of the water phase becomes more
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Fig. 4. Distribution of potentials along the interfaces for different values of contact
angle a: (a) epn = 0.874 and ewn = 17.2; (b) €pn = 2 and ewn = 40.
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pronounced. It is important to note that the surface potentials at the particle—
water boundary are different from zero. Thus, the boundary Sy, also contributes
to the electro-dipping force. For o = 45° and a = 90° this contribution is small,
while for o = 135° — it is not negligible. The weak singularities at the three-
phase contact line (¢ = 0) correspond to those depicted in Fig. 2. If the dielectric
constant of the particle phase, ¢p,, is smaller than that of the nonpolar phase,
€n, then the electric field penetration inside the particle phase is more effective
and the electrostatic potential at boundary S, is higher.

5 Conclusions

The developed effective numerical algorithm, based on the ADIM scheme,
gives possibility for fast and precise calculation of the distributions of elec-
trostatic potentials, generated from a charged dielectric particle, attached to
the nonpolar—water interface. For faster calculations, the complex numerical
domains are transformed into rectangles, using appropriate toroidal coordinates.
The resulting cyclic five diagonal systems of linear equations in the respective
directions of ADIM are solved, using a direct elimination method.

The numerical results show the effect of the three-phase contact angle and
the dielectric properties of the phases on the induced electric fields and the
magnitude of the electro-dipping force. Generally, the decrease of the ratios of
the dielectric constants of the particle and nonpolar phase, ¢,/e,, and that of
water and nonpolar phase, ey /ey, leads to the more pronounced penetration of
electric field and higher surface potentials at the particle-water and nonpolar
fluid—water boundaries. The magnitude of the potentials (electro-dipping force)
is larger for more hydrophobic particles. The calculations generalize what is
known from literature [2,4] and give a more precise description of the problem.
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