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An organism with such a square shape is without precedent and it is not surprising, therefore, that

the original report of the square bacterium was received with some skepticism

(Parkes & Walsby, 1981).
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1 INTRODUCTION
A full model of the origin of life must be multifaceted to explain all features of life (e.g.,

self-reproduction, heredity, metabolism, sensing and response, capturing resources, and evolutionary

mechanisms). Diversity in shape is a central property that influences a number of these features and is

observed in all organisms, including bacteria and Archaea. Small changes in shape in prokaryotes can

be associated with profound advantages in motility and nutrient uptake, avoiding predation and biofilm

structure, which are top on the list of evolutionary pressures (Smith et al., 2017; Young, 2006, 2007,

2010). In this chapter, instead of relying on cellular cytoskeleton mechanisms or information-rich ge-

netics to form or program such shapes, we hypothesize that shapes in protocells may have emerged

simply as tensegrity structures in liquid droplets driven by phase-change mechanisms. Recent exper-

iments show that regular geometric shapes with liquid cores may emerge simply in oil droplets from

phase transitions upon cooling (Cholakova et al., 2016; Denkov et al., 2015; Haas et al., 2017). Our

proposal is consistent with the hypothesis of a lipid world (Bar-Even et al., 2004; Segré et al.,

2001) and an oil-droplet-based origin of life (Hanczyc, 2014; Sharov, 2016; Sharov & Gordon,

2017). We build on:

1. Shaped droplets: a new discovery, that cooled oil droplets with surfactants acquire flat, polygonal

shapes (Denkov et al., 2015) (Fig. 1);

2. Oil-based protocells: models for the origin of life from oil droplets (Hanczyc, 2014; Sharov, 2016;

Sharov & Gordon, 2017), preceding membrane-bound vesicles (Fiore & Strazewski, 2016), with

genomic evidence that life started from an “oily” state (Mannige et al., 2012);

And we show how these shaped droplets and their potential role as protocells may have given rise to

present-day organisms and their structures, including:

3. Polygonal prokaryotes: the fact that many halophilic Archaea (thought on discovery to have been

bacteria) have flat, polygonal shapes (Walsby, 1980) (Fig. 1);

4. Molecular dating indicating the ancient origin of cytoskeleton, and recent evidence of its central

role in cell functioning (Gordon & Gordon, 2016a);

5. Polygonal diatoms: we suggest that the valve silicalemma of polygonal diatoms has a flat,

polygonal shape, resulting in precipitation of the silica within as a polygon (Fig. 1).

This adventure is new, and thus our sketch will leave many gaps in our understanding, some of which,

however, are approachable experimentally. What we are interjecting into the dialogue on the origin of

life is that the shape of protocells may have been adaptive, and that structure has evolutionary conse-

quences. We have called cooled oil droplets with flat, polygonal shapes “shaped droplets.” We do not

discuss traditional topics related to the origin of life, such as the emergence of proto-heredity and proto-

metabolism, though we suggest that the structure of shaped droplets may have provided new evolution-

ary opportunities for improving various cell functions, including heredity and metabolism.

2 SHAPED DROPLETS
It may seem strange that a three-dimensional spherical liquid drop of oil can take on a nearly two-

dimensional, polygonal shape when cooled slowly, forming what we have called “shaped droplets”

(Fig. 1). We are just beginning to understand the mechanism by which this happens (Azadi &
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Grason, 2016; Cholakova et al., 2016; Denkov et al., 2015, 2016; Grason, 2016; Guttman et al., 2016a,b;

Haas et al., 2017), and much experimental, theoretical, and computer simulation (molecular dynamics)

work lies ahead. Shape is a global property of a cell ((Boulbitch, 2000), as discussed in (Gordon &

Gordon, 2016a)), presumed, but rarely demonstrated, to be the result of a balance of forces (Pomp

et al., 2016; Sain et al., 2015; Sims et al., 1992). The same notion applies to the spherical liquid drop

of oil and thus presumably to its shaped droplet state. A general framework in which to consider such

problems is that of tensegrity structures, which have been applied at many hierarchical levels, from
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Shaped droplets vs. Archaea and diatoms. Left column: samples of abiotic drops, matched with comparable

prokaryotic Archaea (middle column) and eukaryotic diatom valves (right column). Archaea: D: Haloarcula

japonica (Takao, 2006).M, P:Haloquadratumwalsbyi. Diatoms: B: 153 Tabularia gaillonii, 154Nitzschiamacilenta,

155 Alveus marinus, 156 Synedra fulgens, 157 Synedra baculus, 158 Synedra formosa, 159 Synedra superba,

and 160 Hyalosynedra (?) sp. indet. E: Triceratium morlandii var. morlandii. G: Biddulphia spinosa. I: Schuettia

annulata. K: Triceratium broeckii. N: Triceratium favus fo. quadrata. S: Triceratium campechianum.

U: Stictodiscus parallelus fo. hexagona. W: Triceratium septangulatum. Y: Cyclotella litoralis.

(A, C, F, H, J, L, Q, T, V, X) From Denkov, N., Tcholakova, S., Lesov, I., Cholakova, D., Smoukov, S.K., 2015. Self-shaping of oil droplets via

the formation of intermediate rotator phases upon cooling. Nature 528(7582), 392–395, with permission of Nature Publishing Group.

(B, G, I, K, N, S, U, W) From Stidolph, S.R., Sterrenburg, F.A.S., Smith, K.E.L., Kraberg, A., 2012. Stuart R. Stidolph Diatom Atlas: U.S.

Geological Survey Open-File Report 2012–1163. http://pubs.usgs.gov/of/2012/1163/, in public domain. (E) From Mikhaltsov, A., 2014.

File:Triceratium morlandii var. morlandii.jpg. https://commons.wikimedia.org/wiki/File:Triceratium_morlandii_var._morlandii.jpg with

permission under the Creative Commons Attribution-Share Alike 4.0 International license. (M) From Burns, D.G., Camakaris, H.M.,

Janssen, P.H., Dyall-Smith, M.L., 2004. Cultivation of Walsby’s square haloarchaeon. FEMS Microbiology Letters 238(2), 469–473,

with permission of Oxford University Press. (P) From Comolli, L.R., Duarte, R., Baum, D., Luef, B., Downing, K.H., Larson, D.M.,

Csencsits, R., Banfield, J.F., 2012. A portable cryo-plunger for on-site intact cryogenic microscopy sample preparation in natural

environments. Microscopy Research and Technique 75(6), 829–836, with permission of John Wiley and Sons. (Y) From Gordon, R.,

Tiffany, M.A., 2011. Possible buckling phenomena in diatom morphogenesis, in: Seckbach, J., Kociolek, J.P. (Eds.), The Diatom World.

Springer, Dordrecht, The Netherlands, pp. 245–272, with permission of Springer. (R) is an enlargement of one cell in Fig. 4E.

4312 SHAPED DROPLETS

http://pubs.usgs.gov/of/2012/1163/
https://commons.wikimedia.org/wiki/File:Triceratium_morlandii_var._morlandii.jpg


molecules to the human body (Levin, 2006a,b; Scarr, 2014), on up to human edifices. We have made a

preliminary suggestion that shaped droplets are tensegrity structures (Cholakova et al., 2016), prom-

ising a full manuscript, which is this chapter. We provide an Appendix overviewing tensegrity struc-

tures and giving a toy model for flat, polygonal tensegrity structures.

Contrary to our former intuition of spherical shapes determined by minimization of interfacial en-

ergy, shaped droplets can be thin, flat, and have straight edges and sharp corners. Shaped droplets have

been successfully obtained over the size range of 1–50 mm diameter (Denkov et al., 2015), about the

same size range as most cells:

Recently, we reported (Denkov et al., 2015) a novel bottom-up mechanism for morphogenesis within

droplets of linear alkanes, which leads to the formation of micrometer sized particles with different

shapes. This phenomenon is driven by the formation of a “skin” of intermediate rotator phases in

cooled alkane droplets—a process which was triggered by freezing adsorption layers of long-chain

surfactants. These rotator phases (called also “plastic crystals” or “highly ordered smectics”) are

characterized with a long-range translational order of the molecules, yet with some rotational free-

dom around the long molecular axis in the case of linear alkanes (Sirota et al., 1993). We showed

(Denkov et al., 2015) how the formation of anisotropic rotator phases, within the confines of the

micro-scale fluid droplets, results in a surprisingly wide array of regular geometric shapes, including

regular polyhedra; hexagonal, tetragonal and trigonal platelets, with and without fibers protruding

from their corners. Furthermore, we found that frozen solid particles with the respective shapes

can be produced by selecting appropriate cooling rates. In this way, we succeeded in making a non-

trivial link between a novel process for making complex shapes in materials science and the funda-

mental discovery that phase transitions confined inside a drop could be a driving force for

morphogenesis (Denkov et al., 2015). The process opens new opportunities for both scalable particle

synthesis and studying the structure/shape formation processes in amazingly simple chemical

systems

(Cholakova et al., 2016).

Similar “faceted liquid droplets” were soon after independently discovered by Guttman et al. (2016a,b),

though rather than formation of a tensegrity structure to counteract a measurable surface tension in

order to create the shapes, they ascribed the process to an ultra-low surface tension. Subsequent reports

have shown that the surface tension in these systems is not ultra-low (Denkov et al., 2016), confirming

the plastic crystal tensegrity structure argument.

Using thegeneral tensegrity backgroundknowledge (seeAppendix),we cannowconsider thebalance

of forces in a shaped droplet. At the smallest scale, the individual atoms are stiff. Surfactant at the surface

of an oil droplet inwater consists of linearmolecules that align perpendicularly to the surface and from the

liquid oil template the interfacial freezing of a 2D plastic crystal solid, at temperatures slightly below, at,

or even above the bulk freezing point of the oil. The formation of such a stiff plastic crystal layer may

counteract the surface tension of thewhole droplet and form shapes far from the area-minimizing sphere.

Let us examine how a droplet of oil capable of forming plastic crystal phases with amphiphilic molecules

(amphiphiles or surfactants) at the surface can be a tensegrity structure. The overall surface tension is the

tension component, while the thin layers of plastic crystal forming edges at some parts of the droplet

interface provide the stiff elements, acting as struts (Fig. 2A). These struts, however, are not fixed,

but can grow as their formation can be favorable under conditions of supercooling.
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(A) Schematic of alkane packing in the plastic crystal phase resulting in a cylindrical morphology. We don’t

yet know the reason themolecules pack in this fashion—with cylindrical packing—no curvature in one direction, a

certain curvature in the other. In our case, the curvature is much lower than that of the nanotube on the right,

so the diameter is microns instead of nanometers. The plastic phase of the alkane molecules results in a stiff

element along each straight edge that balances the surface tension of the surfactant-coated oil droplet (the

compressive element), making this a tensegrity structure (see Appendix). Inside the alkane (hydrocarbon),

molecules are in a liquid phase. (B) Light micrographs showing the thicker border, and the thin film in the middle,

of shaped droplets. In the triangle, a sizeable thin patch has formed inside, whereas in the hexagon it has

stretched all the way. Sometimes in these shapes, because the middle film is so thin, they puncture before they

can stretch all the way, creating holes. The second triangle is a sketch of the first. Scale bars¼20 mm.

(C) A binary mask of an electron micrograph cross section of a square Archaea made by hand using ImageJ from

Fig. 6B in (Stoeckenius, 1981). The distance between the vertical tic marks is 1 mm. Mean thickness is

T¼0.204 mm and length of the cross section is L¼7.36 mm.

(A) From Denkov, N., Tcholakova, S., Lesov, I., Cholakova, D., Smoukov, S.K., 2015. Self-shaping of oil droplets via the formation of

intermediate rotator phases upon cooling. Nature 528(7582), 392–395, with permission of Nature Publishing Group.
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In addition to the energetics of strut formation, there are discontinuities at the corners, with their

own energies that are not fully clear. The persistence of common angles (60, 120 degrees) in these

structures suggests that these defect energies are far higher than any local deformation energies during

shape changes, so they are not usually influenced/changed. In the Appendix, we present a simple phys-

ical toy model that shows the tensegrity analogy with modular sidewalls built from magnetic discs,

where the magnetic attraction is the analogy of the surface tension in the drops. In addition, it can

illustrate the observed disproportionation of sides even in the absence of growth of the plastic crystal,

as magnetic discs can flip from one edge to another due to defects between them. The dynamics at the

corners of shaped droplets deserve detailed modeling.

In a more detailed model (Haas et al., 2017), we also consider the preference of certain angles in the

observed structure and connect the balance of the surface tension with the stiffness of the rods of plastic

crystal forming edges and the ability for material transfer from one edge to another. We also associated

the overall growth rate of the edges with the thermodynamic driving force for formation of the plastic

crystal. The model is able to predict the exact sequence of polygonal shape transformations, as well as

the stable puncture that occurs in some of them, resulting in a shaped, topologically toroidal oil droplet

(triangle in Fig. 2B). There are a number of unknowns still in this fascinating phenomenon, including

the detailed origin of the preference for some angles and the exact packing of the molecules resulting in

the observed curvature of the plastic crystal edges that are a matter of active investigation.

Usually, the stiffness of a frozen surfactant layer is orders of magnitude lower than the surface ten-

sion. However, when oil droplets are cooled slowly, a number of layers of straight-chain alkanes near

the interface can form a plastic state in which they are free to rotate around their long axes but not

translate (“rotator phase”). Though more flexible than other crystals, the stiffness of these regions

is enough to counteract the surface tension of the droplet and impart a nonspherical shape to it

(Figs. 2 and 3). Shaped droplets provide anisotropic flat surfaces which could have provided metabolic,

mobility, and other advantages to oil-based protocells, as we’ll see in the next section. Such shapes may

have been stabilized further by reactions at the surface, such as mineralization by inorganic precipi-

tation and adsorption of polymers (Simon et al., 1995), either hydrophobic polymers on the inside

or hydrophilic polymers on the outside. Polymers with stretches of both could weave in and out of

the surface like extant membrane proteins.

3 OIL-BASED PROTOCELLS
Our interest in the shape of oil droplets stems from increasing support for the hypothesis that life may

have started from oil or lipid droplets in water (Sharov, 2016; Segré et al., 2001; Segré & Lancet, 2000).

An oil droplet that absorbs a tar-like complex mixture of abiotic compounds has no membrane, yet is

capable of movement in various ways (Hanczyc & Ikegami, 2010; Horibe et al., 2011) via internal oil

flow (Hanczyc, 2011). Such oil droplets can hydrodynamically split themselves, imitating cell division

without specific polymers being involved (Caschera et al., 2013; Tcholakova et al., 2017). See also

(Banno et al., 2015; Turk-MacLeod et al., 2015).

We have demonstrated the interplay between stability and dynamics in a recursive spherical oil

droplet division and fusion cycle (Caschera et al., 2013). In this system, starting far from equilibrium

due to the solvation of a cationic surfactant in the organic phase and anionic surfactant in the aqueous

phase, we observe a temporal window on the way to equilibrium due to surfactant diffusion at the

434 EMERGENCE OF POLYGONAL SHAPES IN OIL DROPLETS AND LIVING CELLS



interface where the interfacial tension is minimized. During this time period, the droplet is easily af-

fected by force, whether externally applied or internally generated. Often the droplet will spontane-

ously divide into daughter droplets due to internal fluid dynamic instability, which then round up

as the system approaches a thermodynamic equilibrium.

Self-shaping droplets are nonlinear systems which convert the thermal fluctuations of the environ-

ment into phase-transition energy which, in its own turn, is used for droplet shape transformations and

FIG. 3

Model of the plastic phase at the edges of shaped droplets. Tens of layers of molecules must order in these plastic

crystal layers to overcome the interfacial tension keeping droplets otherwise circular. The molecules close the

surface interdigitate with the surfactant tails, making a well-packed monolayer. That monolayer anchors the

formation of the rotator (plastic crystal) phase, which progressively gets more andmore disordered and eventually

transitions to the liquid which is contained inside all these deformed droplets.
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for drop division into smaller “daughter” droplets (Cholakova et al., 2016, 2017; Denkov et al., 2015;

Tcholakova et al., 2017). The “feeding” of the daughter drops via coalescence with other drops or via

capturing dissolved organic molecules transferred via the aqueous medium from smaller to larger drop-

lets (in a process equivalent to the “Ostwald ripening” of crystals (Taylor, 1998; Tcholakova

et al., 2011)) could lead to prebiotic increase of the drop size via basic physicochemical mechanisms.

The freezing of the shaped droplets at low temperatures fixes and preserves their shape until the tem-

perature is raised again, resembling the process of cell hibernation. Therefore, shaped droplets are prob-

ably the simplest chemical system, in terms of composition, which could appear naturally in water

pools containing organic molecules and which are able to utilize the day/night (and other) natural ther-

mal cycles for realization of basic protocell processes, such as complex shape-transformations, division

and growth, and hibernation, thus mimicking some of the fundamental processes of living cells.

It is important to emphasize that droplet self-shaping and self-splitting have been observed with a

wide variety of organic molecules (alkanes, alkanes, alcohols, triglycerides, esters, etc.) and with com-

plex mixtures of such molecules. This is direct evidence that these are general phenomena, not bound to

very specific classes of molecules (Cholakova et al., 2016, 2017), and shaped droplets could thus be

called a “generic” mechanism for morphogenesis (Newman, 2014). Note that only basic physicochem-

ical processes, such as phase transitions and interfacial phenomena, are involved in the above

processes, without the complex molecular machinery used by evolutionary developed living organ-

isms. Furthermore, all these physicochemical processes are highly reproducible and could serve as

a basis for development of more subtle and complex processes, such as droplet attachment on specific

substrates and accumulation of molecules on specific domains of the drop surface (e.g., on the edges,

corners, broad surfaces, or tips of the shaped drops), thus allowing the beginning of a subsequent

evolutionary development of more complex molecular machines.

Another remarkable feature of shaped droplets is that they adapt to the variations of the environ-

mental energy and acquire shape and other related properties which correspond to equilibrium at the

given temperature. Therefore, they do not need a constant influx of energy from the environment to

maintain their “homeostasis,” which is a typical feature of living organisms. From this viewpoint,

shaped droplets appear as an intermediate state between natural inorganic matter, which has an entirely

passive response to changes in the environment, and living organisms which use complex molecular

mechanisms, requiring a regular influx and conversion of energy, to handle their homeostasis and to

adapt to the variations in the external conditions.

One of the strongest arguments in favor of the oily origin of life is the relative abundance of oil-like

organic molecules. There are potentially three main sources of organic material in places where life

could have originated: arrival from space, energy-coupled chemistry in the atmosphere, and ocean floor

vent chemistry. Investigations of the interstellar medium have produced evidence of short-chain alco-

hols, aldehydes, ketones, acids, aliphatic hydrocarbons, amines, amides, esters, ethers, cyanide deriv-

atives of paraffin, as well as aromatic rings (e.g., benzene) and even large and complex carbon

structures (e.g., cyanopolyynes and polyaromatic hydrocarbons (Henning & Salama, 1998; Kwok,

2007)). In the lab, the UV irradiation of interstellar ice analogs with water, methanol, CO, ammonia,

and other components produced not only various organic molecules (Bernstein et al., 1995; Gerakines

et al., 2001), but also structures resembling oil droplets and vesicles (Dworkin et al., 2001). Certain

carbonaceous chondrite meteorites found on the Earth contain an organic crust with oily substances

including aliphatic and aromatic hydrocarbons that may form oil droplets in water (Krishnamurthy
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et al., 1992; Yuen et al., 1984). Considering the ocean floor as a source of organic chemistry, two iden-

tified chemical processes may be at play: the coupled processes of serpentinization and Fischer-

Tropsch Type synthesis. These chemical processes can produce short- and medium-chain alkanes

(Holm & Charlou, 2001; Macleod et al., 1994; Schulte et al., 2006; Sherwood Lollar et al., 2002;

Simoneit, 1995; Sleep et al., 2004), which could form oil droplets. Finally, the atmosphere of early

Earth could have also been a source for organic chemistry and molecules. The spirit of this inquiry

was captured in the famous Urey-Miller experiment first published in 1953 (Miller, 1953; Miller &

Urey, 1959). Here, a simulated prebiotic Earth atmosphere was constructed in the lab and subjected

to repeated electrical sparks to simulate lightening. Using such approaches and varying the initial

conditions, studies have produced several different types of molecules such as amino acids and mono-

carboxylic acids (Miller, 1953; Rode, 1999), along with much more complex molecules including tar

and oil phases (Allen & Ponnamperuma, 1967; Yuen et al., 1981). It is not clear if complex and rel-

atively unstable organic molecules (e.g., amino acids and sugars) can reach biologically relevant con-

centrations without life (Sharov & Gordon, 2017). However, hydrocarbons, and especially alkanes,

could become abundant on planets and form oil droplets in water. The addition of polar moieties in

the synthesis of such organics could have produced a variety of simple surfactants (Hanczyc &

Monnard, 2017).

There are some recent arguments emerging that support the idea of an oily origin of life. The recon-

structed putative last common ancestral proteome appears to have high degree of hydrophobicity, with

evolution following an “oil escape” towards more water-friendly proteins (Mannige, 2013; Mannige

et al., 2012). This does not necessary mean that ancestral proteins were embedded in an oil droplet. It

could simply indicate that proper protein folding largely depends on the hydrophobic effects in an aque-

ous medium. Nevertheless, the functioning of proteins has been demonstrated in nonaqueous solvents

(Klibanov, 2001; Zaks & Klibanov, 1985). In some cases, the yield and longevity of an enzymatic

reaction is improved when embedded in largely organic media (Stolarow et al., 2015). Further inves-

tigation of enzymes in organic solvents revealed that some enzymes acquire new properties including

greater stability, altered selectivity, and molecular memory (Klibanov, 2003). Therefore, it is not only

possible for some of the basic biochemical functionalities to be hosted in oil droplets, but perhaps

advantageous.

Many researchers have contemplated a “lipid world” scenario for the origin of life where the im-

portance of the container for the first protocells is considered (Anella &Danelon, 2014; Bar-Even et al.,

2004; Bukhryakov et al., 2015; Cavalier-Smith, 2001; Kauffman, 2013; Lombard et al., 2012; Paleos,

2015; Paleos et al., 2004; Sharov & Gordon, 2017; Szathmáry, 2006; Szathmáry et al., 2005;

Wieczorek, 2012). This is based on the spontaneous self-assembly of both primitive and evolved sur-

factant molecules into higher order structures. Such supramolecular structures include oil droplet emul-

sions, bilayer lamellar vesicles, micelles, and others. These supramolecular assemblies not only consist

of single amphiphiles, but also mixtures that are often notably more stable under varying environmental

conditions (Hanczyc & Monnard, 2017). Such mixtures of amphiphilic molecules in supramolecular

structures could carry heritable compositional information as an early and primitive form of protocel-

lular information (Gross et al., 2014; Hunding et al., 2006; Markovitch & Lancet, 2014; Naveh et al.,

2004; Segré et al., 2001; Segré & Lancet, 2000; Shenhav et al., 2004, 2005; Wu & Higgs, 2008).

Additionally, heritable information in such scenarios could have been represented by catalytically

active self-reproducing molecules, inside or on the surfaces of oil droplets in water (Sharov, 2016).
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One scenario to consider is a transition from an oil droplet-based protocell to a water-centric vesicle

that reflects the current biological cell membrane architecture. Perhaps, the oil droplet protocell came

first as it was easier to form and more robust. This oil droplet contained some essential biochemical

machinery. Persistent shapes, whether repeatedly formed or stabilized, would have given such proto-

cells advantages in hydrodynamic mobility, surface-area-based feeding/metabolism, resistance to

being merged/diluted with other droplets, and driven a kind of protocell evolution (Young, 2006,

2007, 2010). This oil-first model was then overtaken by a cell architecture based on a thin lipid mem-

brane with an aqueous interior, which became the obviously dominant form of known life. Such a sce-

nario faces difficult challenges which still must be explored. Here, we simply note the similar lenticular

shape of both shaped droplets and polygonal Archaea, including the development of holes or closely

apposed membranes where the two surfaces meet (Figs. 2b and 4d). Stabilization of double droplets or

“water-in-oil-in-water (W/O/W) emulsions” (Leong et al., 2017) affords a model for the transition from

droplets to membrane-bound vesicles (Chong et al., 2015).

4 POLYGONAL PROKARYOTES
Polygonal shapes of cooled oil droplets described above appear surprisingly similar to the polygonal

prokaryotes. With the first discovery of a square “bacterium” in a natural pond of evaporating marine

water in the Sinai (Walsby, 1980), now recognized as an Archaea (Bolhuis, 2005), a worldwide search

for halophilic polygonal prokaryotes began. The following geometrically regular shapes have been

reported across taxa (Gupta et al., 2015):

Flat Archaea:

1. Triangles (Andrade et al., 2015; Baxter et al., 2005; Burns et al., 2004; Castillo et al., 2006; Chaban

et al., 2006; Emerson et al., 1994; Grant & Larsen, 1989; Hamamoto et al., 1988; Horikoshi et al.,

1993; Javor et al., 1982; Lasbury, 2013; Malfatti et al., 2009; Mehrshad et al., 2015, 2016;

Miyashita et al., 2015; Mullakhanbhai & Larsen, 1975; Nishiyama et al., 1992; Oren, 1999; Oren

et al., 1990, 1999; Otozai et al., 1991; Ozawa et al., 2000, 2005; Sabet et al., 2009; Takashina et al.,

1990; Wakai et al., 1997; Walsby, 1980; Yang et al., 2007; Yatsunami et al., 2014)

2. Squares (Andrade et al., 2015; Bardavid & Oren, 2008a; Baxter et al., 2005; Bolhuis et al., 2006;

Burns et al., 2004, 2007; Castillo et al., 2006, 2007; Chaban et al., 2006; Dyall-Smith et al., 2011;

Fredrickson et al., 1989; Ghai et al., 2011; Grant & Larsen, 1989; Hamamoto et al., 1988; Javor

et al., 1982; Kamekura, 1998; Lasbury, 2013; Lobasso et al., 2008; Malfatti et al., 2009;

Mullakhanbhai & Larsen, 1975; Oh et al., 2010; Oren, 1994, 1999, 2005; Oren et al., 1990, 1996,

1999; Romanenko, 1981; Santos et al., 2012; Torrella, 1986; Tully et al., 2015;Walsby, 1980, 1994;

Yang et al., 2007)

3. Rectangles (Dyall-Smith et al., 2011; Javor et al., 1982; Mullakhanbhai & Larsen, 1975; Oren,

1999, 2005; Oren et al., 1996)

4. Rhombi (Hamamoto et al., 1988; Oren, 1999; Takashina et al., 1990)

5. Trapezoids (Oren, 1999, 2005; Walsby, 1980)

6. Pentagons (Malfatti et al., 2009)

7. Circles, ovals, plates, disks (Duggin et al., 2015; Mehrshad et al., 2016; Mullakhanbhai & Larsen,

1975; Stetter, 1982)

438 EMERGENCE OF POLYGONAL SHAPES IN OIL DROPLETS AND LIVING CELLS



FIG. 4

Square Archaea. (A) Electron tomograph by H. Engelhardt of a “Spanish isolate of the square halophilic archaeon

Haloquadratum walsbyi strain HBSQ001.” GV¼gas vesicle, others “most likely poly-3-hydroxy-butyric acid

(PHB) polymers.” (B) Four cells of Haloquadratum walsbyi in the “postage stamp” array. (C) 8-cell colony.

Note the sharp corners and the parallel third divisions, suggesting cell-cell communication. Green fluorescence

image with acridine orange staining per (Burns & Dyall-Smith, 2006; Burns et al., 2004). (D, E) H. walsbyi:

(Continued)
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Flat Bacteria:

8. Triangles (Awramik & Barghoorn, 1977; Fritz et al., 2004; Lafitskaya & Vasilieva, 1976;

Vasilyeva & Semenov, 1984, 1985)

9. Squares (Oren, 1999; Whang & Hattori, 1990)

10. Rectangles (Kuhn, 1981; Whang & Hattori, 1990)

11. Stars (Chernykh et al., 1988; Fritz et al., 2004; Hirsch, 1974; Hirsch et al., 1977; Hirsch &

Schlesner, 1981; Reimer & Schlesner, 1989; Rusconi et al., 2013; Semenov & Vasilyeva, 1987;

Staley, 1968; Vasilyeva, 1970, 1985; Vasilyeva et al., 1974; Vasilyeva & Semenova, 1986)

Three-dimensional bacteria:

12. Hexagonal columns (Wu et al., 2012)

13. Heptagonal columns (Wu et al., 2012)

14. Corrugated columns (star-shaped in cross section) (Lasbury, 2013; Wanger et al., 2008;

Wu et al., 2012)

15. Tetrahedra (Fritz et al., 2004)

16. Pyramids (Baxter et al., 2005)

Some halophiles are reported as pleomorphic, yet do not show polygonal geometries (Liao et al., 2016;

Mori et al., 2016; Shimane et al., 2015; Wang et al., 2016b; Xu et al., 2016; Yin et al., 2015), while

others are rod-shaped (Mou et al., 2012) or sometimes so (Duggin et al., 2015). In Fig. 5, we have

catalogued a number of three-dimensional polygonally faceted and corrugated shapes, because their

structures may provide hints of mechanisms also applicable to flat cells. The straightness of edges

can vary with fixation technique and resolution of microscopy (cf. Rusconi et al., 2013). We include

flat, circular Archaea, as equivalent to polygons with an infinite number of edges, per Archimedes

(Aktümen & Kaçar, 2007). Most of the bacteria have rounded corners and edges (Fig. 5).

There are now a few different polygonal Archaea species distinguished, including the original

(Walsby, 1980) now named Haloquadratum walsbyi (Burns et al., 2007; Dyall-Smith et al., 2011),

Haloarcula quadrata (Burns et al., 2004; Oren et al., 1999; Yang et al., 2007), Haloarcula argentinen-
sis (Yang et al., 2007), Haloarcula japonica (Takashina et al., 1990; Yang et al., 2007), Haloarcula

FIG. 4—Cont’d

Note that in the same culture, triangular, square, rectangular, trapezoidal, quadrilateral, and pentagonal cells may

be seen. Note that two cells in each image appear to have holes. (F) The white spots in the image are gas vesicles.

(G) Arrows indicate two “holes” in the fluorescence image of an H. walsbyi cell stained with Nile Blue for its

intracellular polyhydroxybutyrate granules. (H) “Square Archaea with phage particles, head diameter ca 40 nm.”

(I) “Square Archaea lysed by phages, head diameter ca 50 nm.” Transmission electron micrographs.

(A) From Bolhuis, H., Palm, P., Wende, A., Falb, M., Rampp, M., Rodriguez-Valera, F., Pfeiffer, F., Oesterhelt, D., 2006. The genome of

the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7, #169, with permission from

Biomed Central under a Creative Commons Attribution License (CC BY); (B) From Wikipedia, 2008. File:Haloquadratum walsbyi00.jpg.

https://commons.wikimedia.org/wiki/File:Haloquadratum_walsbyi00.jpg, in public domain; (C, D, E) from Mike L. Dyall-Smith with his

kind permission; (G) From Zenke, R., von Gronau, S., Bolhuis, H., Gruska, M., Pfeiffer, F., Oesterhelt, D., 2015. Fluorescencemicroscopy

visualization of halomucin, a secreted 927 kDa protein surrounding Haloquadratum walsbyi cells. Front. Microbiol. 6, #249, with

permission under a Creative Commons Attribution License (CC BY); (H, I) From Guixa-Boixereu, N., Calderón-Paz, J.I., Heldal, M.,

Bratbak, G., Pedrós-Alió, C., 1996. Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat. Microb. Ecol.

11(3), 215–227, with permission under a Creative Commons by Attribution Licence (CC-BY).
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FIG. 5

Polygonal bacteria seem not to have straight edges, nor sharp corners. (A) Triangular bacterium, 0.7–0.9 mm in

width. (B) Stella humosa, star-shaped bacterium. See also Prosthecomicrobium: “Each has six appendages

extending in one plane” (Staley, 1968). (C) Rosette budding bacteria with “a stable protein envelope.” Scale

bar¼10 mm. (D) This is a star-shaped cross section of a bacterium (E) whose corrugated cell wall resembles

penne rigate pasta (F). This example has 6 “points.” Cells were reported with 4, 5, 6, 7, and 9 “points.” “The Stars

reproduce by forming branching structures. . .. How the Stars manage to hold their shape is a puzzling

(Continued)

4414 POLYGONAL PROKARYOTES



marismortui (Oren et al., 1990), Haloferax sp. (Emerson et al., 1994), Halovivax asiaticus (Castillo
et al., 2006), Halosiccatus urmianus (Mehrshad et al., 2016), Halogeometricum borinquense
(Malfatti et al., 2009); most containing gas vesicles (Walsby, 1994), some not (Javor et al., 1982).

The star-shaped Stella vacuolata and Stella humosa are gram-negative bacteria (Vasilyeva, 1985).

Square Archaea represent over 50%–60% of the cells found in crystallizer ponds of salterns world-

wide (Antón et al., 1999; Bardavid et al., 2008; Bettarel et al., 2011; Bolhuis, 2005; Mutlu & Guven,

2015), though sampling may have been done at times of blooms (Ram-Mohan et al., 2016). They are

present, but not predominant, in the Dead Sea (Bodaker et al., 2010) and the Great Salt Lake (Baxter

et al., 2005). The square archaeon has a thickness of as little as 0.1 mm at the edge “or even less in the

central regions” (Parkes &Walsby, 1981), “possibly even as thin as 0.07 mm” (Oren, 1999). Thus, it is

lenticular in shape (Fig. 2C), like shaped droplets (Fig. 2A,B), although somewhat irregular in thick-

ness away from the square edges, perhaps due to cell inclusions and/or fixation artifacts (Stoeckenius,

1981). In fact, the thickness seems to go to near zero in some places, “where the opposing cell mem-

branes are in contact,” without affecting the shape of the cell (Zenke et al., 2015), again as observed in

shaped droplets (Figs. 2 and 4).

Square Archaea have been reported as 0.25 mm thick for all sizes, with squares of 2 mm and 4 or

5 mm or rectangles of 2 mm by 4 mm, and in electron microscopy cross section, with a lenticular shape

(Stoeckenius, 1981). Rectangular cells have been imaged as small as 1.5 mm by 2.1 mm (Fig. 1P), and

squares have been reported (Oren, 1999; Romanenko, 1981) as small as 1.4 mm. (A square/rectangular

bacterium is reported even smaller as 0.3–2 mmon a side (Whang &Hattori, 1990).) Pure cultures yield

square cells of different sizes. The variability in size with congruent shapes suggests that there is no

rigid component of a specific length that accounts for the straight edges.

Except for a brief mention of “triangles/pyramids” and the presence of spheres in a collected pop-

ulation containing squares (Baxter et al., 2005), we found no reports that any of the flat Archaea have

alternative three-dimensional shapes. While prokaryotes in general can come in many shapes

(Gordon & Gordon, 2016a; Huang et al., 2008; Margolin, 2009; Yang et al., 2016; Young, 2007),

the flat Archaea have only been observed flat. Star-shaped bacteria change their morphology in some

culture conditions (Semenov et al., 1989; Semenov & Vasilyeva, 1985, 1987; Vasilyeva & Semenova,

1986), though the authors did not report that flat cells became three-dimensional.

FIG. 5—Cont’d

question. . .. No internal skeleton was observed within the Star. In some plasmolyzed cells. . ., the innermembrane

detached from the outer [S-]layer, however, the star-shape was maintained.” Scale bar for cross

section¼0.1 mm. Scale bar for side view¼0.2 mm. (G) The columnar, corrugated-centric diatom Terpsinoë

musica, collected from Whitefield Creek (by the Salton Sea), California. It shows a flat valve face at the top. Scale

bar¼20 mm. Cf. (Gordon & Tiffany, 2011).

(A) From Lafitskaya, T.N., Vasilieva, L.V., 1976. A new triangular bacterium. Mikrobiologiya 45(5), 812–816, with kind permission of

Lina V. Vasilyeva; (B) From Vasilyeva, L.V., Lafitskaya, T.N., Aleksandrushkina, N.L., Krasilnikova, E.N., 1974. Physiological-

biochemical peculiarities of the prosthecobacteria Stella humosa and Prosthecomicrobium sp. Izv. Akad. Nauk SSSR Seri. Biol. 5,

699–714, also with permission of Lina V. Vasilyeva; (C) From König, E., Schlesner, H., Hirsch, P., 1984. Cell wall studies on budding

bacteria of the Planctomyces/Pasteuria group and on a Prosthecomicrobium sp. Arch. Microbiol. 138(3), 200–205, with permission of

Springer; (F) From Wanger, G., Onstott, T.C., Southam, G., 2008. Stars of the terrestrial deep subsurface: a novel ‘star-shaped’

bacterial morphotype from a South African platinum mine (Corrigendum: (6), 421). Geobiology 6(3), 325–330, with permission of

John Wiley and Sons.

442 EMERGENCE OF POLYGONAL SHAPES IN OIL DROPLETS AND LIVING CELLS



5 MECHANISMS CONTROLLING THE SHAPES OF PROKARYOTE CELLS
Spherical oil droplets become shaped droplets when the temperature is lowered. Polygonal Archaea

become rounded when the salinity is lowered. If we look at the plastic phase of shaped droplets

and the polygonal shaping of Archaea as phase transitions or precipitations (Kim & Bae, 2003), then

they may be examples of a generic process such as is seen in Hofmeister series ranking anions and

cations according to their influence on macroscopic properties (Schwierz et al., 2016).

Archaea have a cell wall external to the cell membrane called the S-layer, and some internal

cytoskeletal components. There are four general factors that may cause polygonal shapes in Archaea:

1. The S-layer creates the shape of the chamber within which the cell lives.

2. The cell membrane creates the shape.

3. The cytoskeleton creates the shape.

4. Two or three of the above, in concert, create the shape.

Most of these options have been proposed but not rigorously tested, so we are left with evaluating ob-

servations that may bear on the question. However, strangely, a nonstructural, physical “mechanism”

has been suggested, namely turgor pressure. So we’ll start with that.

In square Archaea living in saturated salt environments, it has been argued that there is no turgor

pressure, and that this somehow “allows” the cells to take on nonspherical shapes (Kessel & Cohen,

1982; Walsby, 1980, 2005). The experiment of osmotically shocking (Berthaud et al., 2016) square

cells to watch how they change shape has not yet been done, nor have they been subjected to atomic

force microscopy and other physical probes. However, cells lysed by phage (viruses) retain sharp cor-

ners (Guixa-Boixereu et al., 1996) (Fig. 4I).

Next, let’s consider the cytoskeleton. A form of actin, crenactin, and an associated protein form a

helical microfilament (Braun et al., 2015) that correlates with the rod shape of the archaeon Pyroba-
culum calidifontis (Ettema et al., 2011). Electron cryotomography shows no internal cytoskeletal struc-

tures adjacent to the cell membrane, including at corners in square Haloquadratum walsbyi, which
have radii of curvature as low as 50 nm (measured from Fig. 1E in (Burns et al., 2007)). Furthermore:

The extreme flatness of the cells may imply the complete absence of cell turgor but the forces that

cause cell edges to be as straight as they are observed are currently enigmatic since no genes could be

identified in the genome that might express structural proteins involved in maintaining the cell

structure

(Zenke et al., 2015).

Next, let’s consider the cell membrane as a possible source of polygonal structure. In general, the

membrane lipids of bacteria are unipolar, while those of Archaea are bipolar (Fig. 6). The lipids

of square Archaea, in particular, have been elucidated (Lobasso et al., 2008; Oren, 1993; Oren

et al., 1996). The membrane lipids of polygonal Archaea could, by themselves, provide geometric

structure in a couple of ways. For example, it is possible that specific lipids accumulate at or form

membrane regions of high curvature (Boekema et al., 2013; Mukhopadhyay et al., 2008). The bipolar

lipids of some Archaea (Figs. 6 and 7) by themselves tend to form flat (Chong, 2010), stiff

(Jacquemet et al., 2009; Jain et al., 2014; Kates, 1992) structures, but when mixed with unipolar

lipids, the latter can partition more to one side, creating a curved surface (Lelkes et al., 1983). This

phase separation of lipid species (Liu et al., 2006) has been used to hypothesize how bacteria and
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FIG. 6

(A) Various configurations of polar lipids found in Archaea. Those which covalently subtend the whole membrane

are called bipolar and represent about 90% of Archaea membranes (Forbes et al., 2006). (B) An additional

configuration for bipolar lipids, also called bolaamphiphiles, is the U-shape, where both polar groups are on the

same side of the membrane.

(A) From Gambacorta, A., Gliozzi, A., Derosa, M., 1995. Archaeal lipids and their biotechnological applications. World J. Microbiol.

Biotechnol. 11(1), 115–131, with permission; (B) From Forbes, C.C., DiVittorio, K.M., Smith, B.D., 2006. Bolaamphiphiles promote

phospholipid translocation across vesicle membranes. J. Am. Chem. Soc. 128(28), 9211–9218, with permission of the American

Chemical Society.
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Examples of tetraether bipolar lipids in Archaea membranes.

From Jacquemet, A., Barbeau, J., Lemiègre, L., Benvegnu, T., 2009. Archaeal tetraether bipolar lipids: structures, functions and

applications. Biochimie 91(6), 711–717, with permission of Elsevier Paris.



Archaea split apart in early evolution (Wächtershauser, 2003; Yokoi et al., 2012). The degree of fluc-

tuations in shape versus temperature provides a means of analyzing stability of shape (Bivas, 2010;

Döbereiner et al., 1997).

However, in at least one case of the bipolar lipid membrane of an Archaea, the membrane makes the

transition to a 2D fluid when the minimum temperature for growth is reached (Bartucci et al., 2005). At

that point, its fluidity and permeability properties become similar to those of bilayer membranes at

lower temperatures. Thus, in its normal temperature range, this archaean’s membrane lacks the rigidity

it exhibits at lower temperatures:

At the growth temperature of a given organism, the membranes are in a liquid-crystalline state

(Melchior, 1982; Melchior & Steim, 1976) which implies substantial dynamics of lipid movement,

ensuring optimal functioning of the membrane proteins.... Because of the low melting point of the

archaeoland caldarchaeol-based polar lipid membranes of Archaea, these membranes are in a liquid-

crystalline phase over a wide temperature range of 0 and 100�C that is physiologically relevant

(De Rosa et al., 1986)

(Driessen & Albers, 2007).

A caveat is that the same authors appear to contradict themselves:

...monolayer type of organization gives the membrane a high degree of rigidity (Bartucci et al., 2005;

Elferink et al., 1994; Fan et al., 1995; Gliozzi et al., 1983; Mirghani et al., 1990; Thompson et al., 1992)

(Driessen & Albers, 2007).

In any case, the liquidity of the 2D lipid array in polygonal Archaea needs further investigation, espe-

cially since it is possible that they may be able to adjust their membrane lipid composition to changing

conditions:

Moreover, bacteria can also stabilize their membranes at high temperatures through elongation of

membrane lipids (Marr & Ingraham, 1962). . .. Surprisingly, little is known about membrane adap-

tation mechanisms of Archaea to temperature

(Andrade et al., 2015).

If membrane proteins form condensations, i.e., two-dimensional phase transitions, this is the phenom-

enon of “capping” of membrane proteins that are otherwise mobile in the 2D liquid cell membrane

which might provide structure. Capping appears to require attachment to the underlying cytoskeleton

(Kindzelskii et al., 1994). Thus, it would seem an unlikely candidate for producing the long range, reg-

ular order of polygonal Archaea.

Prokaryotes are often surrounded by 2D crystalline glycoprotein cell walls called S-layers. Square

Archaea have a glycoprotein S-layer (König, 1994) that appears to be a hexagonal array with a spacing

of 20 nm (Parkes & Walsby, 1981; Stoeckenius, 1981; Sumper, 1993). Electron microscopy shows

one S-layer evenly around a corner of Haloquadratum walsbyi and two S-layers around a new

Haloquadratum species (Burns et al., 2007).

The S-layers, if most prokaryotes, are presumed, without proof, to cause and/or maintain the shape of

the cell within (Akca et al., 2002; Sleytr et al., 1986). This notion has been contradicted in most cases:

...observations that the loss of S-layers is not accompanied by a morphological change of the

progeny cells make it most unlikely that in organisms possessing a rigid cell envelope component,

the paracrystalline arrays have an important function in determining cell shape

(Sleytr & Messner, 1983).

446 EMERGENCE OF POLYGONAL SHAPES IN OIL DROPLETS AND LIVING CELLS



An exception is the Halobacterium salinarum cell, rod-shaped at high salt concentrations (Sleytr &

Messner, 1983), which becomes spherical on proteolysis or alteration of the S-layer (Mescher &

Strominger, 1976) or at lower salt (Engelhardt, 2007b).

For polygonal Archaea, the following is the closest we have to a published model, which invokes

the cell membrane and the S-layer:

If the cells are not exposed to osmotic imbalance, and the lipids or other cellular factors. . . do not

force strong prebending of the membrane, the S-layer-membrane assembly would assume a shape

approaching the tension minimum, i.e., a flat, sheet-like arrangement in the ideal case. A model sys-

tem shown in (Engelhardt, 2007a) illustrates the expected effect. The reconstituted S-layer of Delftia

acidovorans (p4 symmetry, lattice constant 10.5 nm), interacts with the membrane via bound lipid

molecules (Engelhardt et al., 1991) and flattens the symmetrical lipid layer of the vesicles. Interest-

ingly, disk-like species such as H. volcanii and Methanoplanus limicola, or Archaea forming flat cel-

lular boxes (“Square Bacterium”) do possess S-layers with p6 symmetry and particularly short lattice

constants (14.7–16.8 nm. . .). Although other, possibly unknown mechanisms might contribute to the

architecture of Archaeal cells, it is conceivable that the biophysical properties of the S-layer-

membrane assembly are sufficient to flatten cells (Engelhardt, 2007a)

(Engelhardt, 2007b).

The consensus idea at the moment is that the shape is most likely determined by the rigidity of the

S-layer in combination with the absence of turgor pressure. . .. Kessel and Cohen (Kessel & Cohen,

1982) noted from their electron microscopic images that the edges are curved or rounded rather than

straight, as would be expected for a perfect square or rectangular box with a very narrow width (cf.

Fig. 2A). They envisioned the organism as a flattened cylinder, which, to my opinion, is the most

likely explanation for the square shape

(Bolhuis, 2005).

The idea then is that the source of flattening of the cell is indeed the S-layer, because it is intrinsically

flat and attaches to the cell membrane (Engelhardt, 2007b; Engelhardt & Peters, 1998). One way of

investigating this question is to see if there is a fixed or arbitrary angular relationship between the

2D crystal axes of the S-layer and the edges of the square cell. “However, it is generally thought that

in halobacteria, the cell wall determines the cell shape, and it is difficult to reconcile the hexagonal

lattice with the rectangular shapes of the cells” (Stoeckenius, 1981). A less definitive observation

in this regard is that flagella of square cells of Haloarcula quadrata (Chaban et al., 2006; Grant &

Larsen, 1989; Oren et al., 1999) and the “extracellular fibrils” of Haloquadratum sp. (Santos et al.,

2012) occur at arbitrary positions along the cell’s perimeter, not preferentially at an edge or corner

(Alam et al., 1984). (Haloquadratum walsbyi lacks flagella (Bolhuis, 2005)). Damage to “the cell

envelope” by the bile salt taurocholate (Bardavid & Oren, 2008b) might, at low doses, prove useful

to separating the roles of the S-layer and the cell membrane. Note that “no direct genetic indication

was found that can explain how this peculiar organism retains its square shape” (Bolhuis et al.,

2006). S-layer self-assembly gives various cylindrical, tubular, and ribbon shapes (Pum & Sleytr,

2014), but nothing resembling a flat polygon. While the tubulin-related CetZ1-GFP “localizations

are envelope associated” in Haloferax volcanii, this species is disc- or rod-shaped (Duggin et al.,

2015), not polygonal.

In regard to membrane/S-layer interaction, we arrive at the conclusion that it is not sufficient to

generate polygonal shapes:
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The biophysical consequences of synergistic functions between S-layers and the cell membrane in

Archaea, and the outer membrane or the peptidogylcan in bacteria are still largely unexplored. . ..

Experimental data on natural systems are rare. . .. The lipid molecules are immobilized indirectly

by non-specific association to the S-layer protein whereby the membranes become less fluid, less

flexible, more stable and heat-resistant, and presumably more resistant to hydrostatic pressure. . .. Nat-

ural association of S-layers with the cytoplasmic membrane occur in Archaea only. . .. that up to 5% of

the lipidsmay be immobilized by interactionswith the S-layer anchor, disregarding other proteins. The

important point is that the anchors, unlike common membrane proteins, do not freely float in the lipid

phase. . .. Taken together, it becomes evident that the inherent properties of S-layers are probably in-

sufficient to constitute a distinct shape-determining function by themselves, beyond that of a passive

shape-modifying effect. There is obviously a need for additional structural or functional

ingredients. . .. The conclusion from these considerations is that S-layers may be shape-maintaining

and shape-modifying but they are not shape-determining in a strong (process-related) sense.

(Engelhardt, 2007a).

There are alternatives to the S-layer that have been considered. It has been suggested that: “A cross-

linked matrix of poly-gamma-glutamate may contribute to the cell wall rigidity and maintenance of

the unique square morphology” (Lobasso et al., 2008), though there is no proof this matrix exists in

Haloquadratum walsbyi (Albers & Meyer, 2011; Bolhuis et al., 2006; Wu et al., 2012). Halomucin

has been invoked in the “water enriched capsule,” with speculation on its rigidity (Bolhuis et al.,

2006). Later work showed halomucin only “loosely attached to cells” (Zenke et al., 2015).

Note that “the sensitivity of the cells to mechanical shearing” and “flexibility of the larger cell

structures. . . rarely found in an unfolded state” (Bolhuis et al., 2004), also described as “extremely

fragile” (Dyall-Smith et al., 2011), suggests rigidity, because each folded section remains flat

(Fig. 8), with some sort of crease at the folding line, perhaps like stiff paper. Flat, disc-shaped Archaea

are also fragile (Stetter, 1982). In contrast to square Archaea, bacterial cell walls can be highly elastic

and capable of resisting turgor pressures up to 30 atmospheres (Hemmingsen & Hemmingsen, 1980).

Some bacteria are long ribbons that are star-shaped in cross section only (Fig. 5), resembling the presu-

med buckling patterns of some “corrugated” diatoms (Gordon & Tiffany, 2011). This led us to consider

whethermostof thepatternsof singleArchaeaandbacteria listedabovemightbedue tovariationsona single

mechanism, known as wrinkle/ridge (Jin et al., 2015) or buckling/folding (Schmalholz & Podladchikov,

1999) transitions (Fig. 9). Buckling has been invoked for shaping of one Archaea (Pum et al., 1991).

A cell is topologically a sphere. Here we would like to propose that polygonal Archaea may best be

modeled as deflated spheres of a material, probably the S-layer, whose equilibrium shape, were it not

constrained by a spherical geometry, would be planar. This property is evident in images of folded

cells, which are creased rather than undulated (Fig. 8). A deflated soccer ball provides a qualitative

model, from which we can see, at least for a material with the constitutive properties of a soccer ball,

that various polygonal shapes with reasonably straight edges and sharp corners do develop (Fig. 10).

This effect has recently been investigated (Quilliet et al., 2008) and polygons develop on the surfaces of

spheres as their volume decreases below critical values (Knoche & Kierfeld, 2011, 2014b,c) (Fig. 11).

Unfortunately, none of the simulations or experiments has yet been taken to the extreme found in

shaped droplets and flat Archaea, so while cross-sectional sketches of the collapsed shapes are avail-

able (Fig. 11), we do not know if the full three-dimensional shapes will reflect those of polygonal

Archaea or those of collapsing shaped droplets (Fig. 12).
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To check where on the volume reduction scale square Archaea fall, for instance, let’s consider one

cell for which we have both width (L) and thickness (T) measurements (Fig. 2C), approximating it as a

flat, square box with rounded edges. The cell volume is:

V ¼ T L�Tð Þ2 + 2pTL � TL2,

and the surface area is:

A ¼ 2 L�Tð Þ2 + 2pTL � 2L2

assuming a half cylindrical shape of the edges. Here, we are approximating the cell as a flat, rather than

lenticular shape, so that T¼ 2r, where r is the radius of a cross section of an edge (Fig. 2A). A sphere of

equivalent area has a radius R calculated from:

A ¼ 4pR2

Its volume is:

V0 ¼ 4=3ð ÞpR3 ¼ L3= 3
ffiffiffiffiffiffiffiffi
p=2

p� �

Thus, the abscissa in Fig. 11B is:

V=V0 ¼ 3
ffiffiffiffiffiffiffiffi
p=2

p� �
T=L

FIG. 8

“Darkfield microscopic image of a large folded sheet of ‘Haloquadratum walsbyi,’ revealing its sharp edges and

straight corners. Size is �40�40 mm. White spots are gas vesicles.”

From Bolhuis, H., 2005. Walsby’s square archaeon—it’s hip to be square, but even more hip to be culturable. In: Gunde-Cimerman, N.,

Oren, A., Plemenitaš, A. (Eds.), Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht,

The Netherlands, pp. 185–199, with permission of Springer.
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Wrinkle to ridge transition

Ridge to wrinkle transition

Co-existent wrinkle to ridge transition in 3D
Liquid substrate

a

b

c

Elastic substrate

a

b

A

B

l

l

l

FIG. 9

(A) Whether a surface makes rolling wrinkles or produces sharp folds with nearly straight edges depends on

prestress and nonlinear mechanical properties of the substrate under the sheet of buckling material, in the case

of prokaryotes, the cell membrane/S-layer, and the cytoplasm mechanical properties. The transition is

unstable, i.e., snapping occurs between the two states of a surface (Takei et al., 2014). (B) Folding (left) or

buckling (right) depends on the viscosity or elasticity of the substrate, or more generally, on its viscoelasticity.

(A) From Jin, L., Takei, A., Hutchinson, J.W., 2015. Mechanics of wrinkle/ridge transitions in thin film/substrate systems. J. Mech. Phys.

Solids 81, 22–40, with permission of Elsevier; (B) From Brau, F., Damman, P., Diamant, H., Witten, T.A., 2013. Wrinkle to fold

transition: influence of the substrate response. Soft Matter 9(34), 8177–8186, with permission of the Royal Society of Chemistry.
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For the square cell in Fig. 2C, we estimate V=V0 ¼ 0:10 (assuming the cross section was parallel to an

edge), which coincides with category 4c in Fig. 11B. Thus, its shape is consistent with the idea that it is

due to spherical buckling caused by volume shrinkage with its area retained.

The transition between a spherical shape and a polygonal shape of an Archaea as salt concentration

increases (Javor et al., 1982) may indeed involve exit of water from the cell and loss of cell volume,

i.e., crenation. The transitions between shapes may be due to the various energy levels of different

configurations, some of which are metastable (Knoche & Kierfeld, 2011, 2014a,b,c). The energy dif-

ferences between states and the heights of their metastabilities may be guides to why certain polygons

FIG. 10

Symmetry breaking in deflated balls. (A–C) Buckled soccer ball illustrating 2, 3, and 4 edges, with thanks to Diane

Sucharyna. (D) “. . .colloidal spheres filled with oil, in a mixture of water and ethanol. . . showing 4–8 wrinkles

(a–e). Each subfigure shows different transmission optical microscopy views of the same object. Scale bar 5 mm,

except subfigure (c): 2 mm. . .. The oil consists of low molecular polydimethylsiloxane (PDMS) oligomers. By

adding tetraethoxysilane (TEOS), a solid shell forms at the surface of the droplets, consisting mainly of PDMS with

average oligomer length 4, cross-linked with hydrolyzed TEOS units.” Computer simulations are reported

there and in (Quilliet, 2012; Vliegenthart & Gompper, 2011), some reaching to a 14-sided polygon: “. . .the thinner

the shell, the larger the number of wrinkles [polygonal edges] are to be expected” (Marmottant et al., 2011). At the

lower limit, triangles are observed in stomatocytes (abnormally shaped red blood cell) (Lim et al., 2002), and

buckling with 2-, 3-, or 4-sided polygons, the latter often irregular quadrilaterals, occur in some polymer particles

(Okubo et al., 2001). For collapsed basketballs showing polygons see: 2-sided (Jicepix, 2015); 3-sided (Logan,

2015); 4-sided (Mitic, 2015; ShopAdvisor, 2015); 5-sided (Garnett, 2015).

From Quilliet, C., Zoldesi, C., Riera, C., van Blaaderen, A., Imhof, A., 2008. Anisotropic colloids through non-trivial buckling

[Erratum: 32(4), 419–420]. Eur. Phys. J. E 27(1), 13–20, with permission of Springer.
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are more frequent in occurrence than others, as we have observed for shaped droplets (Haas

et al., 2017).

Our crenated sphere buckling model for polygonal Archaea has a few peculiar characteristics:

1. The polygons formed can have any number of sides, independent of the 2D crystallinity of the

S-layer.

2nd buckling1st buckling

Volume reduction

B

A

Strip under hoop compression

The whole strip will wrinkle when a critical stress tc is exceeded

0.2 0.4

0.4

0.6 0.8 1.0
V/V0

0.02

0.92 0.94

0.010.3

0.2

0.1

F / (EH0 R0
2)

Vcb Vc

3
2

3c

2c

4c

1

3

2

3′

t ϕ

t c

etc.

s 0

FIG. 11

(A) Buckling of a sphere whose surface area is retained but whose volume is decreased occurs in two stages. The

second stage leads to wrinkling under hoop compression that results in a regular polygon around the rim.

The authors estimated polygons of 6, 7, or 8 sides for various values of the parameters. (B) “Bifurcation

diagram for given volume of a capsule [collapsed or crenated sphere with a thin, solid shell] with E~B
[dimensionless bending modulus]¼0.001.” Only midline cross sections are shown. The abscissa is the volume

relative to a sphere, and the ordinate is a dimensionless ratio of the stored elastic energy F to the Young modulus

E. Note that configurations 3c and 4c resemble the cross sections of shaped droplets and polygonal Archaea.

(A) Graphical abstract from Knoche, S., Kierfeld, J., 2014. The secondary buckling transition: wrinkling of buckled spherical shells. Eur.

Phys. J. E 37(7), #62, with permission of Springer; (B) From Knoche, S., Kierfeld, J., 2011. Buckling of spherical capsules. Phys. Rev.

E 84(4), #046608, with permission of the American Physical Society.
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2. Nevertheless, when a polygon edge is parallel to a crystallographic direction, as in triangles or

hexagons, the crystallinity of the S-layer may contribute to the stability of the polygon.

3. The S-layer is always somewhere in a state of stress, since at least in parts it is bent out of its

equilibrium planar configuration.

4. Edges are in effect creases in the structure of the S-layer and may include changes in the basic 2D

lattice that accommodate the high local stress via dislocations and other rearrangements of the

S-layer proteins.

5. As the cell membrane is attached to the S-layer, it may develop regions of liquid crystal or plastic

behavior, especially along the creases.

6. At corners of the polygons, we can anticipate even greater dislocations; in both S-layer and

membrane lipids.

7. Thus, the total energy of the system includes the sum of the crease energy, the corner energy, and

the deviations from planarity (curvature).

Thus, our 1Dmodel for shaping in the Appendix, based on analogywith the linear arrays ofmagnets with

periodic boundary conditions,may be of relevance in the crenated sphere bucklingmodel, approximating

molecular phenomena around the rim of the polygon. This is particularly so, since the sharp creasing of

folded square Archaea (Fig. 8) suggests a nonlinear response of the S-layer (and perhaps the cell mem-

brane) versus degree of bending. This nonlinearity may have to be added to the crenated sphere buckling

model. In particular, we can anticipate its importance at edges and corners. It is probably a reversible

nonlinearity, as suggested by squares changing to triangles in a time-lapse study ofHaloarcula japonicas
(Hamamoto et al., 1988). While the cells they observed roughly divided into two daughter cells of equal

area, the angle of the plane of division (“cell plate”) seems to have no fixed relationship to the sharp cor-

ners (“apices”) at the perimeter, unlike thepolar growthof rod-shapedprokaryotes (Kysela et al., 2013). In

each case where there is a change in the number of corners, the cell shows a reduction from 4 to 3 corners.

Slow cooling

Moderate cooling

FIG. 12

Two modes of shape change of a sphere to a shaped droplet at constant volume: polyhedron as an intermediate

phase, and folding as an intermediate phase. Cf. (Denkov et al., 2015; Dubois et al., 2001; Guttman et al.,

2016a).
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In our model of shaped droplets, the plastic phase is visualized as occurring at the edges (Fig. 2A).

The configurations at corners and over the broad, nearly planar top and bottom surfaces, are not con-

sidered. There is, however, no reduction in volume. Rather, shape change occurs with an increase in

surface area. While this contrasts with the soccer ball model, where surface area is constant, both may

be accommodated by adding a third axis to the phase diagram of Fig. 11, namely A/A0. Shaped droplets

would all be on the plane V¼V0.

The basic mechanism of flat polygon formation seems to be hoop compression around the rim of the

indentation of a sphere. The formation of a cup shape has been called “first buckling” and the formation of

polygonal structure has beencalled “secondbuckling”due tohoopcompression (Fig. 11). Secondbuckling

occurs over a limited range of mechanical parameters. Hoop compression is found in a number of contexts

in biology, including the microfilament ring in eukaryotic cell division, the FtsZ ring in prokaryote cell

division, and in the rimof theblastula during animal embryogenesis. Itmaywell beworth looking carefully

for polygon formation in these cases. Polygonal arrangements occur in microfilament rings in epithelial

cells and at the perimeter of the silicalemma in polygonal diatoms, though inboth cases itwould seem there

is a preexisting polygonal constraint. We can now recognize the formation of problastopores (Gordon &

Gordon, 2016a;Gordon, 1999;Gordon et al., 1994) as a case of hoop compression,which ordinarily results

in a normal embryo, but may be what sometimes generates a two-, three-, or four-headed embryo (Laale,

1984) (contrary to a priori considerations (Murray, 2012)). Armadillos form 4 to 12monozygous embryos,

which might come from a similar mechanism, followed by separation of the individuals (reviewed in

(Gordon, 1999)). Sowhatwemayhavehere inhoop compression iswhat has been called a “generic”mech-

anism in development (Newman & Comper, 1990). While this is important and perhaps eye opening to

know, it also presents a cautionary tale: things that look alike may not be related by evolutionary descent.

This similarity results from so called “convergent evolution” (Powell & Mariscal, 2015).

6 POSSIBLE FUNCTIONS OF A POLYGONAL SHAPE OF CELLS
Small differences in shape have been associated with profound advantages in motility, drag reduction,

surface-proportional nutrient uptake, and predator avoidance (here resistance to being merged/diluted

with other droplets)—key drivers for evolutionary selection (Young, 2006, 2007, 2010). These differ-

ences could play a significant role in selecting and enhancing metabolic difference selection in proto-

life entities capable only of some of the functions of life, e.g., metabolism, replication, and heredity.

Curiously, in addition to defying spherical form upon cooling, shaped oil droplets have recently been

shown to exhibit spontaneous decrease in size, capturing the necessary energy to do so from thermal

fluctuations (Tcholakova et al., 2017). The increase in interfacial energy shows that very simple chem-

ical systems may be able to harvest energy from the environment in a fashion similar to life. Breakup of

droplets has been seen previously due to various one-time chemical or thermal stimuli via different

mechanisms. Yet self-shaping droplets can harness small thermal fluctuations for repeated droplet

deformation and corresponding breakup, a likely common and repeated stimulus to have occurred

on early Earth and elsewhere.

Additional potentialities for straight edges in shaped primordial oil droplets and polygonal Archaea

may be that they can hypothetically accommodate long, straight polymers along their straight edges

that may be predecessors of the later development of a cytoskeleton. This may simply be a wall effect

(Aliabadi et al., 2015; Robledo &Rowlinson, 1986; van Roij et al., 2000). For example, gas vesicles are

often found preferentially along the edges in square Archaea (Figs. 1: 4-sided polygons, 4A, 13).
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FIG. 13

“The square archeon from the Sinai. Phase contrast light micrographs of the original square haloarcheon

discovered in a brine sample from a sabkha near Nabq, Sinai. Division lines (arrows) are visible in some of

the cells but not in the largest, top left. Gas vesicles show as bright refractile granules in all cells except those in the

last line, which have been exposed to pressure (the same cells as in the line above). Scale bar represents 10 mm.”

Note the frequent alignment of gas vesicles with the straight edges of the cell and the “division line.” This

figure is rearranged from figures in (Walsby, 1980) and copied in (Walsby, 2005) and here. See also Fig. 1C in

(Parkes & Walsby, 1981).

From Walsby, A.E., 2005. Archaea with square cells. Trends Microbiol. 13(5), 193–195, with permission of Elsevier and Walsby, A.E.,

1980. A square bacterium. Nature 283, 69–71, with permission of Nature Publishing Group.



Note that the cell shape does not change when the gas vesicles are collapsed by centrifugation

(Stoeckenius, 1981).

At this juncture, the best we can do is speculate on what polymeric molecules might have been

aligned in shaped protocells and review experiments on extant polymeric molecules confined in cells

or small droplets or vesicles. A model for protocells has been advanced in which the inner surface of a

vesicle is the site for polymer adsorption (Fig. 14). Shaped droplets would give the interface a specific

structure onto which they could adsorb.

Oil vesicles enriched with polymer molecules aligned along the surface can be compared with a

somewhat analogous system in extant cells: liposomes with cytoskeleton bundles (Fig. 15):

We reconstitute a minimal model system of liposomes containing actin-fascin bundles to elucidate

how a lipid membrane and a simplified actin cytoskeleton influence each other’s organization

through mechanical interactions. When the liposomes are sufficiently deformable, the bundles can

deform the membrane into finger-like protrusions, reminiscent of cellular filopodia. The protrusions

can reach lengths of up to 60 mm. In contrast, liposomes having a membrane with a large bending

rigidity predominantly remain spherical and force the bundles to form cortical rings. . .. Half of the

protruded stiff liposomes have bundles with sharp kinks arranged in a planar ring-like structure in the

main body. . .

(Tsai & Koenderink, 2015).

FIG. 14

The SPRM vesicle model for a protocell with adsorbed polymers. “An S-polymer arises by chance that stabilizes

protocell membranes allowing them to survive to return their contents to the anhydrous phase. Protocells then

evolve the P-polymer, which gives them access to nutrients through transmembrane pores. Access to nutrients

supports the emergence of metabolism catalyzed by M-polymers. Metabolism will generate products that support

replication (R-polymers)” (Damer & Deamer, 2015). Note that the hypothesized first component, the S-polymer,

is in the place of future cortical cytoplasm, suggesting that a cytoskeletal component was the first step after

the cell membrane in the origin of life. This model is guiding the search for the simplest molecules that can have

the four functions. Note that the hypothesized S-protein is inside the membrane, whereas the Archaea S-layer is

outside, so they may not be related.

Reproduced with kind permission of Bruce F. Damer and David W. Deamer.
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Thus, confined linear polymers produce planar polygons, and we can imagine a positive feedback

between shaped droplet protocells and their kinked polymeric contents. Computer simulations

(Koudehi et al., 2016) could be extended to include such interactions. Once cytoskeletal molecules

became associated with motor molecules, their behavior in a liquid-crystalline environment may have

become important, by analogy to that of motile bacteria confined in small volumes of liquid crystals

(Mushenheim et al., 2015). Propagating kinks (Fig. 16), if they also occur in confined microfilaments,

would provide a further mechanism for polygonal interactions between cell shape and cytoskeletal

shape.

7 POLYGONAL DIATOMS
We have demonstrated the uncanny rotational symmetry of some centric diatom valves that have n
radially arranged sectors by rotating their scanning electron microscopy (SEM) images by 2p/n radians
and subtracting the rotated image from the original (Sterrenburg et al., 2007). The valves are made of

amorphous silica and thus, unlike snowflakes, they in themselves have no crystalline structure, despite

their symmetry. Some diatoms, all in the Class Mediophyceae (Medlin & Kaczmarska, 2004), have

polygonal shapes similar to shaped droplets (Fig. 1).

The precipitation of a new silica shell (the face of which is called a “valve”) occurs inside flat mem-

brane bags called silicalemmas (Crawford, 1981; Gordon & Drum, 1994). While the microtubule or-

ganizing center (MTOC) attached outside the valve silicalemma has been considered as a patterning

device for the deposition of silica inside the silicalemma (Parkinson et al., 1999), we had no explanation

for the high degree of symmetry of some diatoms. The exploratory behavior of microtubules (Gerhart &

Kirschner, 1997, 2007; Kirschner & Gerhart, 1998; Schulze & Kirschner, 1988) seemed to be a

FIG. 15

Microfilaments confined in liposomes. The microfilaments often exhibit kinks, and the liposome bilayer

membrane distorts with protrusions, so they are interacting. Sometimes nearly polygonal configurations result.

“To address the competition between the deformability of the membrane and the enclosed actin bundles,

we tune the [microfilament] bundle stiffness (through the fascin-to-actin molar ratio) and the membrane rigidity

(through protein decoration). Scale bars 5 mm.”

From Tsai, F.-C., Koenderink, G.H., 2015. Shape control of lipid bilayer membranes by confined actin bundles. Soft Matter 11(45),

8834–8847, with permission of the Royal Society of Chemistry.
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possibility, but no mechanism was apparent that would lead to position them in a precise, equal angle

arrangement. By analogy with the shaped droplets, we can now come up with a working model:

1. The microtubules in the MTOC attached to the silicalemma and the precipitating silica inside the

silicalemma provide the rigid components of a tensegrity apparatus similar to the cell state splitter

(Appendix, Fig. 24B) in developing embryos (Gordon & Gordon, 2016a,b; Gordon, 1999;

Gordon & Brodland, 1987).

FIG. 16

“The propagation of angles of a polygon as waves. Particles attaching to the fibril do not change their positions.

(a–l) Intervals of successive pictures: 1/2 s. Arrows show a corner which propagates as a wave. (Observed

with an inverted brightfield microscope.)” Here there are 4 waves. Each is a corner that propagates through the

fibril in a clockwise fashion. In other words, it is the sharp bend that propagates along the closed loop fibril, i.e., the

fibril itself is not rotating.

FromKuroda, K., 1964. Behavior of naked cytoplasmic drops isolated from plant cells. In: Allen, R.D., Kamiya, N. (Eds.), Primitive Motile

Systems in Cell Biology. Academic Press, New York, pp. 31–41, with permission from Elsevier.
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2. The microfilament ring around the outside of the perimeter of the silicalemma (Gordon et al., 2009;

Pickett-Heaps & Kowalski, 1981; Pickett-Heaps et al., 1979a,b) and perhaps the silicalemma

membrane and/or a radial network of microfilaments (Medlin, 2016) provide compressive elements

of this tensegrity apparatus.

3. Under some conditions, the microfilament ring becomes polygonal, as in Figs. 15 and 16.

This then becomes another case of hoop compression (Fig. 11).

This model could be explored by computer simulation as a dynamic tensegrity structure

(Caluwaerts et al., 2014; Shen & Wolynes, 2005), via simulations of buckling of the nascent diatom

valve (Diaz Moreno et al., 2015; Gutiérrez et al., 2017), and via molecular dynamics (Annenkov &

Gordon, 2017). Direct observation of the stages of formation of the valve inside live diatoms is also

feasible, using fluorescently labeled microtubules and microfilaments. The nascent valve is formed in

under 15 min, as demonstrated by fluorescent silica labeling (Hazelaar et al., 2005). This time is con-

sistent with the dynamic instability of microtubules (Yenjerla et al., 2010). One must look through an

older valve to see the newly-forming valve inside the silicalemma, which is inside the cell. The older

valve could be cloaked (made “invisible” Koprowski, 2013) by using a nontoxic medium matching its

refractive index (n¼1.43 (Fuhrmann et al., 2004)), for example, with methyl cellulose (n¼1.4970

(Scientific Polymer, 2013)) diluted to an appropriate concentration.

8 CONCLUSION
Our hypothesis is then that tensegrity is a universal mechanism for generating a variety of polygonal

cell shapes. The discovery of such structures in self-shaping oil droplets and the potential advantages

they can confer to protocell mobility, metabolism, and selection (Sharov, 2017) lends further support

for droplets as primordial protocells in the lipid world scenario of the origin of life. Later in evolution,

similar tensegrity generation mechanisms seem to have been utilized by Archaea, which individually

can undergo a series of shape variations that closely follow the series of shapes in cooled oil droplets.

Their structures agree on many points:

1. Sharp corners.

2. Straight edges.

3. No linear molecular structures supporting those edges.

4. Lenticular form, i.e., thinner in the middle.

5. Formation of holes.

6. Comparable size ranges.

7. Ability to change the number of edges.

8. Ability to reversibly adopt a spherical shape with the change of one environmental parameter.

A difference between them is that shaped oil droplets transform under constant volume, whereas

polygonal Archaea tend to transform shape under constant area. Conditions that affect shape transfor-

mation in droplets and Archaea are temperature and salinity, respectively. The salinity parameter has

yet to be explored for shaped droplets. We are at the beginning of understanding the behavior and

dynamics of shaped droplets over time and whether these primitive droplet systems might display hys-

toresis or have mechanisms that confer robustness. At this point, we can say that such primitive-shaped

droplets could have existed, but may be too primitive to preserve structure under environmental change
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or perturbation. Oil protocells apparently had neither genes nor proteins, but some molecules could

have supported compositional and structural heredity by adsorption at edges and/or via the wall effect.

It is meaningless to talk about possibility of a direct descent of prokaryotes from the oil-based pri-

mordial self-reproducing systems, because of the enormous difference in their functional complexity.

The evolutionary path towards the complexity of prokaryotes included numerous intermediate stages

and possibly took several billion years (Sharov & Gordon, 2017). It is unlikely that all these interme-

diate steps required flat polygonal cells. However, we suggest that polygonal shapes recurrently

appeared in evolution, and the physical implementation of these shapes was based on the same generic

tensegrity principle with variations in the details.

The role of polygonal shapes in the origin of life is still obscure. Although there is a possibility

that primordial polymers could have been constructed more effectively along the edges, we don’t

know which polymers formed the first adhesions to the edges of shaped protocells, possibly stabi-

lizing their forms and providing a basis for the cytoskeleton and/or nucleic acids. Further, it is not

clear how oil droplets had evolved into membrane-bound vesicles. We suggest double water-oil-

water droplets as an intermediate step. Is it possible that the emergence of protein synthesis was

facilitated by the presence of cell edges? There is a huge literature on the paths towards the origin

of life. What we are then suggesting is that the existence of polygonal shapes in oil droplets rescales

the possibilities of those scenarios that may permit us to hone in on a working hypothesis for the steps

in the origin of life.

As for more recent ancestral organisms, it may be possible to evaluate the possibility whether, for

example, LUCA (the Last Universal Common Ancestor) was a flat polygonal cell. Testing for such a

possibility may require the analysis of genes that correlate with such shapes. This is a testable pre-

diction, given that 355 protein families in LUCA have been deduced (Weiss et al., 2016) and we

now have the complete genome sequences of some polygonal Archaea (Liu et al., 2011; Malfatti

et al., 2009; Wikipedia, 2016c). The only halophilic Archaea used in ascertaining LUCA was

Haloferax volcanii (Weiss et al., 2016), which occasionally has an indistinct triangular shape

(Emerson et al., 1994), generally looking like a “potato chip” (Oren, 1999). A greater sampling of

the genomes of truly polygonal Archaea might show a closer similarity with LUCA than currently

reported (Weiss et al., 2016).

Our finding of polygon-shaped oil droplets opens new logical paths for the analysis of the origin of

life. We surmise that some of these paths will eventually bring us closer to the understanding of the

fundamental question: how did life come into being in the Universe? As oil droplets can be shaped in

any aqueous environment subject to occasional or periodic slow cooling, we can anticipate shaped

droplet protocells on many Earth-like exoplanets, including those that formed before the Earth. We

extrapolated that the time interval from protocell to LUCA took so long that this process started before

the Earth was formed (Sharov & Gordon, 2017). Thus the role of shaped droplets in the origin of life

and its evolution may have begun prior to Earth’s appearance.
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APPENDIX OVERVIEW OF TENSEGRITY STRUCTURES
Tensegrity structures were originally conceived as manmade systems of isolated components of two

kinds: stiff parts (bars) that could bear compression with little distortion, and taut or prestressed parts

(cables) attached to them that either hold the stiff elements frommoving or additionally compress them

to some extent (usually not to the point of buckling). Such simplest tensegrity structure is shown in

Fig. 17. Tensegrity structures may be compounded into and actually originated in fine art

(Snelson & Heartney, 2013) (Fig. 18). We can also find them in nature (Fig. 19).

In the mathematical theory of tensegrity, a third kind of element (or “member”) is sometimes

allowed that acts in the opposite manner to the cable. This element, called a strut, is straight when com-

pressed and floppy when stretched. In simple mathematical terms, then, the three kinds of elements

have the following behaviors:

Bar: t¼ k l� l0ð Þ
Cable: t¼ k l� l0ð Þ for l� l0, t¼ 0 otherwise

Strut: t¼�k l� l0ð Þ for l� l0, t¼ 0 otherwise

where t is the internal energy of an element and l its length. The “initial” length of an element is l0. Note
that when l¼ l0, t¼ 0, meaning that the element then has zero prestress. The spring constant k and the
zero prestress lengths l0 could be different for each kind of element, or even for each individual ele-

ment. In one mathematical idealization, k approaches infinity (Fig. 20). Of course, these simple Hoo-

kean springs could be generalized to more complicated constitutive relationships (Rimoli, 2016).

FIG. 17

This is the simplest nontouching rod tensegrity structure consisting of three stiff rods (bars) connected by 9

flexible strings (cables) that are stretched so that they are taut. It has been used as a stool (Passi, 2013).

From Dale, B.F., 2008. An SVG of a physically possible tensegrity structure in 3D, with a shadow. https://en.wikipedia.org/wiki/File:3-

tensegrity.svg, with permission under a Creative Commons Attribution-Share Alike 3.0 Unported license.
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Snapping between configurations is possible (Gordon, 1999), as between the boat and chair shapes

of cyclohexane (Wikipedia, 2016a) (Fig. 21). Sometimes small deviations in the length of elements can

result in a large change in the shape of the whole configuration (Connelly & Gortler, 2015) (Fig. 22).

Tensegrity systems have been classified as follows:

A tensegrity [system] that has no contacts between its rigid bodies [bars] is a class 1 tensegrity system,

and a tensegrity system with as many as k rigid bodies in contact is a class k tensegrity system

(Skelton & de Oliveira, 2009).

In our illustrations, the following are Class 1 tensegrity systems: Figs. 1, 18B and C, 19, 23. Class 2:

Fig. 18A. Class 5: Fig. 21. Class 30: Fig. 22. Some systems with k>1 are called “mechanisms”

(Connelly & Gortler, 2015).

FIG. 18

Examples of tensegrity structures as art. (A) Early X-Piece, 1948, wood and nylon, 29�4.5�4.5 cm. Note that

the three rigid parts are not simple rods, which became the archetype later. Also, two of the rigid parts are

allowed to touch. The bottom platform could, alternatively, be regarded as a surface to which the elements are

“pinned” (Connelly & Guest, 2015), rather than an element on its own. (B) Northwood I, 1969, painted steel and

stainless steel, 3.65�3.65�3.65 m. Collection: Northwood Institute, Dallas, TX. (C) Rainbow Arch, 2001,

aluminum and stainless steel, 213.4�386.1�81.3 cm. Cf. (Snelson, 1990; Snelson & Heartney, 2013).

(C) Reproduced with permission from the late artist Kenneth Snelson.
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When we deal with cells or organisms, we are closer to continuum mechanics than these tensegrity

models suggest. Contrary to the open spaces in between human and spider-made tensegrity structure

elements, in cells we are confronted with what has been called “the crowded cytoplasm” (Gnutt &

Ebbinghaus, 2016). Similarly, the nucleus is crowded (Nakano et al., 2014), with 2 m of double-

stranded DNA (Greulich, 2005) compacted into a human cell nucleus of 8 mm diameter (Greeley

et al., 1978). Crowding itself has effects on the mechanical properties of cytoskeletal tensegrity struc-

tures (Zhou et al., 2009).

FIG. 19

A three-dimensional spider webmade by a tangle-web spider (Wikipedia, 2016d) in Panacea, Florida. The elastic

strands of web in this 3D tensegrity structure are decorated with fog dew drops. The webbing is the elastic

component (cables) and the plant is the stiff component (bars).
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FIG. 20

Constitutive relationships for cables, struts, and bars. The slope of the tilted lines is the Hookean spring constant k.

In the mathematical idealization shown by the dashed lines k ¼1.

From Connelly, R., Guest, S.D., 2015. Frameworks, Tensegrities and Symmetry: Understanding Stable Structures. http://www.math.

cornell.edu/�web7510/framework.pdf, with kind permission of Robert Connelly and Simon Guest.

FIG. 21

This tensegrity structure suddenly snaps to a new configuration as a torque is applied on top. State-I is a

“nonstandard” tensegrity structure, in that the top and bottom rigid components are not linear, as also in

Fig. 20 Left. State-II is nonstandard in that the rigid linear elements are allowed to touch, and the elastic elements

also touch the rigid linear elements along their lengths and are no longer single straight lines themselves. They

may be regarded as kinked. Thus, these authors have generalized the tensegrity concept, allowing these

“exceptions.” “(A) Self-equilibrated and stable state with no interference of elements. (B) Loaded state under

applied torque with only side strings intersecting each other. (C) Self-equilibrated and stable state with all bars and

side strings intersecting with one another.”

From Zhang, L.Y., Zhang, C., Feng, X.Q., Gao, H.J., 2016. Snapping instability in prismatic tensegrities under torsion. Appl. Math. Mech.

(English Ed.) 37(3), 275–288, with permission of Shanghai University and Springer-Verlag Berlin Heidelberg.
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A B

FIG. 22

A mathematically rigid structure can sometimes become nonrigid with a small change in parameters. This

structure consists only of bars of fixed length. (A) “The large black vertices are pinned to the plane, and the

whole framework is universally rigid. . ..” (B) “. . .the same framework. . . but with the lengths of the bars

increased by <0.5%.” This may be thought of as analogous to buckling: “In practical terms, buckling can be

defined as a sudden and dramatic increase in deformations for a relatively small increase in the loads” (Gutiérrez

et al., 2017).

From Connelly, R., Gortler, S.J., 2015. Iterative universal rigidity. Discret. Comput. Geom. 53(4), 847–877, with permission of Springer.

FIG. 23

A NASA tensegrity robot named SUPERball. “Each rigid rod is a self-contained robotic system consisting of two

smaller intelligent nodes” (Bruce et al., 2014), which can change the lengths of one or more attached cables,

which are under tension, causing the structure to roll or climb hills.

From Vytas SunSpiral with his kind permission.
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We can look at theWurfel, for instance, a toddler’s toy that we have used as a toy model for changes

in gene expression in a cell nucleus (Gordon & Gordon, 2016a; Gordon, 1999), as a space filling ten-

segrity structure. A Wurfel consists of a set of wooden cubes connected via an elastic band through

them that forms a closed loop. The elastic band enters and exits each cube at right angles, pulling them

together face to face (Fig. 24). Each pair of connected blocks can be regarded as a strut. There is a

discrete set of equivalent energy ground states of a Wurfel (Tromp & Gordon, 2006). However, if

we replace the cubes by spheres, we still have a structure of stiff elements held together under tension

(“if one imagines hard spherical billiard balls, the centers of any two touching balls form a natural strut”

(Connelly & Guest, 2015)), but with a continuum set of ground states (Fig. 25). Cube and sphere-based

Wurfels with many ground states have analogies in folded proteins. While most proteins have single,

nondegenerate ground states (Khatib et al., 2011), some have many or even a continuum of ground

states. The latter are called disordered proteins (Uversky, 2013).

FIG. 24

(A) The Wurfel was Invented by Peter Bell of Pappa Geppetto’s Toys Victoria Ltd., Victoria, Canada (Flemons,

2016). Arrows show the path of the taut elastic band inside the blocks. The number of rectilinear configurations of

a 2n-Wurfel (n¼6 here) increases rapidly (Tromp & Gordon, 2006). Configurations not fitting on a cubic grid are

also possible. (B) The sameWurfel in three 3D rectilinear configurations, being used as a toy model for changes in

gene expression in a cell nucleus during cell differentiation. Note that the cell state splitter is also a tensegrity

structure with the microtubules (MT) being the stiff elements, while the microfilament ring (MF) is in tension. The

intermediate filament ring (IF) acts as elastic component. In an epithelium, the top (apical) end of each cell, and

thus its cell state splitter, would be polygonal.

(B) From Gordon, N.K., Gordon, R., 2016. Embryogenesis Explained. World Scientific Publishing, Singapore, with permission of World

Scientific Publishing.
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If we allow a set of hard spheres to have attractive forces (nonzero prestress) between all near neigh-

bors, we effectively have a hard sphere model for condensed matter (Camp, 2003) or dispersions when

the spheres do not always touch (Gonzalez et al., 2014). This too could be considered a tensegrity struc-

ture, albeit a changing one as it flows or its atoms or molecules undergo Brownian motion relative to one

another.Thus, any dropof liquid,with itsmolecules regarded as the stiff elements, is a tensegrity structure.

Indeed, tensegrity models for the rigidity of packings of balls have been studied (Connelly, 2008;

Connelly et al., 2014),which represent a step towardsmolecular tensegritymodeling of liquids and solids.

In most liquids, we have to deal only with interactions between near neighbors, to get an accurate

picture of the statistics of their structure, such as the radial distribution function (Cockayne, 2008;

Gotoh, 2012). Nevertheless, there can be a long-range order imposed by the network of elements under

tension, as in packings and crystallization. Alternatively, the structure of long elements, i.e., elements

that are far from spherical, can also lead to long-range effects and long-range order. A remarkable ex-

ample is the case of microtubules, which are so long and thin that one would expect them to buckle like

wet spaghetti (Gordon & Gordon, 2016a). However, when supported along their length by attached

intermediate filaments, it takes the order of 104 times more compressive force to buckle them

(Brodland & Gordon, 1990).

While this calculation has been used to justifymicrotubules as the stiff elements in a tensegritymodel

for cytoplasm (Ingber et al., 1994), there is some circular reasoning in doing so, sincewhat anchors those

particular intermediate filaments at their other ends (cf. pinning inFig. 18) has not beenworkedout.Also,

the multiple attachments (nodes) along the microtubule make for a structure that differs from standard

tensegrity modeling, in which the elements are allowed to rotate freely to any angle about the “joints” or

nodes. This is because each long, polymeric structure in the cytoplasm has a stiffness, characterized by

a persistence length (Fig. 5.30 in (Gordon&Gordon, 2016a)), so that the amount of bending at each node

would be constrained, and any bending would add to the energy (prestress) of the whole structure.

A further step in generalizing tensegrity structures was taken with the invention of tensegrity robots,

in which element lengths are manipulated to make a tensegrity structure change shape (Piazza, 2015)

FIG. 25

“Baby Beads” are topologically connected just like a Wurfel, but the spheres roll over one another easily. This is

then a tensegrity structure with a continuum of equivalent energy (“degenerate”) ground states.
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and, for example, move over a rough planetary landscape by shifting the center of gravity of the robot

or pushing against terrain (Bruce et al., 2014; SunSpiral, 2015) (Fig. 23). If one combines such force

generation by the elements with the change of neighbors in dispersions, we approach a tensegrity

model for cytoskeleton dynamically changing via motor molecules, polymerization, and depolymer-

ization, and changing connections (nodes) via bifunctional attachment proteins (Perera et al., 2016).

Getting beyond the stick and string tensegrity model for cytoskeleton has just begun (Ingber et al.,

2014), for example, by looking at the bistable configurations of the cell state splitter (Gordon &

Gordon, 2016a).

However, a tensegrity structure that can make and break connections and grow and dissolve

elements is prone to instability and collapse. Indeed, such collapses may be important steps

in cell differentiation (Gordon & Gordon, 2016a). A computer simulation framework for investi-

gating such cytoskeletal instability phenomena is under construction based on PushMePullMe

(Senatore, 2017).

In zero gravity, the taut strings of a simple tensegrity structure (Fig. 17), for example, would hold

the structure together, but need not be under any prestress. If prestressed, the configuration would look

much the same, except that the stiff rods would be slightly compressed and the strings slightly stretched

or slightly buckled. In the biological literature, the prestress is assumed to be nonzero and essential to

the maintenance of the structure (Ingber et al., 2014; Shen & Wolynes, 2005). In the mathematical

literature on tensegrity structures, the concept of prestress includes allowing its value to be zero

(Connelly & Guest, 2015). Thus, there is a conceptual contradiction here. Of course, mathematically,

any small deviation from the equilibrium structure may generate a small prestress, usually driving the

structure back towards its equilibrium shape, unless that equilibrium state is metastable, degenerate

(Fig. 25), or sensitive to small perturbations (Fig. 22). Nevertheless, the presumption that nonzero pre-

stress is essential to structure maintenance in biology is mathematically incorrect. While nonzero pre-

stress may be present in most biological tensegrity structures, that does not imply the structure would

collapse at zero prestress. Thus, the assumption “that the forces required for such a strained assembly in

the cell are generated by nonequilibrium polymerizations and movements of motor proteins. . .” may be

wrong, when cytoskeletal structure does not require such forces for its stability. For example, while

microtubules may undergo frequent elongation and shortening, a process called dynamic instability

(Gordon & Gordon, 2016a), they can also be stabilized against such behavior (van der Vaart et al.,

2009) and thus act more like simple tensegrity bars. Prestress may be important in building cytoskeletal

structures, but sometimes it may not be necessary for maintenance of those structures. These distinc-

tions are important here, because in modeling a tensegrity origin of life, we cannot assume that con-

tinuous nonequilibrium, energy requiring processes of nascent cytoskeletal molecules, generating and

maintaining prestress, played any role in the abiotic precursors to life.

Most tensegrity modeling ignores the buckling of elements under stress. Buckling can be quite im-

portant in cytoskeleton, varying from smooth Eulerian buckling (Brodland & Gordon, 1990) to kink-

ing. Kinking in effect splits an element into two elements with a new node at the kink. However, kinks

come in two kinds: stationary and propagating. If a cytoskeletal microtubule or microfilament is bent

into a ring (Gordon & Brodland, 1987), so long as the radius of curvature is comparable to its persis-

tence length, we can anticipate that the ring will be circular. Epithelia commonly have microfilament

rings, but the cells are generally close-packed in a plane and polygonal in shape. Whether or not in-

dividual microfilaments in the bundle forming the polygonal ring end at the corners or are kinked there

has apparently not yet been investigated. As the cell state splitter also has an intermediate filament ring
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(Gordon & Gordon, 2016a; Martin & Gordon, 1997), the same question arises for its components. An

epithelial cell is an example of confinement of a cytoskeletal structure (Gürsoy et al., 2014; Koudehi

et al., 2016; Pinot et al., 2009; Soares e Silva et al., 2011; Vetter et al., 2014). Bundles of microfilaments

confined to liposomes exhibit kinks and polygonal shapes (Tsai & Koenderink, 2015). Computer sim-

ulations have not yet revealed polygonal shapes, perhaps because spherical boundary conditions were

imposed (Koudehi et al., 2016).

Details have been worked out for kinking of carbon nanotubes (Iijima et al., 1996; Wang et al.,

2016a; Zeng et al., 2004). Analogies have been made between kinking of nanotubes and cytoskeleton

(Cohen & Mahadevan, 2003).

Propagating kinks in cytoskeletal rings were discovered by Robert Jarosch (1956, 1957) in cyto-

plasm squeezed from Chara foetida and Kiyoko Kuroda in cytoplasm dripped out of cut Nitella cells

(Kuroda, 1964) (Fig. 16). Kuroda observed:

. . .triangles, quadrangles, pentagons, hexagons and other polygons. . .. [Each] consists of a pair of

straight lines running in parallel close to each other, their both ends being joined together by tiny

circular arcs with a radius of approximately 1 m. Of various polygons observed, pentagons and hexa-
gons are found most frequently. The distribution of angles, measured in about 300 specimens, shows

the sharp peak between 110� and 120�. . .. Corners of the polygon propagate as waves along the fibril
all in the same direction with the same speed. Since the angle of each corner is also kept constant, the

polygon maintains its definite shape while corners propagate successively in one direction. On pull-

ing with two microneedles, the polygon is split into finer fibrils

(Kuroda, 1968).

These dynamic rings were later shown to consist of microfilaments (Higashi-Fujime, 1980), which

are presumably the “finer fibrils.” Whether the kink propagates with sliding or kinking of the

individual microfilaments has not been investigated. Kink bends can propagate along microtubules

(Tuszynski et al., 2005, 2009). It is worth noting that for shaped droplets: “A very large majority of

the interior angles of the polygons are seen in experiments to have measures close to 60� or

120�. . .” (Haas et al., 2016). Electron microscopy of triangular Archaea shows unexpected 90� corners,
made up by a slight rounding of the edges (Nishiyama et al., 1992, 1995; Takao, 2006) (Fig. 1D). All of

these cases suggest specific molecular configurations at corners that warrant investigation and

modeling.

This does not exhaust the phenomena we should anticipate in the tensegrity behavior of cytoskel-

eton and its precursors in protocells. A long molecule such as DNA, when supercoiled, exhibits non-

linear phenomena similar to that of a twisted rubber band (Marko & Neukirch, 2012). Supercoiling of

microtubules, which are chiral, may alter the binding of motor molecules such as dynein (Gordon &

Gordon, 2016a; Gordon, 1999) and perhaps attached bifunctional molecules.

A TOY MODEL FOR THE POLYGONAL SHAPE OF SHAPED DROPLETS
Here we give a physical toy model, based on what happens to a stack of “magnetic buttons” (Horizon

Group, 2017b) arranged into a loop (Fig. 26). We can take such magnetic interactions as illustrative

stand-ins for the van derWaals forces attracting the linear alkane molecules in the plastic crystal phases

making the edges of the polygonal droplets, though their scaling is very different. Suppose there are N
buttons arranged in a loop. Because each one is stiff and flat, in order to make a loop, there will be a
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nonzero angle between certain consecutive buttons. It is clear that the sum of those angles around the

loop, so long as a loop topology is retained and the loop resides in a plane, must be 360�. Let the energy
of interaction between consecutive buttons be a monotonically decreasing function of the angle be-

tween them. Then the total energy of the system is:

Polygon Energy-Nc Photo N
Two lines 2 × 26 = 52

Equilateral
triangle

3w(120°)

4w(90°)

2w(180°)

3 × 17 = 51

Square 4 × 13 = 52

FIG. 26

Magnetic buttons of 3/400 (1.9 cm) diameter were arranged by hand into polygons. The angle y¼ y1�y2 between
magnets at the corners of the triangle, for instance, is 120∘. Hexagons were difficult to make, as the groups

of 8 magnets kept snapping together. While the two line configuration is unrealistic for a whole shaped

droplet, as it encloses zero volume, it may present a model for the filaments that sometimes protrude from

the corners of shaped droplets. To create the 12-sided dodecagon, we used thinner, weaker magnets of the same

diameter that each has a white adhesive and plastic disc attached. This was about the limit for these weak

magnets on this table surface, which provided static friction in all cases.
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Regular
pentagon

5w(72°)

6w(60°)

5 × 10 = 50

Regular 
hexagon

6 × 8 = 48

Regular
dodecagon

12w(30°)

FIG. 26—Cont’d
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E¼
XN�1

i¼0

w ymod i+ 1,Nð Þ �ymod i, Nð Þ
� �

with the constraint that:

XN�1

i¼0

ymod i + 1,Nð Þ �ymod i, Nð Þ
� �

¼ 360∘

where “mod” is the modulus function. We are assuming that only nearest neighbor interactions count.

For a pair of actual magnets near each other, the angular dependence of their interactions requires in-

tegration over each pair of interacting elements and thus on their detailed geometry. If two magnets of

magnetic moments m1,m2 are far apart, at distance r between their centers, with a relative angle y¼
y1�y2 between them, the approximate mutual potential energy Ep of their point-dipole–point-dipole

interaction is (Cullity & Graham, 2011):

Ep ¼m1m2

r3
cos y1�y2ð Þ�3cosy1 cosy2½ 	

This falls to zero when:

y1�y2 ¼ 90∘

but we find for the magnetic buttons that there is a residual attractive force when they are touching at an

edge, at a right angle. We will therefore take as a representative energy of interaction:

w ymod i + 1,Nð Þ �ymod i, Nð Þ
� �¼ cos ymod i + 1,Nð Þ �ymod i,Nð Þ

� ��3cosymod i + 1,Nð Þ cosymod i, Nð Þ + c

As a rough approximation we take c as a constant, though in principle it is a calculable function.We can

now introduce absolute temperature T by the Boltzmann relationship:

P Eð Þ¼ e�E= kTð Þ

For any set of angles, this then gives the probability P of that configuration as a function of T.
Except for its geometry, this problem is not new. It is merely the one-dimensional lattice with

nearest neighbor interactions, continuous state variable, and periodic boundary conditions. While

the 1D Ising lattice does not exhibit a sharp phase transition (Brush, 1967; Wikipedia, 2016b) in-

cluding in the continuous state case (Griffiths, 1969; van Beijeren & Sylvester, 1978) of our toy

model, in our problem the global constraint on the sum of the angles makes a sharp phase transition

possible, at low enough T. This in turn leads to the stability and metastability of polygonal con-

figurations. Because of thermal fluctuations and/or under the influence of surface tension, transi-

tions between the different polygon states can occur, even in the absence of an analog of plastic

crystal edge growth in this toy model. These could be explored via Monte Carlo simulations

(Gordon, 1980).

There are many other ways to alter a 1D Ising lattice to produce a phase transition. However, none

of them involve the constraint of a finite length looped in 2D. Many of the modified Ising lattices in-

voke long-range interactions (Cassandro et al., 2014). In a way, a looped system has a long-range in-

teraction: of each unit with itself around the loop. Multiple cycles around the ring may in effect give an

infinite range to the interactions. The latter does lead to a phase transition for the 1D Ising lattice (van

Beijeren & Sylvester, 1978). This may be the reason that rings exhibit sharp phase transitions. How-

ever, unlike any standard Ising systems, in our system the forces generated by neighbor-neighbor
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interactions are allowed to alter the positions of the units in space, driving adjacent units towards being

parallel to one another.

While setting up the magnetic buttons in various configurations (Fig. 26), it became clear that hexa-

gons were metastable with small thresholds for transitions to lower order polygons. It was hard to

achieve these configurations, and tapping on the table caused various transitions (Fig. 27). Pentagons

were much more stable than hexagons, but could undergo transitions by hitting the surface nearby with

a rubber hammer. Due to friction with the surface, intermediate states could be captured by camera

(Fig. 28). Transitions between polygonal dimplings of spherical and cylindrical thin metal shells have

been observed by high speed movies (Thompson & Sieber, 2016).

A set of weaker magnets was acquired (Horizon Group, 2017a). In addition to the configurations

shown so far, we were able to get up to a 12-sided polygon (Fig. 26), not quite approximating a circular

arrangement with many small consecutive angle differences. That would require either weaker magnets

or a rougher surface.

The magnetic buttons toy model has a major limitation in that the energies change monotonically

with the number of vertices, whereas this function has minima for shaped droplets, for which 60� and

FIG. 27

Once hexagons weremade, tapping on the table rapidly produced various transitions to lower order polygons. Due

to imperfect alignment, most of the original groups of 8 magnets can still be seen.

FIG. 28

Top row: a pentagon consisting of 5 groups of 10 magnetic buttons transitions to an isosceles triangle with

consecutive hammerings of the surface on which they lie. The metastability was significantly stronger than that of

the hexagons. Bottom row: a pentagon transitions to a quadrilateral.
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120� appeared “to be the only possible internal angles,” at least when they are not “shape-shifting”

(Haas et al., 2017). The toy model does not capture features such as the flexibility of the linear mol-

ecules, their multiple layers, and the fact that many molecules (not just two, as with magnets) would be

arrayed in specific configurations at each corner, nor three-dimensional effects such as the lenticular

shape of the droplets, nor their constant volume.
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as prokaryotic loss factors along a salinity gradient. Aquat. Microb. Ecol. 11 (3), 215–227.

478 EMERGENCE OF POLYGONAL SHAPES IN OIL DROPLETS AND LIVING CELLS

http://www.alexgarnett.com/product/basket-bowl
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0410
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0410
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0415
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0415
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0420
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0420
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0425
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0425
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0425
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0430
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0430
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0435
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0435
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0440
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0440
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0445
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0445
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0450
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0450
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0455
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0455
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0460
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0460
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0465
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0470
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0470
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0470
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0475
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0475
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0480
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0480
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0485
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0485
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0490
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0490
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0495
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0495
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0500
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0505
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0505
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0510
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0515
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0520
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0520
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0525
http://refhub.elsevier.com/B978-0-12-811940-2.00018-6/rf0525


Gupta, R.S., Naushad, S., Baker, S., 2015. Phylogenomic analyses and molecular signatures for the class

Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended

order Halobacteriales and two new orders, Haloferacales ord. nov and Natrialbales ord. nov., containing
the novel families Haloferacaceae fam. nov and Natrialbaceae fam. nov. Int. J. Syst. Evol. Microbiol.

65, 1050–1069.

Gürsoy, G., Xu, Y., Kenter, A.L., Liang, J., 2014. Spatial confinement is a major determinant of the folding land-

scape of human chromosomes. Nucleic Acids Res. 42 (13), 8223–8230.

Gutiérrez, A., Gordon, R., Dávila, L.P., 2017. Deformation modes and structural response of diatom shells.

J. Mater. Sci. Eng. Adv. Technol. 15 (2), 105–134.

Guttman, S., Ocko, B.M., Deutsch, M., Sloutskin, E., 2016a. From faceted vesicles to liquid icoshedra: where to-

pology and crystallography meet. Curr. Opin. Colloid Interface Sci. 22, 35–40.

Guttman, S., Sapir, Z., Schultz, M., Butenko, A.V., Ocko, B.M., Deutsch, M., Sloutskin, E., 2016b. How faceted

liquid droplets grow tails. Proc. Natl. Acad. Sci. 113 (3), 493–496.

Haas, P.A., Goldstein, R.E., Smoukov, S.K., Cholakova, D., Denkov, N., 2016. A Theory of Shape-Shifting Drop-

lets. https://arxiv.org/abs/1609.00584.

Haas, P.A., Goldstein, R.E., Smoukov, S.K., Cholakova, D., Denkov, N., 2017. Theory of shape-shifting droplets.

Phys. Rev. Lett. 118. #088001.

Hamamoto, T., Takashina, T., Grant, W.D., Horikoshi, K., 1988. Asymmetric cell division of a triangular halo-

philic archaebacterium. FEMS Microbiol. Lett. 56 (2), 221–224.

Hanczyc, M.M., 2011. Metabolism and motility in prebiotic structures. Philos. Trans. R. Soc. B 366 (1580),

2885–2893.

Hanczyc, M.M., 2014. Droplets: unconventional protocell model with life-like dynamics and room to grow. Life-

Basel 4 (4, Sp. Iss. SI), 1038–1049.

Hanczyc, M.M., Ikegami, T., 2010. Chemical basis for minimal cognition. Artif. Life 16 (3), 233–243.

Hanczyc, M.M., Monnard, P.-A., 2017. Primordial membranes: more than simple container boundaries. Curr.

Opin. Chem. Biol. 40 (October), 78–86.

Hazelaar, S., van der Strate, H.J., Gieskes, W.W.C., Vrieling, E.G., 2005. Monitoring rapid valve formation in the

pennate diatom Navicula salinarum (Bacillariophyceae). J. Phycol. 41 (2), 354–358.

Hemmingsen, B.B., Hemmingsen, E.A., 1980. Rupture of the cell envelope by induced intracellular gas-phase

expansion in gas vacuolate bacteria. J. Bacteriol. 143 (2), 841–846.

Henning, T., Salama, F., 1998. Carbon in the Universe. Science 282 (5397), 2204–2210.

Higashi-Fujime, S., 1980. Active movement in vitro of bundle of microfilaments isolated from Nitella cell. J. Cell
Biol. 87 (3), 569–578.

Hirsch, P., 1974. Budding bacteria. Annu. Rev. Microbiol. 28, 391–444.

Hirsch, P., Schlesner, H., 1981. The genus Stella. In: Starr, M.P., Stolp, H., Trüper, H.G., Balows, A.,
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