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 Suspensions of colloid particles possess the remarkable property to solidify upon the addition ofminimal amount
of a second liquid that preferentially wets the particles. The hardening is due to the formation of capillary bridges
(pendular rings), which connect the particles. Here, we review works on the mechanical properties of such
suspensions and related works on the capillary-bridge force, and present new rheological data for the weakly
studied concentration range 30–55 vol% particles. Themechanical strength of the solidified capillary suspensions,
characterized by the yield stress Y, ismeasured at the elastic limit for various volume fractions of the particles and
the preferentially wetting liquid. A quantitative theoretical model is developed, which relates Y with the maxi-
mum of the capillary-bridge force, projected on the shear plane. A semi-empirical expression for themean num-
ber of capillary bridges per particle is proposed. Themodel agrees verywellwith the experimental data and gives
a quantitative description of the yield stress, which increases with the rise of interfacial tension and with the
volume fractions of particles and capillary bridges, but decreases with the rise of particle radius and contact
angle. The quantitative description of capillary force is based on the exact theory and numerical calculation of
the capillary bridge profile at various bridge volumes and contact angles. An analytical formula for Y is also de-
rived. The comparison of the theoretical and experimental strain at the elastic limit reveals that the fluidization
of the capillary suspension takes place only in a deformation zone of thickness up to several hundred particle
diameters, which is adjacent to the rheometer's mobile plate. The reported experimental results refer to
water-continuous suspension with hydrophobic particles and oily capillary bridges. The comparison of data for
bridges from soybean oil and hexadecane surprisingly indicate that the yield strength is greater for the suspen-
sion with soybean oil despite its lower interfacial tension against water. The result can be explainedwith the dif-
ferent contact angles of the two oils in agreement with the theoretical predictions. The results could contribute
for a better understanding, quantitative prediction and control of the mechanical properties of three-phase
capillary suspensions solid/liquid/liquid.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The present article is devoted to the investigation of mechanical
properties of three-phase suspensions particles/oil/water. If the colloid
particles have been initially dispersed in one of the two liquid phases,
the addition of even minimal amount of the second liquid may lead
to hardening of suspension. The solidified dispersion exhibits a high
yield stress when subjected tomechanical deformation [1,2]. This effect
can be used to control the flow behavior of suspensions that would
otherwise require the addition of binding agents or other additives
[3]. The solidification is due to the connection of particles by capillary
bridges or menisci [1–9]. Spontaneous formation of capillary bridges
upon agitation of the dispersion happens if the particles have affinity
to the inner liquid (the liquid in the capillary bridges). Thus, the stron-
gest hardening of dispersion takes place if hydrophilic particles
are interconnected by water capillary bridges in oil, or hydrophobic
particles are interconnected by oily capillary bridges in water. Our
study is focused on the investigation of this effect; on the role of the
Table 1
Changes in the morphology of wet granular materials (particles/liquid/gas) with the rise of vo

Liquid content State Morphology Physical descripti

(a) No Dry Weak cohesion be

(b) Small Pendular Capillary bridges
The liquid is dispe

(c) Middle Funicular Merging of capilla

(d) High Capillary Gas-filled cavities
is disperse phase;

(e) Maximal Slurry The particles are c
volume fractions of particles and inner liquid, and on the influence
of interfacial tension and three-phase contact angle. The yield stress
will be used to characterize themechanical strength of the solidified sus-
pension. Detailed theoretical model is proposed, which quantitatively
describes the dependence of the yield stress on the system's physical
parameters. A brief review of the accumulated knowledge on three-
phase dispersions is following.

1.1. Wet granular materials

The traditional field of wet granular materials, corresponds to high
particle volume fractions, ϕp N70%, in the system solid/liquid/gas. The
most famous examples are the wet sand and the sand castles. This
field has been a subject of numerous experimental and theoretical
studies; see Refs [10,11] for review. In the case of dry particle/gas disper-
sion (Table 1a), the interparticle cohesion (due mostly to van derWaals
forces) is negligible in comparison with the cohesion due to capillary
bridges.
lume fraction of the liquid phase [10].

on

tween the particles.

(pendular rings) around contact points of neighboring particles; strong adhesion.
rse phase; the gas is continuous phase.

ry bridges. Both the liquid and gas phases are continuous – bicontinuous topology.

remain between the particles, which are connected by the capillary menisci. The gas
the liquid is continuous phase.

ompletely immersed in the liquid. The cohesion between them is weak.



Fig. 1. Classification of the three-phase suspensions (particles/water/oil) with respect to
the volume fraction of particles, ϕp (pendular sate).
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Significant changes in the mechanical properties of the granular
material happen in the presence of liquid that wets the particles,
i.e. the solid/liquid/gas contact angle is α b90°. If the liquid phase
is present at a sufficiently low volume fraction (Table 1b), then it is
a disperse phase, which forms concave capillary bridges (pendular
rings) around the contact points of the neighboring particles [12]. The
gas phase is the continuous phase. The respective state of the three-
phase dispersion is termed the pendular state. The capillary bridge
force, which connects the particles, causes solidification of the granular
material [10].

With the increase of the volume fraction of liquid, the capillary
bridges between the particles begin to overlap, so that the liquid phase
is transformed into a second continuous phase. Thus, the dispersion un-
dergoes a transition from the pendular state to the so called funicular
state (Table. 1c). In this state, the “flooded” three-phase dispersion is
bicontinuous and mechanically softer than in the pendular state.

At higher liquid volume fractions, the gaseous phase becomes a
disperse phase. It occupies cavities between the solid particles. Such a
cavity can be considered as a gas bubble of irregular shape with several
particles attached to its surface. Thus, the capillary menisci connect
the particles and give rise to hardening of the three-phase dispersion.
This is the so called capillary state of suspension (Table 1d). Finally, if
all particles in the dispersion are completely wet by the liquid phase,
the dispersion is transformed into slurry (Table 1e).

1.2. Particle/oil/water suspensions

The above classification can be extended to dispersions, inwhich the
gas phase is exchanged with a second liquid phase. If the liquid 1 wets
the particles significantly better than the liquid 2, the diagram in
Table 1 will be applicable again, but with “liquid 1” and “liquid 2”
instead of “liquid” and “gas”. Most frequently, the two liquids are oil
(liquid hydrocarbon) and water.

Such three-phase solid/liquid/liquid systems, called also capillary
suspensions, have been a subject of intensive studies in the last
decade in the works by Koos, Willenbacher, and other researchers
[1–3,6–9,13–15] The capillary suspensions could find various applica-
tions, such as the preparation of novel food products [16,17]; slurries
for printable electronics or generation of energy [18–21]; improved
polymer blends [22–24]; precursors for glass or ceramic filters of high
porosity [25–27], and thermal interfacial materials [28]. Semiempirical
expressions for the yield stress in capillary suspensions have been
proposed in Refs [4,9].

As already mentioned, in the traditional field of wet granular mate-
rials the particle volume fraction is high, about that at close packing
of monodisperse spheres, ϕp ≈ 74%. On the other hand, hardening
(gelation) of three-phase dispersion can be observed also at signifi-
cantly lower particle volume fractions, 10% b ϕp b 25% [1,6]. In this
case, the hardening is due to the formation of particle networks, which
span the whole volume of the dispersion. Large cavities are present
in the formed network structure because of the relatively low particle
volume fraction; see Refs [6,29].

In the ideal case of monodisperse spherical particles, the lowest
particle volume fraction, at which one can fill the space with a regular
lattice from particles that touch each other (no voids), is ϕp ≈ 34%. The
last value corresponds to a lattice of diamond type where each particle
in the capillary suspension has four neighbors, which are connected
by pendular rings (in the pendular state). For ϕp b 34%, the appearance
of cavities (voids bigger than the particles) is unavoidable. In view
of that, we could classify the capillary suspensions as closely packed,
with ϕp ≈ 74%; uniform (without cavities), with 34% b ϕp b 74% (with
coordination number 4 ≤ n ≤ 12; see Section 1.3), and nonuniform
(with cavities) for ϕp b 34%; see Fig. 1. The boundary values 34% and
74% are tentative, because with a greater number of closest neighbors
(n N 4) one could have cavities even for ϕp N 34%, whereas with polydis-
perse particles the close packing could take place for ϕp N 74%.
An important parameter characterizing the capillary suspensions is
the volume fraction of the preferentially wetting (inner) liquid relative
to the total volume of the liquid phases (degree of saturation with the
inner liquid) [13]:

Si ¼
ϕi

ϕw þ ϕoil
; i ¼ w;oil ð1Þ

Here,ϕw andϕoil are, respectively, the volume fractions of water and
oil in the dispersion (ϕw + ϕoil + ϕp = 1). The preferentially wetting
liquid could be either water or oil depending on whether the particles
are hydrophilic or hydrophobic.

In the case of nonuniform suspensions, ϕp b 34%, different structures
can be observed (Fig. 2) depending on the value of Si. At the lowest Si
values, the particles in the network are connected by capillary bridges,
i.e. the dispersion is in the pendular state (Fig. 2) [6]. At greater Si values,
the network splits to separate spherical agglomerates, where the parti-
cles are bound together by capillary forces [6,30]. At Si close to 0.5, the
particles can stabilize a bicontinuous structure, termed bijel, which has
been a subject of increasing interest [31–34]. If Si is further increased,
particle stabilized Pickering emulsions could be formed [35–37]. Finally,
at Si approaching 1, the space could be spanned again by a network,
but this time in the capillary state. The branches of this network could
be considered as channels of the non-preferentially wetting liquid,
which are wrapped by adsorbed particles. Hardening of the dispersion
(network gelation), can be observed in both the pendular and capillary
state [1,6].

The subject of our article is the rheological behavior of three-phase
dispersions particles/oil/water in the vast andweakly explored concen-
tration domain of uniform capillary suspensions, 34% b ϕp b 74%; see
Fig. 1. Our study is focused on the pendular state, which possesses the re-
markable property that the addition of a minimal amount of the inner
liquid phase leads to strong solidification of the dispersion owing to
the particle interconnection with capillary bridges. When such disper-
sion is subjected to deformation, three types of rheological response
are observed: (i) quasielastic; (ii) transitional, characterized by the
yield stress, and (iii) viscoelastic. Our study is focused on the experi-
mental study of the yield stress and its interpretation on the basis of
the computed capillary-bridge force. The greater the yield stress, the
stronger the solidified dispersion.



Fig. 2. Changes in the morphology of the nonuniform three-phase suspensions (particles/water/oil) with respect to the volume fraction of the preferentially wetting liquid, Si; after
Koos [6].

Fig. 3. (a) Regular crystal latticeswith different number of closest neighbors (coordination
number), n. In the case of capillary suspension, the “particles” in the figure show only the
positions of the centers of the real colloidal particles; ϕp is the volume fraction of particles
supposedly their surfaces touch each other. (b) Plot of ϕp vs. n.
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1.3. Number of capillary bridges per particle

As alreadymentioned, in the pendular state the capillary bridges are
formed around the zones of contact of neighboring particles. If the
particles are uniformly distributed in space, the number of nearest
neighbors (the coordination number), n, depends on theparticle volume
fraction, ϕp.

To illustrate that, let us consider regular lattices from monodisperse
spherical particles (Fig. 3a). The lowest number of nearest neighbors in
a spatial lattice is n = 4 for the lattice of diamond (or water ice Ic). If
we assume that the “particles” depicted in Fig. 3a represent the particle
centers, but the actual neighboring particles touch each other, then
the particle volume fraction will be ϕp ≈ 0.340 for diamond packing.
Likewise, we have n = 6 and ϕp ≈ 0.524 for simple cubic lattice;
n = 8 and ϕp ≈ 0.680 for body-centered cubic lattice, and n = 12 and
ϕp≈ 0.740 for face-centered cubic (and hexagonal close packed) lattice
[38]; see Fig. 3a.

In Fig. 3b, the symbols represent the plot of ϕp versus n for the regu-
lar spatial lattices shown in Fig. 3a. One sees that for n ≤ 8 (ϕp ≤ 0.68), the
points in Fig. 3b comply with a straight line of equation ϕp = 0.0857n.
Hence, we have:

n ¼ ϕp

0:0857
≈ 11:67ϕp for ϕpb 0:68 ð2Þ

In the case of capillary suspensions, we may continuously increase
the particle volume fraction, ϕp. Then, using Eq. (2) we can estimate
the average number of capillary bridges per particle, n, for a capillary
suspension in the pendular state.

2. Capillary bridges

2.1. Brief overview of preceding studies

Long ago, it was established that the adhesion of spherical particles
to a flat plate in a humid atmosphere is due to the condensation of
small aqueous capillary bridges (pendular rings) around the zones of
particle/plate contacts [12,39,40]. The formation of capillary bridges
is important for many experimental and practical systems and pro-
cesses, such as water saturation in soils and adhesive forces in any
moist unconsolidated porous media [41–44]; dispersion of pigments,
wetting of powders and flocculation of particles in three-phase slurries
[10,11,45,46]; densification during sintering of fine particles [47,48];
obtaining of films from latex particles [49–51]; capillary evaporation
and condensation in porous media [52–54]. The action of capillary-
bridge force is often detected in experiments with atomic force micros-
copy [55–58].



Fig. 5. The generatrix of the capillary bridge can be a part of (a) nodoid at p b 0 and p N 1 or
(b) unduloid at 0 b p b 1. These curves are confined between two vertical lines at r = R1
and r = R2.
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The pioneering studies in this field are due to Delaunay [59], who
mathematically described and classified the shapes of capillary bridges
(surfaces with constant mean curvature) and to Plateau [60], who sup-
ported the theory with experimental observations and investigated
the bridge stability. The instability of cylindrical capillary bridges was
studied by Rayleigh [61]. The shapes of capillary bridges between two
plane-parallel plates; between solid spheres and between sphere and
plate were experimentally investigated in a number of works [62–65].
Exact and approximate theoretical expressions for the profile of capil-
lary bridges and for the capillary-bridge force have been obtained in
the studies of numerous authors [12,64–69]. Review articles on the
stability of capillary bridges were published by Michael [70]; Myshkis
et al. [71], and Lowry and Steen [72]; various specific geometries have
been investigated [73–78].

In Sections 2.2 and 2.3, we overview the basic equations used in
the present study to calculate the shape of capillary bridges and the
interaction force between two bodies connected by capillary bridge
in relation to the theoretical description of yield stress in capillary
suspensions.

2.2. Meniscus profile and capillary bridge force

The capillary bridge between two spherical particles is axisym-
metric. Its profile can be described by using cylindrical coordinates,
z = z(r); see Fig. 4 for the notations. The meniscus profile obeys
the Laplace equation of capillarity, which can be presented in the form
[67,68]:

σ
r
d
dr

r sinθð Þ ¼ P1−P2 ð3Þ

Here, r is the radial coordinate; θ is the running slope angle; σ is the
interfacial tension of the capillary meniscus; P1 and P2 are, respectively,
the pressures inside and outside the bridge. Because the bridges in
capillary suspensions are microscopic, we will neglect the effect of
gravity on pressure and will consider P1 and P2 as constant quantities.
Integrating Eq. (3), we obtain:

sinθ ¼ p
r
r0

þ 1−pð Þ r0
r

ð4Þ

where the boundary condition sinθ=1 at r= r0 has been used (Fig. 4);
p is the dimensionless capillary pressure:

p ¼ P1−P2

2σ
r0 ð5Þ

Next, using Eq. (4) and the identities dz/dr = tanθ = ± sinθ/
(1 − sin2θ)1/2 we obtain:

dz
d r

¼ pr2 þ 1−pð Þr20
� p r2−r20

� �
r21−r2
� �� �1=2 ; r1 ¼ 1−p

p

����
���� r0 ð6Þ
Fig. 4. Sketch of the profile of an axisymmetric capillary bridge; r is the radial coordinate; the
running slope angle; P1 and P2 are the inner and outer pressures. (a) Concave capillary bridge
capillary pressure – see Eq. (5).
From the above definition of r1, for p b 0.5 we obtain r1 N r0 and the
capillary bridge is concave (with a neck). More generally, in view of
Eq. (6) and Fig. 4, there are two cases:

−∞ b p b 0:5; r0 b r b r1 concave capillary bridgeð Þ
0:5 b p bþ ∞; r1 b r b r0 convex capillary bridgeð Þ ð7Þ

In the special case p = 0.5, we have r1 = r0, and then the capillary
bridge has the form of cylinder.

The denominator in Eq. (6) indicates that the meniscus profile has
two vertical asymptotes (with dz/dr = ±∞), at r = r0 and r = r1. In
1841, Delaunay has shown that for 0 b p b 1 the meniscus profile
described by Eq. (6) is a part of an “undulated” curve with inflection
points, called unduloid, whereas for p b 0 and p N 1 the profile is de-
scribed by a self-intersecting curve without inflection points, called
nodoid; see Fig. 5. In this figure, R1 = r0 and R2 = r1 for concave bridge,
whereas R1 = r1 and R2 = r0 for convex bridge.

The limiting case p = 1 corresponds to sphere with two equal
principal curvatures (c1 = c2), whereas the limiting case p = 0 (zero
capillary pressure) corresponds to catenoid (preudosphere), for which
the two principal curvatures have equal magnitudes but opposite
signs (c1 = −c2). In the general case, the solution of Eq. (6) can be
expressed in terms of elliptic integrals; for details, see e.g. Ref. [67,68].

Trying differentmethods to compute themeniscus profile, we found
that themost convenientway is to integrate Eq. (6) numerically. For this
goal, to remove the singularity at r= r0, we introduced a new variable,
x, as follows:

r ¼ r0 1þ x2
� �

for concave capillary bridge

r ¼ r0 1−x2
� �

for convex capillary bridge
ð8Þ
z-axis is the axis of revolution; the midplane corresponds to z = 0, where r = r0; θ is the
, p b 0.5 and r N r0; (b) Convex capillary bridge, p N 0.5 and r b r0; p is the dimensionless
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In the case of concave capillary bridge (p b 0.5), substituting r1 from
its definition and r from Eq. (8), and integrating Eq. (6) we obtain:

z xð Þ ¼ 2r0
Z x

0

1þ pξ2 2þ ξ2
� �

2þ ξ2
� �

1−2p−2p2ξ2−p2ξ4
� �h i1=2 dξ ð9Þ

where ξ is an integration variable. Likewise, for convex capillary bridge
(p N 0.5), the integration of Eq. (6) yields:

z xð Þ ¼ 2r0
Z x

0

1−pξ2 2−ξ2
� �

2−ξ2
� �

2p−1−2p2ξ2 þ p2ξ4
� �h i1=2 dξ ð10Þ

The numerical integration in Eqs. (9) and (10) was carried out
by using the Simpson method. These two equations describe the
upper part of the bridge (for z ≥ 0; see Fig. 4); the lower part can be
obtained by reflection because of the symmetry with respect to the
midplane, z = 0.

The meniscus profile should satisfy a certain boundary condition,
z= zc and θ= θc for r= rc, where (rc,zc) determines the position of the
three-phase contact line on the solid surface; θc is the meniscus slope
angle at the contact line. In our computational procedure, described in
Appendix A, r0 is varied until the boundary condition is satisfied. At
that, p is calculated from Eq. (4) with r = rc and θ = θc:

p ¼ r20−r0rc sinθc
r20−r2c

ð11Þ

The meniscus volume and surface area can be also calculated using
Eqs. (A.10) and (A.11) in Appendix A.

Having determined p, we can calculate the capillary-bridge force, Fcap,
using the expression:

Fcap ¼ 2πr0σ− P1−P2ð Þπr20 ¼ 2πr0σ 1−pð Þ ð12Þ

Eq. (12) can be derived by force-balance considerations; see e.g.
Ref. [68]. The term2πr0σ represents the contribution of themeniscus in-
terfacial tension, whereas the term (P1 − P2)πr02 is the contribution of
the capillary pressure.

2.3. The sequence of capillary bridges

With the increase of the dimensionless capillary pressure, p, one ob-
serves a sequence of capillary-bridge shapes [68], called also Delaunay
profiles [59,76], which are illustrated in Fig. 6. For −∞ b p b 0, the
generatrix of the meniscus profile is a concave nodoid. In this case, the
contributions of interfacial tension and capillary pressure to Fcap have
the same sign, and the capillary-bridge force is the maximal; see
Eq. (12). These are the only bridges, in which the inner pressure P1 is
lower than the outer pressure P2.
Fig. 6. Sequence of capillary bridge profiles for increasing
For p = 0, the meniscus shape is a pseudosphere (catenoid), which
can be expressed in terms of elementary functions:

z rð Þ ¼ � r0 ln r=r0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=r0ð Þ2−1

q
 �
ð13Þ

The pressures inside and outside the bridge are equal (P1 = P2),
so that Fcap is determined solely by the interfacial-tension term;
see Eq. (12).

For 0 b p b 0.5, the meniscus shape is a concave unduloid; for p =
0.5 − cylinder, and for 0.5 b p b 1 − convex unduloid. For all these
profiles, the capillary-pressure contribution to Fcap corresponds to re-
pulsion (the inner pressure P1 is higher than the outer pressure P2).
However, the interfacial tension term in Eq. (12) still prevails so that
the net capillary-bridge force is attractive.

For p=1, the meniscus profile is a sphere (the generatrix is circular
arc); the interfacial-tension and capillary-pressure terms in Eq. (12)
exactly counterbalance each other, so that the net capillary-bridge
force is zero, Fcap = 0.

For p N 1, the meniscus profile is described by a convex nodoid; the
inner pressure P1 is higher than the outer pressure P2, and the
capillary-pressure term in Eq. (12) prevails over the interfacial-
tension term, so that the net capillary-bridge force corresponds to
repulsion.

The profile of the capillary bridge may have an inflection point,
which is related to its stability. At the inflection point, r = ri, the deriv-
ative of the running slope angle with respect to distance should be zero.
Taking the derivative of Eq. (4), we obtain 0 = p/r0 − (1 − p)r0 / ri2,
that is:

r2i ¼ 1−p
p

r20 ¼ r0r1 ð14Þ

The above equation is satisfied only for 0 b p b 1, i.e. only unduloidal
profiles may have inflection points (see Figs. 5 and 6). Because the real
meniscus profile is only a part of unduloid, not every undiloidal bridge
will have inflection points. For symmetric capillary bridges between
parallel planes it has been shown that no such bridge can have an inflec-
tion point in its profile and be stable [73,74]. Then, stable (without in-
flection points) are the bridges, for which

riNrc for 0 b p b 0:5 concave unduloidsð Þ
ribrc for 0:5 b p b 1 convex unduloidsð Þ ð15Þ

For symmetric capillary bridges between two parallel planes it was
established [65] that the dependence of the equilibrium length h of
the capillary bridge as a function of the contact line radius, rc, has a
maximum, hmax, at fixed bridge volume and contact angle, θc. Upon
extension of the bridge, for h N hmax the bridge becomes unstable,
evolves in dynamic regime and eventually breaks [65,78].
dimensionless capillary pressure, p; after Ref. [68].



Fig. 7. (a) Sketch of the used rotational rheometer with two parallel disks; R is the disk
radius and M is the applied force moment (torque). (b) Experimental data for the
displacement angle, ψ, vs. the applied stress, τ = 3 M/(2πR3), for four different values of
Soil. The yield stress, Y, is determined from the vertical portion of the experimental curve.
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In the case of symmetric capillary bridges between two identical
spherical particles, which are not in contact, Vogel [75,76] proved that
the convex bridges are unstable for 1 b p b + ∞ (convex nodoids), and
stable for 0.5 b p ≤ 1 (convex unduloid or sphere). It was proven that if
the cylindrical bridge between spherical particles is stable, then the
unduloidal bridges near cylinder are also stable, even if they have inflec-
tion points [73]. In other words, the conditions for stability of bridges
between two parallel planes and between two spherical particles can
be different.

For symmetrical capillary bridges between two identical spherical
beads in contact, it was established that no stable bridges exist if the
contact angle is θc ≥ π/2 [77]. This theorem implies that in the capillary
suspensions, the formation of pendular rings is expected only from the
preferentially wetting liquid, for which θc b π/2.

3. Experiments with particle/oil/water suspensions

3.1. Experimental materials and procedures

In our experiments, we used hydrophilic silica particles Excelica
UF320 produced by Tokuyama Corp., Japan, by melting of synthetic
SiO2 (density 2.2 g/cm3). The particles were spherical, polydisperse,
with low surface roughness and average particle diameter 3.8 μm; see
Fig. S1 in Appendix B and Ref. [79]. The particles were hydrophobized
with hexamethyldisilazane (HMDS, 99%, Sigma Aldrich). The silica par-
ticles were heated to 800 °C for 30 min. After annealing in a desiccator
with reduced humidity, the particles were brought into contact with
vapor of HMDS under permanent stirring for 16 h.

As oily phases, hexadecane (C16) and soybean oil (SBO) were used.
Hexadecane (Merck – 8.20633) has a density of 773 g/L and viscosity
3.0 mPa·s. Before the experiments, the oil was purified by passing it
three times through a glass column filled with Silica gel (Fluka –
C989Q77) and Florisil adsorbent (activated magnesium silicate,
Sigma-Aldrich). To check the degree of hexadecane purification, we
measured its interfacial tension, σ, against pure water using a pendant
drop tensiometer (instrument DSA30, Krüss GmbH, Germany). The
measured value of σwas 52mN/m (the literature value for hexadecane
at room temperature). The soybean oil (SBO) from a local producer
was purified by passing through a column filled with Silica gel and
Florisil adsorbent. The measured value of σ was 30 mN/m (typical
value for pure SBO) and it did not decrease by N0.2 mN/m within
60 min. The measured viscosity of purified SBO at room temperature
was 50 mPa·s.

For preparation of all suspensions we used deionized water (Elix
purification system, Millipore). No surfactants have been used. The
aqueous phase contained dissolved 0.5 M NaCl (Merck) added to sup-
press the electrostatic repulsion between the solid particles and oil
drops across the water phase. All experiments have been carried out
at a room temperature of 25 ± 1 °C.

The three-phase contact angle was measured with bigger particles
(of radius 200–300 μm), hydrophobized in the same manner. The par-
ticles were floating on the oil/water interface and the contact angle
was determined goniometrically, by side-view observations [80,81].
In the case of SBO, the measured contact angle was α = 12° across
the SBO (168° across the water). In the case of C16, the measured
contact angle was α = 70° across the hexadecane (110° across
the water). In the case of capillary bridges, it is convenient to use
the contact angle α measured across the bridge phase (in our case,
across the oil phase).

The HMDS-treated silica particles were so hydrophobic that they did
not enter the aqueous phasewhenplaced on the air/water interface and
subjected to agitation. (For this reason,we have nodata for the rheology
of suspension of hydrophobic particles in water without oil.) If the par-
ticles and oil were simultaneously placed on the air/water interface,
then it was possible to bring them into the aqueous phase by agitation
with a propeller stirrer (Proxxon FBS 12/EF) with blending element
from frappé mixer. The homogenization was performed at a rotation
speed of 5000 rpm for 5 min.

3.2. Experimental method

The rheological measurements were carried out using a rotational
rheometer Bohlin Gemini, Malvern, UK, with geometry of two parallel
disks (Fig. 7a). The upper disk is rotating, whereas the lower disk is
immobile. Sheets of hydrophilic sandpaper of average particle diame-
ter ≈12.6 μm were glued to both disks to prevent the appearance
of wall slip. The disk radius was R = 20 mm. The investigated suspen-
sion was sandwiched between the two disks at a gap distance of
2 mm. To prevent evaporation of water from the suspensions, on
top of the upper plate a ring-shaped vessel filled with water was placed
and the portion of the setup with the two disks was closed under a
cover.

To characterize the hardness of dispersions, we used the stress-
control regime of the rheometer. At each fixed value of the applied
shear stress, τ, the strain, characterized by the rotation angle ψ,
was measured; see Fig. 7b. By definition, τ = 3 M/(2πR3) is an aver-
age value of the mechanical stress τzφ acting on the rotating disk;
M is the applied force moment (torque); see Section 5.1 for more
details.

3.3. Experimental results

As seen in Fig. 7b, at the lower τ values the rotation angle ψ
slowly increases. This is a quasi-elastic regime of deformation. The
values of ψ in this regime, up to 0.1 rad (5.7°) are too large to be
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explained in terms of elastic deformation of the solid (in our case
SiO2) particles, as proposed by Rumpf and Schubert [4]. This quasi-
elastic deformation can be explained by extension of the capillary
bridges upon shearing; see Section 4.1. At a certain value, τ = Y,
the angle ψ abruptly increases because the elastic limit has been
reached. This value is identified with the yield stress, Y. The respective
Fig. 8. Suspension with capillary bridges from soybean oil (SBO) in water: Plot of
the measured yield stress, Y, vs. the relative oil volume fraction, Soil, for hydrophobized
silica particles of contact angle α = 12° across the SBO at particle volume fractions
(a) αp = 30%; (b) ϕp = 40%, and (c) ϕp = 45%. The average number of capillary
bridges per particle, n, is estimated from Eq. (2). The solid lines are fits by means
of the theoretical model. The geometrical coefficient, cg, is determined from the fit
(details in the text).
value of the rotation angle, ψY, will be termed yield strain. In our
experiments, Ywas measured as a function of the relative volume frac-
tion of the inner liquid (in our case – oil), Soil, at different particle
volume fractions, ϕp.

Fig. 8 shows our data for Y vs. Soil for soybeanoil (SBO) as inner phase
at ϕp = 30%, 40% and 45%. (At ϕp = 50%, the dispersion was too hard
and inappropriate for investigation with the used rheometer.) Each
point is average from at least three measurements, which have been
carried out with separately prepared suspension samples of the same
Soil and ϕp. The data indicate that the yield stress, Y, increases with the
rise of both Soil and ϕp. For example, at Soil = 5% we have Y = 3955,
5644 and 6506 Pa for ϕp = 30%, 40% and 45%, respectively (the values
are taken from the data fit). Such increase of Y with the rise of ϕp has
been observed also for other jammed suspensions [82]. The error bars
in Fig. 8 illustrate the reproducibility of these experiments, which is
the range from 5% to 10%. At Soil ≥ 8–10%, the dependence of Y on Soil
becomes irregular, which can be interpreted as a transition from the
pendular to the funicular state due to overlap of neighboring capillary
bridges (Fig. 1). At Soil ≥ 15–17%, phase separation is observed: the
dispersion is decomposed to aqueous and oil phases; the hydrophobic
particles are located in the oily phase. At that, the system becomes
fluid and Y = 0.

Fig. 9 shows analogous data, but for capillary bridges from
hexadecane (C16), instead of SBO. Because these experiments are
much time and labor consuming, in this case we carried out only one
experiment for each Soil and ϕp. (The reproducibility of this type of
experiments has been already estimated in Fig. 8.) Insofar as the
oil/water interfacial tension for C16 is higher than that for SBO (52 vs.
30 mN/m), one could expect greater capillary-bridge force and greater
yields stress, Y, for C16. In contrast with this expectation, the experi-
ment gives lower Y for C16. For example, from Figs. 8c and 9b we find
that at Soil = 5% and ϕp = 45%, we have Y = 6506 Pa for SBO bridges
vs. Y = 2162 Pa for C16 bridges.

In other words, the suspensions with inner phase of C16 are con-
siderably softer than those with SBO. As discussed below, the main
reason for this difference is the greater contact angle α = 70° for C16
(vs. α = 12° for SBO). The fact that the dispersions with C12 are softer
allowed us to carry out experiments at higher particle volume fractions,
up to ϕp = 55% (Fig. 9d). Again, some scattering of the data points at
the higher Soil values can be explained with a transition from pendular
to funicular state. Upon a further increase of Soil, phase separation is ob-
served, as in the case with SBO (see above).

4. Theoretical description of the yield stress

From a physical viewpoint, at a given temperature the yield stress Y
of a capillary suspension is expected to depend on five parameters:

Y ¼ Y Si;ϕp;σ ; a;α
� �

ð16Þ

where as usual, Si, is the relative volume fraction of the inner liquid
(bridge) phase; ϕp is the particle volume fraction; σ is the interfacial
tension; a is the particle radius and α is the three-phase contact angle
measured across the bridge phase. Until now, the explicit form of the
above dependence has not been found; see e.g. Ref. [3]. Our goal in the
present section is to obtain the dependence in Eq. (16) in explicit
form. For this goal, let us first consider the physical origin of the yield
stress.

4.1. The elastic limit upon shear deformation – general approach

Here, wewill follow an approach similar to that applied to a jammed
particle monolayer at a liquid interface [83]. Let us consider two
neighboring particles, A and B, in a suspension that interact via central
force, F, which could be, for example, of van-der-Waals, electrostatic,



Fig. 9. Suspensionwith capillary bridges fromn-hexadecane (C16) inwater: Plot of themeasured yield stress, Y, vs. the relative oil volume fraction, Soil, for hydrophobized silica particles of
contact angle α=70° across the C16 at particle volume fractions (a) ϕp=35%; (b) ϕp = 45%; (d) ϕp = 50%, and (d) ϕp =55%. The average number of capillary bridges per particle, n, is
estimated from Eq. (2). The solid lines are fits by means of the theoretical model. The geometrical coefficient, cg, is determined from the fit (details in the text).
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and/or capillary-bridge (Fig. 10a) origin. A small shear deformation in
the suspension along the y-axis leads to a small displacement Δy of
the particle B (Fig. 10b). This displacement gives rise to an increase of
Fig. 10. Sketch of suspension from spherical particles of radius a connected by capillary
bridges; (a) the initial state; (b) after a shear deformation at displacement Δy along the
y-axis; L is the distance between two layers of particles; γ is the shearing angle; h0 and h
are the lengths of the capillary bridge before and after the shearing; F is the force of inter-
action between the particles A and B; Fsh = Fsinγ is the projection of F on the shear plane.
the surface-to-surface distance between the particles A and B from h0
to h. After the displacement, the central force F has non-zero projection
on the shear plane:

Fsh ≡ F hð Þ sinγ ¼ F hð Þ ε

1þ ε2ð Þ1=2
ð17Þ

where ε = Δy/L = tanγ (Fig. 10b). Using series expansions for small ε,
we obtain:

ε

1þ ε2ð Þ1=2
¼ ε−

1
2
ε3 þ O ε5

� � ð18Þ

h ¼ L2 þ Δyð Þ2
h i1=2

−2a ¼ L 1þ ε2
� �1=2

−2a ¼ h0 þ 1
2
Lε2 þ O ε4

� � ð19Þ

F hð Þ ¼ F h0ð Þ−1
2
j F 0h j Lε2 þ O ε4

� �
; F 0h ¼ dF

dh h¼h0

���� ð20Þ

where we have assumed that the derivative Fh′ is negative, i.e. that the
magnitude of the net attractive force decreases with the distance h.
Substituting Eqs. (18) and (20) into Eq. (17), we derive:

Fsh εð Þ ≈ F h0ð Þε−1
2

F h0ð Þ þ jF 0hjL
� �

ε3 ð21Þ
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where higher-order terms with respect to ε have been neglected. The
function Fsh(ε) has a maximum at ε = εm, which is determined from
the relation:

εm ¼ 2=3ð Þ1=2
1þ jF 0hjL=F h0ð Þ� �1=2 ð22Þ

Fsh; max ≈
2
3
F h0ð Þεm ð23Þ

For Fsh b Fsh,max, the system can counterbalance the applied external
shear stress, i.e. we are dealing with quasi-elastic regime; see Figs. 7b.
The maximal value Fsh,max corresponds to the elastic limit and is related
to the yield stress. Note that in the stress-control regime (used in our
experiments) the yield stress is related to themaximumof Fsh(ε), rather
than to the end-of-equilibrium point of an extended capillary bridge
(Fig. 11b).
Fig. 11. (a) Capillary bridge between twoparticles of equal size, like those in Fig. 10; half of
the bridge is shown; h is the closest particle surface-to-surface distance; α is the three-
phase contact angle measured across the bridge phase; rc and zc are the coordinates
of the three-phase contact line; φc is the respective central angle; θc = α + φc is the
meniscus slope at the contact line; Vp is the particle volume; Vi is the volume of the
“inner liquid” in the half-bridge; Φ = Vi/Vp is the dimensionless bridge volume. (b) Plot
of the dimensionless shear-response force, fsh, vs. the shearing angle, γ, calculated for a
capillary bridge that is subjected to extension (increase of h) at fixed volume; the curve
is calculated by using the exact theory from Appendix A at fixed Φ = 1% and α = 0. The
bridge cannot resist external force greater than fmax; γY is the respective threshold value
of the shearing angle (yield strain).
4.2. Expression for the yield stress

In view of Fig. 10b, the shear stress, τ, that is the force per unit area of
the yz-plane, can be expressed in the form:

τ ¼ cg
Fsh
A1

ð24Þ

A1 is the area per particle in the shear plane and cg is a geometrical
coefficient, which accounts for the number of capillary bridges per
particle and their orientation relative to the shear plane. For the con-
figuration in Fig. 10 [simple cubic lattice, (100) shear plane], we have
cg = 1 (the area per bridge coincides with the area per particle) and
A1 = 4a2.

In the general case, the volume per particle in the suspension could
be modelled as the volume of a polyhedron containing the particle,
which could be approximated with a sphere of radius R1 that has the
same volume:

4
3
πR3

1 ¼
4
3
πa3

ϕp
⇒ R1 ¼ a

ϕ1=3
p

ð25Þ

Then, A1 can be estimated as the area of the great circle of this
sphere:

A1 ¼ πR2
1 ¼ πa2

ϕ2=3
p

ð26Þ

The last equation can be considered as a definition of A1, which af-
fects also the definition of cg. The substitution of A1 from Eq. (26) into
Eq. (24) yields:

τ ¼ cgϕ2=3
p

Fsh
πa2

ð27Þ

Insofar as the yield stress Y is related to the maximal value of Fsh
(Fig. 11b), from Eq. (27) we obtain:

Y ¼ cgϕ2=3
p

Fsh;max

πa2
ð28Þ

In the special casewhen only capillary-bridge force is acting between
the particles, that is F= Fcap, it is convenient to work in terms of the fol-
lowing dimensionless quantities:

f cap ¼ Fcap
2πaσ

; f sh ¼ Fsh
2πaσ

; fmax ¼ f shð Þmax ð29Þ

where, as usual, σ is the interfacial tension; fcap and fsh are the dimen-
sionless capillary force and its projection on the shear plane; fmax is
the maximal value of fsh. In view of Eqs. (28) and (29), the yield stress
can be presented in the form:

Y ¼ 2σ
a

cgϕ2=3
p fmax Φ;αð Þ ð30Þ

Eq. (30) shows that Y scales with the capillary pressure 2σ/a. In
other words, Y increases with the rise of the interfacial tension, σ,
and with the decrease of the particle radius, a. The fact that Y ∝ 1/a
has been found experimentally [14]. The term cgϕp

2/3 is proportional
to the number of bridges per unit area of the shear plane; cg may
depend not only on geometrical factors, but also on dynamic factors re-
lated to the bridge formation during the stirring/preparation of the sus-
pension (see below). In this article, cg is determined as an adjustable
parameter from the fits of experimental data for Y. fsh,max ≡ fmax(Φ,α)
is a dimensionless universal function that has been computed using
the exact theory of capillary bridges and tabulated; see Table C1 in
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Appendix C. Using the tabulated data and four-point interpolation,
one can easily compute fmax(Φ,α) for every values of Φ and α (details
in Appendix C). As usual, α is the contact angle measured across
the bridge phase; by definition, the dimensionless bridge volume is
Φ = Vbridge / (2Vp) = Vi / Vp, where Vp is the particle volume and
Vi = Vbridge / 2 is the volume of the “inner liquid” in the half-bridge
(Fig. 11a). In other words, Φ is the bridge volume scaled with the
volume of the two adjacent particles.

To find a relation betweenΦ and the experimental volume fraction,
Si, wewill assume that capillary bridges are formed between each given
particle and all its nearest neighbors. If n is the average number of
nearest neighbors, then Φ and ϕi/ϕp are related by the expression:

nΦ ¼ ϕi

ϕp
i ¼ w; oilð Þ ð31Þ

where ϕi is the volume fraction of the inner liquid in the dispersion. In
view of Eq. (1), we have:

Si ≡
ϕi

ϕw þ ϕoil
¼ ϕi

1−ϕp
¼ ϕi=ϕp

1=ϕp−1
ð32Þ

Combining Eqs. (31) and (32),we obtain the following relationships:

Si ¼
nΦ

1=ϕp−1
⇔ Φ ¼ 1−ϕp

nϕp
Si i ¼ w;oilð Þ ð33Þ

When comparing theory and experiment, Eqs. (2) and (33) are used
to calculate n and Φ from the experimental quantities ϕp and Si, and
then the yield stress is calculated from Eq. (30).

Note that τ and Y in Eqs. (27) and (28) represent local shear stresses.
In contrast, the shear stress registered by the rotational rheometer is an
integral average effect of the shear stresses acting on the whole area
of the rotating disk (Fig. 7a). The relation between the theoretical and
experimental yield stress is considered in Section 5.1.

In Eq. (28), the theoretical value of Y can be estimated by
substituting fmax = fsh,max from Eq. (23). However, the series expan-
sions used to derive Eq. (23) have a limited validity. In Section 4.3,
to ensure correct quantitative description of the yield stress in capil-
lary suspensions, fmax is calculated using the exact theory of capillary
bridges.

4.3. Exact numerical results

The computational procedure based on the exact theory of capillary
bridges between spherical particles is described in Appendix A. It
allows one to calculate the meniscus profile z(r) at given values
of three parameters, which can be (i) rc, h, and α, or (ii) h, Φ and α.
Illustrative meniscus profiles z(r) at various rc values and fixed α =
70° and h = 0 (pendular rings) are shown in Fig. S2 in Appendix B.
In addition, meniscus profiles z(r) at various h values, fixed Φ and
two fixed contact angles, α= 12° and 70°, are shown in Fig. S3. We re-
call that α = 12° and 70° are the contact angles of our hydrophobized
silica particles at the water/SBO and water/C16 interfaces, respectively;
see Section 3.1.

The computational procedure yields also the capillary-bridge force,
the shear response force and the maximal value of the latter force,
which is related to the yield stress; see Eq. (30). The dimensionless
capillary-bridge force, is an universal function that depends on three
parameters, f = f ð~h ,Φ,α). Here, ~h ¼ h=ð2aÞ is the dimensionless
surface-to-surface distance between the two particles; as before, a is
the particle radius andΦ= Vi / Vp is the dimensionless bridge volume;
see Fig. 11a.

Fig. 12a shows theoretical curves f vs. Φ for pendular rings (~h = 0)
and for various values of α. Physically, each curve shows the variation
of capillary force upon increasing the volume of the liquid bridge at
fixed contact angle, α. At Φ → 0, we have f ≈ cosα, as established by
Willett et al. [69]. With the rise of Φ, the dimensionless capillary force
f markedly decreases. Having in mind that Soil ∝ Φ, see Eq. (33), it may
seem that the last result is in contradiction with the experimental fact
that the yield stress Y increases with the rise of Soil (see Figs 8 and 9).
Note, however, that Y is proportional to fmax = max(fsh), rather than
to f, see Eq. (30). In turns, fmax (unlike f) increases with the rise of Φ;
see below.

Figs. S4a and b in Appendix B show theoretical curves f vs. ~h for
various values of Φ and for two fixed contact angles, α = 12° and 70°.
At α = 12°, f monotonically decreases with the rise of ~h , i.e. with
the bridge extension. In contrast, at α = 70°, f exhibits a non-
monotonic dependence on ~h, with a maximum. For both contact angles,
f decreaseswith the rise ofΦ for the smaller ~h (the tendency in Fig. 12a),
whereas f increases with the rise of Φ for the greater ~h (the opposite
tendency).

Upon shear deformation characterized by the angle γ (Fig. 10),
the length of the bridge h increases. These two quantities (γ and h)
are related (see Appendix A):

tanγ ¼ ~hþ 1
� �2

−1

 �1=2

; ~h ¼ h= 2að Þ ð34Þ

The dimensionless force of rheological response upon shear defor-
mation is an universal function, fsh = fsh(γ,Φ,α). Theoretical curves
for fsh vs. γ at various values of the dimensionless bridge volume Φ
and at two fixed contact angles, α = 12° and 70°, are shown in
Figs 12b and c, respectively. Each of these curves has a rightmost
endpoint, corresponding to a certain value of γ. For greater values of γ
(or ~h), the system of equations in Appendix A has no solution, because
either the limitation r0 N 0 is violated, or the dimensionless volume of
the liquid in the bridge becomes greater than the given value of Φ; see
Fig. 11a.

The dashed portions of the curves in Fig. 12c correspond to bridge
profiles with inflection points, which could be sources of instability
[73,74]. Note however, that the maxima of the fsh-vs.-γ curves in this
figure are in the region of profiles without inflection points. In other
words, the yield stress Y is not related to the presence of inflection
point on the drop profile. (The bridge profiles corresponding to the
curves in Fig. 12b do not have inflection points at all.)

In Fig. 12d we have plotted the maxima of the fsh vs. γ curves, like
those in Figs. 12b and c, vs. the dimensionless bridge volume,Φ, for var-
ious values of the contact angle α. In general, fmax= fmax(Φ,α) is an uni-
versal function, which determines the yield stress, see Eq. (30), andwill
be used to fit the experimental data (Section 5). For this reason, the
function fmax(Φ,α) is tabulated in Appendix C, Table C1. This table can
be used as a database for computation of fmax(Φ,α) by using a four-
point interpolation formula, as explained in Appendix C. For fast esti-
mates of fmax(Φ,α), one can use the approximate equation (of accuracy
better than 0.6%):

fmax Φ;αð Þ ≈ 0:1763þ 0:0912φþ 0:0165φ2� �
cos α for α ≤ α0

α0 degð Þ ¼ 51:5−19:5φ−2:5φ2; φ ¼ log10Φ %ð Þ
ð35Þ

0.01% ≤Φ ≤ 10%;Φ is related to Si by Eq. (33); see Fig. S7b and Table B1
in Appendix B. The substitution of Eq. (35) into Eq. (30) gives an ap-
proximate analytical formula for estimating the yield stress, Y.

The theoretical curves in Fig. 12d show that fmax increases with the
rise of Φ, in agreement with the tendency of the experimental curves
in Figs. 8 and 9. For α b 20°, fmax weakly depends on the contact angle,
α. However, for α N 20°, fmax markedly decreases with the rise of α
and becomes about three times smaller at α = 70°; see also Fig. S7a in
Appendix B, which shows the dependence of fmax on α at fixed Φ.
Fig. S7b compares the approximate Eq. (35) with the exact function
fmax(Φ,α). At not too high values of Φ and α, in view of Eqs. (30) and



Fig. 12. Theoretical dependences calculated by using the exact capillary bridge theory. (a) The dimensionless capillary-bridge force, f= Fcap/(2π aσ), vs. the dimensionless bridge volume,
Φ, for h=0(pendular rings) anddifferent values of contact angle,α. (b) Thedimensionless force of shear response, fsh= fcapsinγ, vs. the shearing angle,γ, atα=12° for differentΦ values.
(c) fsh vs. γ at α=70° for differentΦ; the dashed portions of the curves correspond to bridges with inflection points. (d) Plot of the maximal value of fsh, denoted fmax, vs.Φ for different
contact angles, α.
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(35) we have Y ∝ f0(Φ)cosα, as stated in the empirical expressions for
Y cited in the literature [3,9,14,16,25]; Eq. (35) gives the explicit form
of f0(Φ).
Fig. 13. The calculated dimensionless force of shear response, fsh, vs. the dimensionless length o
particle have been assumed. The dash-dotted lines correspond to overlap of the bridges on the
To verify whether neighboring capillary bridges could overlap
during the shear deformation, as an example let us consider the
simple cubic lattice with 6 bridges per particle shown in Fig. 10.
f the bridge, ~h= h / (2a), for differentΦ values: (a) α=12°; (b) α=70°. Six bridges per
particle surface.



Fig. 14. (а) Sketch of a plane-parallel zone of deformation near the upper rotating disk of
the rheometer; the shear strain is zero in the immobile zone. (b) Relation between the
rotation angle ψ and the shearing angle, γ, for the uppermost layer of the suspension; lρ
is the displacement and dρ is the thickness of the zone of deformation. (c) Sketch of a
conical zone of deformation.

92 K.D. Danov et al. / Advances in Colloid and Interface Science 251 (2018) 80–96
Two neighboring bridges will not overlap if the following relation is
satisfied:

γ þ φc hð Þ þ φc 0ð Þb π
2

ð36Þ

see Figs. 10b and 11a. The central angles φc(h) and φc(0) are calculated
in the course of the computational procedure (see Appendix A). Fig. 13

shows plots of fsh vs. ~h for various fixed values of Φ at two contact
angles: α = 12° and 70°. The portions of the curves that are shown
with dash-dotted lines correspond to shear deformations, for which
the relation in Eq. (36) is violated, so that the two neighboring bridges
overlap. In Fig. 13a (α = 12°), for Φ = 2%, 4% and 6% the maxima of
the curves belong to the overlap zone, whereas in Fig. 13b (α = 70°)
only the curve with Φ = 4% belongs to the overlap zone. In the case of
overlap, the system undergoes a transition from pendular to funicular
state, and the theoretical dependences calculated assuming pendular
state are not valid. Thedata presented in Fig. 13 indicate that a transition
from pendular to funicular state is possible in the investigated suspen-
sions upon shear deformations. Hence, such a transition is a possible
reason for the deviations of the points from the theoretical lines in
Figs. 8 and 9 at the greatest Soil values.

5. Theoretical interpretation of rheological data

5.1. The experimental yield stress

The rotational rheometer measures themoment of force (torque)M
acting on the rotating disk; see Fig. 7a:

M ¼ 2π
ZR

0

τzφρ2dρ ð37Þ

Here, (ρ,φ,z) are cylindrical coordinates with z-axis directed along
the rheometer's axis of rotation, and τzφ is the respective component
of the stress tensor, which acts tangentially to the rotating disk. The
mean value of the stress is defined as follows:

τ ¼ 3

R3

ZR

0

τzφρ2dρ ¼ 3M

2πR3 ð38Þ

The above relation is programmed in the rheometer to compute τ
from the experimentally measured M. If τzφ was constant, from
Eq. (38) one would obtain τ = τzφ. The experimental yield stress Y is
identified with the value of τ at the kink of the experimental depen-
dence of ψ vs. τ; see Fig. 7b.

5.2. Models of the deformation zone

As seen in Fig. 7b, the experimental values of ψ at the kinks vary in
the range ψY = 0.01–0.1 (rad), that is ψY = 0.57° − 5.7°. In contrast,
in Fig. 12b the values of the shearing angles corresponding to the max-
ima are considerably larger, in the range γ = 13° − 31°. The possible
explanation of this difference is that the deformation of the suspension
at τ = Y happens only in a certain zone adjacent to the mobile disk,
while the rest of suspension remains immobile; see e.g. Fig. 14a. Similar
fluidization in the vicinity of a rotating disk was observed by Buttinoni
et al. in model experiments with ordered monolayers of colloidal parti-
cles at liquid interfaces for both steady [84] and oscillatory [85] rotation.
Depending on the shape of the deformation zone, at least two models
are possible, as follows.

Model A: Plane-parallel zone of deformation. In this case, it is assumed
that the shape of the deformation zone is induced by the geometry of the
experimental setup, viz. two parallel plates. The zone of deformation is a
planar layer of thickness d adjacent to the mobile disk of the rheometer;
see Fig. 14a. In such a case, the local displacement of the particles in the
uppermost layer of the suspension (supposedly attached to the rotating
disk) is

lρ ¼ 2ρ sin
ψ
2

ð39Þ

Then, the true shearing angle, γ, is given by the equation (see
Fig. 14b):

tanγ ¼ lρ
d
¼ 2ρ

d
sin

ψ
2

ð40Þ

Note that at given ψ, the displacement angle γ depends on the radial
distance ρ. Next, in view of Eqs. (27)–(29) and (38) the experimental
yield stress is determined by the expression:

Y ¼ 2σ
a

cgϕ2=3
p max Gð Þ; G ≡

3

R3

ZR

0

f sh γð Þρ2dρ ð41Þ



Fig. 15. Theoretical dependences of fmax (conical deformation zone) and Gmax (plane-
parallel deformation zone) on the dimensionless bridge volume, Φ, for three different
values of the contact angle, α.

Table 2
Comparison of parameter values for two of the experimental curves in Fig. 7b.

Parameter Soil = 0.72% Soil = 2.68%

Φ (%) 0.2314 0.8613
hY/(2a) 0.0262 0.0540
γY (°) 12.97 18.41
ψY (°) 1.278 0.756
β (°) 5.531 2.270
lR (mm) 0.446 0.264
dR (mm) 1.937 0.793
NR 510 209
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where R is the radius of the rheometer's disk, and the relation “max”
is with respect to the rotation angle ψ. Using the substitution y =
(2ρ/d)sin(ψ/2), along with Eq. (40), we bring the last integral in the
form:

G uð Þ ¼ 3
u3

Zu

0

f sh arctan yð Þð Þ y2dy; u ≡
2R
d

sin
ψ
2

ð42Þ

G(u) is an universal function of u. It can be calculated by integrating
the theoretical curves for fsh(γ), like those in Fig. 12b and c, with γ =
arctan(y). The calculations show that the functionG(u) has amaximum,
Gmax, corresponding to a certain value u= umax. Then, the yield stress, Y,
is determined by Eq. (41) with max(G) = Gmax and, in view of Eq. (42)
the yield strain can be found from the expression:

sin
ψY

2
¼ d

2R
umax ð43Þ

G(u) defined by the integral in Eq. (42) is a universal function of u,
where the function fsh is to be calculated for a pair of particles connected
with a capillary bridge as explained in Appendix A. For this reason, the
height of the maximum, Gmax, and the position of the maximum, umax,
are independent of the thickness of the deformation zone, d (see
Fig. 14a). Hence, in view of Eq. (41) the yield stress is independent of d
and represents a characteristic of the elastic limit of the investigated
capillary suspension. In contrast, the yield strain ψY depends on d; see
Eq. (43). Dependencies of Gmax on Φ calculated for various values of
the contact angle α are shown in Fig. S6 in Appendix B. Qualitatively,
these dependences resemble the curves for fmax in Fig. 12d.

Model B: Conical zone of deformation. In reality, the border between
the zone of deformation and the immobile zone is spontaneously
established in the course of deformation. In such a case, at ψ = ψY mo-
bile would be those particles, for which the applied shear force is N fmax,
and immobile would be the particles, for which fsh b fmax; see Fig. 11b.
Hence, we have fsh = fmax at the border of the deformation zone. Here,
we will prove that in this case the border has a conical shape, as
shown in Fig. 14c.

For a conical border, the thickness of the zone of deformation, d(ρ),
increases proportionally to the radial coordinate ρ:

d ρð Þ ¼ ρ tanβ ð44Þ

where β = const. is the angle of the cone in Fig. 14. Then, in view of
Eq. (40) we obtain

tanγ ¼ 2ρ
d ρð Þ sin

ψ
2
¼ 2sin ψ=2ð Þ

tanβ
¼ const: ð45Þ

i.e. the right-hand side of Eq. (45) is independent of ρ. Then, γ is also
independent of ρ and from Eq. (41) we derive:

max Gð Þ ¼ max
3

R3

ZR

0

f sh γð Þρ2dρ

2
4

3
5

¼ max f sh γð Þ 3

R3

ZR

0

ρ2dρ

2
4

3
5 ¼ max f sh γð Þ½ � ¼ fmax

ð46Þ

see, e.g., Figs. 12 b and c. Consequently, for a conical border of the
deformation zone, Eq. (41) becomes identical with Eq. (30). The maxi-
mal force fmax characterizes the interaction between two particles
connected by a capillary bridge. Consequently, fmax is independent
of the cone angle β. Hence, in view of Eq. (30) the yields stress Y is
also independent of the shape of the deformation zone characterized
by β. In other words, Y characterizes the elastic limit of the investigated
capillary suspension. In contrast, in view of Eq. (45) the yield strain ψY

depends on β:

sin
ψY

2
¼ 1

2
tan βð Þ tanγY ð47Þ

The cone angle is expected to be relatively small, tanβ b 1 (Fig. 14c).
Then, Eq. (47) provides an explanation of the fact that the experimental
rotation angle ψY (Fig. 7b) is essentially smaller than the theoretical
yield strain γY, corresponding to the maxima of the curves in Fig. 12b.

Comparison of the two models. Fig. 15 compares plots of Gmax vs. Φ
and fmax vs. Φ at three values of the three-phase contact angle, α = 0,
12° and 70°. The calculated curves show that fmax is greater than Gmax,
but the difference between these two quantities is not so considerable.
In other words, the experimental data could be fitted by both models
A and B (Fig 14a and c) by varying the geometrical coefficient cg in
Eqs. (30) and (41). Because in reality the border between the zone of
deformation and the immobile zone is established spontaneously in
the course of deformation, we believe that model B is more realistic.
Correspondingly, the theoretical curves in Figs. 8 and 9 have been
drawn by using the model B.

5.3. Theory vs. experiment and discussion

To illustrate the magnitudes and ranges of variation of the system's
parameters, in Table 2 we compare their values for two of the experi-
mental curves in Fig. 7b corresponding to Soil = 0.72% and 2.68% for
bridges from SBO in water. For both suspensions, the contact angle
is α = 12°; the particle radius is a = 1.9 μm and the particle volume
fraction is ϕp = 40% and the mean number of bridges per particle
is n = 4.67; see Eq. (2). The values of Φ calculated from Eq. (33) are
smaller than those of Soil (Table 2) The values of the shearing angle
at the elastic limit, γY, correspond to the maxima of the respective



Fig. 16. (a) Comparison of thefits of experimental data for the yield stress, Y vs. Soil, for SBO
and C16 capillary bridges in water. (b) Plots of the geometrical coefficient, cg, vs. the
particle volume fraction, ϕp, determined from the fits; α is the contact angle across the
bridge (oil) phase.

94 K.D. Danov et al. / Advances in Colloid and Interface Science 251 (2018) 80–96
theoretical curves, like those in Fig. 12b. The dimensionless surface-to-
surface distance between two particles, ~hY= hY / (2a), which character-
izes the length of the bridge at the elastic limit, is related with γY by
Eq. (34). As seen in Table 2, hY is small (2.6%–5.4%) in comparison
with the particle diameter 2a.

The values of the rotation angle at the elastic limit, ψY, are deter-
mined from the experimental curves in Fig. 7b. As seen in Table 2, we
have ψY ≪ γY. Such a difference between the apparent and actual strain
implies that only a part of the suspension is subjected to deformation;
see Fig. 14.

Furthermore, adopting the model with conical deformation zone
(model B; Fig. 14c), from the values of ψY and γY we estimate the cone
angle β using Eq. (47). As seen in Table 2, β is greater for the softer sus-
pension with smaller content of inner phase, Soil = 0.72%. The displace-
ment at the disk periphery, lR, is calculated from Eq. (39) with ρ = R
andψ=ψY. The thickness of thedeformation zone at thedisk periphery,
dR = d(R) is calculated from Eq. (44). For the softer suspension with
Soil = 0.72% the value of dR is only slightly smaller than the distance be-
tween the two disks of the rheometer (the gap distance), which has
been 2mmin our experiments. The last row in Table 2 gives the number
of particle layers in the zone of deformation at the disk periphery esti-
mated as NR = dR/(2a), where 2a=3.8 μm is the mean particle diame-
ter. The obtained values NR = 510 and 209 mean that the deformation
zone contains a considerable number of particle layers, so that the
capillary suspension can be treated as a continuous medium.

The theoretical curves in Figs. 8 and 9 are drawn in accordance with
Eq. (30) using the experimental values of σ, a,ϕp andα, and the compu-
tational procedure fromAppendix A. The values on themean number of
bridges per particle, n, given in these figures are estimated from Eq. (2).
Good agreement was achieved by varying only a single adjustable pa-
rameter, cg. To compare themagnitudes of the yield stress Y for the sus-
pensions with capillary bridges from C16 and SBO, in Fig. 16a we have
collected the best fits from Figs. 8, 9, and S8 (the latter in Appendix B).
One sees that at the same particle volume fraction, ϕp, the yield stress
is higher for the suspensions with SBO. This result might seem surpris-
ing because the water/C16 interfacial tension is 52 mN/m vs. only
30 mN/m for water/SBO. However, in this case the effect of contact-
angle difference (70° vs. 12°) is stronger and predominant, and leads
to lower fmax and yield stress Y, for the suspension with higher contact
angle α; see Eq. (30) and Fig. S7a in Appendix B.

As already mentioned, the geometrical coefficient cg was deter-
mined as an adjustable parameter from the fits. In Fig. S9, it is illustrated
how the variation of cg influences the comparison theory – experiment.
In Fig. 16b, the values of cg are plotted vs. ϕp for all studied systems.
In the case of SBO bridges, cg increases linearly with ϕp. In the case of
C16 bridges, cg is smaller than that for SBO bridges at the smaller ϕp,
but increases exponentially at the higher ϕp values. The parameters of
the respective fits with empirical curves are shown in Fig. 16b.

The obtained cg-vs.-ϕp dependencies call for discussion. Our theoret-
ical model (where cg is a purely geometrical parameter) corresponds to
an idealized situation that can be summarized as follows:

(i) The whole amount of the inner liquid phase is split to capillary
bridges of identical volumes formed around all contact points
of neighboring particles.

(ii) The solid particles are uniformly distributed in the outer liquid
phase.

(iii) The capillary bridges, connecting a given particle with neighbor-
ing particles, do not overlap on the particle surface.

Of course, deviations from the above idealized picture are possible
because the dispersing of the bridge phase to small drops and their
transformation to liquid bridges between neighboring particles is a
dynamic process dependent on many factors, so that its result could
be different from the above idealized picture. In particular, the number
of closest neighbors of a given particle (the coordination number), n,
could be greater than the number of capillary bridges per particle, m,
i.e. n ≥ m.

For example, in the case of bridges from C16 a competition of two
factors acting in the opposite directions takes place. First, the relatively
high value of the three-phase contact angle, α=70° (vs. α=12° in the
case of SBO), is related to a lower gain of surface energy upon attach-
ment of an oil droplet (a potential capillary bridge) to the particle sur-
face. In other words, the formation of capillary bridges is energetically
less favorable in the case of C16 as compared to SBO. Consequently, it
might happen that not all possible capillary bridges from C16 are
formed, and this might explain the smaller values of cg at the lower ϕp

in Fig. 16b.
Second, C16 has a considerably lower viscosity than SBO, η=3.0 vs.

50 (mPa·s). At a given Soil, this leads to the formation of a greater num-
ber of smaller emulsion drops in the case of SBO [86]. This effect is
strengthened at the greater ϕp, insofar as the higher particle volume
fractions lead to a higher effective viscosity of the outer liquid phase
[87,88]. The higher concentration of emulsion droplets raises the prob-
ability for bridge formation during the stirring of the dispersion. This
effect could explain the significant increase of cg at the higher ϕp values
(Fig. 16b).

Another issue that deserves discussion is the effect of particle
polydispersity. In some two-dimensional systems, the capillary forces
could lead to separation of the bigger particles from the smaller ones
[89]. However, this is unlikely to happen in the investigated capillary



95K.D. Danov et al. / Advances in Colloid and Interface Science 251 (2018) 80–96
suspensions, because the dispersion is initially subjected to intensive
stirring, and then it quickly solidifies. This leads to random spatial dis-
tribution of particles of different sizes. One could expect that the yield
stress in a suspension with moderately polydisperse particles is close
to the yield stress in a suspension of monodisperse particles of diame-
ter equal to the mean diameter of the polydisperse particles. Similar
behavior has been observed with monolayers from charged colloid
particles: the surface pressure vs area isotherms obey the same power
law for monodisperse and polydisperse particles [79].

Contact angle hysteresis is usually present at solid surfaces, the
absence of hysteresis being exclusion [90–93]. Hysteresis is present
not only at rough and heterogeneous surfaces, but also at smooth
and homogeneous surfaces [90,93]. For contact angles in the range
0° b α b 30°, the dependence of the yield stress, Y, on angle α (and its
hysteresis) is expected to be weak; however, for 30° b α b 90° this de-
pendence could be stronger; see Fig. 12d. Because the yield stress is
related to the bridge extension, a better agreement between theory
and experiment is expected if α is identified with the receding angle
with respect to the bridge phase.

6. Conclusions

Suspensions of hydrophobic particles in water or hydrophilic parti-
cles in oil possess the remarkable property to solidify upon the addition
of minimal amount of a second liquid that preferentially wets the
particles. The hardening is due to the formation of capillary bridges
(pendular rings), which connect the particles. Here, we reviewed
works on the mechanical properties of such suspensions and related
works on the capillary-bridge force, and presented new rheological
data for the weakly studied concentration range 30–55 vol% particles.
These capillary suspensions exhibit quasi-elastic behavior when sub-
jected to small shear deformations (Fig. 7). Their mechanical strength,
characterized by the yield stress Y, was measured at the elastic limit
for various volume fractions of the particles and of the preferentially
wetting liquid. In addition, a quantitative theoretical model was devel-
oped, which relates Y with the maximum of the capillary-bridge force,
projected on the shear plane (Fig. 11b). A semi-empirical expression
for the dependence of the number of closest neighbors, n, on the particle
volume fraction, ϕp, was established and applied to estimate the mean
number of capillary bridges per particle; see Eq. (2) and Fig. 3.

The model agrees very well with the experimental data (Figs. 8
and 9) and gives a quantitative description of the yield stress Y, which
increases with the rise of interfacial tension, σ, and with the volume
fractions of particles, ϕp, and capillary bridges, Φ, but decreases with
the rise of particle radius, a, and contact angle α; see Eq. (30). In partic-
ular, the shear stress is proportional to the projection of capillary force
on the shear plane, Fcapsinγ, where γ is the shearing angle. The capillary
force decreases with the bridge extension (with the rise of γ), whereas
sinγ increases, so that their product, Fcapsinγ, has amaximum value at a
certain strain γ= γY, which determines the limit of the elastic response
of the system, that is the yield stress, Y. The calculation of Fcap for the ex-
tended bridge is based on the exact theory and numerical calculation of
the capillary bridge profile at various bridge volumes and contact
angles. For easier computation of the yield stress, the numerical results
are presented as a database in Appendix C. An approximate analytical
formula for Y is also derived; see Eq. (35).

The comparison of the theoretical and experimental strain at the
elastic limit reveals that the fluidization of the capillary suspension
takes place only in a deformation zone of thickness up to several hun-
dred particle diameters, which is adjacent to the mobile plate of the
rheometer (Fig. 14 and Table 2). The experimental results reported in
this article refer towater-continuous suspensionwith hydrophobic par-
ticles and oily capillary bridges. The comparison of data for bridges from
soybean oil (SBO) and hexadecane (C16) surprisingly indicate that the
yield strength is greater for the suspension with SBO despite its lower
interfacial tension against water. The result can be explained with the
different contact angles of the two oils in agreementwith the theoretical
predictions. In a subsequent study, we plan to extend the present
analysis to the inverse system, viz. oil-continuous suspension with
hydrophilic particles and aqueous capillary bridges.

We hope that the results reported here will contribute for a better
understanding, quantitative prediction and control of the mechanical
properties of three-phase capillary suspensions particles/oil/water, or
more generally, solid/liquid/liquid.
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Appendices A, B and C. Supplementary data

Appendix A “System of equations and computational procedure”;
Appendix B “Additional experimental and computational results”, and
Appendix C “Database and interpolation formula for calculating the
yield stress”, are presented as Supplementary material associated with
this article, which can be found in the online version, at https://doi.org/
10.1016/j.cis.2017.11.004. Therein, the reader could find the tabulated
function fmax(Φ,α), which is appended as an electronic Excel file.
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Appendix A. System of equations and computational procedure 

1. Basic equations 

 For the computations, it is convenient to scale all quantities with dimension of length 
using the particle radius, a; the dimensionless quantities will be denoted by tilde: 
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For the meaning of the geometrical parameters, see Fig. 11a in the main text.  

Here, our goal is to compute (i) the profile of the capillary bridges; (ii) the 

dimensionless capillary force,  f hf ~(= ,Φ,α); (iii) the dimensionless shear-response force, 

fsh = fsh(γ,Φ,α), and the maximum value of fsh with respect to γ: fmax = fsh,max(Φ,α). As in the 
main text, h is the surface-to-surface distance between the two spherical particles connected by 
the capillary bridge; Φ = Vi/Vp is the dimensionless bridge volume, see Fig. 11a in the main 
text; α is the three-phase contact angle measured across the bridge phase, and γ is the shearing 
angle (Fig. 10b). 

 In view of Eq. (A.1), the dimensionless form of Eqs. (8)–(12) in the main text is: 

2/1
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At the contact line on the particle surface, (r, z) = (rc, zc), Eqs. (A.2)–(A.3) acquire the form: 
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The volume confined between the surface of the capillary bridge and the two horizontal planes 
z = 0 and z = zc (see Fig. 11a), is:  
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Likewise, the area of the capillary meniscus of the bridge is: 
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Next, we introduce dimensionless variables in accordance with Eq. (A.1), express the 
derivative xz d/~d  from Eq. (A.3) and sinθ from Eq. (4) in the main text. Thus, we obtain: 
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From Fig. 11a, we find the following relations between the geometrical parameters: 

cccccc    , cos
2

   , sin ϕαθϕϕ +=−+== ααhzαr  (A.12) 

In view of Eq. (A.1), the dimensionless form of Eq. (A.12) is: 

cccccc    , cos1~~   , sin~ ϕαθϕϕ +=−+== hzr  (A.13) 

The volume of the liquid in the upper part of the capillary bridge, Vi, is equal to the difference 

between Vc and the respective part of the particle volume (Fig. 11a): 
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Then, the dimensionless bridge volume, Φ, can be expressed in the form: 

)~~3()~~(
4
1

4

~3
4
3

c
2

c
c

3
i

p

i zhhzV
a

V
V
V

−+−−==≡Φ
pp

 (A.15) 

What concerns the shear deformation we will assume that in the initial state the surfaces of the 

two particles touch each other (Fig. 10). Then, Eq. (20) in the main text with L = 2a and 

ε = tanγ acquires the form: 

aah 2)tan1(2 2/12 −+= γ  (A.16) 

From Eq. (A.16) we obtain an expression for determining γ: 

2/12 ]1)1~[(tan −+= hγ  (A.17) 

Finally, in accordance with Eq. (17) and (A.5) 

γγ sin~)1(sin 0sh rpff −=≡  (A.18) 
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2. Computational procedure for the bridge profile 

In this case, our goal is to compute the function )~(~~ rzz =  for a capillary bridge that 

connects two spherical particles of radius a, separated at a surface-to-surface distance h. The 

input parameters are hr ~,~
c  and α. The steps of the computational procedure are as follows: 

1) From Eq. (A.13), we calculate ϕc, c
~z and θc. 

2) We give a tentative value to 0
~r  to start a procedure for determining 0

~r  by the 

bisection method. 

3) From Eqs. (A.4) and (A.6), we determine p and xc. 

4) With the value of c
~z  from point 1, we determine 0

~r  by solving Eq. (A.7) numerically 

using the bisection method. The integral in Eq. (A.7) is calculated numerically using the 
Simpson method. 

5) With the determined value of 0
~r , the meniscus profile )~(~~ rzz =  is computed from 

Eq. (A.3), using the Simpson method to calculate the integral numerically. 

 

3. Computational procedure for hf ~( ,Φ,α),  fsh(γ,Φ,α) and fmax(Φ,α) 

The input parameters are ,~h Φ and α. The steps of the computational procedure are as 

follows: 

1) We give a tentative value to c
~r  to start a procedure for determining c

~r  by the 

bisection method. 

2) From Eq. (A.13), we calculate ϕc, c
~z and θc. 

3) We give a tentative value to 0
~r  to start a procedure for determining 0

~r  by the 

bisection method. 

4) From Eqs. (A.4) and (A.6), we determine p and xc. 

5) With the value of c
~z  from point 1, we determine 0

~r  by solving Eq. (A.7) numerically 

using the bisection method. The integral in Eq. (A.7) is calculated numerically using the 
Simpson method. 

6) With the determined value of 0
~r , we calculate c

~V  from Eq. (A.10). 

7) For each given Φ, we determine c
~r  by solving Eq. (A.15) numerically using the 

bisection method. 

8) The dimensionless capillary force f is calculated from Eq. (A.5). 
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9) The shearing angle γ and the dimensionless shear-response force fsh are calculated 
from Eqs. (A.17) and (A.18). 

10) fmax is determined as the maximal value of fsh.  

 

 

Appendix B. Additional experimental and computational results 

 

 

Fig. S1. SEM image of the used silica particles. 

 

 

 

Fig. S2. Calculated profiles of capillary bridges, z(r), for increasing bridge volume; the contact 
angle is fixed, α = 70º, whereas the position of the contact line, characterized by its radius, rc, 
varies; r and z are cylindrical coordinates; the bridge connects two identical spherical particles 
of radius a, which are in a contact, h = 0. All profiles do not possess inflection points. For all of 
them, the capillary-bridge force, Fcap, is attractive. The rightmost profile corresponds to sphere 
with Fcap = 0.   
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Fig. S3. Calculated profiles of a capillary bridge of fixed volume at different degrees of 
extension, i.e., at different distances, h, between the surfaces of two identical particles of 
radius a. (a) α = 12o and Φ = 0.25. (b) α = 70o and Φ = 0.041; the dashed profiles possess 
inflection point and could be unstable [73,74]. The leftmost red curves correspond to the 
greatest possible h; for greater h the Laplace equation has no solution.  
 
 

 

 

 

 

 

  

 

Fig. S4. Calculated dependences of the dimensionless capillary force, fcap = Fcap/(2π aσ), on 
the dimensionless surface-to-surface distance between the particles h~ = h/(2a), at different 
values of the dimensionless bridge volume, Φ, and for contact angles: (a) α = 12o. (b) α = 70o; 
the dashed portions of the lines correspond to unduloids with inflection point, which could 
correspond to unstable bridges [73,74]. 

  

(a) (b) 

(b) (a) 
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Fig. S5. Calculated dependences of the dimensionless force of shear response, fsh = fcapsinγ, on 
dimensionless surface-to-surface distance between the particles h~ = h(2a) at different values of 
the dimensionless bridge volume, Φ, and for contact angles: (a) α = 12o. (b) α = 70o; the 
dashed portions of the lines correspond to unduloids with inflection point, which could 
correspond to unstable bridges [73,74]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S6. Plane-parallel deformation zone: Calculated plot of the maximal dimensionless shear 
force, Gmax, vs. the dimensionless bridge volume, Φ, for various values of the contact angle, α. 

  

(a) (b) 
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(a) 

 

 

 

 

 

 

 

 (b) 

 

 

 

 

 

 

 

(c) 

 

 

 

 

 

 

 

Fig. S7. Plots of the computed maximal value of the dimensionless force of shear response, 
fmax, (a) versus the contact angle α and (b) versus cosα, for various values of the dimensionless 
bridge volume Φ; the dashed straight lines are drawn according to the equation fmax(Φ,α) = 
f0(Φ)cosα; see Table B1. (c) Interpolation of the data for f0(Φ) in Table B1. 
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Table B1. Data for the dashed straight lines in Fig. S7b: fmax(Φ,α) ≈ f0(Φ)cosα for α ≤ α0. 

Φ (%) f0(Φ) α0 (deg) cosα0 (deg) 
0.01 0.05968 80.5 0.165 
0.1 0.1021 68.5 0.367 
1 0.1758 51.5 0.623 
10 0.2842 29.5 0.870 

An accurate interpolation of the data for f0(Φ) in Table B1 yields (see Fig. S7c):  

(%)log,5.25.195.51(deg)

forcos)0165.00912.01763.0(),(

10
2

0

0
2

max

Φ=−−=

≤++≈Φ

ϕϕϕa

aaaϕϕaf
 (B.1) 

where 0.01% ≤ Φ ≤ 10%. Eq. (B.1) is appropriate for fast estimates. The tabulated exact 
function fmax(Φ,α) is given in Table C1 (Appendix C). 

 

 

 

 

 

 

 

 

 

Fig. S8. Suspension with capillary bridges from soybean oil (SBO) in water: Plot of the 
measured yield stress, Y, vs. the relative oil volume fraction, Soil, for hydrophobized silica 
particles of contact angle α = 12º across the SBO at particle volume fraction φp = 35 %; the 
mean number of capillary bridges per particle, n, is calculated from Eq. (2) in the main text. 
The solid line is the theoretical curve calculated with geometrical coefficient cg =1.5. 
 
       For the system corresponding to Fig. S8 (capillary bridges from SBO in water, φp = 35 %), 

we have only a single set of data, because the particles from the used batch were over, but the 

particles from the new batch showed a systematic deviation (lower Y) probably due to a 

different contact angle. Despite the greater scattering of the points in Fig. S8 (as compared to 

Fig. 8 in the main text), the theoretical curve is in agreement with the overall tendency of the 

experimental data in Fig. S8. 

9 
 



 

 

 

 

 

 

 

 

 

 

Fig. S9. Illustration of the effect of geometrical parameter cg on the calculated theoretical 
curves: Plots of the yield stress, Y, vs. Soil for SBO capillary bridges at α = 12o and φp = 45%. 
The best fit corresponds to cg ≈ 2. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. S10. Plot of experimental data for the yield stress Y vs. the width of the gap between the 
two parallel disks of the rheometer for various particle volume fractions, φp, at fixed relative 
volume fraction of SBO, Soil = 2 %.  
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       As an illustration, Fig. S9 (capillary bridges from SBO in water, φp = 45 %) shows 

theoretical curves calculated for five different values of the geometrical coefficient cg in 

Eq. (32). The curve with cg = 2 provides the best fit. 

       The model of the deformation zone in its two versions (plane-parallel and conical 

deformation zone) predicts that the yield stress Y has to be independent of the geometry of the 

deformation zone, whereas the yield strain ψY depends on the geometry of the deformation 

zone characterized by the parameter d or β (see Figs. 14a and 14c in the main article and the 

related text). This theoretical prediction means that Y has to be independent of the gap distance 

(the distance between the two parallel disks of the rotational rheometer). This prediction is 

verified in Fig. S10.  

 The data in Fig. S10 indicate that Y really exhibits a tendency to level off to a constant 

value for gap distance greater than 1–2 mm. At shorter gap distances, Y strongly increases. In 

terms of the conical model (Fig. 14c) this could be interpreted as a contact of the zone of 

deformation (of its outer part) with the lower (fixed) disk, where local wall-slip could take 

place. The implication from this experiment (provoked by the comparison of theory and 

experiment) is that before carrying out systematic measurements, one should check the 

dependence of the yield stress Y on the gap distance and to work with gap distances from the 

plateau region (Fig. S10). In our systematic measurements, the gap distance was set 2 mm, 

which is in the beginning of the plateau region. Hence, we could expect that our data for the 

yield stress, Y, are not essentially influenced by the geometry of the experimental cell. 

 

Appendix C. Database and interpolation formula for calculating the yield stress 

 To calculate the yield stress from Eq. (33) in the main text, one needs the values of the 

universal function fmax(Φ,α). This function has been calculated numerically using the exact 

theory of the capillary bridges, as explained in Appendix A, and tabulated in Table C1 (see the 

next page). The data in Table C1 (available also as an attached Excel file) can be used as a 

database for calculating fmax(Φ,α) for given values of Φ and α. Because Φ varies by orders of 

magnitude, it is convenient to work with the quantity ϕ = log10Φ. 
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 If ϕ belongs to the interval ϕ1 ≤ ϕ ≤ ϕ2 and α belongs to the interval α1 ≤ α ≤ α2, 

where ϕ1, ϕ2, α1 and α2 are values given in Table C1, then fmax(ϕ,α) can be calculated from 

the following four-point interpolation formula:   

2 2 2 1
1 1 1 2

1 2 1 2 1 2 2 1

1 2 1 1
2 1 2 2

2 1 1 2 2 1 2 1

( )( ) ( )( )( , ) ( , ) ( , )
( )( ) ( )( )
( )( ) ( )( )( , ) ( , )

( )( ) ( )( )

f f f

f f

ϕ ϕ α α ϕ ϕ α αϕ α ϕ α ϕ α
ϕ ϕ α α ϕ ϕ α α
ϕ ϕ α α ϕ ϕ α αϕ α ϕ α
ϕ ϕ α α ϕ ϕ α α

− − − −
= +

− − − −
− − − −

+ +
− − − −

 (D.1) 

Eq. (D.1) can be programmed in the computer and Table C1 (see the next page and the 

appended Excel file) can be used as a database for calculating fmax(ϕ,α), where ϕ = log10Φ. 

(see Table C1 on the next page) 
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Table C1. Database representing the dependence of fmax on the volume fraction Φ and three phase contact angle α. 

 

−log10Φ 
Three phase contact angle, α (deg) 

0 12 18 24 30 36 40 46 52 58 64 70 

4.00 0.0590 0.0577 0.0561 0.0538 0.0509 0.0475 0.0449 0.0406 0.0358 0.0307 0.0253 0.0197 

3.97 0.0600 0.0587 0.0570 0.0547 0.0518 0.0483 0.0456 0.0413 0.0364 0.0312 0.0257 0.0200 

3.94 0.0610 0.0597 0.0580 0.0556 0.0526 0.0491 0.0464 0.0420 0.0370 0.0318 0.0261 0.0203 

3.91 0.0621 0.0607 0.0590 0.0566 0.0535 0.0499 0.0472 0.0427 0.0377 0.0323 0.0266 0.0207 

3.88 0.0631 0.0617 0.0599 0.0575 0.0544 0.0507 0.0480 0.0434 0.0383 0.0328 0.0270 0.0210 

3.85 0.0642 0.0628 0.0610 0.0585 0.0554 0.0516 0.0488 0.0441 0.0389 0.0334 0.0275 0.0214 

3.82 0.0653 0.0638 0.0620 0.0595 0.0563 0.0525 0.0496 0.0448 0.0396 0.0339 0.0280 0.0218 

3.79 0.0664 0.0649 0.0630 0.0605 0.0572 0.0534 0.0504 0.0456 0.0403 0.0345 0.0284 0.0222 

3.76 0.0675 0.0660 0.0641 0.0615 0.0582 0.0543 0.0513 0.0464 0.0409 0.0351 0.0289 0.0225 

3.73 0.0687 0.0671 0.0652 0.0625 0.0592 0.0552 0.0521 0.0471 0.0416 0.0357 0.0294 0.0229 

3.70 0.0698 0.0682 0.0663 0.0636 0.0602 0.0561 0.0530 0.0479 0.0423 0.0363 0.0299 0.0233 

3.67 0.0710 0.0694 0.0674 0.0647 0.0612 0.0570 0.0539 0.0487 0.0430 0.0369 0.0304 0.0238 

3.64 0.0722 0.0706 0.0685 0.0657 0.0622 0.0580 0.0548 0.0496 0.0438 0.0375 0.0309 0.0242 

3.61 0.0734 0.0717 0.0697 0.0668 0.0633 0.0590 0.0557 0.0504 0.0445 0.0381 0.0315 0.0246 

3.58 0.0746 0.0729 0.0709 0.0680 0.0643 0.0599 0.0567 0.0512 0.0452 0.0388 0.0320 0.0250 

3.55 0.0759 0.0742 0.0720 0.0691 0.0654 0.0610 0.0576 0.0521 0.0460 0.0394 0.0325 0.0255 

 1 



−log10Φ 
Three phase contact angle, α (deg) 

0 12 18 24 30 36 40 46 52 58 64 70 

3.52 0.0772 0.0754 0.0733 0.0703 0.0665 0.0620 0.0586 0.0530 0.0468 0.0401 0.0331 0.0260 

3.49 0.0785 0.0767 0.0745 0.0714 0.0676 0.0630 0.0596 0.0538 0.0475 0.0408 0.0337 0.0264 

3.46 0.0798 0.0780 0.0757 0.0726 0.0687 0.0641 0.0605 0.0547 0.0483 0.0415 0.0342 0.0269 

3.43 0.0811 0.0793 0.0770 0.0739 0.0699 0.0651 0.0616 0.0556 0.0491 0.0422 0.0348 0.0274 

3.40 0.0825 0.0806 0.0783 0.0751 0.0710 0.0662 0.0626 0.0566 0.0500 0.0429 0.0354 0.0279 

3.37 0.0838 0.0819 0.0796 0.0763 0.0722 0.0673 0.0636 0.0575 0.0508 0.0436 0.0360 0.0284 

3.34 0.0852 0.0833 0.0809 0.0776 0.0734 0.0684 0.0647 0.0585 0.0516 0.0443 0.0366 0.0289 

3.31 0.0867 0.0847 0.0823 0.0789 0.0747 0.0696 0.0658 0.0594 0.0525 0.0451 0.0373 0.0295 

3.28 0.0881 0.0861 0.0836 0.0802 0.0759 0.0707 0.0669 0.0604 0.0534 0.0458 0.0379 0.0300 

3.25 0.0896 0.0875 0.0850 0.0816 0.0772 0.0719 0.0680 0.0614 0.0543 0.0466 0.0386 0.0306 

3.22 0.0911 0.0890 0.0864 0.0829 0.0784 0.0731 0.0691 0.0625 0.0552 0.0474 0.0393 0.0312 

3.19 0.0926 0.0905 0.0879 0.0843 0.0797 0.0743 0.0702 0.0635 0.0561 0.0482 0.0399 0.0317 

3.16 0.0941 0.0920 0.0893 0.0857 0.0811 0.0755 0.0714 0.0646 0.0570 0.0490 0.0406 0.0324 

3.13 0.0957 0.0935 0.0908 0.0871 0.0824 0.0768 0.0726 0.0656 0.0580 0.0498 0.0413 0.0330 

3.10 0.0973 0.0951 0.0923 0.0885 0.0838 0.0781 0.0738 0.0667 0.0590 0.0507 0.0421 0.0336 

3.07 0.0989 0.0966 0.0938 0.0900 0.0852 0.0794 0.0750 0.0678 0.0599 0.0515 0.0428 0.0343 

3.04 0.1005 0.0982 0.0954 0.0915 0.0866 0.0807 0.0762 0.0689 0.0609 0.0524 0.0436 0.0350 

3.01 0.1022 0.0998 0.0970 0.0930 0.0880 0.0820 0.0775 0.0701 0.0620 0.0533 0.0444 0.0356 

2.98 0.1039 0.1015 0.0986 0.0945 0.0894 0.0834 0.0788 0.0712 0.0630 0.0542 0.0451 0.0364 
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−log10Φ 
Three phase contact angle, α (deg) 

0 12 18 24 30 36 40 46 52 58 64 70 

2.95 0.1056 0.1032 0.1002 0.0961 0.0909 0.0847 0.0801 0.0724 0.0640 0.0551 0.0460 0.0371 

2.92 0.1073 0.1049 0.1018 0.0977 0.0924 0.0861 0.0814 0.0736 0.0651 0.0561 0.0468 0.0379 

2.89 0.1091 0.1066 0.1035 0.0993 0.0939 0.0875 0.0827 0.0748 0.0662 0.0570 0.0476 0.0386 

2.86 0.1108 0.1083 0.1052 0.1009 0.0955 0.0890 0.0841 0.0761 0.0673 0.0580 0.0485 0.0394 

2.83 0.1127 0.1101 0.1069 0.1026 0.0970 0.0904 0.0855 0.0773 0.0684 0.0590 0.0494 0.0402 

2.80 0.1145 0.1119 0.1087 0.1042 0.0986 0.0919 0.0869 0.0786 0.0696 0.0600 0.0503 0.0411 

2.77 0.1164 0.1137 0.1105 0.1059 0.1002 0.0934 0.0883 0.0799 0.0707 0.0611 0.0512 0.0420 

2.74 0.1183 0.1156 0.1123 0.1077 0.1019 0.0949 0.0898 0.0812 0.0719 0.0621 0.0522 0.0429 

2.71 0.1202 0.1175 0.1141 0.1094 0.1035 0.0965 0.0912 0.0826 0.0731 0.0632 0.0531 0.0438 

2.68 0.1222 0.1194 0.1159 0.1112 0.1052 0.0981 0.0927 0.0839 0.0744 0.0643 0.0541 0.0447 

2.65 0.1241 0.1213 0.1178 0.1130 0.1069 0.0997 0.0942 0.0853 0.0756 0.0654 0.0551 0.0457 

2.62 0.1261 0.1233 0.1197 0.1148 0.1087 0.1013 0.0958 0.0867 0.0769 0.0665 0.0562 0.0467 

2.59 0.1282 0.1253 0.1217 0.1167 0.1104 0.1029 0.0973 0.0881 0.0782 0.0677 0.0573 0.0478 

2.56 0.1303 0.1273 0.1236 0.1186 0.1122 0.1046 0.0989 0.0896 0.0795 0.0689 0.0584 0.0488 

2.53 0.1324 0.1294 0.1256 0.1205 0.1140 0.1063 0.1005 0.0911 0.0808 0.0701 0.0595 0.0499 

2.50 0.1345 0.1314 0.1277 0.1224 0.1159 0.1080 0.1022 0.0926 0.0822 0.0714 0.0606 0.0511 

2.47 0.1366 0.1335 0.1297 0.1244 0.1177 0.1098 0.1038 0.0941 0.0836 0.0726 0.0618 0.0523 

2.44 0.1388 0.1357 0.1318 0.1264 0.1196 0.1116 0.1055 0.0957 0.0850 0.0739 0.0630 0.0535 

2.41 0.1411 0.1379 0.1339 0.1284 0.1216 0.1134 0.1072 0.0972 0.0864 0.0752 0.0643 0.0547 
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−log10Φ 
Three phase contact angle, α (deg) 

0 12 18 24 30 36 40 46 52 58 64 70 

2.38 0.1433 0.1401 0.1360 0.1305 0.1235 0.1152 0.1090 0.0988 0.0879 0.0766 0.0656 0.0560 

2.35 0.1456 0.1423 0.1382 0.1326 0.1255 0.1170 0.1108 0.1005 0.0894 0.0780 0.0669 0.0573 

2.32 0.1479 0.1446 0.1404 0.1347 0.1275 0.1189 0.1126 0.1021 0.0909 0.0794 0.0683 0.0586 

2.29 0.1502 0.1469 0.1426 0.1368 0.1295 0.1208 0.1144 0.1038 0.0925 0.0808 0.0696 0.0600 

2.26 0.1526 0.1492 0.1449 0.1390 0.1316 0.1228 0.1162 0.1055 0.0941 0.0823 0.0711 0.0615 

2.23 0.1550 0.1515 0.1472 0.1412 0.1337 0.1248 0.1181 0.1073 0.0957 0.0838 0.0725 0.0629 

2.20 0.1575 0.1539 0.1495 0.1435 0.1358 0.1268 0.1200 0.1090 0.0973 0.0854 0.0740 0.0644 

2.17 0.1599 0.1563 0.1519 0.1457 0.1380 0.1288 0.1220 0.1108 0.0990 0.0870 0.0756 0.0660 

2.14 0.1624 0.1588 0.1543 0.1480 0.1402 0.1308 0.1239 0.1127 0.1007 0.0886 0.0772 0.0676 

2.11 0.1650 0.1613 0.1567 0.1503 0.1424 0.1329 0.1259 0.1145 0.1025 0.0902 0.0788 0.0692 

2.08 0.1675 0.1638 0.1591 0.1527 0.1446 0.1351 0.1280 0.1164 0.1042 0.0919 0.0805 0.0709 

2.05 0.1701 0.1663 0.1616 0.1551 0.1469 0.1372 0.1300 0.1184 0.1061 0.0937 0.0822 0.0726 

2.02 0.1728 0.1689 0.1641 0.1575 0.1492 0.1394 0.1321 0.1203 0.1079 0.0955 0.0839 0.0744 

1.99 0.1754 0.1715 0.1667 0.1600 0.1516 0.1416 0.1343 0.1223 0.1098 0.0973 0.0857 0.0762 

1.96 0.1782 0.1742 0.1693 0.1625 0.1539 0.1439 0.1364 0.1244 0.1117 0.0991 0.0876 0.0781 

1.93 0.1809 0.1769 0.1719 0.1650 0.1563 0.1462 0.1386 0.1264 0.1137 0.1010 0.0895 0.0800 

1.90 0.1837 0.1796 0.1745 0.1675 0.1588 0.1485 0.1408 0.1286 0.1157 0.1030 0.0914 0.0819 

1.87 0.1865 0.1823 0.1772 0.1701 0.1613 0.1508 0.1431 0.1307 0.1178 0.1050 0.0934 0.0839 

1.84 0.1893 0.1851 0.1799 0.1728 0.1638 0.1532 0.1454 0.1329 0.1199 0.1071 0.0955 0.0860 
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−log10Φ 
Three phase contact angle, α (deg) 

0 12 18 24 30 36 40 46 52 58 64 70 

1.81 0.1922 0.1879 0.1827 0.1754 0.1663 0.1556 0.1478 0.1351 0.1220 0.1092 0.0976 0.0881 

1.78 0.1951 0.1908 0.1854 0.1781 0.1689 0.1581 0.1501 0.1374 0.1242 0.1113 0.0997 0.0902 

1.75 0.1980 0.1937 0.1883 0.1808 0.1715 0.1606 0.1525 0.1397 0.1264 0.1135 0.1019 0.0925 

1.72 0.2010 0.1966 0.1911 0.1836 0.1742 0.1631 0.1550 0.1420 0.1287 0.1158 0.1042 0.0947 

1.69 0.2040 0.1995 0.1940 0.1864 0.1768 0.1657 0.1575 0.1444 0.1310 0.1181 0.1065 0.0970 

1.66 0.2070 0.2025 0.1969 0.1892 0.1796 0.1683 0.1600 0.1469 0.1334 0.1204 0.1089 0.0994 

1.63 0.2101 0.2055 0.1999 0.1921 0.1823 0.1709 0.1626 0.1494 0.1358 0.1228 0.1113 0.1018 

1.60 0.2132 0.2086 0.2028 0.1950 0.1851 0.1736 0.1652 0.1519 0.1383 0.1253 0.1138 0.1042 

1.57 0.2163 0.2117 0.2059 0.1979 0.1880 0.1763 0.1679 0.1545 0.1408 0.1278 0.1163 0.1068 

1.54 0.2195 0.2148 0.2089 0.2009 0.1908 0.1791 0.1706 0.1571 0.1434 0.1304 0.1189 0.1093 

1.51 0.2227 0.2179 0.2120 0.2039 0.1937 0.1819 0.1733 0.1598 0.1460 0.1330 0.1215 0.1120 

1.48 0.2259 0.2211 0.2151 0.2069 0.1967 0.1848 0.1761 0.1625 0.1487 0.1357 0.1242 0.1146 

1.45 0.2292 0.2243 0.2183 0.2100 0.1997 0.1877 0.1789 0.1653 0.1515 0.1385 0.1270 0.1174 

1.42 0.2325 0.2276 0.2215 0.2131 0.2027 0.1906 0.1818 0.1681 0.1543 0.1413 0.1298 0.1202 

1.39 0.2358 0.2309 0.2247 0.2162 0.2057 0.1936 0.1848 0.1710 0.1571 0.1441 0.1327 0.1230 

1.36 0.2392 0.2342 0.2280 0.2194 0.2088 0.1966 0.1877 0.1739 0.1601 0.1471 0.1356 0.1259 

1.33 0.2426 0.2376 0.2313 0.2227 0.2120 0.1997 0.1908 0.1769 0.1630 0.1501 0.1386 0.1289 

1.30 0.2460 0.2410 0.2346 0.2259 0.2152 0.2028 0.1938 0.1799 0.1661 0.1531 0.1417 0.1319 

1.27 0.2495 0.2444 0.2380 0.2292 0.2184 0.2059 0.1970 0.1830 0.1692 0.1562 0.1448 0.1350 

 5 



−log10Φ 
Three phase contact angle, α (deg) 

0 12 18 24 30 36 40 46 52 58 64 70 

1.24 0.2530 0.2478 0.2414 0.2326 0.2217 0.2091 0.2001 0.1862 0.1723 0.1594 0.1480 0.1381 

1.21 0.2565 0.2513 0.2448 0.2359 0.2250 0.2124 0.2034 0.1894 0.1756 0.1627 0.1512 0.1413 

1.18 0.2601 0.2549 0.2483 0.2394 0.2283 0.2157 0.2067 0.1927 0.1789 0.1660 0.1545 0.1446 

1.15 0.2637 0.2584 0.2518 0.2428 0.2317 0.2191 0.2100 0.1960 0.1822 0.1693 0.1579 0.1479 

1.12 0.2673 0.2620 0.2554 0.2463 0.2352 0.2225 0.2134 0.1994 0.1856 0.1728 0.1613 0.1513 

1.09 0.2710 0.2656 0.2590 0.2499 0.2387 0.2259 0.2168 0.2028 0.1891 0.1763 0.1648 0.1547 

1.06 0.2747 0.2693 0.2626 0.2534 0.2422 0.2294 0.2203 0.2063 0.1926 0.1798 0.1684 0.1582 

1.03 0.2784 0.2730 0.2663 0.2571 0.2458 0.2330 0.2239 0.2099 0.1962 0.1835 0.1720 0.1618 

1.00 0.2822 0.2767 0.2699 0.2607 0.2494 0.2366 0.2275 0.2136 0.1999 0.1872 0.1757 0.1654 
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