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The stresses acting in interfacial adsorption layers with surface shear elasticity are, in general, anisotropic
and non-uniform. If a pendant drop or buoyant bubble is covered with such elastic layer, the components
of surface tension acting along the ‘‘meridians’’ and ‘‘parallels’’, rs and ru, can be different and, then, the
conventional drop shape analysis (DSA) is inapplicable. Here, a method for determining rs and ru is
developed for axisymmetric menisci. This method, called ‘capillary meniscus dynamometry’ (CMD), is
based on processing data for the digitized drop/bubble profile and capillary pressure. The principle of
the CMD procedure for data processing is essentially different from that of DSA. Applying the tangential
and normal surface stress balance equations, rs and ru are determined in each interfacial point without
using any rheological model. The computational procedure is fast and could be used in real time, during a
given process. The method is applied to determine rs and ru for bubbles and drops formed on the tip of a
capillary immersed in solutions of the protein HFBII hydrophobin. Upon a surface compression, meridi-
onal wrinkles appear on the bubble surface below the bubble ‘‘equator’’, where the azimuthal tension ru
takes negative values. The CMD method allows one to determine the local tensions acting in anisotropic
interfacial layers (films, membranes), like those formed from proteins, polymers, asphaltenes and phos-
pholipids. The CMD is applicable also to fluid interfaces (e.g. surfactant solutions), for which it gives the
same surface tension as the conventional methods.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Interfacial layers from proteins [1–9]; saponins [10]; polymers,
polyelectrolytes and their mixtures with proteins [11–13]; phospho-
lipids [14,15]; particles [16,17] and asphaltenes [18], can possess sur-
face shear elasticity, i.e. they can behave as a two-dimensional elastic
solid (membrane). In general, the stresses acting in such layers are
anisotropic and non-uniform – they vary along the interface
[19–23]. If a pendant drop (or buoyant bubble) is covered with an
elastic interfacial layer, the components of surface tension acting
along the ‘‘meridians’’ and ‘‘parallels’’, rs and ru, can be rather dif-
ferent. In such a case, the conventional drop shape analysis (DSA)
method [24], which presumes uniform and isotropic surface
tension, is inapplicable. With such systems, at sufficiently high sur-
face anisotropy the DSA apparatus shows a significant increase in
the error of the Laplace fit of the drop/bubble profile [25,26].

To overcome this problem, here a method for anisotropic inter-
faces, i.e., for determining rs and ru in each point, is developed for
axisymmetric menisci. The method is based on obtaining and
processing experimental data for the digitized drop/bubble profile
and for the pressure difference across the meniscus. Such data can
be obtained by upgrading a DSA setup with a pressure transducer.
The computational procedure for determining rs and ru in each
point of the surface is essentially different from that used in DSA
to determine a single surface tension r for the whole meniscus.

Despite the non-uniform surface stress distribution and the
different computational procedure, the present study can be con-
sidered as an extension of the known pendant drop and DSA meth-
ods, which are generalized for the case of anisotropic stresses here.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcis.2014.10.067&domain=pdf
http://dx.doi.org/10.1016/j.jcis.2014.10.067
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http://www.sciencedirect.com/science/journal/00219797
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The first quantitative and methodological study on the profile of
axisymmetric drops was carried out by Bashforth and Adams
[27], who tabulated the profiles of sessile drops. Andreas et al.
[28] are the authors of the pendant drop method, where r is deter-
mined from specific meniscus dimensions; see Ref. [29] for
detailed review. After the invention of the computer image analy-
sis, Rotenberg et al. [24] made the revolutionary step to an almost
complete automation of the pendant drop method by numerical
fitting of the digitized drop profile with the Laplace equation of
capillarity. This method, called axisymmetric drop shape analysis
(ADSA), or more briefly DSA, has found a wide application for the
measurements of static and dynamic surface tension and interfa-
cial rheology [30–32]. The accuracy of surface tension measure-
ments and the role of image analysis have been investigated in
Refs. [33,34].

Another approach for determining r for isotropic fluid interface
is based on the measurements of the capillary pressure and curva-
ture radius of a small non-deformed spherical drop (meniscus)
protruding at the tip of a capillary tube. In the first realizations
of this method, called capillary pressure tensiometry (CPT), image
analysis has not been used – the drop radius at each moment is cal-
culated from the known volume dosing rate [35–37]. The CPT has
different versions and realizations and it is widely used to measure
the static and dynamic surface tension and dilatational interfacial
rheology [32,38,39]. Assembling of CPT and DSA in one apparatus
combines the capabilities of both techniques [40–42].

In the more complex case of anisotropic surface stresses (ten-
sions) considered here, we combine image analysis with capillary
pressure measurements. As already mentioned, anisotropic stresses
are observed with solid (non-fluid) interfaces. Here and hereafter
we are using the term ‘‘solid’’ (or ‘‘solidification’’) for an interfacial
layer (membrane) that possesses surface shear elasticity. We have
in mind an elastic solid, rather than a non-deformable solid.

The paper is organized as follows. In Section 2 we consider the
two basic equations used in this study, which represent projections
of the vectorial surface stress balance along the ‘‘meridian’’ and
along the normal to the axisymmetric meniscus. (The force balance
along the ‘‘parallel’’ is trivial because of the axial symmetry). Sec-
tion 3 is central for the present study – it describes the principle
of the computational procedure, which is essentially different from
that of DSA, and is based on the use of a first integral of the surface
stress balance equations. Next, the proposed method is tested
against data for pendant drops and buoyant bubbles in aqueous
solutions of the protein hydrophobin HFBII. Section 4 describes
the used materials and experimental methods, including the deter-
mination of capillary pressure. In Section 6, the method is first
tested against data for pendant drops with fluid interfaces, and
next – for a buoyant bubble with solidifying surface in a HFBII
solution at different stages of bubble shrinkage. The two surface
tensions, rs and ru, are determined as functions of the position
Fig. 1. (a) Sketch of a pendant drop; rs and ru are two components of surface tension
tension force, 2prrs sinh, is counterbalanced by the pressure force Fp; see Eq. (11). (b) A
on the bubble surface. At a larger degree of shrinkage, meridional
wrinkles appear in a certain zone of the bubble surface, where
the azimuthal tension ru takes negative values.

The method developed here, called capillary meniscus dyna-
mometry (CMD), is applicable to determine both static and
dynamic values of rs and ru for axisymmetric menisci (e.g. drops
and bubbles) with anisotropic surface stresses. A simpler version of
the method (without capillary pressure measurements) is applica-
ble also to the special case of isotropic surfaces.

In preceding studies on anisotropic interfacial layers [19–23],
the Hookean or neo-Hookean model of elastic plates is used from
the very beginning. In this respect, the approach in the present
article is essentially different. The method proposed here allows
one to directly determine the two surface tensions, rs and ru, in
each point of the drop/bubble surface from experimental data,
without using any model assumptions. At a next step (out of the
scope of this study), one could construct a rheological model to
interpret the behavior of rs and ru for each separate specific sys-
tem. The constructed models would be much more realistic if the
variations of rs and ru along the bubble/drop surface, and the ref-
erence isotropic initial state have been determined in advance, by
using the method proposed in the present article.

2. Surface stress balances for an axisymmetric meniscus

2.1. Basic equations

Let us consider an axisymmetric meniscus, like the surface of a
pendant drop sketched in Fig. 1a. To describe its shape, we will use
cylindrical coordinates (r, u, z), with coordinate origin at the
meniscus apex, i.e. at the point where the z-axis pierces the inter-
face; r is the radial coordinate and u is the azimuthal angle. The
generatrix of the meniscus profile can be parameterized with the
length of the arc, s:

dr
ds
¼ cos h and

dz
ds
¼ sin h ð1Þ

where h is the running meniscus slope angle. The pair (s, u) repre-
sents a system of orthogonal coordinates on the axisymmetric
meniscus. Because of the axial symmetry, the surface stress tensor
has two components, rs and ru, which are tangential, respectively,
to the s and u coordinate lines (Fig. 1a).

At equilibrium, the balance of linear momentum in each point
of the meniscus has two non-zero projections, which represent
relations between rs and ru, [23,43,44]:

ru ¼
d
dr
ðrsrÞ ðtangential projectionÞ ð2Þ

jsrs þ juru ¼ ps ðnormal projectionÞ ð3Þ
acting along the ‘‘meridians’’ and ‘‘parallels’’. The vertical resultant of the surface
n element of the meniscus profile of height dz.
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ps is the local pressure difference along the meniscus, whereas js

and ju are the respective two principal curvatures:

js ¼
dh
ds

and ju ¼
sin h

r
ð4Þ

Eq. (3) is a form of the Laplace equation of capillarity general-
ized for an anisotropic interface.

Here, we consider only surface tensions acting tangentially to
the interface (membrane). In the case of objects of high curvature
and low membrane tensions, the transverse shear stress resultants
and the related interfacial bending moments (torques) should be
taken into account [14,43,44]. The bending-moment effects are
out of the scope of the present study, because here we are dealing
with millimeter-sized drops and bubbles.

If the surface tension is uniform, then drs/dr = 0 and Eq. (2)
reduces to ru = rs. In other words, if the surface tension is uniform,
the balance of the linear momentum implies that it is also isotropic:
ru = rs = r. This statement can be generalized to an arbitrarily
curved interface with a symmetric surface stress tensor, viz. if the
surface stresses are isotropic, they are also uniform throughout the
interface, and vice versa. The proof of this more general statement
is given in Appendix A, whereas the derivation of Eqs. (2) and (3)
for the special case of axisymmetric interface – in Appendix B.

Substituting ru, js and ju from Eqs. (2) and (4) into Eq. (3), in
view of Eq. (1) one derives:

d
dr
ðrsr sin hÞ ¼ psr ð5Þ

See Appendix B for details. In general, rs can vary along the gener-
atrix of the meniscus. rs is constant along the u-lines because of the
axial symmetry. If rs is completely constant (independent of r), then
Eq. (5) reduces to the conventional Laplace equation [24,43,44].

2.2. Force balances at the drop/bubble

Because Eq. (5) lies in the basis of the CMD method, it is helpful
to discuss its physical meaning in more details. For this goal, here
Eq. (5) is derived by force-balance considerations.

Let us consider a layer from the drop/bubble of elementary
thickness dz; see Fig. 1b. The z-projections of the forces acting on
this elementary volume are:

2prðrs sin hÞjr þ 2prdrpin ¼ 2pðr þ drÞðrs sin hÞjrþdr

þ 2prdrpout ð6Þ

The forces in the left-hand side of Eq. (6) are directed down-
wards, whereas those in the right-hand side – upwards (Fig. 1b).
Division of Eq. (6) by 2pdr, followed by a limiting transition
dr ? 0, leads to Eq. (5) with

ps � pin � pout ¼ p0 � egzDq ð7Þ

In Eq. (7), we have taken into account the effect of the gravita-
tional hydrostatic pressure, where p0 is the pressure difference
across the meniscus at level z = 0 (at the apex); Dq � qin � qout is
the difference between the mass densities of the inner and outer
phases; g is the magnitude of the acceleration due to gravity;
e = 1 if the z-axis is directed opposite to the gravity acceleration
vector g (for pendant drops, as in Fig. 1a) and e = �1 in the opposite
case (for buoyant drops and bubbles).

Integrating Eq. (5), along with Eq. (7), with respect to r and
multiplying by 2p, we obtain:

2prrs sin h ¼ pr2p0 � 2pegDq
Z r

0

~rzð~rÞd~r ð8Þ

where ~r is an integration variable. The left-hand side of Eq. (8)
represents the z-projection of the surface-tension force acting on a
cross-section of the meniscus at a given z (Fig. 1a). The right-hand
side of Eq. (8), which represents the pressure difference integrated
over the meniscus, is denoted Fp hereafter:

Fp � pr2p0 þ pegDqðI � r2zÞ ð9Þ

I ¼
Z z

0
r2ð~zÞd~z ð10Þ

In Eq. (9), integration by parts has been used; I is an integral,
which is calculated numerically. In view of Eq. (9), we can repre-
sent Eq. (8) in the form:

Fp ¼ 2prrs sin h ð11Þ

In our experiments, we determine p0 and the meniscus profile
r(z). As explained in the next section, from these data one can
determine Fp(z) and h(z) for each given z. Then, the local value of
the meridional tension rs can be determined from Eq. (11):

rsðzÞ ¼
FpðzÞ

2prðzÞ sin hðzÞ ð12Þ

Next, in view of Eqs. (1) and (4) the local values of the two prin-
ciple curvatures are:

juðzÞ ¼
sin hðzÞ

rðzÞ ; jsðzÞ ¼ �
d cos hðzÞ

dz
ð13Þ

The derivative in the last equation is calculated numerically, as
explained in the next section. Finally, using Eqs. (3) and (7) we
determine the local value of the azimuthal tension ru:

ruðzÞ ¼
p0 � egzDq� jsðzÞrsðzÞ

juðzÞ
ð14Þ

Thus, the local values of the two surface tensions, rs(z) and
ru(z), can be determined throughout the whole meniscus directly
from the experimental data using the surface force balance equa-
tions. No model assumptions regarding the rheological behavior
of the interfacial layer are used. The key is the determination of
the dependencies Fp(z), h(z) and js(z) from the experimental data,
which is described in the next section.

3. Determination of the local values of surface tension from
experimental data

From the digitized profile of a pendant drop (or buoyant bubble)
one can determine the experimental dependence r2(z), which
appears under the integral in Eq. (10). As an illustration, Fig. 2
shows a typical experimental r2(z) dependence for a pendant drop
of water.

First the digitalized images are transformed from pixels to
physical Cartesian coordinates (rk, zk) of the points from the
drop/bubble profile. For the microscope magnification used in
our experiments, one pixel is equal to 12 lm. Next, the algorithm
includes (i) determination of the position of the symmetry axis,
which does not necessarily coincide with the vertical axis of the
experimental video frames (the camera is usually slightly tilted);
(ii) rotation of the profile to have the z-axis of the Cartesian coor-
dinate system directed along the axis of symmetry; (iii) calculation
of the position of drop (bubble) apex in the new coordinate sys-
tem; (iv) transformation of the Cartesian coordinates to cylindrical
ones with origin at the drop/bubble apex. As a result, the left and
right profiles of the drop (bubble) overlap when plotted in (r, z)
coordinates. The r2(z) plot in Fig. 2 has been obtained as a result
of this procedure.

Furthermore, the region of variation of z is divided to n equal
parts (20 parts in the illustrative Fig. 2 and 72 parts for the buoyant
bubbles in Section 5.2):



Fig. 2. Experimental meniscus profile of a pendant water drop (the dots). The solid
line represents the set of all interpolation curves by Eq. (16) in all [zj�1, zj] intervals
(j = 1, . . ., n), which are confined between two neighboring vertical dashed lines.

K.D. Danov et al. / Journal of Colloid and Interface Science 440 (2015) 168–178 171
zj�1 � z � zj; j ¼ 1; . . . ;n ð15Þ

Because of the small pixel size, each interval in Eq. (15) contains
a large number of experimental (rk, zk) points. In each of these
intervals, the experimental r2(z) dependence is fitted with a
second-order polynomial:

r2 ¼ ajz2 þ bjzþ cj ðzj�1 � z � zjÞ ð16Þ

Thus, the coefficients aj, bj, and cj are determined as adjustable
parameters by using the least squares method. The local value of
the meniscus slope angle h can be estimated from the expression:

cot h ¼ dr
dz
¼ 2ajzþ bj

2r
ð17Þ

Further, we obtain:

sin h ¼ ð1þ cot2hÞ�1=2 ¼ 1þ 2ajzþ bj

2r

� �2
" #�1=2

ð18Þ

cos h ¼ �ð1þ tan2 hÞ�1=2 ¼ 2ajzþ bj

4r2 þ ð2ajzþ bjÞ2
h i1=2 ð19Þ

In view of Eq. (13), we differentiate Eq. (19), along with Eq. (16),
to obtain an expression for the meridional curvature:

jsðzÞ ¼ �
d cos hðzÞ

d z
¼

2ðb2
j � 4ajcjÞ

4r2 þ ð2ajzþ bjÞ2
h i3=2 ð20Þ

For the middle point of each [zj�1, zj] interval we define the
quantity

fj ¼
zj�1 þ zj

2
; j ¼ 1; . . . ;n ð21Þ

Then, the value Ij of the integral I in each [zj�1, zj] interval can be
calculated from the following recurrence formula (see Eq. (10)):

I1 ¼
Z f1

0
r2ðzÞd z ¼ 1

3
a1f

3
1 þ

1
2

b1f
2
1 þ c1f1 ð22Þ

Ij ¼
Z fj

0
r2ðzÞdz ¼ Ij�1 þ aj

f3
j � f3

j�1

3
þ bj

f2
j � f2

j�1

2
þ c1ðfj � fj�1Þ

ð23Þ

j = 2, 3, . . ., n. In view of Eq. (9), the value of the force Fp in the
middle of each [zj�1, zj] interval is:

FpðfjÞ � pr2ðfjÞðp0 � egfjDqÞ þ pegDqIj ð24Þ
Next, Eq. (12) is used to calculate the value of the meridional
surface tension rs in the middle of each [zj�1, zj] interval:

rsðfjÞ ¼
FpðfjÞ

2prðfjÞ sin hðfjÞ
ð25Þ

Finally, the azimuthal surface tension ru (fj) is calculated from
Eqs. (13) and (14). There, as well as in Eqs. (24) and (25), the quan-
tities r(fj), sinh(fj) and js(fj) are given, respectively, by Eqs. (16),
(18) and (20) with z = fj. The pressure p0 in Eq. (24) is supposed
to be determined by the pressure transducer measurements as
explained in Section 4.2.

4. Experimental section

4.1. Materials and methods

To test the above method for determining rs and ru, we carried
out experiments with buoyant bubbles is aqueous solutions of the
protein HFBII (received from Unilever), which is a class II hydropho-
bin of molecular mass 7.2 kDa. HFBII is composed from 70 amino
acids with 4 disulfide bonds. It is a relatively small and compact
protein molecule, which is stable (does not denature) upon heating
up to 90 �C and upon adsorption on air/water and solid/water inter-
faces [45]. At the air/water and oil/water interfaces, HFBII forms
rigid adsorption layers that exhibit surface shear elasticity
[5–8,46,47]. In such a case, rs and ru are different and vary from
point to point throughout the bubble (or drop) surface.

In comparative experiments, we used pendant drops from
deionized water of specific resistivity 18.2 MX cm (Elix purification
system, Millipore). 3 mM NaCl (Merk) were added to the aqueous
phase to have a defined ionic strength. In other comparative exper-
iments we used pendant drops from a solution of sodium dodecyl
sulfate (SDS), product of Acros Organics (Pittsburgh, PA). All exper-
iments were carried out at a room temperature of 25 ± 1 �C.

In the measurements with drops and bubbles, we used the
setup for capillary pressure tensiometry (CPT) described in Ref.
[40]. It is a DSA10 apparatus (Krüss GmbH, Hamburg, Germany)
upgraded with a pressure transducer (model PX163-2.5BD5V) to
register the variations of pressure inside the drop/bubble with
time. For a precise increase and decrease of the drop/bubble
volume, a piezo-driven membrane was used.

4.2. Determination of the reference capillary pressure p0

By definition, p0 is the capillary pressure difference across the
drop/bubble apex (at z = 0); see Fig. 1a and Eq. (7). However, the
pressure transducer measures the pressure difference, ptr, at a dif-
ferent level. The relation between p0 and ptr depends on whether
we are dealing with pendant drop (Fig. 3a) or buoyant bubble
(Fig. 3b).

4.2.1. Pendant drop
In the case of pendant drop in air, the capillary is filled with the

working solution. In such case, the pressure difference is due to
the hydrostatic pressure between the levels of the apex and the
transducer:

p0 ¼ ptr þ qingðH þ hÞ ð26Þ

See Fig. 3a for the notations. The height of the drop, h, is mea-
sured directly from the digitized profile. To accurately determine
H, we formed a small spherical drop (of height h� H) at the tip
of the capillary and increased its volume by small steps, simulta-
neously measuring ptr and the drop curvature radius R at each step.
Next, the obtained data were plotted as ptr vs. 2/R in accordance
with the equation:



Fig. 3. Illustration of the determination of capillary pressure at the apex, p0, from
the pressure difference ptr measured by a pressure transducer (denoted PT) for (a)
pendant drop and (b) buoyant bubble.

Fig. 4. Plot of Fp vs. 2prsinh for isotropic (fluid) interfaces: (i) pendant drop of
water, and (ii) a smaller buoyant bubble in aqueous solution of 100 mM SDS. The
values of r shown in the graph are determined from the slope of the respective line
in accordance with Eq. (11).
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ptr ¼
2r
R
� qingH ð27Þ

The intercept of this plot yields H. Because the distance H
between the pressure transducer and the edge of the capillary is
independent of the working solution, H was determined with pure
water or a solution of a fast adsorbing surfactant, so that r in Eq.
(27) is the isotropic surface tension of this solution.

4.2.2. Buoyant bubble
In this case, the capillary is filled with air. Then, the transducer

registers the pressure difference at the apex, p0, plus the hydro-
static pressure difference between the level of the apex and the
level of the flat air/solution interface (Fig. 3b). Hence, p0 and ptr

are related as follows:

p0 ¼ ptr � qoutgðH � hÞ ð28Þ

where qout is the solution’s density. To minimize the contribution of
the last gravitational term in Eq. (28), the difference H � h was
decreased by placing the bubble close to the solution’s surface.

During the experiment with a given drop or bubble, ptr is mea-
sured as a function of time. Thus, the value of ptr is known for each
video frame of the drop/bubble profile, which is processed to
determine the surface tension (see below).

5. Experimental results and discussion

5.1. Pendant drops and buoyant bubbles with fluid interfaces

To test the procedure for data processing described in Section 3,
we applied it to a pendant drop from deionized water (for the same
drop, the r2-vs.-z plot is shown in Fig. 2), and to a buoyant bubble
in 100 mM aqueous SDS solution. In these cases, we expect that the
interfaces are fluid and the surface tension should be uniform and
isotropic, i.e. rs = ru = r = const. In view of Eq. (11), the plot of Fp

vs. 2prsinh must be a straight line, which passes through the coor-
dinate origin and has a slope equal to r.

Each point in Fig. 4 corresponds to the local values r(fj), sinh(fj)
and Fp(fj) determined from Eqs. (16), (18) and (24) for the mid-
point, z = fj, of the interval [zj�1, zj], j = 1, . . ., n, for a given drop/
bubble profile. The value of p0 in Eq. (24) is experimentally deter-
mined by the pressure transducer as explained in Section 4.2. The
data for both the water and SDS solution perfectly comply with
straight lines through the coordinate origin (Fig. 4). The slopes
yield r = 72.2 and 36.0 mN/m, in full agreement with the surface
tension values determined for the same solutions by the DSA and
Wilhelmy plate methods. This result demonstrates that the pro-
posed CMD method works very well for uniform isotropic (fluid)
interfaces. The differences between the DSA and CMD methods
are discussed in Section 5.3.
5.2. Bubbles with solidifying protein adsorption layers

We carried out experiments with bubbles formed on the tip of a
J-shaped capillary (Fig. 3b) immersed in 0.005 wt% HFBII solution.
Fig. 5a shows the variation of the pressure ptr registered by the
transducer. The evolution of the bubble profile was recorded by
video camera during the experiment. The dashed lines in Fig. 5a
correspond to the moments of the processed video frames in
Fig. 5b. During this run, the pressure inside the bubble has been
decreased three times by the experimentalist, which is seen as
three steps in the ptr(t) dependence in Fig. 5a. Each of these
decreases in pressure causes bubble shrinkage. For t P 357 s, equi-
distant meridional wrinkles are observed on the bubble surface, in
a zone below the bubble ‘‘equator’’. These wrinkles are not seen
well in Fig. 5b, but they are seen well by visual observation with
microscope. For the photos in Fig. 5b, an appropriate illumination
was used to provide a sharp bubble profile, which is further pro-
cessed by the CMD method (Section 3).

At the chosen relatively low HFBII concentration, 0.005 wt%, the
surface tension, r, of the protein solution reaches its equilibrium
value for 61 min [25,48]. Initially, the interface is fluid (isotropic)
and indications for surface solidification (rise of the error of the
Laplace fit determined by DSA) are observed after the surface ten-
sion becomes 650 mN/m [25,26]. A slight expansion or shrinkage
of the bubble surface can, respectively, impede or promote the
interfacial solidification; see Fig. C2 in Appendix C.

To check the situation with the bubble in Fig. 5, we applied the
CMD procedure and plotted the obtained Fp vs. 2prsinh in accor-
dance with Eq. (11); see Fig. 6. The straight lines in Fig. 6a and b
indicate that at t = 200 and 300 s the protein adsorption layer is
isotropic. In contrast, the plots in Figs. 6c and d indicate deviations
from a straight line through the coordinate origin at t = 320 and
350 s. These deviations are smaller for the upper part of the bubble
(above the ‘‘equator’’), and more pronounced for the lower part of
the bubble, near the capillary.

The slopes of the lines in Fig. 6a and b give an isotropic surface
tension rs = ru = 60.0 and 60.8 mN/m, respectively. For the bub-
bles corresponding to Fig. 6c and d, we used the full CMD proce-
dure and determined the local values of rs and ru from Eqs. (14)
and (25). In Fig. 7a and b, the obtained rs and ru are plotted vs.
the vertical coordinate, z, with coordinate origin at the bubble
apex. One sees that rs and ru coincide only at the apex (the only
point with isotropic curvature on the bubble profile), whereas for
z > 0 the azimuthal tension ru is systematically lower than rs. A
comparison of the values of rs and ru in Fig. 7a and b shows that



Fig. 5. (a) Plot of experimental data for the pressure ptr vs. time t, see Eq. (28), for a buoyant bubble in 0.005 wt% HFBII solution. (b) Eight consecutive video frames of the
bubble profile at different moments of time shown by vertical dashed lines in the ptr-vs.-t plot.
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the imposed bubble shrinkage at t � 320 s (Fig. 5a) has led to a
significant lowering of both rs and ru and to an increase of the
difference between them (rise of surface anisotropy).

Fig. 7c–f shows the values of rs and ru determined by CMD
processing of the last four bubble profiles in Fig. 5b, that corre-
spond to t = 370, 390, 405 and 420 s. As mentioned above, after
the last forced bubble shrinkage at t = 357 s meridional wrinkles
are observed on the bubble surface, below the bubble ‘‘equator’’.
Fig. 7c–f shows that ru < 0 in the region with wrinkles. This result
is in agreement with the theoretical study on wrinkling upon uni-
directional compression of elastic interfacial layers [49], where it
has been established that wrinkles appear at negative values of
the surface tension that is acting in direction perpendicular to
the wrinkles. In our case, the wrinkles are directed along the
meridians (the s-lines), and the azimuthal tension ru takes nega-
tive values in the region of wrinkling.

A fluid interface may have only positive surface tension. In con-
trast, a solidified interfacial layer (a membrane possessing shear
elasticity) may have either positive or negative tension when it is
subjected, respectively, to stretching or compression, just like an
elastic spring. The tension-free state (of zero tension) is in the mid-
dle between the aforementioned two regimes [14]. The membrane
possesses an additional degree of freedom – to bend. In the region
of negative tension, it is energetically more favorable the mem-
brane to bend instead of to decrease its area upon compression
[49]. This is the reason for the appearance of wrinkles. The bending
elasticity (rigidity), kc, determines the wavelength, k, of the formed
wrinkles. Conversely, the value of kc can be obtained from the
experimentally measured k by using the formula kc = (Dqgk4)/
(2p)4, which holds for a horizontal wrinkled interface; Dq is the
difference between the mass densities of the two adjacent fluid
phases and g is the acceleration due to gravity; for details, see Refs.
[49,50]. The determined values of rs and ru in the zone with wrin-
kles (Fig. 7) represent average values of these two parameters. (The
‘‘microscopic’’ values of rs and ru in this zone may oscillate as
functions of the azimuthal angle u.)

The registered difference between rs and ru (Fig. 7) means that
the interface has solidified, i.e., it possesses (non-zero) surface
shear elasticity. However, the converse statement is not true. The
interfacial layer may possess surface shear elasticity, but the sur-
face stresses can be isotropic (rs = ru ) if the interface has been
subjected to isotropic dilatation or compression. Hence, strictly
speaking the straight lines in Fig. 6a and b imply that the surface
stresses are isotropic, but they do not mean that the interfacial
layer is fluid. One could determine whether the surface is fluid or
solid by rotational rheometer, as in Refs. [5,7,8,46,47]. Another
way is to compare the value of r measured by DSA with the value
rCMD(0) determined by CMD at the drop apex, where z = 0; see
Fig. C2 in Appendix C.

In summary, the results demonstrate that the CMD method
enables one to determine the surface tensions in the cases of both
isotropic (Fig. 6a and b) and anisotropic (Fig. 7) interface, including
the cases with surface wrinkles (Fig. 7c–f).

5.3. Comparison of the DSA and CMD methods

The DSA method presumes the existence of a uniform and iso-
tropic surface tension, r. To determine r, the bubble/drop profile
is fitted with the Laplace equation

1
r

d
dr
ðr sin hÞ ¼ p0

r
� e

gDq
r

z ð29Þ

Eq. (29) follows from Eqs. (5) and (7) for rs = r = const. From com-
putational viewpoint, it is convenient to use the length of the arc s



Fig. 6. Plots of Fp vs. 2prsinh for the first four bubble profiles in Fig. 5b: (a) t = 200 s; (b) t = 300 s; (c) t = 320 s; (d) t = 350 s. The straight lines at t = 200 and 300 s are the best
fits with linear regression for isotropic interface in accordance with Eq. (11); the slope yields the value of r denoted in the figure. The straight lines at t = 320 and 350 s
visualize the deviations from linear dependence for these profiles.
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as independent variable, and to calculate the functions r(s), z(s) and
h(s) by numerical integration of Eq. (29), together with Eq. (1); see
e.g. Refs. [24,32,33]. The boundary conditions are r(0) = 0, z(0) = 0
and h(0) = 0. The two unknown parameters in Eq. (29), p0 and r,
are determined as adjustable parameters from the fit of the data
for the bubble/drop profile. An advantage of the DSA method is that
it needs only a single set of data – that from the digitized drop pro-
file. However, the DSA method is inapplicable to interfacial layers
with anisotropic stresses, like those in Fig. 7.

The CMD method (Section 3) has been developed to determine
the stresses acting in anisotropic interfacial layers. In addition to
the digitized bubble/drop profile, the CMD needs also measure-
ments of the capillary pressure p0; see Section 4.2. The principle
of the computational procedure of CMD is rather different from
that of DSA. In DSA, the whole drop/bubble profile is fitted with
the Laplace equation by using two adjustable parameters, viz. p0

and r. In contrast, no physical parameters are adjusted in CMD.
The drop/bubble profile is divided to n small domains (Fig. 2)
and in each of them the meniscus shape is fitted with a second
order curve in accordance with Eq. (16). Then, a first integral of
the surface stress balances is used to determine Fp and rs; see
Eqs. (24) and (25). Furthermore, an analytical differentiation of
the fitting curve is used to determine the meridional curvature js

in each domain, see Eq. (20), and finally, the azimuthal tension
ru is calculated from Eq. (14). In this way, the two independent
surface stress balance equations, Eqs. (2) and (3), are employed
to determine the meridional and azimuthal surface tensions rs

and ru locally, in each point of the interface; see Fig. 7.
The numerical procedure of CMD is fast and it has a fixed dura-

tion (for a given number of domains n), so that the method can be
automated and applied to determine the dynamics of variation of
rs and ru in real time, during a given process, as well as for the
creation of feedback that keeps, e.g., the bubble surface area con-
stant during the experiment. In contrast, the duration of the
numerical procedure of DSA depends on the degree of drop/bubble
deformation, which affects the duration of the numerical minimi-
zation used to determine the adjustable parameters p0 and r. Note
that for each pair of tentative values (p0, r), the Laplace equation
has to be integrated numerically, which makes the DSA computa-
tional procedure slower than that of CMD. The adjustable parame-
ters aj, bj and cj in Eq. (16) are expressed analytically through the
coordinates of the experimental points rk and zk (standard expres-
sions of the least squares method for fit with a second-order poly-
nomial [51]), so that CMD does not use numerical minimization.

The measured value of p0 allows one to determine whether the
interfacial stresses are isotropic or anisotropic, even at small devi-
ations from isotropy. To demonstrate that, in Table 1 we compare
results from the application of CMD and DSA to process the bubble
profiles at t = 200, 300, 320 and 350 s in Fig. 5b; see also Fig. 6.

The first two columns of Table 1 contain the experimental val-
ues of t and p0, the latter determined from the pressure-transducer
measurement (Section 4.2). The third column shows the values of
rs determined by CMD. For t = 200 and 300 s the surface stresses
are isotropic and rs is determined from the slope of the lines in
Fig. 6a and b. For t = 320 and 350 s, the stresses are anisotropic
and rs varies in a certain range along the bubble profile as seen
in Fig. 7a and b.

The fourth column in Table 1 shows the values of r for the same
bubble profiles determined by DSA. For the isotropic interfaces at
t = 200 and 300 s, the values of r determined by DSA practically
coincide with those independently determined by CMD (in the
third column). However, at t = 320 and 350 s, at which CMD yields
non-uniform anisotropic stresses, DSA gives constant values of r,
which are greater than the greatest values of rs determined by



Fig. 7. Plots of the two components of surface tension, rs and ru, vs. the z-coordinate for the bubbles with anisotropic surface tension in Fig. 5b: (a) t = 320 s; (b) t = 350 s; (c)
t = 370 s; (d) t = 390 s; (e) t = 405 s; (f) t = 420 s; z = 0 at the bubble apex. The values of p0 have been experimentally determined by pressure transducer. In the zone with
ru < 0, meridional wrinkles are observed on the bubble surface.

Table 1
Comparison of the values of rs and r determined, respectively, by CMD and DSA from
the first four bubble profiles in Fig. 5b.

t (s) CMD with measured p0 DSA CMD with adjustable p0

p0 (Pa) rs (mN/m) r (mN/m) p0 (Pa) r (mN/m)

200 91.2 60.0 60.0 91.1 60.0
300 89.8 60.8 60.6 90.0 60.8
320 63.9 41.7–49.7 57.7 86.7 57.8
350 40.4 24.6–38.1 57.0 85.4 56.7
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CMD. At that, the error of the Laplace fit determined by the DSA
apparatus is relatively small and does not indicate deviations from
isotropy (see Fig. C1 in Appendix C). In contrast, CMD clearly indi-
cates that the interface is anisotropic; see Figs. 6c, d and 7a, b. We
could hypothesize that this discrepancy is due to the fact that DSA
uses p0 as a second adjustable parameter, instead of measuring p0

as with CMD. Thus, the variation of two parameters, r and p0, can
compensate the difference between the experimental and Laplace
profiles at the cost of obtaining non-physical values of r and p0

with DSA.
To verify the above hypothesis, we processed the same bubble

profiles with the CMD procedure, but this time p0 in Eq. (24) was
treated as an adjustable parameter, which was determined from
the fit of the plot of Fp vs. 2prsinh with linear regression. The best
fits for t = 320 and 350 s are shown in Fig. 8a, b, and the values of p0

and r obtained from all four fits are given in the last two columns
of Table 1. As expected, the obtained values of r practically coin-
cide with those determined by DSA. However, for the anisotropic
interfaces at t = 320 and 350 s the calculated p0 is considerably
higher than the experimental value of this parameter; compare
the second and the fifth columns of Table 1.



Fig. 8. Plots of Fp vs. 2prsinh for the best fits of the bubble profiles at (a) t = 320 s and (b) t = 350 s; r and p0 are determined as adjustable parameters and their values,
corresponding to the best fit with Eq. (30), are given in the figures.
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These results demonstrate that DSA can give incorrect values of r
for slightly anisotropic interfacial layers, assuming that the interface
is isotropic and using r and p0, as two adjustable parameters. At
higher degrees of anisotropy (at t > 360 s in Fig. C1 in Appendix C),
the variation of the two adjustable parameters cannot compensate
the difference between the experimental and Laplace profiles, and
the DSA apparatus indicates a significant rise in the error of the
Laplace fit. However, as demonstrated above, the error of the Laplace
fit by DSA is insensitive to the smaller deviations from surface
isotropy. For this reason, when working with solidifying interfacial
layers (like those from proteins) it is safe to use CMD instead of DSA.

As demonstrated in Table 1 (the first two rows), the CMD
approach (Section 3), which is based on splitting of the meniscus
profile to [zj�1, zj] intervals (j = 1, . . ., n), and calculation of rj, hj

and Ij in the middle of each of them, can be applied to the special
case of isotropic interface with two adjustable parameters, r and
p0. In such case, Eqs. (9) and (11) can be represented in the form:

f ¼ ð2pr sin hÞr� pr2p0 ð30Þ
f � pegDqðI � r2zÞ ð31Þ

The values of f calculated for the midpoints of all [zj�1, zj] inter-
vals from Eq. (31) can be fitted with Eq. (30). Because in Eq. (30) f
depends linearly on r and p0, the least squares method yields
explicit analytical expressions for these two parameters [51], and
thus the time-consuming numerical minimization, used in the
DSA for Laplace fit, is avoided. In other words, for isotropic inter-
faces r can be determined by the CMD procedure only from the
digitized meniscus profile and fit with Eq. (30), without any
pressure measurements. Table 1 (the first two rows) demonstrates
that in this case CMD and DSA give the same r. The quality of the
fit can be illustrated with a plot like those in Figs. 4 and 6a, b.

The CMD can be applied to study the interaction of bubbles and
drops with solid surfaces; see Appendix D. The CMD methodology
(Section 3) could be also applied to obtain a detailed distribution
of the surface stresses in experiments with the micropipette
technique [52,53], which is dealing with axisymmetric model and
biological phospholipid membranes, and where the pressure differ-
ence is also measured. For lm-sized vesicles and cells, the bending-
moment effects (neglected here) could also become essential
[54,55].
5.4. Discussion on the relation between CMD and the rheological
models

An alternative approach to anisotropic interfaces exists, which is
based on the postulation of a rheological model (relation between
stress and strain) for an elastic plate from the very beginning
[19–23]. In this approach, the drop/bubble profile is fitted with
the theoretical shape predicted by the model, and its parameters
(e.g. Young modulus and Poisson ratio) are determined from the
best fit. Next, the two surface tensions, rs and ru are calculated
using the respective expressions in the framework of the model.
This elastic-plate approach faces four difficulties, as follows.

(i) A reference state with isotropic stresses and zero (by defini-
tion) strain is needed, in order to quantify the strains and
stresses upon subsequent deformations. However, the initial
isotropic state is not a priori known, but it can be determined
by CMD (see Fig. C2 in Appendix C).

(ii) The obtained rs and ru would depend on the choice of the
rheological model. In contrast, CMD yields unambiguous
values of rs and ru, which are determined directly from
the experimental data.

(iii) If the interfacial deformation is not sufficiently slow, the
surface viscous stresses would also become essential, in
addition to the elastic ones. Then the rheological model
would contain at least four parameters, surface dilatational
and shear elastic and viscous moduli [56], and some of them
may depend on the rate of strain; see e.g. Refs. [7,8,46,47].
This would result in a very hard mechanical problem. In con-
trast, the CMD gives directly the values of rs and ru for
every meniscus profile, irrespective of whether these values
are dynamic or equilibrium (relaxed).

(iv) The theory of elastic plates implicitly presumes a closed
system, i.e. the lack of exchange of molecules between the
interfacial layer and the bulk. This assumption is not fulfilled
for a system with adsorption dynamics. In contrast, the CMD
method proposed in the present article is applicable to both
closed and open systems, just like the DSA for isotropic
interfaces.

The CMD can considerably facilitate the formulation of an ade-
quate rheological model for a given system. The CMD provides
data not only for the drop/bubble profile, r(z), but also for the
two surface tensions, rs and ru, as functions of the spatial coordi-
nates and time. The CMD gives also the experimental functions
r(z), rs and ru for the initial isotropic (or anisotropic) reference
state, which is necessary for describing the system’s evolution.
This additional experimental information can be used for model
discrimination and determining the best suited rheological model.
As a first step, the applicability of a purely elastic model, like those
in Refs. [19–23], could be tested. If the result is not satisfactory,
one could further test a viscoelastic model, like the thixotropic
model for protein adsorption layers in Refs. [46,47], having
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determined the constant parameters of the model in advance, with
a rotational rheometer.
6. Summary and conclusions

Here, we developed a method for determining the two compo-
nents of the surface tension of axisymmetric drops and bubbles
covered with anisotropic (solidified) adsorption layers. The
method, called capillary meniscus dynamometry (CMD) is based
on processing data not only for the digitized drop/bubble profile
(as with DSA), but also for the instantaneous value of the capillary
pressure of the drop/bubble, p0. The principle of the CMD proce-
dure for data processing is very different from that of the DSA.
For DSA, the whole drop/bubble profile is fitted with the Laplace
equation by adjusting two parameters, the surface tension and
capillary pressure, using numerical minimization [24]. For CMD,
the interface is split to small domains, and the meniscus shape in
each domain is fitted with a quadratic curve. Then, applying the
tangential and normal surface stress balance equations one deter-
mines the two components of the surface tension rs and ru locally,
in each of these surface domains. Numerical minimization is not
used, so that the CMD computational procedure is fast and can
be used to determine the surface-tension dynamics in real time
during a given process.

An alternative approach exists, in which a rheological model of
thin elastic plate is assumed from the very beginning [19–23].
However, in this case the obtained rs and ru would depend on
the choice of the rheological model and would represent theoreti-
cally calculated, rather than experimentally determined quantities.
In contrast, by CMD rs and ru are determined unambiguously
from the experimental data for p0 and the drop profile, without
using any surface rheological model. Thus, rs and ru can be
considered as directly measurable quantities, which can be used
for test of different rheological models. The values of rs and ru
could be not only equilibrium (for slow quasi-static processes),
but also dynamic if the process is not too slow and the interfacial
viscous stresses are essential.

Here, the CMD method is applied to determine rs and ru
during the evolution of a shrinking bubble that is formed on the
tip of capillary in a solution of the protein HFBII hydrophobin.
The results indicate that initially the surface tension is uniform
and isotropic (rs = ru). After a surface compression, rs and ru
become different and vary along the interface. After a subsequent
compression, meridional wrinkles appear on the bubble surface, in
a zone below the bubble ‘‘equator’’, where the azimuthal tension
ru takes negative values, in agreement with the theoretical pre-
dictions [49,50].

The CMD method (even without pressure measurements) is
applicable also to the simpler case of isotropic fluid interfaces, for
which it gives the same surface tension as the DSA and Wilhelmy
plate methods. This has been verified by CMD experiments with
water drops and bubbles in 100 mM aqueous SDS solution
(Fig. 4); see also Fig. 6a, b and Table 1. However, the greatest advan-
tage of the CMD is that it enables one to determine the tensions act-
ing in anisotropic interfacial layers (membranes), like those formed
from proteins, polymers, asphaltenes and phospholipids.
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Appendix A. The anisotropic interfaces are non-uniform and
vice versa

Let us consider a general curved interface parameterized by cur-
vilinear coordinates (u1, u2). The covariant derivative of the surface
tension (stress) tensor reads [57]:

ra
b;d ¼

@ra
b

@ud
þ Ca

cdr
c
b � Cc

bdr
a
c ðA1Þ

Here, ra
b (a, b = 1, 2) are the components of the surface stress

tensor; Ca
cd is a Christoffel symbol of the second kind; all Greek

indices take values 1 and 2, and summation is assumed over the
repeated indices at different level. At equilibrium, the tangential
projection of the surface linear momentum balance reads:

ra
b;a ¼ 0 ðA2Þ

Eq. (A2) is a special case of Eq. (2.15) in Ref. [43] at negligible
weight of the interface and bending moment effects. In the same
approximation, the surface angular momentum balance, Eq.
(2.30) in Ref. [43], implies that surface stress tensor is symmetric,
so that it can be expressed in diagonal form in the eigenbasis:

ra
b ¼ da

br
a ðA3Þ

where da
b is the Kronecker delta and ra (a = 1, 2) are the eigenvalues

of the surface stress tensor. In view of Eqs. (A1) and (A3), Eq. (A2)
acquires the form:

da
b

@ra

@ua þ Ca
baðrb � raÞ ¼ 0 ðA4Þ

Setting b = 1 and b = 2 in Eq. (A4), we obtain the following two
equations:

@r1

@u1 þ C2
12ðr1 � r2Þ ¼ 0 ðA5Þ

@r2

@u2 þ C1
21ðr2 � r1Þ ¼ 0 ðA6Þ

For curvilinear coordinates, C2
12 and C1

21 are (in general) differ-
ent from zero. If the surface stresses are isotropic, r1 = r2 = r, then
Eqs. (A1) and (A2) imply that or/ou1 = 0 and or/ou2 = 0, i.e. r is
constant (uniform) throughout the surface. Conversely, if r1 and
r2 are independent of u1 and u2, the derivatives in Eqs. (A5) and
(A6) will be zero, and then it follows that r1 = r2. In other words,
if the surface tension is isotropic, it is also uniform, and vice versa.
The converse statement is also valid, viz. if the surface tension is
anisotropic, it is also non-uniform, and vice versa.

Appendix B. Supplementary material

Supplementary data, viz. Appendix B ‘‘Derivation of the
momentum balance equations for an axisymmetric meniscus’’;
Appendix C ‘‘Comparison of surface tensions measured by CMD
and DSA’’, and Appendix D. ‘‘Application of CMD to bubble/wall
interactions’’ associated with this article can be found, in the online
version, at http://dx.doi.org/10.1016/j.jcis.2014.10.067.
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Appendix B. Derivation of the momentum balance equations for an axisymmetric meniscus 

Let us parameterize the axisymmetric surface with curvilinear coordinates u1 and u2. It is 

convenient to introduce a Cartesian coordinate system, Oxyz, and a cylindrical coordinate system 

(r,, z) with Oz being the axis of revolution. As local surface basis, it is convenient to introduce 

curvilinear coordinates u1 and u2 as follows:  

  21    , usu  (B1) 

where s is the arc length along the meniscus generatrix and  is the azimuthal angle of the 

cylindrical coordinate system. The equation of the generatrix can be presented in a parametric 

form, viz. r = r(s) and z = z(s). Then, the following connections between the Cartesian and 

cylindrical coordinates take place over the meniscus: 

 )(   , sin)(   , cos)( 12121 uzzuuryuurx   (B2) 
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Differentiating Eq. (B2), one obtains the vectors of the surface local covariant basis vectors, a1 

and a2 [1,2]: 
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It is convenient to express the derivatives in Eq. (B3) through the meniscus slope angle : 
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Then, Eq. (B3) acquires the form: 

 )sin,sincos,cos(cos 22
1  uua  (B6) 

From Eqs. (B4) and (B6) we obtain expressions for the components of the surface metric tensor, 

a = a  a (,   1, 2), and for the running unit normal vector, n: 

 2
22211211    , 0   , 1 raaaa   (B7) 
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 The surface contravariant basis vectors, a1 and a2, are collinear with a1 and a2, 

respectively. Moreover, we have a  a = 
 , where the last symbol is the Kronecker delta. Then, 

knowing a1 and a2 we can easily find a1 and a2: 
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Consequently, the components of the contravariant metric tensor, a = a  a (,   1, 2), are: 
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To determine the Christoffel symbols, 
  (, ,   1, 2), we have to calculate the following 

derivatives: 
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Thus, we obtain: 
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The covariant components b (,   1, 2) of the curvature tensor, b, are [1]: 
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In view of Eqs. (B8) and (B12)–(B15), from Eq. (B18) we obtain: 
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In view of Eq. (B11), the mixed components of the curvature tensor, 



 abb  , are: 
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 At equilibrium, the local balance of the linear momentum at each point of the interface 

reads [3]: 

 nσ ss p  (B21) 

where  is the surface stress tensor, s is the surface del operator, and ps is the pressure 

difference across the interface; the effect of surface weight is neglected. If the effects of the 

surface bending moments are also negligible, then the tangential and normal projections of 

Eq. (B21) read: 

 )2,1(0,   
  (B22) 

 spb 



   (B23) 

As in Appendix A, here 
  (, = 1,2) are the components of the surface stress tensor; all Greek 

indices take values 1 and 2, and summation is assumed over the repeated indices at different level. 

Eqs. (B22) and (B23) are special cases of Eqs. (2.15) and (2.16) in Ref. [3]. As shown in 

Appendix A, for  = 1, 2 Eq. (B22) reduces to 
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where 1 and 2 are the two eigenvalues of the surface stress tensor. Introducing the same 

notations as in the main text, 1 = s, 2 =  , u
1 = s and u2 = , and substituting the Christoffel 

symbols from Eqs. (B16) and (B17), we bring Eqs. (B24) and (B25) in the form: 
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where we have used the relation du1 = ds = dr/cos. The first equation in Eq. (B26) is identical to 

Eq. (2) in the main text. The second equation in Eq. (B26) is trivial because of the meniscus axial 

symmetry. 

 Furthermore, substituting 
  from Eq. (A3) (Appendix A) and 

b  from Eq. (B20) in the 

normal balance, Eq. (B23), we derive: 
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Again, introducing the notations 1 = s, 2 =  , u
1 = s and u2 = , and using Eq. (4), we obtain: 

 sss p   (B28) 

which is Eq. (3) in the main text. Finally, utilizing again the relation du1 = ds = dr/cos, we can 

bring Eq. (B27) in the form: 
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The substitution of   from Eq. (B26) into Eq. (B29) yields: 
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that is 
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The last equation coincides with Eq. (5) in the main text. 

 

Appendix C. Comparison of surface tensions measured by CMD and DSA 

 C.1. Surface tension of a buoyant bubble 

 Fig. C1 shows the variation of the surface tension DSA measured by the DSA method 

during the experiment described in Fig. 5 in the main article. The vertical arrows show moments 

in time t, at which video frames of the drop profile have been processed; see Fig. 5b in the main 

article. At t = 300 s, we have DSA = 60.6 mN/m, which practically coincides with the value 
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 = 60.8 mN/m determined by CMD; see Fig. 6b in the main paper, where it is demonstrated that 

the interface is still isotropic. 

 

 

 

 

 

 

 

 

 

 

 

Fig. C1. Time dependencies of the surface tension DSA and of the error of the Laplace fit given 

by the DSA apparatus for the experiment in Fig. 5 in the main article. The vertical arrows 

correspond to video frames with the bubble profile shown in Fig. 5b. 

 

 As seen in Figs. 6c,d and 7a,b (main paper), at t = 320 and 350 s the interface is already 

anisotropic. However, Fig. C1 shows that at t = 320 and 350 s the error of the Laplace fit is 

relatively small and it does not indicate that the surface solidification has happened. Rise of the 

error of the Laplace fit is observed at t  360 s when the surface anisotropy has become 

significant; see Figs. 7c–f. As discussed in relation to Table 1 in the main text, at small deviations 

from isotropy the DSA can still fit the bubble/drop profile because there are two adjustable 

parameters, p0 and . Thus, a good fit can be obtained at the cost of non-physical values of p0 and 

; see Table 1 and Fig. 8 in the main text. 
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 C.2. Surface tension of a pendant drop 

 

 

 

 

 

 

 

 

 

Fig. C2. Time dependencies of the surface tension DSA and the error of the Laplace fit given by 

the DSA apparatus, as well as of the surface tension at the drop apex, CMD(0), measured by 

CMD. The data are for a pendant drop from 0.001 wt% HFBII solution. 
 
 Fig. C2 shows the variation of surface tension with time t for a pendant drop from 0.001 

wt% HFBII. DSA is the surface tension given by the DSA apparatus, and the error of the Laplace 

fit given by this apparatus is also plotted. Fig. C2 shows also the time dependence of the surface 

tension at the drop apex, where s =    CMD(0), measured by CMD. To determine CMD(0), 

the curvature radius R0 at the drop apex was determined by fitting the drop profile in this region 

with a circumference. In addition, the pressure p0 was determined by pressure transducer (Fig. 3). 

Then, CMD(0) = p0R0/2. 

For t < 450 s, the data in Fig. C2 indicate that DSA = CMD(0), which means that the 

interfacial layer is isotropic. For t > 450 s, CMD(0) exhibits a minimum, a maximum and a 

second minimum, which are due to a consecutive compression, expansion and second 

compression of the bubble surface carried out by the experimentalist. The upper curve in Fig. C2 

shows that DSA has only small variations for t > 450 s, i.e. the DSA is insensitive to the 

interfacial compressions and expansions. The only indication for surface solidification is given 

by the error of the Laplace fit, which exhibits local maxima in the regions with the greatest 
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compressions. However, the most sensitive indicator for surface solidification is the difference 

between DSA and CMD(0). At t = 900 s, DSA = 55.3 mN/m, whereas CMD(0) = 14.7, so that this 

difference reaches 40.6 mN/m (Fig. C2). 

 

Appendix D. Application of CMD to bubble/wall interactions 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t = 30 s t = 60 s t = 330 s 

Fig. D1. Application of CMD to a bubble 
interacting with a glass plate in a solution of 

0.005 wt% HFBII and 4.8 M Tween 20. 
(a) Photographs of the bubble at t = 30, 60 and 
330 s. (b) and (c) Plots of Fp vs. 2πrsinθ for t = 30 
and 60 s, indicating isotropic surface tension σ 
given in the figures. (d) Plots of σs and σφ vs. z for 
t = 330 indicating solidification of the meniscus 
near z = 0 (near the glass plate) where σs ≠ σφ 
(details in the text). 
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 Fig. D1a shows three consecutive video frames of an air bubble formed at the tip of a 

capillary in a mixed solution of the protein hydrophobin HFBII and the nonionic surfactant 

Tween 20. The bubble is pressed against a horizontal glass plate immersed in the solution.  

In the moment of time t = 30 s, the bubble is not yet in contact with the glass plate 

(Fig. D1a). From the digitized profile of the bubble surface and from the pressure p0 = 188 Pa 

measured by the pressure transducer we determined the pressure force Fp and plotted it vs. 

2πrsinθ; see Fig. D1b. The plot is a straight line through the coordinate origin, which indicates 

isotropic surface tension, just like in Figs. 6a and b in the main article. The slope of this linear 

dependence, σ = 57.7 mN/m, yields the value of the surface tension in view of Eq. (11) in the 

main article. 

At t = 60 s, the bubble is already pressed against the glass plate (Fig. D1a, the photo in the 

middle). As above, from the digitized profile of the bubble surface and from the pressure p0 = 

179 Pa measured by the pressure transducer we determined the pressure force Fp and plotted it vs. 

2πrsinθ; see Fig. D1c. Again, the plot is a straight line, which indicates isotropic surface tension. 

In this case, the bubble forms a capillary bridge between the capillary tube and the plate. The 

capillary bridge force between the bubble and the plate, F, equals the difference between the 

forces due to pressure and surface tension [4]. Then, instead of Eq. (11), we have: 

 FrF sp   sin2  (D1) 

In view of Eq. (D1), from the slope and the intercept of the plot in Fig. D1c we determine 

σ = 49.6 mN/m and F = 70.3 μN. The positive value of F corresponds to repulsion between the 

capillary tube and the plate, mediated by the bubble that represents a capillary bridge. 

 After pressing the bubble against the plate and waiting for a certain period of time, the 

pressure in the bubble is decreased (by sucking air through the capillary), which gives rise to a 

process of gentle bubble detachment from the substrate. The bubble profile at t = 330 s 

(corresponding to a lower pressure, p0 = 19.4 Pa) is shown in the rightmost photo in Fig. D1a. In 

this case, the plot of Fp vs. 2πrsinθ is not a straight line, which indicates solidification of the 

interfacial layer. For this reason, we applied the complete CMD procedure from Section 3 and 

determined the variations of the two surface tensions, σs and σφ, which are shown in Fig. D1d as 

functions of the vertical coordinate, z. The coordinate origin, z = 0, corresponds to the surface of 
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the glass plate. The upper part of the bridging bubble, for z > 3.4 mm, the two surface tensions 

coincide, σs = σφ = 6.52 mN/m, so that in this part of the bubble the surface tension is isotropic. In 

contrast, for z < 3.4 mm, we obtain σφ < σs, i.e. in the lower part of the bubble, near the substrate, 

the surface tension is anisotropic. The smaller values of σφ can be explained with the shrinking of 

the bubble surface after sucking of gas from its interior. The results in Fig. D1d indicate that this 

shrinking happens mostly in the lower part of the bubble, in azimuthal direction. The slightly 

greater values of σs in this region indicate a slight extension of bubble surface in vertical direction, 

which is related to the onset of bubble detachment from the substrate upon decreasing its volume. 

For a more systematic study on the application of CMC to investigate the adhesion of bubbles 

and drops to solid surfaces see Ref. [5]. 

 

References 

[1] A.J. McConnell, Applications of Tensor Analysis (Dover Books on Mathematics), Dover 
Publications, New York, 2011. 

[2] G.A. Korn, T.M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, 
Theorems, and Formulas for Reference and Review, Dover Publications, New York, 2000. 

[3] P.A. Kralchevsky, J. Eriksson, S. Ljunggren, Adv. Colloid Interface Sci. 48 (1994) 19–59. 

[4] P.A. Kralchevsky, K. Nagayama, Particles at Fluid Interfaces, Elsevier, Amsterdam, 2001; 
Chapter 11.  

[5] K.D. Danov, R.D. Stanimirova, P.A. Kralchevsky, K.G. Marinova, S.D. Stoyanov, T.B.J. 
Blijdenstein, E.G. Pelan et al., manuscript in preparation. 

 


	Capillary meniscus dynamometry – Method for determining the surface tension of drops and bubbles with isotropic and anisotropic surface stress distributions
	1 Introduction
	2 Surface stress balances for an axisymmetric meniscus
	2.1 Basic equations
	2.2 Force balances at the drop/bubble

	3 Determination of the local values of surface tension from experimental data
	4 Experimental section
	4.1 Materials and methods
	4.2 Determination of the reference capillary pressure p0
	4.2.1 Pendant drop
	4.2.2 Buoyant bubble


	5 Experimental results and discussion
	5.1 Pendant drops and buoyant bubbles with fluid interfaces
	5.2 Bubbles with solidifying protein adsorption layers
	5.3 Comparison of the DSA and CMD methods
	5.4 Discussion on the relation between CMD and the rheological models

	6 Summary and conclusions
	Acknowledgments
	Appendix A The anisotropic interfaces are non-uniform and vice versa
	Appendix B Supplementary material
	References


