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Here, we calculate the electric forces acting on charged dielectric colloidal particles, which are attached to
the interface between a nonpolar fluid (air and oil) and water in the presence of applied uniform external
electric field, E0, directed normal to the interface. Electric charges are present on the particle–nonpolar
fluid interface. The solution to the problem represents a superposition of the solutions of two simpler
problems: (i) charged particle in the absence of external field and (ii) uncharged particle in the presence
of external field. Because the external field can be directed upward or downward, it enhances or opposes
the effect of the particle surface charges. As a result, the vertical (electrodipping) force vs. E0 may have a
maximum or minimum and can be positive or negative depending on the particle contact angle and
dielectric constant. In contrast, the lateral electric force between two identical charged floating particles
is always positive (repulsive), but it can vary by many orders of magnitude with E0. This is because at a
certain value of E0, the net dipolar moment of the particle becomes zero. Then, the interparticle force is
governed by the octupolar moment, which leads to a much weaker and short-range repulsion. In the
vicinity of this special value of E0, the interparticle repulsion is very sensitive to the variations in the
external field. These effects can be used for a fine control of the lattice spacing in non-densely packed
interfacial colloidal crystals of regular hexagonal packing for producing lithographic masks with various
applications in nanotechnology.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction capillary interactions between particles collected at an interface,
The aim of the present study is to calculate the electrostatic
forces acting on charged dielectric particles attached to a water–
nonpolar fluid interface in the presence of external electric field,
E0, directed normal to the interface. The solution to this problem
can be found by combining the solutions of two simpler problems:
(i) charged particles without external field [1] and (ii) uncharged
particles in external field [2]. In the latter case, the particle be-
comes a source of electric field because of its polarization by the
external field. Our final goal is to calculate the normal (electrodip-
ping) force F(n) acting on each separate particle, and the electro-
static interaction force F12 between two floating particles, as well
as the dependencies of F(n) and F12 on the particle contact angle
and dielectric constant. The value of F(n) includes a contribution
from an integrable singularity at the contact line on the particle
surface. To accurately take into account this contribution, in pre-
ceding studies [1,2], we solved the respective electrostatic bound-
ary problem analytically, by using the Mehler–Fock integral
transform.

The experiment shows that by varying the strength of the ap-
plied external electric field, one can control the electrostatic and
and the distances between the particles in a non-densely packed
two-dimensional colloid array formed at a liquid interface [3–8].
Such arrays have been obtained by spreading of charged colloidal
particles on a liquid interface [9–16]. They have found applications
for the creation of lithographic masks in the production of periodic
nano-structures, e.g., antireflection coatings, microlens arrays, etc.
[16–22].

The normal force acting on a floating colloidal particle creates
an interfacial deformation (capillary meniscus) around the particle.
The overlap of such menisci gives rise to capillary attraction be-
tween the particles [23–28]. The attractive capillary force can be
due also to out-of-plane undulations of the contact line because
of surface roughness or to non-spherical shape of the particle,
the so-called interactions between capillary multipoles [29–36].
The interplay of electrostatic repulsion and capillary attraction af-
fects the interparticle spacing in the non-densely packed interfacial
colloid arrays and the surface pressure in such particulate mono-
layers [31,32,37].

As in Ref. [1], here we assume that charges of uniform surface
density rpn are located at the particle–nonpolar fluid (air and oil)
interface. Experimentally, this was observed with micrometer-
sized and bigger particles [9–11,38,39]. Indication for the predom-
inant effect of rpn is the lack of dependence of particle interactions
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and of their conformation at the interface on the concentration of
electrolyte in the aqueous phase [11,38]. This situation is typical
for particles of radius R, which is much greater than the Debye
screening length in the water phase, i.e., jR� 1. In such a case,
the electrostatic interactions across the water phase are negligible
and only the electric effects in the nonpolar fluid and inside the
dielectric particle are essential [38]. For smaller particles
(jR 6 1), the interaction across the aqueous phase can become sig-
nificant [40–43].

Here, we first combine the solutions of the problems for a
charged particle without external field [1] and for an uncharged
particle in external field [2] to obtain the electric field around a
charged particle in external field (Section 2). Next, a general
expression for the normal force F(n) is derived and applied to the
considered system. The magnitude and direction of this force (dip-
ping or pulling) depending on the applied external field E0 are
investigated (Section 3). Further, the lateral electric force F12 be-
tween two particles at the liquid interface is calculated for not-
too-small interparticle distances. The effects of the particle contact
angle, dielectric constant, and E0 on F12 are also investigated. For
reader’s convenience, the respective force coefficients are tabu-
lated in Appendix A. Thus, the reader could simply calculate F(n)

and F12 with the help of a four-point interpolation formula, instead
of repeating the time-consuming numerical computations.

2. Physical system and basic equations

2.1. Combination of the solutions for charged particle without external
field and uncharged particle in external field

Here, we consider a spherical particle of radius R, which is at-
tached to a flat interface between water and a nonpolar fluid (oil,
air, etc.); see Fig. 1. Surface charges of uniform density rpn are lo-
cated at the particle–nonpolar fluid boundary, Spn. A uniform exter-
nal electric field is applied perpendicular to the fluid interface, with
a vertical projection E0. The dielectric constants of the water, non-
polar fluid, and particle are denoted ew, en, and ep, respectively.

As in Refs. [1,2], we assume that ew� ep, en. For this reason, the
electric field in the nonpolar fluid and in the dielectric particle
practically does not penetrate into the water phase; see, for exam-
ple, the conventional problem for the image force [44] and for a
charged hydrophobic particle near the oil–water interface [45].
Experimentally, the non-penetration of the field into water is man-
ifested as independence of the configuration of the adsorbed parti-
cles on the electrolyte concentration in the aqueous phase [11,38].
This is fulfilled in the case R� j�1, where j is the Debye screening
parameter. However, for smaller particles, for which R is compara-
ble with j�1, the effect of the electrostatic field in the water be-
comes material [38].
Fig. 1. Sketch of a charged spherical colloidal particle attached to the water–
nonpolar fluid interface, Snw. The particle–nonpolar fluid and particle–water
interfaces are denoted Spn and Spw, respectively; n is the outer unit normal to Spn;
E0 is a uniform external field. The surface charges of density rpn are located at Spn.
In zero-order approximation, we assume that the water–nonpo-
lar fluid interface is planar. The position of the particle at the inter-
face is defined by the central angle, a, which coincides with the
three-phase contact angle if the water–nonpolar fluid interface is
flat (Fig. 1). In particular, a < 90� for hydrophilic particle and
a > 90� for hydrophobic particle. The three-phase contact line is a
circumference of radius rc.

The potential of the electric field, up inside the particle and un

in the nonpolar fluid, obeys the Laplace equation,

r2uk ¼ 0; k ¼ p;n; ð2:1Þ

where r2 is the Laplace operator. Having assumed non-penetration
of the electric field into water, the role of the water is to keep the
electric potential constant at the boundaries Snw and Spw (Fig. 1). Be-
cause the latter constant can be set zero, we obtain the following
two boundary conditions:

up ¼ 0 at Spw and un ¼ 0 at Snw: ð2:2Þ

At the third interface, Spn, we impose the standard boundary condi-
tions for continuity of the electric potential and the relation be-
tween the normal electric-field components:

un ¼ up and n � ðeprup � enrunÞ ¼ 4prpn at Spn; ð2:3Þ

where r is the del operator and n is the outer unit normal to the
particle surface, Spn (Fig. 1). In the nonpolar fluid at large distances
from the particle, the external electric field is E0 = �E0ez, where ez is
the unit vector of the vertical axis z (Fig. 1). Then, the electric poten-
tial should have the following asymptotic form:

un ! E0z far from the particle: ð2:4Þ

Because of the linearity of the considered boundary problem, Eqs.
(2.1)–(2.4), the solution can be presented as a superposition:

un ¼ ur;n þuE;n and up ¼ ur;p þuE;p; ð2:5Þ

where ur;n and ur;p are the solutions of the problem for a charged
particle without external field, which has been considered in Ref.
[1], and uE;n and uE;p are the solutions of the problem for an un-
charged particle with applied external field, which has been consid-
ered in Ref. [2].

2.2. Basic expressions for the electric field

Here, we briefly summarize the basic expressions, which will be
used to calculate the normal (electrodipping) force acting on a sin-
gle floating particle and the lateral force of electrostatic interaction
between two such particles. As demonstrated in Refs. [1,2], for this
goal we need to know the vertical component of the electric field,
Ez = �ez�run, at the flat interface between the nonpolar fluid and
water, Snw, where z = 0; ez is the unit vector of the z-axis (Fig. 1).
In view of Eq. (2.5), we can write:

Ez ¼ Er;z þ EE;z: ð2:6Þ

where Er;z ¼ �ez � rur;n and EE;z ¼ �ez � ruE;n. The fact that Er;z and
EE;z at Snw have been already found in Refs. [1,2], considerably sim-
plifies our task in the present study. More specifically, summarizing
Eqs. (3.22) and (3.23) in Ref. [1], and Eq. (3.20) in Ref. [2], we obtain:

Er;z ¼ �
4p
en

rpn
x3

1Jr
ð1� x1Þ1�m and

EE;z ¼ �E0 � E0
x3

1JE

ð1� x1Þ1�m ;

ð2:7Þ

Jjðx1;a; epnÞ �
23=2Ijðg;a; epnÞ

ð1þ x1Þ3=2ð1� x1Þmþ1=2 ðj ¼ r; EÞ; ð2:8Þ



Fig. 2. Dependences of coefficient functions D3(a, epn) and D5(a, epn) on the central
angle a at different fixed values of the ratio epn = ep/en: (A) 0.125; (B) 0.250; (C)
0.500; (D) 0.750; (E) 1.00; (F) 1.50; (G) 2.00; (H) 4.00; and (I) 8.00. The scaling factor
A is defined by Eq. (2.14).
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(z = 0). Here, Ir � I and Jr � J are dimensionless auxiliary functions
introduced and calculated in Ref. [1]; see Fig. 12 therein. Likewise,
IE and JE are dimensionless auxiliary functions introduced and cal-
culated in Ref. [2]; see Fig. 9 therein. The following notations have
been also used:

epn ¼
ep

en
; x1 ¼

rc

r
; exp g ¼ 1þ x1

1� x1
; ð2:9Þ

where r is the radial coordinate (Fig. 1). The quantity m = m(a, epn)
has been computed for various a and epn and tabulated in Table 4
of Ref. [1].

At sufficiently long distance from the particle (x1� 1), Eq. (2.7)
has the following asymptotic behavior [1,2]:

Er;z ¼ �
4p
en

rpn½D3x3
1 þ D5x5

1 þ Oðx7
1Þ�; ð2:10Þ

EE;z ¼ �E0 � E0½H3x3
1 þ H5x5

1 þ Oðx7
1Þ�; ð2:11Þ

where Di(a, epn) and Hi(a, epn), i = 3, 5, are coefficient functions.
H3(a, epn) and H5(a, epn) have been calculated in Ref. [2]. D3(a, epn)
coincides with D(a, epn) in Ref. [1]. In relation to the present study,
we calculated also D5(a, epn) from the expression

D5 ¼ 23=2
Z 1

0

s WsðsÞ
sinh½ðp� aÞs�

5
4
� s2

� �
ds; ð2:12Þ

which has been derived completely analogously to Eq. (3.19) in Ref.
[2]; s is an integration variable. To calculate D5, one has to substi-
tute Ws(s) computed as explained in Section 5.1 of Ref. [1]. For read-
ers convenience, the functions Di(a, epn) and Hi(a, epn), i = 3, 5, are
tabulated in Tables 1–4 of Appendix A.

The numerical data in Tables 1–7 of Appendix A can be used for
a fast and convenient calculation of the functions Di(a, epn), Hi(a,
epn), i = 3, 5, and other functions of a and epn, in the following
way. Let f(a, epn) be either of the above tabulated functions. We
are interested to obtain its value for a given a1 < a < a2, and e1 -
< epn < e2, where a1, a2, e1, and e2 are values given in the respective
table. Then, f(a, epn) can be calculated by means of the following
four-point interpolation formula:

f ða; epnÞ ¼
ða� a2Þðepn � e2Þ
ða1 � a2Þðe1 � e2Þ

f ða1; e1Þ

þ ða� a2Þðepn � e1Þ
ða1 � a2Þðe2 � e1Þ

f ða1; e2Þ

þ ða� a1Þðepn � e2Þ
ða2 � a1Þðe1 � e2Þ

f ða2; e1Þ

þ ða� a1Þðepn � e1Þ
ða2 � a1Þðe2 � e1Þ

f ða2; e2Þ ð2:13Þ

As an illustration, the coefficient functions D3 and D5 in the mul-
tipole expansion of the electric field for charged particles, Eq.
(2.10), are plotted vs. the central angle a in Fig. 1 for nine different
values of epn. To avoid the divergence at a ? p, D3 and D5 are scaled
with powers of the factor:

A ¼ 2p R2ð1� cos aÞ
p r2

c
¼ 2

1þ cos a
: ð2:14Þ

A is equal to the area of Spn divided by the area encircled by the con-
tact line (Fig. 1). As seen in Fig. 2, the rescaled functions
D3ða; epnÞ=A3=2 and D5ða; epnÞ=A5=2 have bounded variation. D3 is po-
sitive for all 0 < a < p, whereas D5 is negative for the more hydro-
phobic particles (a > 110�).

The two series expansions, Eqs. (2.10) and (2.11), will be used in
Section 4 to estimate the asymptotic behavior of the electrostatic
interaction between two floating charged particles.
3. Electrodipping force

3.1. General expressions

In the presence of electric field, the pressure is given by the
Maxwell tensor Pk [44]:

Pk ¼ pk1 þ
ek

8pruk � ruk

� �
U� ek

4prukruk

ðk ¼ n;p;wÞ;
ð3:1Þ

where U is the unit tensor;r is the del operator; the subscripts ‘‘n’’,
‘‘p’’ and ‘‘w’’ denote quantities related to the nonpolar fluid, particle,
and water phases; pk1 is a constant scalar pressure; uk is electro-
static potential; and ek is dielectric constant. We assume that in
the water phase pw1 is known. Far from the particle, its electric
field vanishes (only E0 remains), and the water–nonpolar interface
is planar, so that the relation between pn1 and pw1 is as follows:

pn1 �
enE2

0

8p
¼ pw1: ð3:2Þ

In view of Eqs. (3.1) and (3.2), the pressure tensors in the nonpolar
fluid and water phases are:

Pn ¼ pw1 þ
enE2

0

8p
þ en

8p
run � run

 !
U� en

4p
runrun; ð3:3Þ

Pw ¼ pw1U; ð3:4Þ



Fig. 3. Dependence of the force coefficient fR,Er on the central angle a at different
fixed values of the dielectric constant ratio epn = ep/en.
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where the non-penetration of the electric field into the water phase
(see Section 2.1) has been taken into account.

The electric force, F, acting on the particle (Fig. 1) is equal to the
integral of the pressure tensor (with negative sign) over the parti-
cle surface [44]

F ¼ �
Z

Spw

dS � Pw �
Z

Spn

dS � Pn; ð3:5Þ

where dS is the vector surface element. From the Navier–Stokes
equation, it follows that at mechanical equilibrium (in the absence
of hydrodynamic flow in the two adjacent fluid phases), we can
write r�Pn = 0 and r�Pw = 0. The integration of the latter equations
over the volumes of the nonpolar fluid and water phases, Vn and Vw,
and the application of the Gauss-Ostrogradsky divergence theorem
yields:

0 ¼
Z

Vn

dVr � Pn ¼
Z

Spn

dS � Pn þ
Z

Snw

dS ð�ezÞ � Pn; ð3:6Þ

0 ¼
Z

Vw

dVr � Pw ¼
Z

Spw

dS � Pw þ
Z

Snw

dSez � Pw; ð3:7Þ

where dS is the scalar surface element, and ez is the unit vector of
the vertical z-axis. Combining Eqs. (3.3)–(3.7), we obtain:

F ¼ �
Z

Snw

dSez �
en

4p
runrun �

en

8p
ðrun � run þ E2

0ÞU
h i

: ð3:8Þ

In other words, the force F acting on the particle is expressed by
integral over the flat nonpolar fluid–water interface, Snw (Fig. 1).
In accordance with Eq. (2.2), the nonpolar fluid–water interface is
equipotential, un = 0 at Snw, and consequently, run = �ezEz at Snw.
Then, Eq. (3.8) reduces to:

F ¼ �ez
en

8p

Z
Snw

dS ðE2
z � E2

0Þ: ð3:9Þ
3.2. Force coefficients

To calculate the vertical (electrodipping) force Fz = ez�F acting on
the particle (Fig. 1), we substitute Eq. (2.7) into Eq. (3.9). The result
can be expressed in the form:

FðnÞ � Fz ¼ �
enE2

0R2

4p
fR;EE � 2E0rpnR2fR;Er �

4pr2
pnR2

en
fR;rr; ð3:10Þ

where

fR;EE ¼ p sin2 a
Z 1

0
2

2
1� x2

1

� �3=2

IE þ
2x1

1� x2
1

� �3

I2
E

" #
dx1: ð3:11Þ

fR;rr ¼ p sin2 a
Z 1

0

2x1

1� x2
1

� �3

I2
rdx1: ð3:12Þ

fR;Er ¼ p sin2 a
Z 1

0

2
1� x2

1

� �3=2

Ir þ
2x1

1� x2
1

� �3

IEIr

" #
dx1: ð3:13Þ

The coefficient function fR,EE(a, epn) was calculated in Ref. [2] and
plotted in Fig. 10 therein. The coefficient function fR,rr(a, epn) � fR(a,
epn) was calculated in Ref. [1] and plotted in Fig. 11 therein.

Here, we calculate the coefficient function fR,Er(a, epn). To avoid
the weak singularity of the integrand in Eq. (3.13) at x1 ? 1, we
split the integral in two parts:

fR;Er

p sin2 a
¼
Z 1�d

0

2
1� x2

1

� �3=2

Ir þ
2x1

1� x2
1

� �3

IEIr

" #
dx1 þ fd;Er; ð3:14Þ

fd;Er �
Z 1

1�d

2
1� x2

1

� �3=2

Ir þ
2x1

1� x2
1

� �3

IEIr

" #
dx1: ð3:15Þ

where d is a small number; good accuracy can be obtained setting
d = 0.01. The integral in Eq. (3.14) was solved numerically, calculat-
ing the functions Jj(x1, a, epn), j = E, r, as explained in Refs. [1,2]; see
also Eq. (2.8). Furthermore, Eq. (3.15) can be represented in the
form:

fd;Er �
Z 1

1�d
ð1� x1Þm�1Jr1 þ ð1� x1Þ2m�2JE1Jr1

h i
dx1

¼ dm

m
Jr1 þ

d2m�1

2m� 1
JE1Jr1: ð3:16Þ

where

Jj1ða; epnÞ � Jjð1;a; epnÞ ¼ lim
x1!1

Ijðg;a; epnÞ
ð1� x1Þmþ1=2

" #
; ð3:17Þ

j = E, r. The function JE1(a, epn) was calculated and tabulated in Ta-
ble 2 of Ref. [2] and plotted in Fig. 8 therein. The coefficient function
Jr1(a, epn) � C(a, epn) was calculated and tabulated in Table 2 of Ref.
[1] and plotted in Fig. 10 therein. Numerical values of JE1(a, epn) and
Jr1(a, epn) can be obtained using the respective tables along with Eq.
(2.13).

The calculated dependence fR,Er(a, epn) is illustrated in Fig. 3.
The latter figure shows that fR,Er is an increasing function of a. In
addition, fR,Er is positive, so that the sign of the respective term
in Eq. (3.10) is determined by the sign of the product E0rpn.
Numerical values of the coefficient functions fR,EE(a, epn), fR,rr(a,
epn), and fR,Er(a, epn) can be obtained by using Tables 5–7 in Appen-
dix A along with Eq. (2.13).
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3.3. Direction of the vertical force Fz

To investigate the effect of the external electric field, E0, on Fz,
we represent Eq. (3.10) in the form:

Fz ¼ �
4pr2

pnR2

en
fR;EEðN2 þ 2AErN þ ArrÞ: ð3:18Þ

where we have introduced the notations

N � enE0

4prpn
; ð3:19Þ

AEr �
fR;Er

fR;EE
; Arr �

fR;rr

fR;EE
: ð3:20Þ

The two roots of the quadratic trinomial in the parentheses in Eq.
(3.18) are

N1;2 ¼ �AEr 	 ½ðAErÞ2 � Arr�1=2
: ð3:21Þ

The obtained numerical results for fR,EE, fR,rr, and fR,Er show that
(AEr)2 > Arr, i.e., the discriminant in Eq. (3.21) is always positive
so that the quadratic trinomial in Eq. (3.18) has two real roots, N1

and N2, for fR,EE – 0. In addition, Eq. (3.12) and the obtained numer-
ical results (Fig. 3) show that fR,rr and fR,Er are positive quantities.
Hence, the sign of Fz in Eq. (3.18) is determined by fR,EE and N, which
could take both positive and negative values. Depending on the sign
of fR,EE, the possible cases can be systematized as follows:

(a) If fR,EE > 0 (and AEr > 0), then N1 and N2 in Eq. (3.21) are both
negative. In this case, Fz is positive for N1 < N < N2, and neg-
ative outside this interval; see Eq. (3.18) and Fig. 4a. The
three possible cases are as follows:
Fig. 4.
fR,EE = 0
Fz > 0 for jN þ AErj < ½ðAErÞ2 � Arr�1=2; ð3:22Þ
Fz < 0 for jN þ AErj > ½ðAErÞ2 � Arr�1=2

; ð3:23Þ
Fz ¼ 0 for jN þ AErj ¼ ½ðAErÞ2 � Arr�1=2

: ð3:24Þ
(b) If fR,EE < 0 (and AEr < 0), then N1 is negative, but N2 is posi-
tive; see Eq. (3.21). In this case, Fz is negative for
N1 < N < N2, and positive outside this interval; see Eq.
(3.18) and Fig. 4b. The three possible cases are as follows:
Fz < 0 for jN þ AErj < ½ðAErÞ2 � Arr�1=2
; ð3:25Þ

Fz > 0 for jN þ AErj > ½ðAErÞ2 � Arr�1=2
; ð3:26Þ
and Eq. (3.24) holds again for the case Fz = 0.
(c) If fR,EE = 0, then the term with N2 in Eq. (3.18) disappears and

Fz depends linearly on N; see Fig. 4c. The three possible cases
are as follows:

Fz > 0 for N < N0; ð3:27Þ
Fz < 0 for N > N0; ð3:28Þ
Fz ¼ 0 for N ¼ N0; ð3:29Þ

where
On the determination of the sign of the normal electric force Fz depending on th
.

N0 � �
fR;rr

2f R;Er
< 0: ð3:30Þ

Because N / E0, see Eq. (3.19), the above results indicate that for all
values of the contact angle, a, and of the dielectric constant ratio,
epn = ep/en, the direction and magnitude of Fz can be controlled using
the external electric field E0.
3.4. Numerical results for Fz

Fig. 5 illustrates the sign and magnitude of Fz depending on the
applied external electric field E0 for a hydrophilic particle with
a = 60� (Fig. 5a) and for a hydrophobic particle with a = 120�
(Fig. 5b). In view of Eq. (3.18), it is convenient to plot the dimen-
sionless force,

Fz;d �
enFz

4pr2
pnR2 ; ð3:31Þ

vs the dimensionless electric field E0,d � N; see Eq. (3.19).
In accordance with Eq. (3.18), the Fz,d-vs.-E0,d curves in Fig. 5 are

parabolas. At E0,d = 0, in all cases Fz,d < 0, which is the electrodip-
ping force solely due to the effect of the particle surface charge,
rpn, viz. Fz;djE0¼0 ¼ �fR;rr. The latter force is relatively small by mag-
nitude as compared to the effect that can be produced by the exter-
nal electric field E0,d; see Fig. 5.

In addition, it turns out that (AEr)2� Arr. Thus, expanding in
series under the square root in Eq. (3.21), we obtain that one of
the roots N1 and N2, which is smaller by magnitude, is close to
N0 in Eq. (3.30). For this reason, all curves in Fig. 5 are close to each
other at E0,d � N0.

For hydrophilic particles with a = 60� (Fig. 5a), at epn < 4 we
have fR,EE > 0, and the Fz,d-vs.-E0,d curves resemble that in Fig. 4a.
In this case, Fz,d tends to deep the particles into the water phase,
except in the region N1 < E0,d < N2, where the external field pulls
the particle toward the nonpolar fluid. The latter corresponds to
an oppositely charged electrode placed in the nonpolar fluid, which
attracts the particle. Note, however, that at E0,d < N1, again for
oppositely charged particle and electrode, Fz changes sign and
pushes the particles into the water. This is due to the predominant
effect of particle polarization, expressed by the term /fR,EEN2 in Eq.
(3.18), that overcomes the effect of rpn.

In Fig. 5a, fR,EE changes sign at epn � 4, where the plot of Fz,d vs.
E0,d resembles that in Fig. 4c. At epn = 8, the pulling-up effect of the
term fR,EEN2 is predominant, except in the interval region
N1 < E0,d < N2, where the effect of the particle charge rpn gets the
upper hand.

At a = 120� in Fig. 5b, all effects are similar, the main difference
being that the pull-up effects are predominant, which is due to the
smaller (more negative) values of fR,EE at this contact angle that
lead to a situation like that in Fig. 4b; see also Fig. 10 in Ref. [2].
e dimensionless number N in Eq. (3.18): (a) for fR,EE > 0; (b) for fR,EE < 0 and (c) for



due to the particles:

Fig. 5. Plot of the dimensionless normal (electrodipping) force, Fz,d, vs. the
dimensionless external electric field, E0,d � N; see Eqs. (3.19) and (3.31) for their
definitions. Each curve is a parabola that has two zeros, except that with fR,EE = 0
(corresponding to a certain epn = ep/en), for which the plot is a straight line; see Eq.
(3.18) and Fig. 4.

Fig. 6. Imaginary parallelepiped used for the derivation of the expression for the
force between two identical charged particles at the water–nonpolar fluid interface;
L is the interparticle center-to-center distance (details in the text).
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4. Lateral electric force between two particles at the interface

4.1. Theoretical expression for the lateral force

Here, we are using the solution of the single-particle problem to
derive an expression for the force of electrostatic interaction be-
tween two identical charged particles attached to the water–non-
polar fluid interface. The particles are separated at a distance L
between the centers of their contact lines (Fig. 6). As before, an
external electric field E0 is applied normal to the fluid interface.
The electrostatic interaction between the particles is due to both
their surface charges and their polarization by the external field.

Substituting Eqs. (3.3) and (3.4) into Eq. (3.5), we obtain the fol-
lowing general expression for the electric force acting on a given
particle:

F ¼
Z

Spn

en

4p
runrun �

en

8p
ðrun � run þ E2

0ÞU
h i

� dS: ð4:1Þ

Furthermore, let us construct an imaginary rectangular parallelepi-
ped around one of the two particles, as depicted in Fig. 6. The lower
base A1A2A3A4 lies on the water–nonpolar fluid interface. The right
side of the parallelepiped, A1A2B2B1, is located in the middle be-
tween the particles and coincides with the yz-plane of the Cartesian
coordinate system (Fig. 6).

As in Section 3.1, we can take a volume integral of the equilib-
rium relationr�Pn = 0, and use the Gauss-Ostrogradsky divergence
theorem. As a result, the integral in Eq. (4.1) over the upper portion
of the particle surface, Spn, is transformed into sums of integrals
over the sides of the considered parallelepiped. Thus, from Eq.
(4.1), we obtain the following expression for the x-projection of
the repulsive force acting on the left-hand-side particle:

F12 � FðelÞ
x

¼ �
Z

A1A2B2B1

en

4p
@un

@x

� �2

� en

8p
ðrun � run þ E2

0Þ
" #

dS

þ
Z

A4A3B3B4

en

4p
@un

@x

� �2

� en

8p
ðrun � run þ E2

0Þ
" #

dS ð4:2Þ

In Eq. (4.2), only the integrals over the right and left sides of the par-
allelepiped have remained. The integrals over the other sides give
zero contributions because of the following reasons. The integrals
over the front and back sides, A1B1B4A4 and A2B2B3A3, cancel each
other because of the symmetry. The integral over the lower base
is zero because of the boundary condition un = 0 at Snw, see Eq.
(2.2). The integral over the upper base B1B2B3B4 vanishes because
it is assumed that this side is situated far from the particle. For
the same reason, un = E0z over the left side A4A3B3B4, so that the
second integral in Eq. (4.2) can be considerably simplified. The
respective integration limits can be set at infinity, and the integral
in Eq. (4.2) acquires the form:

FðelÞ
x ¼ en

8p

Z 1

�1
dy
Z 1

0
dz

@un

@y

� �2

þ @un

@z

� �2

� E2
0Þ

" #

at x ¼ 0:

ð4:3Þ

Note that because of the symmetry of the system, un has extremum
in the middle between the two identical particles and consequently
oun/ox = 0 over the midplane. Next, un can be expressed as a sum of
a contribution E0z from the external field and of the potential ~un
un � E0zþ ~un; ð4:4Þ

The substitution of Eq. (4.4) into Eq. (4.3) yields:

FðelÞ
x ¼ en

8p

Z 1

�1
dy
Z 1

0
dz

@ ~un

@y

� �2

þ @ ~un

@z

� �2

þ 2E0
@ ~un

@z

" #

at x ¼ 0:

ð4:5Þ



Fig. 7. Plots of the dimensionless interaction force FðelÞ
x;d vs. the dimensionless

external electric field, E0,d � N, defined by Eqs. (3.19) and (4.17), at different fixed
values of the particle contact angle, a, and at a distance L = 6R. The minimum of
each curve corresponds to that value of E0,d, at which the dipole moment pd = 0, so
that the force is determined by the octupolar moment, p .
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The integral of the last term in the brackets gives zero, because
~unjz¼0 ¼ ~unjz!1 ¼ 0. Thus, Eq. (4.5) acquires a simpler form:

FðelÞ
x ¼ en

8p

Z 1

�1
dy
Z 1

0
dz

@ ~un

@y

� �2

þ @ ~un

@z

� �2
" #

at x ¼ 0: ð4:6Þ

Eq. (4.6) shows that the force of electrostatic interaction between
two identical floating particles is always repulsive.

4.2. Multipole expansion

At larger distances between the particles, the electric potential
~un at the midplane can be presented as a superposition of the elec-
tric potentials ~un;A and ~un;B created by the individual particle:

~un � ~un;A þ ~un;B: ð4:7Þ

The subscripts A and B denote quantities related, respectively, to the
left- and right-hand-side particle. In view of the asymptotic expan-
sions, Eqs. (2.10) and (2.11), we can represent Eq. (4.7) in the form:

~un;k ¼
pd

en

z

ðr2
k þ z2Þ3=2 þ

po

en

z

ðr2
k þ z2Þ5=2 �

5z3

3ðr2
k þ z2Þ7=2

" #

ðk ¼ A;BÞ:
ð4:8Þ

where the first term arises from the Legendre polynomial P1 (dipo-
lar term) and the second one from the Legendre polynomial P3

(octupolar term) [46]; the dipolar and octupolar moments, pd and
po, are defined as follows:

pd � 4prpnðD3 þ NH3Þr3
c ð4:9Þ

po � 4prpnðD5 þ NH5Þr5
c ð4:10Þ

where N is defined by Eq. (3.19); Di(a, epn) and Hi(a, epn), i = 3, 5, are
the coefficient functions in Eqs. (2.10) and (2.11), which are tabu-
lated in Tables 1–4; see Appendix A and Eq. (2.13). The radial dis-
tances rA and rB in Eq. (4.8) are defined by the relationships

r2
A � xþ L

2

� �2

þ y2 and r2
B � x� L

2

� �2

þ y2: ð4:11Þ

The substitution of Eqs. (4.7), (4.8), and (4.11) in Eq. (4.6) yields:

FðelÞ
x � � 1

32pen

Z 1

�1

Z 1

0
Uxðy; zÞdz dy; ð4:12Þ

where Ux is given by the expression:

Uxðy; zÞ � 16y2z2½9pdðL2 þ 4y2 þ 4z2Þ2 þ 20poð3L2 þ 12y2 � 16z2Þ�2
n
þ½3pdðL2 þ 4y2 þ 4z2Þ2ðL2 þ 4y2 � 8z2Þ þ 4poð3L4 þ 24L2y2

�96L2z2 þ 48y4 � 384y2z2 þ 128z4Þ�2
o 1

9ðL2 þ 4y2 þ 4z2Þ9
: ð4:13Þ

The integral in Eq. (4.12) can be taken analytically; the final result
is:

FðelÞ
x � 1

enL4

3
2

p2
d þ

5pdpo

L2 þ 175p2
o

18L4

� �
: ð4:14Þ

For pd – 0, the dipolar term is predominant and then the long-dis-
tance asymptotics of the electrostatic interaction force is:

FðelÞ
x � 3p2

d

2enL4 : ð4:15Þ

where pd is defined by Eq. (4.9).
For a special choice of the external field, E0,d � N = �D3/H3, we

have pd = 0; see Eqs. (3.19) and (4.9). In such a case, the octupolar
term becomes the leading term in Eq. (4.14), so that the interaction
force becomes:

FðelÞ
x � 175p2

o

18enL8 : ð4:16Þ
In the latter case, the direct electrostatic repulsion, FðelÞ
x / 1=L8, de-

cays much faster than the electrocapillary attraction, FðECÞ
x / 1=L4

[27,47,48], and then the net force becomes attractive at long
distances.

At pd – 0, if the exact method of reflections [49] is used [instead
of the superposition approximation, Eq. (4.7)] an additional octu-
polar term / p2

d=L8 will appear in Eq. (4.14). However, for pd – 0,
the octupolar terms are negligible and the asymptotic force is gi-
ven by Eq. (4.15). Conversely, if pd = 0 the term / p2

d=L8 disappears,
and the leading term is the octupolar term given by Eq. (4.16).

4.3. Numerical results and discussion

To compute FðelÞ
x for various E0, a and epn, we used Eqs. (4.9),

(4.10), and (4.14). The coefficient functions Di(a, epn) and Hi(a,
epn), i = 3, 5, were calculated as explained after Eq. (2.11). In view
of Eqs. (4.9), (4.10), and (4.14), it is convenient to plot the dimen-
sionless force,

FðelÞ
x;d �

enFðelÞ
x

4pr2
pnR2 ; ð4:17Þ

vs the dimensionless electric field E0,d � N; see Eq. (3.19). For the
dielectric constants, we used experimental values for tetradecane
and glass particles from Ref. [38], viz. en = 2.04 and ep = 3.97. Note
that by definition rc = R sin a (Fig. 1).

Fig. 7 shows plots of FðelÞ
x;d vs. E0,d, calculated for seven different

values of the central angle, a, at a fixed interparticle distance
L = 6R. Because of the large variations of FðelÞ

x;d , this quantity is plot-
ted in logarithmic scale. For each value of a, the respective curve in
Fig. 7 has a minimum. This minimum corresponds to the special
value of E0, for which the total dipole moment pd is zero, so that
the force of interaction between the two particles, FðelÞ

x;d , is domi-
nated by the octupolar moment, po; see Eq. (4.14). At a = 55�, the
minimum is located at E0,d < �30, and for this reason, it is not vis-
ible in the figure.

The diminishing of FðelÞ
x;d with the decrease in a (Fig. 7) is partially

due to the fact that the external electric field, which polarizes the
dielectric particle, enters the particle through the surface Spn

(Fig. 1), but Spn considerably decreases with the decrease in a.
Fig. 8 shows FðelÞ

x;d vs. the dimensionless distance L/R at a = 90�,
and at five different fixed values of the dimensionless electric field,
E0,d. One of them, E0,d = 3.078, corresponds to the minimum of the
dependence of FðelÞ

x;d on E0,d, which is shown in the inset of Fig. 8. At
o



Fig. 8. Plots of the dimensionless interaction force FðelÞ
x;d vs. the dimensionless

distance L/R at four different values of the external electric field, E0,d � N. The inset
shows FðelÞ

x;d vs. E0,d � at L/R = 6. At E0,d = 3.078, the dipolar term in particle electric
field is zero, and the interaction is dominated by the octupolar term. In this case, the
electric repulsion decays much faster.
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E0,d = 3.078, the dipolar term is zero (pd = 0) and we are dealing
with octupole–octupole interaction, FðelÞ

x / =L�8; see Eq. (4.16). In
this case, the attractive electrocapillary force FðECÞ

x / 1=L4

[27,47,48] dominates the interparticle force, at least at long
distances.

It should be noted also that the minima of the curves in Fig. 7
look sharp because of the used log scale. In a linear scale, all of
them are rounded parabolas as the curve at a = 90� shown in the
inset of Fig. 8.
5. Conclusions

In this study, we address the problem for calculating the electric
forces acting on charged dielectric colloidal particles, which are at-
tached to the interface between a nonpolar fluid (air and oil) and
water, in the presence of applied uniform external electric field.
The latter is assumed to be perpendicular to the liquid interface
with vertical projection E0. In addition, charges of surface density
rpn are located on the particle–nonpolar fluid interface. We con-
sider the case of not-too-small particles, for which the particle ra-
dius is much greater than the Debye screening length in the water
phase, jR� 1. In such a case, the electrostatic interactions across
the water phase are negligible and only the electric effects in the
nonpolar fluid and inside the dielectric particle are essential. The
importance of the problem is related to the use of external electric
field for controlling the distances between particles in non-densely
packed interfacial colloidal crystals for producing lithographic
masks with various technological applications [16–22].

The solution of the problem represents a superposition of the
solutions to two simpler problems. The first one is to find the elec-
tric field due to the particle surface charges, rpn, in the absence of
external field (E0 = 0), which was solved in Ref. [1]. The second
problem is to determine the electric field due to the polarization
of an uncharged particle (rpn = 0) in the applied external field, E0,
which was solved in Ref. [2]. The combination of these solutions
is non-trivial because the electric forces acting on the particle are
quadratic with respect to the electric field, so that cross terms ap-
pear. General expressions are derived for calculating the normal
(electrodipping) force Fz acting on each separate particle, Eq.
(3.9), and the force FðelÞ

x of electrostatic interaction between two
identical particles, see Eq. (4.6).

Because the uniform external field can be directed upward or
downward, the effect of E0 on Fz can have the same or the opposite
direction to the effect of the particle charge, rpn. In general, the
dependence of Fz on E0 is non-monotonic and may have a maxi-
mum or minimum. The force Fz can be positive (pulling) or nega-
tive (dipping) depending on the particle contact angle and
dielectric constant (see Figs. 4 and 5).

In contrast, the lateral electric force between two identical par-
ticles, FðelÞ

x , cannot change sign – it is always repulsive, but it can
vary by many orders of magnitude. This is because the dipolar elec-
tric field created by the particle depends on E0 in such a way that
the net dipolar moment of the particle can become zero at a given
E0. Then, the interparticle force is determined by the particle octu-
polar moment, which leads to a much weaker and short-range
repulsion. For this reason, FðelÞ

x has a sharp minimum at the respec-
tive value of E0 (Fig. 7). In the vicinity of this minimum, FðelÞ

x is very
sensitive to the variations in E0. This effect can be used for a fine
control of the lattice spacing in non-densely packed interfacial col-
loidal crystal by varying the external field. The weak repulsive elec-
tric force governed by the octupolar term can be overcome by the
attractive lateral capillary forces and van der Waals forces, which
would lead to two-dimensional particle coagulation on the liquid
interface. In contrast, if the dipolar term in the particle electric field
is not eliminated by the adjustment of E0, the electrostatic repul-
sion between the particles can prevent their surface coagulation
and stabilize non-densely packed colloidal arrays of regular hexag-
onal packing [9–16].
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