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Here, we calculate the electric forces acting on uncharged dielectric colloidal particles, which are
attached to the interface between a nonpolar fluid (air, oil) and water, in the presence of an applied uni-
form external electric field directed normal to the interface. The uncharged particle becomes a source of
dipolar electric field because it is polarized by the external field. Our goal is to calculate the normal (elec-
trodipping) force acting on each separate particle, and the force of interaction between two identical par-
ticles. An exact analytical solution is obtained by solving the Laplace equation in toroidal coordinates and
by separating the variables using the Mehler–Fock integral transform. The results show that the depen-
dence of the normal force on particle contact angle is non-monotonic, with a maximum and a minimum.
This force can be directed upward or downward depending on the particle contact angle and dielectric
constant. An analytical asymptotic expression is derived for the force of interaction between two floating
particles in external field. The magnitude of the latter force depends strongly on the particle contact angle
a. At a certain value of a, the leading dipolar term becomes zero, and the interaction force is determined
by the short-range octupolar term. Then, the attractive lateral capillary forces and van der Waals forces
can overcome the electrostatic repulsion and can induce two-dimensional coagulation of the particles at
the interface. The effects of the external electric field could find applications for control of the distances
between particles in non-densely packed interfacial colloid crystals used in lithographic masks for the
production of antireflective coatings, microlens arrays, etc. The case of charged particles in external field
is considered in the second part of this study.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

In a previous paper [1], we solved analytically the electrostatic
boundary problem for the field created by a spherical dielectric
particle located at the interface between water and a nonpolar
fluid (air, oil). It was assumed that the electric field is due to
charges of surface density rpn located at the boundary particle-
nonpolar fluid. Furthermore, the normal (electrodipping) force,
F(n), acting on the particle was calculated at different values of
the particle contact angle and dielectric constant. The calculation
of F(n) is non-trivial, because the electric field has an integrable sin-
gularity at the particle three-phase contact line. This singularity
gives a finite contribution to F(n). The problem was solved exactly
by using toroidal coordinates and the Mehler–Fock integral trans-
form. The results were also applied to calculate the force F12

of electrostatic repulsion between two floating charged particles
[1].

Having determined the electric field near the water-nonpolar
fluid interface, we calculated the interfacial shape (the shape of
the capillary meniscus) around the particle. The theoretical results
are in excellent agreement with the experimentally determined
meniscus shape [2]. Knowing the meniscus shape, the next step
was to calculate the electric-field-induced lateral capillary force
between two particles at the interface and to compare this force
(supposedly attractive) with the force of direct electrostatic repul-
sion between the particles. Both these forces are engendered by the
electric charges on the particle surface. The results, which are valid
in the asymptotic region of not-too-small interparticle distances,
imply that the direct electrostatic repulsion always prevails over
the electrocapillary attraction if the particle surface charges are
uniformly distributed, i.e., rpn = const. [3]. This result is in agree-
ment with the conclusions of other authors [4–6].

In the case of non-uniform distribution of the surface charges,
their electric field induces a non-isotropic shape of the meniscus
around the particle, the leading term being the quadrupolar one
[7]. In the case of ‘‘heavy’’ particles that produce a concave menis-
cus due to their weight, the electric-field-induced quadrupolar
meniscus of a given charged particles interacts with the isotropic
gravitational concavity of the other particle. The latter interaction
gives rise to a long-range hybrid capillary attraction that pre-
vails over the direct electrostatic repulsion between two similar
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Fig. 1. Sketch of an uncharged colloidal sphere attached to the water–nonpolar
fluid interface, Snw. The particle–nonpolar fluid and particle–water interfaces are
denoted Spn and Spw, respectively; n is the outer unit normal to Spn; E0 is a uniform
external field.
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particles and accelerates the particle motion toward each other on
the liquid interface [8]. Another source of interparticle attraction
can be the capillary force due to out-of-plane undulations of the
contact line because of surface roughness or non-spherical particle
shape [9–13], the so-called interactions between capillary multi-
poles [14–16].

Another way to induce electrostatic and electrocapillary inter-
actions between particles attached to an interface is to apply
an external electric field normal to the interface [17–22]. By
varying the strength of the electric field, it is possible to control
the distances between the particles in non-densely packed
two-dimensional colloid crystals formed at liquid interfaces [17–
20].

Non-densely packed particulate layers have been obtained by
spreading of charged colloidal spheres on a liquid interface [23–
30]. Such layers have found applications for the creation of
lithographic masks for production of periodic nanostructures,
e.g., antireflection coatings, microlens arrays, etc. [30–33]. The
antireflection coatings from adsorbed colloid particles were
inspired by the nanostructured corneas of moth eye, which consist
of non-close-packed arrays of conical nipples [34]. As the periodic-
ity of the nipple array is small compared to the wavelength of
visible light, a gradual transition of the refractive index between
air and cornea is established, which exhibits a superior broadband
antireflection performance [33]. Another example are the
structures of micro-lenses, which are widely used in many optical
devices for increasing the brightness and homogeneity of color dis-
plays produced on the basis of light emitting diodes [35–37].

In the present article, we extend our approach from Ref. [1] to
solve the problem for the forces acting on particles attached to a
water-nonpolar fluid interface in the presence of a uniform exter-
nal electric field, which is directed normal to the interface. In con-
trast to Ref. [1], here it is assumed that the dielectric particle is
uncharged (rpn = 0), but it becomes a source of electric field be-
cause it is polarized by the external field. As in Ref. [1], the problem
is solved by using the Mehler–Fock integral transform (Section 3),
which allows the separation of the variables in boundary problems
of similar geometry [38–40]. To simplify the problem, we consider
particles of radius R, which is much greater than the Debye screen-
ing length in the water phase, i.e., jR� 1. In such a case, the elec-
trostatic interactions across the water phase are negligible and
only the electric effects in the nonpolar fluid and inside the dielec-
tric particle are essential [1]. For smaller particles (jR 6 1), the
electrostatic effects in the aqueous phase can become significant
[41–44]. The general solution of the problem is obtained by solving
numerically an integral equation (Section 5). The numerical solu-
tion is tested against the analytical solution, which can be obtained
in the special case of equal dielectric constants of the particle and
the nonpolar fluid (Section 4). Furthermore, we calculate the
normal (electrodipping) force F(n) acting on a single particle (Sec-
tion 6), and the electrostatic interaction force F12 between two par-
ticles separated at not-too-short distances (Section 7). Special
attention is paid to accurately estimate the contribution of the
singularity of the electric field at the particle contact line (Sections
5.2 and 6.1 and Appendix A). The effects of particle contact angle a
and dielectric constant ep on F(n) and F12 are investigated. For read-
er’s convenience, the respective force coefficients are tabulated as
functions of a and ep in Appendix B. Thus, the reader could simply
calculate the normal and lateral forces, F(n) and F12, acting on the
particle by using a four-point interpolation formula, instead of
repeating the time-consuming numerical solution of an integral
equation (see below).

In part 2 of the present study, Ref. [45], the solution obtained in
the present article is combined with that in Ref. [1] to calculate the
forces acting on a charged particle (rpn – 0) in external field direc-
ted normal to the interface.
2. Physical system and theoretical approach

2.1. Formulation of the boundary problem

Let us consider an uncharged spherical particle of radius R,
which is attached to the interface between water and a nonpolar
fluid (air, oil, etc.), see Fig. 1. In zero-order approximation, we as-
sume that the water-nonpolar fluid interface is planar. A uniform
external electric field is applied perpendicular to the fluid inter-
face, with a vertical projection E0. The particle position is defined
by the central angle, a, which coincides with the three-phase con-
tact angle if the fluid interface is planar (Fig. 1). In accordance with
the standard convention, a < 90� for a hydrophilic particle and
a > 90� for a hydrophobic particle. The three-phase contact line is
a circumference of radius rc.

The applied external electric field causes polarization of the
dielectric particle, so that the total electric field near the particle
is non-uniform. As already mentioned, our goal is to describe the-
oretically this field, to calculate the electrodipping force acting on
the particle, as well as the force of electrostatic interaction be-
tween two such particles in the external field. The potential of
the electric field, up inside the particle and un in the nonpolar
fluid, obeys the Laplace equation,

r2up ¼ 0 in Xp and r2un ¼ 0 in Xn; ð2:1Þ

where r2 is the Laplace operator, Xp and Xn are the spatial do-
mains occupied by the particle and nonpolar fluid, respectively.

Let us denote the dielectric constants of the water, nonpolar
fluid and particle ew, en and ep, respectively. As in Ref. [1], we as-
sume that ew� ep, en. For this reason, the electric field in the non-
polar phases Xp and Xn practically does not penetrate into the
water phase; see, for example, the conventional problem for the
image force [46] and for a charged hydrophobic particle near the
oil–water interface [47]. Experimentally, the non-penetration of
the field into water is manifested as independence of the configu-
ration of the adsorbed particles on the electrolyte concentration in
the aqueous phase [25,48].

Thus, in first approximation, the role of the water is to keep the
electric potential constant at the boundaries Snw and Spw (Fig. 1).
Because the latter constant can be set zero, we obtain the following
two boundary conditions:

up ¼ 0 at Spw and un ¼ 0 at Snw: ð2:2Þ

At Spn, we impose the standard boundary conditions for conti-
nuity of the electric potential and the relation between the normal
electric-field components in the absence of charges on the particle
surface:

un ¼ up and n � ðeprup � enrunÞ ¼ 0 at Spn; ð2:3Þ
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where r is the del operator and n is the outer unit normal to Spn

(Fig. 1). In the nonpolar fluid at large distances from the particle,
the external electric field is E0 = �E0ez, where ez is the unit vector
of the vertical axis z (Fig. 1). Then, the electric potential should have
the following asymptotic form:

un ! E0z far from the particle: ð2:4Þ
2.2. Toroidal coordinates

As in Ref. [1], we introduce the conventional toroidal coordi-
nates, n and g, defined as follows [49]:

r ¼ rc

h
sinh g and z ¼ rc

h
sin n; ð2:5Þ

where h is a metric coefficient:

h ¼ cosh g� cos n: ð2:6Þ

The Lamé coefficients of the toroidal coordinate system are
[49]:

hn ¼ hg ¼
rc

h
and h/ ¼

rc

h
sinh g: ð2:7Þ

The position of the contact line is determined by the pole, A+

(g ? +1) (see Fig. 2). The axis of revolution corresponds to g = 0;
the interfaces Snw, Spn, and Spw have equations n = 0, n = nc, and
n = p + nc, respectively, where

nc ¼ p� a: ð2:8Þ

The electrostatic potentials in the nonpolar fluid and in the par-
ticle, un and up, can be expressed in terms of respective dimen-
sionless potentials, Un and Up, as follows:

un � E0rc
z
rc
þUn

� �
and up � E0rc

z
rc
þUp

� �
: ð2:9Þ

The term z/rc in the parentheses is introduced in view of Eq.
(2.4). Because of the axial symmetry of the system, in toroidal coor-
dinates Eq. (2.1) acquires the form [1]

@

@n
sinh g

h
@Uk

@n

� �
þ @

@g
sinh g

h
@Uk

@g

� �
¼ 0 in Xk ðk ¼ n; pÞ:

ð2:10Þ

Correspondingly, the boundary conditions, Eqs. (2.2)–(2.4),
become
Fig. 2. Toroidal coordinates (n, g): The particle surface, shown with a solid line,
consists of Spn and Spw (Fig. 1), which correspond to the coordinate surfaces n = nc

and n = p + nc = 2p � a, respectively. The interface Snw corresponds to the coordinate
surface n = 0. The position of the contact line coincides with the pole A+.
Un ¼ 0 at n ¼ 0 and Up ¼ �
z
rc

at n ¼ pþ nc; ð2:11Þ

Un ¼ Up and ep
@Up

@n
� en

@Un

@n
¼ ðen � epÞ

@

@n
z
rc

� �
at n ¼ nc;

ð2:12Þ

Un ! 0 far from the particle: ð2:13Þ

At Snw, the tangential component of the electric field in the non-
polar fluid is zero and the normal components is

Ez ¼ �E0 � E0ðcosh g� 1Þ @Un

@n
at n ¼ 0: ð2:14Þ

Our next goal is to determine Ez(g) at n = 0, because both the
electrodipping force and the asymptotics of the electric force be-
tween two particles are expressed as integrals of this function;
see below.

3. Solution by the Mehler–Fock integral transform

3.1. Basic equations

To separate variables in Eq. (2.10), the following substitution
can be used [1,50–52]:

Uk � h1=2Wk ðk ¼ n; pÞ: ð3:1Þ

Next, Wk can be expressed using the Mehler–Fock transform
[1,52–58]:

Wkðn;gÞ ¼
Z 1

0
Bkðn; sÞKðg; sÞds ðk ¼ n; pÞ; ð3:2Þ

where Bk(n, s) is the respective Mehler–Fock image. By definition,
the kernel is

Kðg; sÞ � P�1=2þisðcosh gÞ; ð3:3Þ

where i is the imaginary unit, P�1/2+is is the Legendre function of the
first kind and complex index �1/2 + is. The substitution of Eqs. (3.1)
and (3.2) into Eq. (2.10) yields [1]

@2Bk

@n2 ¼ s2Bk in Xk ðk ¼ n;pÞ: ð3:4Þ

The solution of the latter equations is:

Bnðn; sÞ ¼ WbðsÞ
sinhðnsÞ
sinhðncsÞ

; ð3:5Þ

Bpðn; sÞ ¼ WbðsÞ
sinh½ðpþ nc � nÞs�

sinhðpsÞ þWwðsÞ
sinh½ðn� ncÞs�

sinhðpsÞ : ð3:6Þ

Wb(s) is the image of the dimensionless electric potential at the par-
ticle–nonpolar fluid boundary, Spn; Ww(s) is the respective image at
the particle–water boundary, Spw. Eqs. (3.5) and (3.6) satisfy the
boundary conditions Un = 0 at n = 0 and Un = Up at n = nc; see Eqs.
(2.11) and (2.12).

Using Eqs. (2.5), (2.6), and (3.1), we bring the second boundary
condition in Eq. (2.11) in the form:

Wp

��
n¼pþnc

¼ � sinðpþ ncÞ
½cosh g� cosðpþ ncÞ�3=2 : ð3:7Þ

The right-hand side of Eq. (3.7) can be transformed by means of
the formula [1,59]:

sin u

ðcosh g� cos uÞ3=2 ¼ 23=2
Z 1

0
s sinh½ðp� uÞs�

coshðpsÞ Kðg; sÞds for 0 < u < 2p:

ð3:8Þ



Fig. 3. Plots of H3(a,1), H5(a,1), and JE1(a,1) � JE(1,a,1) vs. the central angle a
calculated by means of Eqs. (3.18), (3.19), (4.1), and (4.8).
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Combining Eqs. (3.2), (3.3), (3.6), (3.7), and (3.8), we obtain an expli-
cit expression for Ww(s):

WwðsÞ ¼ 23=2s sinhðncsÞ
coshðpsÞ : ð3:9Þ

Furthermore, to determine Wb(s) we have to use the second
boundary condition in Eq. (2.12). As shown in Appendix A, it can
be represented in the form of an integral equation for Wb(s):Z 1

0
½cothðncsÞ þ epn cothðpsÞ�Wb �

23=2WðsÞ
coshðpsÞ

( )
sKðg; sÞds

¼ � ð1� epnÞ sin nc

2ðcosh g� cos ncÞ

Z 1

0
WbKðg; sÞds; ð3:10Þ

where epn = ep/en and

WðsÞ ¼ epns sinhðncsÞ
sinhðpsÞ þ 1� epn

3
2f s cosh½ðp� ncÞs�

� cot nc sinh½ðp� ncÞs�g: ð3:11Þ

Eq. (3.10) represents a Fredholm integral equation of the second
kind, which has a convenient numerical solution for Wb(s). The
respective numerical procedure is much faster than the procedure
for direct solving the partial differential equations [1]. In addition,
Eq. (3.11) will be used to derive useful asymptotic expressions for
the behavior of the physical variables near the contact line and
far from it. For epn = 1, Eq. (3.10) has an explicit analytical solution
for Wb(s), which is described in Section 4.

3.2. The electric field at the water–nonpolar fluid interface

At Snw, the tangential component of the electric field in the non-
polar fluid is equal to zero because Un = 0 at n = 0; see Eq. (2.11). At
Snw, the normal component Ez can be calculated from the
expression

Ez ¼ �E0 � E0ðcosh g� 1Þ3=2IEðg;a; epnÞ;

IEðg;a; epnÞ �
Z 1

0

sWbðsÞ
sinhðncsÞ

Kðg; sÞds; ð3:12Þ

which follows from Eqs. (2.14), (3.1), (3.2), and (3.5). The planar
interface Snw corresponds to the domain rc < r <1 or, respectively,
1 > s > 0. It is convenient to introduce the new variable, x1, which
has a finite domain of variation [1]:

x1 �
rc

r
¼ cosh g� 1

sinh g
ð0 < x1 < 1Þ: ð3:13Þ

Eq. (3.13) can be represented also in the form:

cosh g� 1 ¼ 2x2
1

1� x2
1

and exp g ¼ 1þ x1

1� x1
: ð3:14Þ

The substitution of Eq. (3.14) into Eq. (3.12) yields:

Ez ¼ �E0 � E0
23=2x3

1

ð1� x2
1Þ

3=2

Z 1

0

sWbðsÞ
sinhðncsÞ

Kðg; sÞds: ð3:15Þ

Using the asymptotic expansion of K(g, s) for g ? 0 from Ref.
[60], we derive:

x3
1

ð1� x2
1Þ

3=2 Kðg; sÞ ¼ x3
1 þ

5
4
� s2

� �
x5

1 þ Oðx7
1Þ: ð3:16Þ

Eqs. (3.15) and (3.16) lead to the following asymptotic expansion
for the electric field:

Ez ¼ �E0 � E0½H3x3
1 þ H5x5

1 þ Oðx7
1Þ�: ð3:17Þ

where the coefficients are:
H3ða; epnÞ ¼ 23=2
Z 1

0

sWbðsÞ
sinhðncsÞ

ds; ð3:18Þ

H5ða; epnÞ ¼ 23=2
Z 1

0

sWbðsÞ
sinhðncsÞ

5
4
� s2

� �
ds: ð3:19Þ

We recall that by definition nc = p � a.
Ez has a weak singularity at x1 ? 1, at the three-phase contact

line. To find an asymptotic expression for Ez in the vicinity of this
singular point, we represent Eq. (3.15) in the form [1]:

Ez ¼ �E0 � E0
x3

1JE

ð1� x1Þ1�m ;

JEðx1;a; epnÞ �
23=2IEðg;a; epnÞ

ð1þ x1Þ3=2ð1� x1Þmþ1=2 : ð3:20Þ

where JE is a function of bounded variation. The parameter m de-
pends on the central angle, a, and the dielectric constant ratio,
epn = ep/en. Values of the function m (a, epn) are given in Table 1 of
Appendix B. In general, 0.5 6 m 6 1. For x1� 1 (near the contact
line), Eq. (3.20) acquires the form:

Ez ¼ �E0 � E0JE1ð1� x1Þm�1 ðx1 ! 1Þ; ð3:21Þ

where

JE1ða; epnÞ � JEð1;a; epnÞ ¼ lim
x1!1

IEðg;a; epnÞ
ð1� x1Þmþ1=2

" #
: ð3:22Þ

In Section 5.2, the values of JE1(a, epn) are calculated and listed in
Table 2 of Appendix B.

4. Solutions to the problem for ep = en and ep� en
4.1. Analytical solution for ep = en

Examples for particle and nonpolar liquid that have equal
dielectric constants are (i) glass and isopropyl ether with ep � en

� 3.9 and (ii) polystyrol and hexadecane with ep � en � 2.0. Many
solid plastics and organic liquids have close dielectric constants.

For epn = 1, Eq. (3.10), along with Eq. (3.11), has the following
analytical solution:

WbðsÞ ¼
23=2ssinh2ðncsÞ

coshðpsÞ sinh½ðpþ ncÞs�
ð4:1Þ

(nc = p � a). The substitution of Eq. (4.1) into Eqs. (3.18) and (3.19)
gives H3(a,1) and H5(a,1) in the form of definite integrals that can
be solved numerically. Fig. 3 shows H3(a,1) and H5(a,1) calculated



Fig. 4. Plots of JE(x1,a,1) vs. x1 at different values of the central angle a: (a) for
0 6 x1 < 0.99; (b) close to the three-phase contact line for 10�10

6 1 � x1 6 10�2.
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in this way for 0 < a < p. The special values of these functions at the
end points are:

H3ðp;1Þ ¼ H5ðp;1Þ ¼ 0; ð4:2Þ

H3ð0;1Þ ¼
1

3p
and H5ð0;1Þ ¼

3
10p

: ð4:3Þ

Eq. (4.2) means that at a = p the effect of particle on the electric
field far from it is zero, see Eq. (3.17), as it should be, because at
a = p the particle is completely immersed in the nonpolar fluid
of the same dielectric constant (epn = 1). The vertical displace-
ment of the particle toward the water phase (the decrease in
a) leads to increasing of both H3(a,1) and H5(a,1), and of the ef-
fect of particle on the electric field (Fig. 3). It is interesting that
the latter effect becomes maximal for a = 0, i.e., for a particle
that is completely immersed in the water phase; see also Eq.
(4.3).

Eq. (3.17), where H3 and H5 are coefficients functions, gives Ez

for x1� 1, i.e., far from the particle. To find Ez in the whole interval
0 < x1 < 1, we have to calculate JE in Eq. (6.1). To do that, we substi-
tute Eq. (4.1) in Eq. (3.12) and use the relation between IE and JE in
Eq. (3.20). After some mathematical transformations described in
Appendix A, we arrive at the following expression for JE in terms
of a definite integral of elementary functions:

JEðx1;a;1Þ ¼
16m2

e sinðmepÞ
pð2me þ 1Þ

Z t1

0
S1ðx1;a; tÞS2ðx1;a; tÞdt; ð4:4Þ

S1 ¼
1� ð1� x1Þ2t2xe

½1þ x1 þ 2ð1þ x2
1Þtxe þ ð1þ x1Þð1� x1Þ2t2xe �3=2 ; ð4:5Þ

S2 ¼
1� ð1� x1Þ2me t2mexe

½1� 2 cosðmepÞð1� x1Þme tmexe þ ð1� x1Þ2me t2mexe �2
; ð4:6Þ

me ¼
p

2p� a
xe �

2
2me þ 1

; t1 � ð1� x1Þ�ðmeþ1=2Þ
: ð4:7Þ

Here, by definition me � m (a, 1); see Table 1 in Appendix B. Depen-
dences of JE on x1, calculated from Eqs. (4.4)–(4.7) at various a, are
shown in Fig. 4. The variation of JE with x1 is weak far from the par-
ticle, but JE steeply increases at x1 ? 1, i.e., near the contact line on
the particle surface (Fig. 4a). The variation of JE at x1 ? 1 is visual-
ized in Fig. 4b. The limiting value of JE at x1 = 1 (at the contact line),
JE1(a, 1), is plotted in Fig. 3 vs. a; see also Eq. (3.22). One sees that
JE1(a, 1) monotonically increases with the rise of the contact angle
a.

Explicit analytical expression for JE1(a, 1) can be obtained by
setting x1 ? 1 in Eqs. (4.4)–(4.7):

JE1ða;1Þ ¼
16m2

e sinðmepÞ
pð2me þ 1Þ

Z 1

0

dt

ð2þ 4txe Þ3=2

¼ 22�mem2
e

p1=2

Cð0:5þ meÞ
CðmeÞ

; ð4:8Þ

where C is the known gamma function [49,60]. For a = 0, we have
JE1(0, 1) = 1/(21/2p) � 0.225; see also Fig. 3.
4.2. Analytical solution for ep� en

For example, the dielectric constant ep of TiO2 particles is 40 for
anatase and 86–170 (depending on crystal orientation) for rutile
[61–63]. At ep� en, the electric potential in the particle phase is
the same as in the water phase. Thus, the boundary condition,
Eq. (2.3), reduces to

un ¼ 0 at Spn: ð4:9Þ
With the help of Eqs. (2.5), (2.6), (2.9), and (3.1), Eq. (4.9) ac-
quires the form:

Wnjn¼nc
¼ � sin nc

ðcoshg� cos ncÞ3=2 : ð4:10Þ

Further, combining Eqs. (3.5), (3.8), and (4.10) we obtain:

WbðsÞ ¼ �23=2s sinh½ðp� ncÞs�
coshðpsÞ : ð4:11Þ

The comparison of Eqs. (4.1) and (4.11) shows that in the
respective two limiting cases, Wb (and the electric field due to
the particle) has the opposite signs; see also Eq. (3.15). Hence,
the electric field created by the particle enhances the external field
E0 for ep = en, but opposes the external field for ep� en.

The substitution of Eq. (4.11) into Eqs. (3.18) and (3.19) gives
H3(a, 1) and H5(a, 1) in the form of definite integrals that can be
solved numerically. Some special values of these functions at the
end points are:

H3ð0;1Þ ¼ H5ð0;1Þ ¼ 0; ð4:12Þ

H3ðp=2;1Þ ¼ �1; H5ðp=2;1Þ ¼ 0; ð4:13Þ

H3ðp;1Þ ¼ �1 and H5ðp;1Þ ¼ þ1: ð4:14Þ

The divergence in Eq. (4.14) is related to the scaling of x1 = rc/r,
and to the fact that rc ? 0 for a ? p; see also Eq. (3.17). It is con-
venient to rescale H3 and H5 using the parameter:

A ¼ 2pR2ð1� cos aÞ
pr2

c
¼ 2

1þ cos a
: ð4:15Þ

A is equal to the area of Spn divided by the area encircled by the con-
tact line (Fig. 1). As seen in Fig. 5, the rescaled functions H3(a,1)/



Fig. 5. Dependences of H3ða;1Þ=A3=2 and H5ða;1Þ=A5=2 on the central angle a.
Fig. 6. Plots of ME vs. x1 calculated from Eqs. (4.17)–(4.19) at different a values.
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A3/2 and H5(a,1)/A5/2 have bounded variation. H3 is negative for all
0 < a < p, whereas H5 is negative for hydrophilic particles (a < p/2),
and positive for hydrophobic ones (a > p/2).

In the case ep� en, the weak singularity of Ez at the contact line
(x1 ? 1) disappears. For this reason, it is convenient to represent
Eq. (3.12) in the form:
EE;z ¼ �E0 þ E0x3
1MEðx1;aÞ;
MEðx1;aÞ � �
23=2

ð1� x2
1Þ

3=2 IEðg;a;1Þ: ð4:16Þ

Substituting Eq. (4.11) under the integral in Eq. (3.12) and using
Eq. (4.16), one can derive (see Appendix A):
ME ¼
32
p

Z 1

0

S3ðx1;a; uÞdu

½ð1þ x1Þ2 þ ð1� x1Þ2u4 � 2u2ð1þ x2
1Þ�

1=2 ; ð4:17Þ
S3 ¼
½1þ x1 þ ð1� x1Þu2�
½1þ x1 � ð1� x1Þu2�3

u2 � k3
eð1� x2

1Þ
ke�1

	 ½ð1þ x1Þke þ ð1� x1Þke u2ke �
½ð1þ x1Þke � ð1� x1Þke u2ke �3

u2ke ð4:18Þ
ke �
p

p� a
¼ me

1� me
: ð4:19Þ

At the contact line, x1 = 1, we have S3 = u2/4 and Eq. (4.17) re-
duces to
MEð1;aÞ ¼
4
p

Z 1

0

u2du

ð1� u2Þ1=2 ¼ 1 ð4:20Þ
for all 0 6 a 6 p. Fig. 6 shows plots of ME vs. x1 calculated from Eqs.
(4.17)–(4.19) at different values of the contact angle a. ME is posi-
tive for hydrophilic particles (a < p/2) and negative for hydrophobic
particles (a > p/2).

For a = 90o, ME is identically equal to 1 (Fig. 6). In this case, the
electrostatic potential in the nonpolar fluid is described by the sim-
ple expression:
un ¼ E0z� E0z
r3

c

ðr2 þ z2Þ3=2 : ð4:21Þ

Eq. (4.21) expresses un as a superposition of the external field
and the field of a dipole.
5. Solution to the general problem

5.1. Reduction of the problem to Fredholm equation

Following the approach from Ref. [1], in Appendix A, we have
demonstrated that Eq. (3.10) can be represented as a Fredholm
equation of the second kind:

GðsÞ ¼ bðsÞ þ
Z 1

0
Vðs; ~sÞGð~sÞd~s; ð5:1Þ

where

Vðs; ~sÞ � b sinðaÞgðsÞgð~sÞUðs; ~sÞ; ð5:2Þ

GðsÞ � WbðsÞ
gðsÞ ; b � epn � 1

epn þ 1
; ð5:3Þ

Uðs; ~sÞ �
Z 1

0

Kðg; sÞKðg; ~sÞ
cosh gþ cos a

sinh gdg: ð5:4Þ

g2ðsÞ � sinhðpsÞ sinh½ðp� aÞs� tanhðpsÞ
sinh½ð2p� aÞs� � b sinhðasÞ : ð5:5Þ

bðsÞ � 23=2 ð1þ bÞ s sinh½ðp� aÞs�
sinh2ðpsÞ

� 2b
3

cot a
sinhðasÞ
sinhðpsÞ þ 2s coshðasÞ

sinhðpsÞ

� �( )
gðsÞ:

ð5:6Þ

The functions b2 and V2 are integrable over the domain
0 < s <1. Moreover, Vðs; ~sÞ is a symmetric function of its argu-
ments. In such a case, G(s) can be found as a solution of Eq. (5.1)
by iterations [64]. To start the iterations, we substitute
Gð~sÞ ¼ bð~sÞ in the right-hand side of Eq. (5.1). For fast calculation
of the kernels K and U in Eq. (5.4), we used the procedure described
in Appendix C of Ref. [1].

The function U defined by Eq. (5.4) depends on a, but it is inde-
pendent of epn. For this reason, we calculated U and stored the
dependence of U on a. The stored numerical data were further used
to compute the parameters listed in the tables in Appendix B at
various epn.

5.2. Numerical results

Having determined Wb(s) as explained in Section 5.1, by
numerical integration in Eqs. (3.18) and (3.19), we calculated the
coefficient functions H3(a, epn) and H5(a, epn) in the expansion,
Eq. (3.17). The latter expansion gives the asymptotics of Ez far from
the particle. Results for H3(a, epn) and H5(a, epn) are plotted in Fig. 7
and tabulated in Tables 3 and 4 of Appendix B. In particular, Fig. 7
shows the plots of H3/A3/2 and H5/A5/2 vs. a at various epn values.



Fig. 7. Dependence of the scaled coefficient functions (a) H3(a, epn)/A3/2 and (b)
H5(a, epn)/A5/2 on the central angle, a, at different fixed values of epn: (A) 0.125; (B)
0.250; (C) 0.500; (D) 0.750; (E) 1.00; (F) 1.50; (G) 2.00; (H) 4.00; (I) 8.00.

Fig. 8. Dependence of the coefficient function JE1(a, epn) on the central angle a for
different values of the ratio epn = ep/en. At epn = 1, the calculated curve coincides with
that in Fig. 3.
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The renormalizing factor A is defined by Eq. (4.15). As seen in
Fig. 7a, H3 monotonically decreases with the rise of epn. The behav-
ior of H5 is more complicated (Fig. 7b). For hydrophilic particles
(a < 90�), H5 decreases with the rise of epn, whereas for hydropho-
bic particles (a > 90�), H5 increases with the rise of epn.

The integrable singularity of Ez at the contact line on the particle
surface gives an essential contribution to the normal (electrodip-
ping) force acting on the particle; see Section 6. For this reason,
it is necessary to accurately estimate the coefficient function
JE1(a, epn) defined by Eq. (3.22). The most convenient formula for
calculating JE1(a, epn), which is derived in Appendix A, is as follows:

JE1 ¼ Jð0ÞE1 þ
21=2�mAE

p1=2m
Cð0:5þ mÞ

CðmÞ ð5:7Þ

where m is the first positive root (0.5 < m < 1) of the equation (see Ta-
ble 1 in Appendix B)

sin½ð2p� aÞm� ¼ b sinðamÞ; ð5:8Þ
Jð0ÞE1 ¼
2b
3
½cot a sinðamÞ þ 2m cosðamÞ� � ð1þ bÞ m sin½ðp� aÞm�

sinðpmÞ

� �

	 22�mp1=2

ð2p� aÞ cos½ð2p� aÞm� � ba cosðamÞ
Cð0:5þ mÞ

CðmÞ ;

ð5:9Þ
AE ¼ lim
y!1

expðmyÞ
Z 1

0

sWð1Þb ðsÞ cothðpsÞ
sinh½ðp� aÞs� sinðsyÞds

( )
: ð5:10Þ

Wð1Þb ðsÞ is defined by Eq. (A.41) in Appendix A. The limit in Eq. (5.10)
is calculated numerically using the Wb(s) dependence obtained as
Fig. 9. Dependence of the coefficient function JE(x1, a, epn) in the expression for Ez,
Eq. (3.20), on x1 for different values of the central angle a at (a) epn = 0.5 and (b)
epn = 2.
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explained in Section 5.1 and Appendix A. The calculated values of JE1

are plotted in Fig. 8 and tabulated in Table 2 of Appendix B.
Our numerical calculations showed that the last term in Eq.

(5.7) is small (on order of 10%), so that one can set JE1 � Jð0ÞE1 , except
for a > 170o. Therefore, for a fast estimation of JE1, one can use the
analytical exact expression, Eq. (5.9).

In the limiting case b ? 0 (epn ? 1), Eq. (5.8) gives m ? me, where
me is defined by Eq. (4.7), and then Eq. (5.9) reduces to Eq. (4.8). In
the same limiting case, AE ? 0; see Appendix A.

Finally, Fig. 9 shows the dependence of the coefficient function
JE(x1, a, epn) in the expression for Ez, Eq. (3.20), on x1 at various cen-
tral angles, a, and at two epn values. The results show that JE vs. x1 is
almost constant, except for a > 120� and in a close vicinity of the
contact line, x1?1. The limiting values of JE for x1 = 1 are given
by JE1 in Fig. 8.
Fig. 10. Dependence of the force coefficient fR,EE on the central angle a at different
fixed values of the dielectric constant ratio, epn = ep/en.
6. Electrodipping force

6.1. Theoretical expressions and numerical results

As before, we consider a single particle attached to a water–
nonpolar fluid interface in the presence of applied uniform electric
field E0, which is parallel to the vertical axis z (Fig. 1). In Part 2 of
the present study [45], it is proven that the electric force acting on
the particle is given by the expression:

F ¼ �ez
en

8p

Z
Snw

ðE2
z � E2

0ÞdS: ð6:1Þ

Here, ez is the unit vector of the z-axis. In the absence of external
force (E0 = 0), the force F is directed downwards, toward the phase
of greater dielectric constant (the water), and for this reason, it was
called electrodipping force [48]. Eq. (6.1) is derived by integrating
the divergence of the Maxwell electric stress tensor over the spatial
domain of the nonpolar fluid and by application of the Gauss-Ostro-
gradsky theorem. Thus, one obtains that the integral over the parti-
cle upper surface Spn is equal to the integral over the flat water-
nonpolar fluid interface Snw in Eq. (6.1); see [45].

Substituting Ez from Eq. (3.12) into Eq. (6.1) and using Eq. (2.7),
we obtain an expression for the normal (electrodipping) force:

FðnÞ � Fz ¼ �
enE2

0R2

4p
fR;EE; ð6:2Þ

where

fR;EE � p sin2 a
Z 1

0
½2þ ðcosh g� 1Þ3=2IE�

IE sinh gdg
ðcosh g� 1Þ1=2 : ð6:3Þ

With the help of Eqs. (3.13) and (3.14), we introduce x1 as integra-
tion variable. Because the integrand has an integrable singularity, it
is convenient to represent Eq. (6.3) in the form:

fR;EE ¼ p sin2 a
Z 1�d

0
2ð 2

1� x2
1

Þ3=2IE þ x3
1

2
1� x2

1

� �3

I2
E

" #
dx1 þ fd;EE

( )
;

ð6:4Þ

where in view of Eq. (3.22), the integration in fd,EE can be carried out
analytically:

fd;EE �
Z 1

1�d
½2ð1� x1Þm�1JE1 þ ð1� x1Þ2m�2J2

E1�dx1

¼ 2dm

m
JE1 þ

d2m�1

2m� 1
J2

E1: ð6:5Þ

A good accuracy can be obtained setting d = 0.01. The integral in
Eq. (6.4) can be solved numerically using the calculated JE(x1, a,
epn); see Eq. (3.20) and Fig. 9.
Calculated values of fR,EE are given in Table 5 of Appendix B and
shown in Fig. 10. It is interesting that for epn > 1, there are regions
of a values, where fR,EE is negative. In these regions, Fz is positive,
i.e., the electric force pushes the particle upwards, toward the non-
polar fluid.

Fig. 11 illustrates the sign and magnitude of Fz depending on the
applied electric field E0 for a hydrophilic particle with a = 60�
(Fig. 11a) and for a hydrophobic particle with a = 120� (Fig. 11b).
In accordance with Eq. (6.2), the Fz-vs.-E0 curves in Fig. 11 are
parabolas passing through the coordinate origin, i.e., Fz = 0 for
E0 = 0. This is related to the fact that here we consider uncharged
particles, for which Fz is due to the external field and to the fact
that the particle, in general, has a dielectric constant that is differ-
ent from those of the two adjacent phases. In addition, the Fz-vs.-E0

dependences are symmetric and insensitive of whether E0 is posi-
tive and negative. If the respective experimental dependence is
asymmetric, this will indicate that the particle is charged; see Ref
[45].

For the hydrophilic particle (Fig. 11a), Fz dips the particle into the
water for epn < 4 and pulls the particle upwards for epn P 4. For the
hydrophobic particle (Fig. 11b), the transition between dipping and
pulling Fz occurs for epn between 1 and 2.

6.2. Tabulated values of the computed basic functions

For a fast and convenient application of the results obtained in
the present paper, the reader could use the dependencies, m (a, epn),
JE1(a, epn), H3(a, epn), H5(a, epn) and fR,EE(a, epn) given in Tables 1–5 in
Appendix B, instead of repeating the calculations described in the
text.

Let f(a, epn) be either of the above tabulated functions. We are
interested to obtain its value for a given a1 < a < a2, and e1 < epn <



Fig. 11. Plot of the vertical electric force Fz (divided by R2) vs. the applied external
electric field, E0, (a) for a hydrophilic particle with a = 60�, and (b) for a hydrophobic
particle with a = 120�. In both cases, the dielectric constant of the nonpolar fluid is
the same, en = 2 (e.g., oil), whereas that of the particle, ep, is different for the
different curves; epn = ep/en.

Fig. 12. Sketch of two uncharged dielectric particles attached to the water-
nonpolar fluid interface and separated at a distance L. The applied uniform external
electric field E0 polarizes the particles. Far from each particle, its electric field is
equivalent to the field of a dipole of moment pd given by Eq. (7.5).
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e2, where a1, a2, e1 and e2 are values given in the respective table.
Then, f(a, epn) can be calculated by means of the following four-
point interpolation formula:

f ða; epnÞ ¼
ða� a2Þðepn � e2Þ
ða1 � a2Þðe1 � e2Þ

f ða1; e1Þ

þ ða� a2Þðepn � e1Þ
ða1 � a2Þðe2 � e1Þ

f ða1; e2Þ

þ ða� a1Þðepn � e2Þ
ða2 � a1Þðe1 � e2Þ

f ða2; e1Þ

þ ða� a1Þðepn � e1Þ
ða2 � a1Þðe2 � e1Þ

f ða2; e2Þ ð6:6Þ
7. Asymptotic expression for the lateral electric force between
two particles

7.1. Multipole expansion at long distances

Here, we are using the solution of the single-particle problem to
derive an expression for the force of interaction between two par-
ticles at sufficiently long distances between them. Let us consider
two identical particles, attached to the water-nonpolar fluid inter-
face, at distance L between the centers of their contact lines
(Fig. 12). As before, an external electric field E0 is applied normal
to the interface. The external field polarizes the floating particles,
which leads to electrostatic interaction between them. In view of
Eq. (3.12), the electric potential in the nonpolar fluid can be pre-
sented in the form:
un � E0zþ ~un; ð7:1Þ

where E0z and ~un are, respectively, the contributions of the external
field and of the polarized particles. As before, the penetration of the
electric field in the lower phase of greater dielectric constant (the
water phase) is neglected, which is possible for particle radius
R� j�1, where j is the Debye screening parameter for this phase
[48]. As proven in Part 2 of this study [45], under such conditions
the force of electrostatic interaction between the two floating par-
ticles can be calculated from the expression:

F12 � FðelÞ
x ¼ en

8p

Z 1

�1
dy
Z 1

0
dz

@ ~un

@y

� �2

þ @ ~un

@z

� �2
" #

at x ¼ 0:

ð7:2Þ

Here, the x-axis passes through the centers of the contact lines of the
two particles; FðelÞ

x is the x-projection of the force exerted on the
right-hand-side particle; the coordinate origin is fixed in the middle
between the two particles; the y- and z-axes have, respectively, hor-
izontal and vertical orientation (Fig. 12). The integration in Eq. (7.2) is
carried out throughout the vertical yz-plane in the middle between
the two particles. Eq. (7.2) shows that FðelÞ

x 
 0, i.e., the electrostatic
interaction between the two particles is repulsion.

At sufficiently long distances between the two particles, the
electric potential ~un can be presented as a superposition of the
electric potentials created by the individual particles:

~un � ~un;A þ ~un;B: ð7:3Þ

Here and hereafter, the subscripts A and B denote quantities related,
respectively, to the left- and right-hand-side particle. In view of the
asymptotic expansion Eq. (3.17), we can represent Eq. (7.3) in the
form:

~un;k ¼
pd

en

z

ðr2
k þ z2Þ3=2 þ

po

en

z

ðr2
k þ z2Þ5=2 �

5z3

3ðr2
k þ z2Þ7=2

" #
ðk ¼ A;BÞ;

ð7:4Þ

where the first term arises from the Legendre polynomial P1 (dipo-
lar term) and the second one from the Legendre polynomial P3

(octupolar term) [65]; the dipolar and octupolar moments, pd and
po, are defined as follows:

pd � enE0H3r3
c and po � enE0H5r5

c ð7:5Þ

where H3(a, epn) and H5(a, epn) are coefficient functions defined by
Eqs. (3.18) and (3.19), tabulated in Tables 3 and 4 of Appendix B,
and plotted in Fig. 7. The radial distances, rA and rB, are defined by
the relationships

r2
A � xþ L

2

� �2

þ y2 and r2
B � x� L

2

� �2

þ y2: ð7:6Þ



Fig. 13. Plots of FðelÞ
x =R2 vs. the applied external field, E0, for different values of the

central angle, a, at a fixed interparticle distance L = 6R; (a) hydrophobic uncharged
particles; (b) hydrophilic uncharged particles.
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The substitution of Eqs. (7.3) and (7.4) into Eq. (7.2) yields:

FðelÞ
x � � 1

32pen

Z 1

�1

Z 1

0
Uxðy; zÞdzdy; ð7:7Þ

where Ux is given by the expression:

Uxðy; zÞ � f16y2z2½9pdðL
2 þ 4y2 þ 4z2Þ2 þ 20poð3L2 þ 12y2

� 16z2Þ�2 þ ½3pdðL2 þ 4y2 þ 4z2Þ2ðL2 þ 4y2 � 8z2Þ

þ 4poð3L4 þ 24L2y2 � 96L2z2 þ 48y4 � 384y2z2

þ 128z4Þ�2g 1

9ðL2 þ 4y2 þ 4z2Þ9
: ð7:8Þ

The integral in Eq. (7.7) can be taken analytically; the final re-
sult is:

FðelÞ
x � 1

enL4

3
2

p2
d þ

5pdpo

L2 þ 175p2
o

18L4

� �
: ð7:9Þ

For pd – 0, the leading term is the dipolar term, and then, the
long-distance asymptotics of the electrostatic interaction force is
[4,5,23]:

FðelÞ
x � 3p2

d

2enL4 : ð7:10Þ

For special values of the central angle a and the dielectric con-
stant ratio epn, the coefficient function H3(a, epn) becomes equal to
zero, and then pd = 0; see Fig. 7a and Eq. (7.5). In such a case, the
octupolar term becomes the leading term in Eq. (7.9), so that the
interaction force becomes:

FðelÞ
x � 175p2

o

18enL8 : ð7:11Þ

In the latter case, the direct electrostatic repulsion, FðelÞ
x 1 1/L8,

decays much faster than the electrocapillary attraction, FðECÞ
x 1 1/L4

[3–5], so that the net force is attractive at long distances.
In the considered case of uncharged particles, the dipolar and

octupolar moments, pd and po, are induced by the applied external
field and therefore both of them vanish at E0 ? 0; see Eq. (7.5).

Note also that if pd – 0 and the exact method of reflections [66]
is used, instead of the superposition approximation, Eq. (7.3), an
additional octupolar term 1p2

d=L8 will appear in Eq. (7.9). How-
ever, for pd – 0, the octupolar terms are negligible and the asymp-
totic force is given by Eq. (7.10). Conversely, if pd = 0, the term
1p2

d=L8 disappears, and the leading term is the octupolar term gi-
ven by Eq. (7.11) because, in general, H5(a, epn) is not equal to zero
when H3(a, epn) = 0; see Fig. 7a and b.
Fig. 14. Plots of FðelÞ
x =R2 vs. the scaled interparticle distance, L/R, at external field

E0 = 100 V/m for three values of the central angle, a. At a = 50� and 60�, the force is
dominated by the dipolar interaction, Eq. (7.10), whereas at a = 55� – by the
octupolar interaction, Eq. (7.11).
7.2. Numerical results and discussion

To compute FðelÞ
x for various E0, a and epn, we used Eqs. (7.5) and

(7.9), along with the calculated coefficient functions H3(a, epn) and
H5(a, epn). The values of the latter functions can be obtained using
the interpolation formula in Eq. (6.6) and the data tabulated in Ta-
bles 3 and 4 of Appendix B.

Fig. 13a and b show plots of FðelÞ
x =R2 vs. E0, for different values of

the central angle, a, at a fixed interparticle distance L = 6R. For the
dielectric constants, we have used experimental values for tetrade-
cane and glass particles from Ref. [48], viz. en = 2.04 and ep = 3.97.
For 55� 6 a 6 150�, FðelÞ

x strongly diminishes with the decrease in
a. In particular, for hydrophobic particles, FðelÞ

x is by orders of mag-
nitude greater than for hydrophilic particles; compare Fig. 13a and
b. H3 = 0 at a � 55� and in this case FðelÞ

x is dominated by the octu-
polar term, see Eq. (7.11). For this reason, FðelÞ

x has a minimal value
at a = 55�.
The diminishing of FðelÞ
x with the decrease in a (Fig. 13) is par-

tially due to the fact that the external electric field, which polarizes
the dielectric particle, enters the particle through the surface Spn

(Fig. 1), but Spn considerably decreases with the decrease in a.
Fig. 14 shows FðelÞ

x =R2 vs. the dimensionless distance L/R at
E0 = 100 V and at three a values. At a = 50� and 60�, the dipolar
term is predominant and FðelÞ

x 1=L�4; see Eq. (7.10). In contrast, at
a = 50�, the dipolar term is zero (pd = 0) and we are dealing with
octupole–octupole interaction, FðelÞ

x 1=L�8; see Eq. (7.11). In this
case, the attractive electrocapillary force, FðECÞ

x 1 1/L4 [3–5], domi-
nates the interparticle force, at least at long distances.



288 K.D. Danov, P.A. Kralchevsky / Journal of Colloid and Interface Science 405 (2013) 278–290
8. Discussion

Here, we give a physical interpretation of the results obtained
by solving the mathematical boundary problem.
8.1. Inversion of the direction of particle dipole moment

As seen in Fig. 7a, for a given epn > 1, the coefficient function H3

can change its sign at a certain value of the contact angle a. The
same is true for the particle dipole moment, pd � H3, which is in-
duced by the external field, see Eqs. (3.17) and (7.5). At this special
value of a, corresponding to a certain degree of particle immersion
in the water phase, we have H3 = 0 and pd = 0, and then, the inter-
particle force FðelÞ

x is dominated by the octupolar term; see Eqs.
(7.9) and (7.11). In contrast, for epn < 1, the coefficient H3 is positive
for all a, and sign inversion of pd is absent (Fig. 7a).

This behavior can be explained on the basis of the fact that pd is
an excess dipole moment. If we consider a dielectric particle in vac-
uum, the external field E0 induces polarization charges on the par-
ticle surface, which give rise to an additional electric field inside
the particle that is directed oppositely to E0. By definition, in such
a case, the polarization vector and the intergral particle dipole mo-
ment, pd, have the same direction as E0 [67]. However, if the parti-
cle is immersed in a fluid of greater dielectric constant (instead of
vacuum), then the particle polarization will be smaller than that of
the same volume of the fluid. In such a case, the vector of excess
polarization and particle dipole moment, pd, has a direction oppo-
site to E0.

First, let us consider the case epn = ep/en < 1 (Fig. 15a). In this
case, both the upper and the lower portions of the particle are im-
mersed in a medium of greater dielectric constant, so that the
respective excess dipole moments, denoted pd,1 and pd,2 in
Fig. 15a, are directed opposite to E0. (The water phase is assumed
to have the greatest dielectric constant among the three neighbor-
ing phases.) In such a case, the dipole moments pd,1 and pd,2 cannot
annihilate each other; the net dipole moment pd cannot become
zero, and H3 can be only positive (Fig. 7a).

For epn > 1 (Fig. 15b), the upper portion of the particle is im-
mersed in a fluid of lower dielectric constant, whereas the lower
portion – in a fluid of greater dielectric constant. In such a case,
pd,1 has the same direction as E0, whereas pd,2 has the opposite
direction. At a given contact angle a, we can have pd,1 + pd,2 = 0,
which corresponds to H3 = 0 and to zero net particle dipole mo-
Fig. 15. Sketch of a particle at a water/nonpolar-fluid interface in external field E0. (a) In
of the particle, pd,1 and pd,2, have the same directions, (b) in the case ep > en, the excess d
polarization charges and counterions across the wedge-shaped region around the zone
ment, pd. At the smaller a, the particle is immersed deeper in the
water, the effect of pd,2 prevails and we have H3 > 0, as for epn < 1
(Fig. 7a). Conversely, at the larger a, the effect of pd,1 prevails
and we have H3 < 0.
8.2. Inversion of the sign of electrodipping force

Here, our goal is to give a physical interpretation of the sign of
the coefficient fR,EE, which determines the direction of the vertical
force, Fz; see Fig. 10 and Eq. (6.2).

For epn = ep/en < 1 (Fig. 15a), the polarization charges at the bot-
tom of the particle, which is immersed in water, are neutralized by
counterions that are attracted from the aqueous phase, whereas
the excess polarization charges at the top particle surface have
the same sign as that on the electrode above the particle. In such
a case, the electrode (that creates E0) repels the particle and pushes
it toward the water phase. Correspondingly, fR,EE is positive
(Fig. 10a).

For epn > 1 (Fig. 15b), at sufficiently small angle a, the effect of
pd,2 prevails and we have the same situation as that described in
the previous paragraph. This corresponds to the fact that fR,EE is po-
sitive for the smaller a in Fig. 10b.

For epn > 1, at the greater a, the effect of pd,1 becomes predom-
inant. Then, the particle energy in the external field decreases if the
portion of the particle immersed in water decreases. Consequently,
the particle is attracted by the electrode, and fR,EE is negative at the
intermediate a values in Fig. 10b.

Finally, at epn > 1 and a > 160�, fR,EE becomes positive again
(Fig. 10b). This attraction of the particle by the water phase could
be attributed to the attraction between the polarization charges at
the particle surface and the counterions at the water surface across
the wedge-shaped region around the particle bottom (Fig. 15c). Be-
cause the electric field does not penetrate in the aqueous phase,
each force line in the nonpolar fluid must end at a charge (counter-
ion) located at the nonpolar-fluid/water interface, as sketched in
Fig. 15c. At smaller a, the wedge-shaped region disappears, and
fR,EE becomes negative (Fig. 10b).

The considerations in this section have a qualitative character.
Their only purpose to give a physical interpretation of the zeros
and sign changes of H3 and fR,EE, as well as of Fz and FðelÞ

x . However,
these considerations cannot replace the exact solution of the prob-
lem presented in Sections 2–7. For convenience, the procedures for
exact calculation of Fz and FðelÞ

x are presented in Table 1.
the case ep < en, the induced excess dipole moments of the upper and lower portions
ipole moments pd,1 and pd,2 have the opposite directions and (c) attraction between
of particle contact with the water phase.



Table 1
Procedures for calculation of the vertical (electrodipping) force Fz acting on a single
particle and of the lateral force FðelÞ

x between two particles.

Step Calculation of Fz

1 Input parameters: E0, R, a, ep, en, and epn = ep/en

2 Calculate fR,EE(a, epn) using Eq. (6.6) and Table 5 in Appendix B
3 Calculation of Fz from Eq. (6.2)

Calculation of FðelÞ
x

4 Input parameters: the same as in point 1, plus L and rc = Rsin a
5 Calculate H3(a, epn) and H5(a, epn) using Eq. (6.6) and Tables 3 and 4 in

Appendix B
6 Calculate pd and po from Eq. (7.5)
7 Calculate FðelÞ

x from Eq. (7.9)
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9. Conclusions

In this study, we address the problem for calculating the electric
forces acting on uncharged dielectric colloidal particles, which are
attached to the interface between a nonpolar fluid (air, oil) and
water in the presence of applied uniform external electric field.
The final goal is to calculate the normal (electrodipping) force act-
ing on each separate particle, and the force of interaction between
two identical particles. As demonstrated above, these forces exhi-
bit interesting non-monotonic dependences on the particle contact
angle. The problem is important because of the potential use of
electric fields for controlling the distances between particles in
non-densely packed interfacial colloidal crystals for obtaining lith-
ographic masks used in the production of antireflective coatings,
microlens arrays, etc. [30–33]. The case of charged particles in
external field is considered in the second part of this study [45].

An uncharged particle experiences the action of electric forces
because of the polarization of the particle by the external field.
Our main task is to find the electric field inside the particle and
in the nonpolar fluid around it. As demonstrated in a previous
study [1], at such geometry an exact analytical solution can be ob-
tained by solving the Laplace equation in toroidal coordinates and
separating the variables by means of the Mehler–Fock integral
transform. To calculate the electric forces acting on the particle it
is enough to find the normal component of the electric field at
the water-nonpolar fluid interface, viz. Ez|z=0. The effect of the inte-
grable singularity of Ez at the particle three-phase contact line was
accurately taken into account (Fig. 8), because this effect gives a fi-
nite contribution to the normal (electrodipping) force, Fz.

At a given particle radius, R, the magnitude and sign of Fz is af-
fected by three parameters: the applied electric field, E0, the parti-
cle contact angle, a, and the ratio of the dielectric constants of the
particle and nonpolar fluid, epn = ep/en. The magnitude of Fz in-
creases1E2

0. The dependence of Fz on a and epn is quite non-trivial.
For epn 6 1, the electrodipping force depends non-monotonically
on the immersion depth and has a maximum (Fig. 10a). More inter-
estingly, for epn > 1, the dependence of Fz on the contact angle a
exhibits a maximum and a minimum. Fz can be either negative
(dipping), positive (pulling), or zero, depending on the value of a
(Fig. 10b); see Section 8b for physical interpretation.

The particle dipolar moment pd, induced by the external field,
can become zero if the particle dielectric constant ep is intermedi-
ate between those of the nonpolar fluid and water, en < ep < ew. In
such a case, the excess polarizations of the upper and lower por-
tions of the particle (with respect to those of the displaced fluids)
have the opposite signs and can annihilate each other at a given
contact angle a. At this special value of a, which depends on the ra-
tio ep/en, the dipolar interaction disappears (pd = 0) and then the
electrostatic force between two uncharged floating particles, FðelÞ

x ,
is dominated by the octupolar term; see Eqs. (7.9) and (7.11). It
should be noted that the multipole expansion of the electric field
has dipolar and octupolar terms, with zero quadrupolar term; see
Eqs. (3.17) and (7.4).

If the dipolar term is zero, and the lateral repulsive force is
determined by the octupolar term, the interparticle repulsion
drops by orders of magnitude and decays much faster with the
interparticle distance. Then, the attractive lateral capillary forces
and the van der Waals forces can overcome the electrostatic repul-
sion and can induce two-dimensional coagulation of the particles
at the interface. In general, the dipolar part of the lateral force
FðelÞ

x and the normal force Fz become equal to zero at different val-
ues of a, so that an electric-field induced capillary meniscus
(engendered by Fz) can appear around the particle even if its elec-
tric dipolar moment is zero (FðelÞ

x � 0).
The results in the present article are obtained assuming that the

particle radius is much greater than the Debye screening length in
the water phase, jR� 1. In such a case, the electrostatic interac-
tions across the water phase are negligible and only the electric ef-
fects in the nonpolar fluid and inside the dielectric particle are
essential. This study could be further extended to smaller particles,
for which jR 6 1. Other directions for further developments are (i)
to take into account the electric-field-induced lateral capillary
force, as in Ref. [3]; (ii) to replace the water with a second nonpolar
fluid, e.g., air-oil interface as in the experiments in Refs. [17,18];
(iii) to theoretically examine the effects of alternating electric field,
and (iv) to compare the theoretical predictions with the
experiment.
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