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6
Foam Rheology

Nikolai D. Denkov, Slavka S. Tcholakova, Reinhard Hohler
and Sylvie Cohen-Addad.

6.1 Introduction

Rheological properties of foams, such as elasticity, plasticity, and viscosity, play a major
role in foam production, transportation, and applications [1-8]. Obvious examples are
foam extrusion through nozzles and slits (used in cosmetic and food applications, and in
plastic foam production), transportation through pipes (e.g. for compartment cleaning
in nuclear plants and in foam-aided natural gas production), flow through porous media
(in enhanced oil recovery), foam perception in personal and home care applications
(shaving and styling foams, facial cleansers, shampoos), and many others — see Chapter 18
in this book for further examples.

Understanding foam rheology is a challenging scientific problem, mainly due to the
complexity of the interactions and processes involved [4—14]. By definition, foams are bub-
ble dispersions with gas volume fraction, @ =V _/V, , higher than that of closely packed
spheres (@, ~ 0.64 for disordered foam). Therefore nelghbourmg bubbles are squeezed
against cach other and separated by thin films and Plateau borders, whose liquid—gas inter-
faces are stabilized by surfactants, proteins, polymers or solid particles [1-4]. If foam is
subjected to a small shear stress, it deforms like a soft solid. This response can be character-
ized by visco-elastic moduli [2, 4, 8, 12]. For applied stresses beyond a threshold, called
‘yield stress’, visco-plastic flow sets in. In this regime, foams behave like shear-thinning
fluids, which means that their effective viscosity is a decreasing function of shear rate
[4,7, 8, 12, 14]. Additional rheological phenomena arise at the contact between foams and
confining solid walls: If the surface of the solid wall is smooth on the scale of the bubble
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Fig. 6.1 Schematic presentation of the origin of elastic response of foam, subject to shear
stress, T, lower than the foam yield stress, .. (a) In the absence of external stress, the bubbles
are symmetrical and the tensions of the foam films, o,, are balanced both inside the foam
and at the confining solid wall. (b) At low external stress, the bubbles deform and the
resulting slope of the foam films creates elastic shear stress inside the foam and in the contact
zone foam-wall. Due to the preserved static angles between the foam films, 120°, the forces
acting on each bubble are again balanced, despite bubble deformation.

size, the foam tends to slip on the wall. In this case, the velocity of the first layer of bubbles
in contact with the wall and the wall velocity do not match, in contrast to what is observed
with simple liquids [4, 5, 14-20]. If this wall slip is not accounted for properly, it can lead
to artefacts in rheological measurements aimed at determining bulk foam properties. Wall
slip can also be useful, e.g. for foam transportation through pipes and for foam extrusion
through orifices. The rheological properties of foams are complex not only because both
the elastic and the viscous responses are nonlinear functions of the applied stress, but also
because shear localization (coexistence of moving and non-moving regions) may occur
under certain conditions [21-26].

Foam rheology is of practical as well as of fundamental interest, because of its observed
similarities with the behaviour of other concentrated dispersions of soft ‘particles’, such as
emulsion droplets, microgel beads, or lipid vesicles [4, 8, 27-29]. These similarities could
be the result of generic physico-chemical mechanisms, which are currently under active
investigation.

Significant progress has been made towards the physical understanding of the rheologi-
cal properties of foams [4, 7, 8, 12, 14, 30, 31]. The elastic response is due to surface ten-
sion effects: each foam film bears a mechanical tension, o,, approximately equal to twice
the surface tension of the liquid, &, from which the foam is generated. If shear stress is
applied externally, the bubbles are deformed, as illustrated in Fig. 6.1. As a consequence,
the average orientation of the films is biased in the direction of the applied shear. This gives
rise to an elastic stress inside the foam, which balances the applied stress (see Fig. 6.1(b)).
As long as the external stress is smaller than the foam yield stress, 7, the films meeting at
the Plateau borders are in static mechanical equilibrium and the bubbles are trapped in a
self-supporting structure.

If the applied stress is strong enough to separate neighbouring bubbles, the foam structure
yields, a steady shear flow sets in, and the bubbles slide along each other (see Fig. 6.2). The
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Fig. 6.2 Schematic illustration of foam yielding and plastic deformation, under applied shear
stress, which increases from (a) to (c) [4, 30]. The structure shown on image (c) illustrates
the largest possible elastic deformation of the foam structure (presented here for 2D foam).
This structure can relax either elastically, by returning to structure (a), or by a bubble
rearrangement, leading to structure (d). This latter configuration is similar to structure (a), but
the top bubble layer is shifted irreversibly with respect to the bottom layer, thus changing the
bubble packing topology. Note the neighbour switching between bubbles 1 and 3, which
became neighbours instead of 2 and 4. This topological change is called a ‘T1 event’in dry
foam. The viscous friction in the sheared foam films and Plateau borders between the moving
neighbouring bubbles leads to energy dissipation and, hence, to viscous contribution to the
shear stress.

bubble rearrangements lead to local shear flow of the liquid inside the foam films and
Plateau borders, resulting in dissipation of energy and a shear-rate-dependent (viscous) con-
tribution to the macroscopic stress. If the applied stress is decreased back to zero, the flow
stops and the bubbles relax towards a new equilibrium (see Fig. 6.2(d)). The macroscopic
deformation, realized with respect to the initial stress-free structure, is called ‘plastic strain’.

This review aims to present briefly our current understanding of the main phenomena
involved in foam flow under steady and oscillatory shear deformation, and the main factors
that control these phenomena. In addition, we track the links between the macroscopic
rheological foam properties and the underlying processes at the microscopic scale. Only
the simplest theoretical expressions are presented where available, to avoid mathematical
complexity. The structure of the review is as follows: in Section 6.2 we outline the main
experimental and theoretical approaches used to study foam rheology; in Sections 6.3-6.6
we discuss consecutively the foam visco-elasticity, yielding, plasticity, and steady viscous
flow; in Section 6.7 we consider the foam-wall friction,

6.2 Main Experimental and Theoretical Approaches

Various experimental techniques are employed to characterize and analyse foam deforma-
tion and flow [4, 12, 14-16, 18, 32-34]. The macroscopic response to applied oscillatory
or steady shear stress can be measured by rotational rheometers. Parallel plate, cone-plate
and Couette cylinders have all been successfully used as shear geometries. However,
several precautions must be taken to obtain physically interpretable rheological results. The
surfaces of the confining walls must be roughened to avoid wall slip. Alternatively, one can
use smooth surfaces and, in such cases, the foam-wall slip must be explicitly considered in



94  Foam Engineering

data analysis [31]. In addition, measures must be taken to ensure foam stability during the
experiment, with respect to liquid drainage, bubble coarsening and liquid evaporation at the
contact with ambient atmosphere. Only under such conditions are the gas volume fraction,
mean bubble size, and bubble polydispersity well defined. These characteristics, along with
surface tension and viscosity of the foaming solution (and sometimes the surface dilata-
tional modulus; see Sections 6.6 and 6.7 below), must all be controlled to analyse quanti-
tatively the rheological data and to compare the results for different systems. Alternatively,
one can study the coupling between foam aging (due to bubble coarsening) and the rheo-
logical foam properties. In this case, the ageing process must be characterized for a foam
sample, identical to that studied in the rheometer. For all these reasons, the rheological
foam measurements are far from straightforward and the experimental protocols should be
designed carefully, depending on the specific system and aim of the study.

Several complementary methods have been used to characterize the bubble velocity pro-
files and structural rearrangement dynamics in flowing foams. Magnetic resonance imag-
ing (MRI) detects the velocity distribution inside sheared foam, while diffusing wave
spectroscopy (DWS) provides statistical information about the rate of bubble rearrange-
ments in strained and in flowing foams [18, 33, 35-38]. Direct optical observations of
bubble monolayers (2D foams) have provided rich information about the bubble shape and
dynamics in flowing foams [23, 24, 39-47]. Direct observations of dynamics inside dry 3D
foams have been carried out using optical tomography [21]. Optical observations of iso-
lated small bubble clusters have also provided valuable information about the bubble defor-
mation and rearrangement in foams [48-50].

The experimental studies have clearly evidenced that the rheological response of foam
involves processes in a wide range of length-scales. As already mentioned in Section 6.1,
the deformation of individual bubbles creates the elastic stress of foams, while the yielding
and plastic flow are the consequence of rearrangements in the bubble packing, and the
viscous friction in the liquid films between neighbouring bubbles is a source of energy dis-
sipation. At an even smaller structural scale, the stability and the mechanical response of the
liquid—gas interfaces are governed by the adsorption of the foam stabilizers (surfactants,
polymers, particles) [13, 16, 51-57]. At present, one of the most challenging and exciting
research problems in foam rheology is to explain and predict the links between the macro-
scopically observed foam behaviour and the microscopic processes that govern this behaviour.

With this aim in view, the experimental results have stimulated the development of many
theoretical models [4, 7, 11, 12, 17, 23, 24, 51, 52, 55, 58-68]. Two types of approaches are
distinguished: continuum descriptions on a macroscopic scale, and physical models con-
sidering explicitly the foam microstructure. In the continuum models, the mechanical foam
properties, such as elastic and viscous moduli, effective viscosity and yield stress, are
incorporated phenomenologically in constitutive laws, which relate the stress, strain and
rate of strain. Such constitutive laws are very useful to describe the macroscopic flow
behaviour of foams, under various conditions. The physical models aim not only to con-
struct constitutive laws, but also to predict foam rheological properties on the basis of the
foam microstructure and local dynamics [23, 24, 46, 50-52, 63-66]. Additional insight has
been gained by numerical simulations: the Surface Evolver software [69] has been used to
determine foam equilibrium structures [70], as well as the stress in strained or flowing
foams under quasistatic conditions [71, 72]. In this kind of numerical simulation, the inter-
play of rheology and coarsening can also be studied [73]. The viscous friction in foams is
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currently simulated numerically by either the so-called ‘bubble model’ [63, 64] or the *soft
disk model’ [61], which postulate linear dependence between the viscous stress and the
relative velocity of the bubbles. For 2D foams confined by solid walls, the so-called ‘vis-
cous froth model’ [74-76] is applied, which accounts explicitly for the viscous friction
between the bubbles and the wall.

The following presentation briefly describes our current understanding of the main foam
rheological properties, achieved by combining experimental and numerical work, as well
as the theoretical approaches outlined above.

6.3 Foam Visco-elasticity

6.3.1 Linear Elasticity

Subjected to a sufficiently small shear strain, foam behaves like an elastic material and the
stress 7 varies linearly with the strain . In this linear regime, the bubbles are deformed, but
the applied strain is too small to modify the topology of their packing. The specific surface
area of the foam increases with the applied strain, and so does the volume density of bubble
surface energy. The latter quantity scales as the tension of the gas-liquid interface, o,
divided by the average bubble size. Moreover, dimensional arguments show that the foam
shear modulus, G = 7%, scales as the surface energy density, multiplied by a prefactor,
which depends on foam structure, polydispersity and liquid content [4]. The effects of these
foam characteristics on the foam elastic modulus are considered below.

6.3.1.1 Monodisperse Dry Foam

We first consider ordered monodisperse dry foam, whose bubbles are assembled in a
body-centred cubic structure (see Fig. 6.3). For this model system, called ‘Kelvin foam’
(see Chapter 3), the static shear modulus, averaged over all orientations of the sample,

Fig. 6.3 Dry Kelvin foam, subjected to a quasi-static shear strain , applied in the (100)
direction. Each bubble has eight hexagonal films and six square films. Upon the deformation,
the angles between the foam films, joining at a Plateau border, remain equal to 120°, and the
angles between Plateau borders that join at a vertex are 109.5°, as required by Plateau’s rules.
The bubble deformation leads to an increase of the density of the surface energy in the foam
(due to the increased bubble surface area) and to a resulting elastic response, characterized
by the shear elastic modulus, G. Reproduced from [77], Editions Belin, Paris, 2010.
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has been determined in numerical simulations using the surface minimization code
‘Surface Evolver’ [69, 78]:

ag
G=051— 6.1
R (6.1)

R = (3V/4m)'” is the radius of a bubble of volume V. For a typical foaming solution with
o= 30mN/m and bubble radius R = 100 um, eqn (6.1) predicts a shear modulus G = 150 Pa,
illustrating that foams are soft materials.

Simulations of disordered monodisperse dry 3D foams yield a shear modulus close to
that of a Kelvin foam. To analyse the physical origin of the prefactor in eqn (6.1), the struc-
ture of a disordered dry foam has been described as an ensemble of randomly oriented
tetrahedral vertices, each connecting four Plateau borders. When these structures are
sheared, their geometry evolves in agreement with Plateau’s rules. A geometric calculation
on this basis yields the relative change of interfacial area, as a function of the applied
strain [65]. Using the specific surface area of random disordered monodisperse foams,
3.3/R, obtained in numerical simulations [70], this model predicts a shear modulus
G =0.550/R, in good agreement with eqn (6.1) for ordered foam.

6.3.1.2 Effects of Bubble Polydispersity and Liquid Content

The volume to surface ratio of the bubbles sets a characteristic length scale in the foam (cor-
responding to the specific surface area of the bubbles) that governs foam elasticity. For
polydisperse foam, this average ratio is conveniently represented by the so-called Sauter
mean radius, R,, = <R*>/<R*>, which is determined by dividing the third moment of the bub-
ble size distribution by its second moment. The Sauter radius is larger than the cubic mean
bubble radius R , defined as R = (3<V>/4m)'” = <R*>!”. The ratio R,/R_ can be used as a
quantitative measure of foam polydispersity. For a given mean bubble radius R , the elastic
shear modulus decreases with increasing bubble polydispersity, as demonstrated in Fig. 6.4
by the simulation results for dry foams. In real foams, an increase of polydispersity with time
arises, for instance, when an initially (almost) monodisperse foam ages by bubble coarsen-
ing. In this case, at long coarsening times, the ratio of the various mean radii typically con-
verge towards R, /<R>= 1.3 and R /<R>= 1.1 [79], where <R> is the arithmetic mean radius
of the bubbles. Note that the ratio GR, /o'~ 0.51 does not depend on bubble polydispersity —
therefore, R, is a convenient bubble size scale for the elastic foam properties.

Let us discuss now the impact of gas volume fraction @& on the elasticity of disordered
foams. For a given mean bubble size, wet foams are softer than dry ones — as @ decreases,
the shear modulus G also decreases. The latter tends towards zero as @ approaches the
random close packing volume fraction, @,,,, which is a weakly increasing function of poly-
dispersity. The loss of rigidity occurs when the packing reaches an isostatic mechanical
equilibrium, where the bubbles are spherical and neighbours barely touch each other [80].
At @=,_,, the foam can be sheared slowly without any interfacial energy ‘cost’. Figure 6.5
shows experimental results for the dependence of the shear modulus of polydisperse foam
on @, which are well described by the empirical relation [81]:

G=140D-®, )Ri 6.2)

2
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Fig. 6.4 (a) Variation of the shear modulus G of disordered 3D dry foams, normalized by

o/R,, with increasing foam polydispersity, characterized by the parameter (R,,/R — 1). The
mean radius R is defined as R = (3<V>/4m)"* where V is the volume of a bubble in the foam.
R,, is the mean volume-surface radius (Sauter radius). The continuous line is GR /o =0.51R /
R,,. For monodisperse foam with R,, =R =R, the intercept with the ordinate axis corresponds
to G=0.510/R, in agreement with eqn (6.1). Data from [71]. (b) Structure of a dry polydisperse
foam with R,,/R_ = 1.15, simulated using Surface Evolver software. Courtesy of A. Kraynik.
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Fig. 6.5 Shear modulus, G, versus gas volume fraction ®, measured for 3D disordered
polydisperse foams with R,, = 66 um, 6= 20mN/m, and ®, = 0.64. The continuous curve
represents eqn (6.2). The Sauter mean radius R,, is determined from videomicroscopy
measurements of the bubble diameter at the sample surface. Data from [81].

with @, = 0.64. For a dry foam (@ = 1), eqn (6.2) yields a numerical pre-factor of 0.50,
similar to that predicted for monodisperse foam (cf. eqn (6.1)).

Foams are much harder to compress than to shear, and their Poisson ratio is very close to
0.5. Neglecting the water compressibility and the interfacial contribution, the foam com-
pression modulus is given by the ratio K, /®, where K is the compression modulus of the gas
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Fig. 6.6 (a) A cube of foam is sheared in the X, direction. The arrows illustrate the
components of the induced stress. (b) Amplitude of the first normal stress difference, N,,
induced by an applied oscillatory strain of amplitude vy, in a dry foam (® = 0.97, average
bubble radius R = 80 um, surface tension o= 27 mN/m, yield strain Y, = 0.4). The foam is
sheared in the gap of cone-plate geometry, with angle equal to 10° (open symbols) or 15°
(filled symbols) at a frequency of 2 Hz. Note the quadratic dependence of N, on vy, except at
low amplitudes, where deviations are seen due to residual trapped stresses. See more details
in ref. [82], where these data are taken from.

confined in the bubbles. The magnitude of K is of the order of the gas pressure outside the
foam. Taking realistic values, one obtains K /@ >> G. Therefore, the bubble volume, in
foam undergoing shear flow, is constant to a very good approximation. On the other hand,
foam flows related to significant variations of the applied pressure (e.g. pumped flow or
release from pressurized containers) may lead to significant changes of the bubble volume
and of the air volume fraction in the foam. In such (more complex) cases, the dependence
of the foam properties on the local values of the bubble size and volume fraction should be
explicitly considered. In addition, the visco-elastic foam properties upon foam compres-
sion and expansion could become important [6].

6.3.2 Non-linear Elasticity

For larger strains, which are still too small to induce bubble rearrangements, foam film
rotations and stretching lead to nonlinear mechanical response. For instance, shear defor-
mation of a foam in the X, direction, as shown in Fig. 6.6(a), induces the shear stress
component, 7,, (proportional to ¥) and two normal stress differences, N,= (7,, — 7,,) and
N, = (t,, - 1,), which are observed to scale as y2. These differences arise because, with
increasing strain, the foam films become predominantly oriented perpendicularly to the
direction X,. As a result, the surface tension of the foam films contributes more to the nor-
mal stresses 7,, and 7,,, and less to 7,,, thus leading to the normal stress differences N, and
N, (see Fig. 6.6(a)).

A quantitative model of this effect, in quasistatically strained dry disordered 3D foams,
was developed using the formalism of large deformation continuum mechanics. It predicts
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a constitutive law of the Mooney—Rivlin form [66], in a good agreement with the results
from the numerical simulations (cf. Fig. 6.12(a) below):

1,=Gy @ N,=G7y (b) N2=—gGy2(c) (6.3)

The results from oscillatory shear experiments, shown in Fig. 6.6(b), confirm that the
amplitude of N, indeed scales with the square of strain amplitude, in agreement with
eqn (6.3b). In addition, these data show that, at low strain amplitudes, internal stresses can
remain trapped in the foam structure and modify the foam nonlinear response to strain — see
the open symbols at strain amplitude y< 0.1, which deviate from eqn (6.3b). These trapped
stresses, which are enhanced with a small cone angle of the rheometer geometry, relax as
the foam coarsens with time.

6.3.3 Linear Relaxations

Aqueous foams, subject to mechanical stress, not only store elastic energy — they can also
dissipate energy, via viscous friction in the liquid contained in the foam films and Plateau
borders, intrinsic viscous friction on the bubble surfaces and/or diffusive exchange of sur-
factant molecules between the solution and the air—water interface [55]. Here we focus on the
regime where stresses and strains are so small that the viscoelastic response is linear and bub-
ble rearrangements are not induced. For an applied oscillatory shear strain of amplitude y, and
angular frequency @, y(1) = y,Re[e"”], the shear stress varies as 7(f) = Y, RelG (w)e'™], where
G'(w) = G (@) + iG"(w) is the complex shear modulus. The real part of the complex modulus
accounts for the elastic foam response, whereas G" accounts for the energy dissipation.

Figure 6.7 presents an example of the foam viscoelastic response over six decades in
frequency. In the entire range of frequencies studied G'> G", which reflects the predominant
elastic behaviour of the foams. The data for G" plotted in Fig. 6.7 show two relaxation
processes, related to different mechanisms of energy dissipation. At low frequency (around
10~* rad/s) a peak of G" reveals a slow relaxation process with a characteristic time-scale of
the order of 1/@ ~ 10%s. At high frequency (above 1rad/s), there is a rapid increase of G"
with the frequency as G" < @'?, in contrast to the expected behaviour for Newtonian
viscous fluids, G"” o< @. The physico-chemical origin of these two relaxation mechanisms
is discussed below.

6.3.3.1 Slow Relaxation

Slow relaxations can be additionally probed by a creep experiment, where a stress step with
amplitude 7, << 7, is applied to the sample, and the resulting strain y(r) is measured as a
function of time. A typical creep response is illustrated in Fig. 6.8(a). After an instantaneous
initial elastic response, steady flow sets in, even if the applied stress is very small. The
strain evolution with time ¥ (f) = 7, (1/G +1/17) is reminiscent of Maxwell fluid behaviour [84],
with static shear modulus G and viscosity 1. The ratio 7, = 1/G gives the characteristic time
of the slow relaxation process, which is of the order of several minutes for the data shown
in Fig. 6.8. The peak of G"(w) for such system is expected at a frequency @, = 1/t = 107
rad/s, in agreement with the results shown in Fig. 6.7.
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Fig. 6.7 Dependence of the elastic G'and loss G” shear moduli on oscillation frequency.
The symbols correspond to different strain amplitudes as indicated in the legend. The dashed
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Gillette shaving foam. Data from [83].
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Fig. 6.8 (a) Time evolution of the shear strain during a creep experiment with foam. A step
stress, T, is applied at t = 0s, during a time interval At = 100s. This stress is released at
t=100s, so that no stress is applied beyond this time. At is chosen short enough so that the
average bubble size does not vary significantly during At, but long enough for numerous
coarsening-induced bubble rearrangements to occur. The sample is Gillette (normal) shaving
foam, sheared in a Couette cell with rough surfaces. Its steady creep behaviour is
characterized by the parameters G = (150+ 10) Paand n = (66 + 6) 10° Pas.

(b) Characteristic time of the steady creep t, =1/G, as a function of the average time interval,
T, between coarsening-induced rearrangements in a volume (2R)3, for different foams with
the same gas volume fraction, ® = 0.92. From A to C, the solubility of the gas in the foaming
solution and, hence, the rate of coarsening-induced rearrangements decreases. The straight
line is a linear fit: t, = T(2R)*/V , with the foam volume affected by a rearrangement being

V = (6R) i.e. about 50 bubbles. See details in [85].
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The low frequency response is related to the foam ageing, as the bubbles coarsen due to
diffusive gas exchange between neighbouring bubbles (Ostwald ripening). This effect leads
to intermittent local bubble rearrangements, which induce small random jumps of the
macroscopic strain ¥ (t) [83]. If shear stress is applied to the foam, the orientation of these
jumps is biased towards the direction of the stress [73] and the foam flows steadily with a
creep rate /T, = 1/m, given by the scaling law [72, 85]:

% = % (6.4)

Here r is the average number of coarsening-induced bubble rearrangements per unit time
and unit volume, V is the typical foam volume affected by single rearrangement event, and
« is constant of the order of unity. The time interval between coarsening-induced bubble
rearrangements in a volume V, is given by T = 1/(rV)). Using multiple light scattering,
combined in situ with rheological creep measurements, eqn (6.4) has been validated [85].
Fig. 6.8(b) shows indeed good agreement between the data and eqn (6.4) with
V = (6.6<R>)". Therefore, eqn (6.4) links the slow rheological response of foams, expressed
by the time 7, = h/G = 1/®,, to their coarsening dynamics which sets the time 7. As the foam
coarsens, its rearrangement dynamics slows down and T increases with foam age ¢ as 1 °%
[86, 87]. As a consequence, the relaxation frequency w, decreases as t * [85]. Note that
along the coarsening, the foam softens and its elastic modulus G decreases as described by
eqn (6.2), due to the increase of the average bubble size.

6.3.3.2 Fast Relaxation

The anomalous non-Newtonian dissipation, observed at frequency higher than 1rad/s in
Fig. 6.7, is due to fast relaxations, coupled to the viscoelastic properties of the bubble sur-
faces that can promote either adhesion or sliding between adjacent bubbles [50]. In this
range of frequencies, the complex foam modulus varies as:

G*w=G(+(iw/w)?)+in. o (6.5)

in agreement with a theoretical model, based on randomly oriented weak zones in the
foam [67]. In these weak zones, the bubbles slide with respect to each other when a
macroscopic shear strain is applied, instead of undergoing affine deformation. This
collective relaxation process exhibits a characteristic relaxation frequency, o, set by the
interplay between an elastic storage modulus and a viscous dissipation, and depending on
the interface ‘rigidity’ [55] (the latter can be characterized by the surface dilatational
modulus of the foaming solution, see section 6.6 below and Refs. [16, 54]). The Newtonian
viscosity 7)_ (eqn 6.5) is expected to dominate G* at very high frequencies, and should
scale with the viscosity of the foaming solution 77,,.

As illustrated in Fig. 6.9, experiments with a series of different foaming solutions show that
®_exhibits different scaling laws with shear modulus G, or equivalently with the bubble size
R, depending on the rigidity of the liquid—gas interfaces. Theoretical modelling of these pro-
cesses predicts that the energy dissipation is dominated by Marangoni flow in the foam films
between the bubbles for foams with ‘rigid interfaces’ (i.e. those having high surface dilata-
tional elastic modulus), whereas for mobile interfaces (low surface modulus) the dissipation
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Fig. 6.9 Characteristic frequency w_of the fast collective relaxation process versus shear
modulus G, for foams with (e) rigid interfaces (Gillette shaving foam) and with mobile
interfaces (SLES/CAPB) containing Glycerol of (®) 40wt%, (&) 50wt%, and (¥ ) 60wt %.
The gas volume fraction is the same for all of these foams: ® = 93%. We recall that G =« o/R
according to eqn (6.1). The dashed line represents the scaling law, _e< Eh/n  R?, whereas
the continuous lines correspond to the law, ®_e o/(m R +x), with E and x being the
dilatational surface elasticity and viscosity respectively, and h being the film thickness. See
details in [56]. The insert shows the solution viscosity deduced from the fits of the SLES/CAPB
data to the scaling law (b), compared to the viscosity measured independently. The error
bars are comparable to the size of the symbols.

is dominated by marginal flow of liquid withdrawn from or receding into the Plateau borders
[56]. The model predicts also that the foam loss modulus is independent of the bubble size in
the case of rigid surfaces, G”, , =< (1/Eh)'”, where E is the dilatational surface modulus and
h is the foam film thickness. In contrast, the foam loss modulus decreases with R for mobile
surfaces as G"_ . o< (nﬂloﬂ)"z (after neglecting the contribution of interfacial viscosity).
Therefore, to formulate foam with maximal dissipation of mechanical energy upon
oscillatory shear, one should increase the solution viscosity and the interfacial rigidity,
since we generally have Eh << oR for a given bubble size and gas volume fraction. This
prediction may be of practical relevance for foams used as mechanical attenuators.

6.3.4 Shear Modulus of Particle-laden Foams

The experiments with particle-laden foams [88] showed that solid particles, comparable in
size to the foam bubbles, enhance strongly the linear foam elasticity — much more than
homogenization arguments in the framework of continuum mechanics would predict. This
is due to the capillary interactions between the particles captured within the foam
structure [88]. In contrast, the yield stress of the foam does not exhibit such an anomalously
large enhancement. The rheology of foams, stabilized by particles that are much smaller
than the bubble size, has not been investigated systematically so far, but it may be expected
to be similar to that of particle stabilized emulsions [89].
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6.4 Yielding

When foams are subjected to increasing shear stress or strain, they exhibit a transition from
solid-like to fluid-like behaviour, called ‘yielding’ [90]. Figure 6.10(a) shows a typical
stress response to steadily increasing applied shear strain. As described in the previous sec-
tion, the stress first increases, as in an elastic solid. Afterwards, the stress passes through
weak maximum and finally settles at a plateau. In this latter regime, the stress (the height
of the plateau) is an increasing function of the applied shear rate, y. The stress threshold,
beyond which the flow sets in, is called ‘yield stress’ and is denoted by 7. The correspond-
ing strain threshold is the yield strain, denoted by ¥, (see Fig. 6.10(a)). '
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Fig. 6.10 (a) Shear stress, induced by an applied shear strain, ¥y, that increases with time at
constant rate [94]. (b) Shear stress, as a function of the strain rate, for several gas volume fractions.
The data for ® > 0.64 exhibit a plateau at low shear rates, indicating yield stress behaviour.

The continuous lines are fits to the data using the Herschel-Bulkley law, eqn (6.7) [95].

(c) Shear stress versus strain, measured in an oscillatory experiment, at a frequency of 1Hz [93].
The six curves correspond to increasing strain amplitudes of 0.055, 0.15, 0.25, 0.43,0.72 and
1.2, respectively, and are drawn using lines of increasing thickness. The sample is the same as in
(d), where its properties are specified. (d) Oscillatory response, represented as the dependency of
the storage and loss moduli, G”and G, with the oscillation amplitude, v, The angular frequency is
o= 2rad/s. For y, > 0.5, localized flow was observed in this experiment.
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Fig. 6.11 Yield strain (a) and yield stress (b), as a function of the volume fraction, measured
in an oscillatory measurement at a frequency of 1rad/s. The average bubble size is <R> =

55 um, the surface tension is = 17 mN/m. In the shaded region, the water drainage from the
foam could not be avoided, making these data unreliable. The vertical lines in the shaded
region indicate ®_, = 0.64. Data from [81].

Several experimental protocols are used in practice to determine ¥ and 7. The measure<
ment of stress versus strain, at a fixed strain rate (as illustrated in Fig. 6.10(a)) is called a
‘shear start-up’ experiment. Measuring stress versus strain rate is another widely used pro-
tocol (see Fig. 6.10(b)). Here 7 is estimated as the stress at which the flow curve approxi-
mately converges to a plateau, at low shear rates — the value of 7, in this protocol is usually
determined by fitting the experimental data by the Herschel-Bulkley model, eqn (6.7).

Large amplitude oscillatory experiments (LAOS) are a third option, illustrated in
Fig. 6.10(c) by a parametric plot of stress versus strain. For an elastic material, such a
Lissajous plot yields a straight line, whose slope gives the shear modulus G (Section 6.3.1).
Viscoelastic relaxations introduce a phase shift between stress and strain, leading to an
elliptic contour. This is the behaviour observed for foams in the linear viscoelastic regime,
at small strain amplitudes (Section 6.3.3). For progressively increasing strain amplitudes,
the response becomes non-linear, because the stress is bound by the yield stress of the
foam, as seen in Fig. 6.10(c). This feature is analysed quantitatively by calculating the
fundamental Fourier component of the stress oscillation, as a function of the strain
amplitude 7,. By normalizing this stress component by the strain amplitude, one obtains the
complex shear modulus G* = G' +iG". The decrease of G’ with the increase of y is used to
detect the yield strain, ¥, at the intercept between the linear regime and the asymptotic
power law G’ e 3?2 [81, 91, 92] (see Fig. 6.10(d)). The yield stress is deduced as
T =1G*(y)ly.. Since the variations of G* with strain amplitude describe only the fundamental
component of the stress response, they capture only partially the complete stress—strain
relation shown in Fig. 6.10(c). Thus to be conclusive, a test of any non-linear rheological
model requires a measurement of the full Fourier spectrum of the stress [93].

The dependence of the yield strain and yield stress on liquid volume fraction is illus-
trated in Fig. 6.11. Dimensional arguments suggest that the yield stress should scale with
the bubble capillary pressure, o/R, in agreement with the experimental results. Such scaling
can be used also to compare the yielding properties of foams and emulsions, which turn out
to be similar [4, 14, 92]. Technically, experiments with foams are rather difficult at @< 0.8,



Foam Rheology 105

due to the water drainage from the foam, which destabilizes the samples. Experiments with
emulsions, which are less prompt to drainage in this range of volume fractions, showed that
the yield stress and strain both tend to zero as @ approaches @, ~ 0.64 [92]. For < @,
the number of contacts between neighbouring bubbles (or drops) becomes too small to
sustain static mechanical equilibrium, and an arbitrarily small stress induces steady flow.
The dependence of the yield stress on bubble size, surface tension and dispersed volume
fraction in foams and emulsions is described well by the following empirical law [81, 92]:

o 2
=f—(P-D 6.6
r_\' ﬁ{R}'{ CP) { )

where B is a dimensionless coefficient close to 0.50 [12].

As illustrated schematically in Fig. 6.2 for a 2D foam, the foam yielding occurs at the
scale of the individual bubbles when the applied macroscopic stress or strain is large
enough to induce rearrangements in the bubble packing. For real polydisperse 3D foams,
the bubble structure is more complex, but similar irreversible bubble rearrangements
(called ‘T1 events’ for dry foam) lead to yielding and plastic flow of the foam.

So far, we have discussed the transition from solid-like to liquid-like behaviour only as
a function of gas volume fraction and applied stress or strain. However, the experimental
time scale, over which the mechanical response is probed, is another control parameter of
the foam response. This time scale is set by the inverse frequency of an applied oscillatory
strain or by the inverse strain rate for a steady flow. For sufficiently long time scales, so that
the bubble coarsening induces a significant number of bubble rearrangements, foam flows
like a highly viscous liquid even at very low stress, T< T (cf. Section 6.3.3). Even if the
experimental time scale is so short that coarsening is negligible, the time scale can still
affect the yielding behaviour — shear start-up experiments showed that the critical strain
and stress, at which the shear-induced bubble rearrangements are triggered, are increasing
functions of the applied strain rate [21]. This dependence is related to the duration of the
individual rearrangement events, which in turn is affected strongly by the visco-elastic
properties of the gas—liquid interfaces [39, 48].

6.5 Plastic Flow

Plastic strain is defined as the irreversible deformation that occurs when a material is
sheared beyond its yield strain. For a very slow plastic shear flow, one may expect the sam-
ple to relax almost instantaneously towards static equilibrium whenever the applied shear
rate is released suddenly. Such behaviour is called ‘quasi-static’. In practice, even very
slow foam flows are quasi-static only approximately, due to the slow viscoelastic relaxa-
tions discussed in Section 6.3.

As an illustration of the plastic properties of a foam, Fig. 6.12 shows the evolution of
several components of the stress tensor, as a function of the applied shear strain, obtained
in a 3D numerical simulation of dry foam [71]. The stress—strain relationship is similar to
the experimental results shown in Fig. 6.10(a), except for the abrupt small jumps, which are
due to rearrangement events of the individual bubbles. These jumps cannot be resolved in
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Fig. 6.12 (a) Shear stress and normal stress differences versus shear strain, obtained in a
quasi-static simulation using the Surface Evolver software. The sample is 3D disordered
monodisperse dry foam containing 216 bubbles. The dashed curves, drawn at y> 0.4, are
guides to the eye. The quantities t, N, and N, are normalized by o/V'? where V is the
volume of a bubble. (b) Structure of the sheared foam. Data from [64].

the experimental measurements with a macroscopic foam sample, because the latter con-
tains a much larger number of bubbles than those used in the numerical simulation.
Figure 6.12 shows also that the normal stress differences are similar in magnitude to the
shear stress in the steady flow regime. This is in agreement with the theoretical
predictions [82]. Normal stress differences arise in many flowing visco-elastic materials,
and they are of practical importance in extrusion flows, for instance [84). However, in con-
trast to many polymeric liquids, the normal stress differences N, and N, in flowing foams
are of similar magnitude and opposite signs.

As a first step towards a general constitutive law, relating stress and strain in rearrange-
ment-driven plastic flow, the elementary plastic events have been modelled as force dipoles
acting on an elastic continuum [68], in a good agreement with numerical simulations [42].
In another approach, so far limited to 2D foams, the anisotropy of the foam microstructure
is captured by a texture tensor related to the macroscopic stress [45]. The striking similarity
between the rheology of glasses and many complex fluids, including foams, has stimulated
the development of another general model (called the ‘soft glassy rheology’ model), which
captures the non-linear elastic and plastic response of yielding foams [93]. In addition, sev-
eral phenomenological models have been proposed, which extend the elasto-plastic consti-
tutive laws by including relaxation terms describing the visco-elastic foam behaviour [96].

6.6 Viscous Dissipation in Steadily Sheared Foams

The stress in steadily sheared foam depends on the applied shear rate. Experiments have
shown [4, 16, 18, 31, 52] that this behaviour is usually represented well by the Herschel-
Bulkley equation (see Fig. 6.13a):

uy)=t,+r,(n)=1,+ky" (6.7)
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Fig. 6.13 (a) Experimental results for the dependence of shear stress, T, on shear rate, ¥,

for steadily sheared foams and emulsions. The open circles denote foams with low surface
modulus, the filled squares foams with high surface modulus and the open triangles
emulsions with low surface modulus. For the foams, the bubble radius varies between 20
and 300 um, surface tension varies between 22 and 30mN/m, and viscosity of the
continuous phase is varied between 1 and 11mPa.s by adding glycerol in the aqueous phase.
For the emulsions, the drop radius varies between 2 and 40 um, interfacial tension varies
between 2 and 10mN/m, and viscosity of the drop phase varies between 2 and 5mPa.s. For
all systems, the bubble (drop) volume fraction is 0.90 + 0.01. The curves are fits by the
Herschel-Bulkley model, eqn (6.7). (b) Dimensionless viscous stress, T, , v. capillary number,
Ca, for the same systems. Two different types of flow behaviour are evidenced, characterized
by different values of the power-law index, n.

which contains three characteristic parameters: the yield stress T, the power-law index
n and the consistency k. Here, 7,(7) is the rate-dependent part of the total stress, determined
by subtracting 7, from the total stress, 7(y). For foams and concentrated emulsions with
@ > @, the power-law index, n, is typically between 0.2 and 0.5, reflecting the strong
shear-thinning behaviour of these systems [16, 18, 31, 52]. The dimension of the consist-
ency k is Pa.s” and it is, therefore, dependent on the specific value of n. The flow behaviour
of Herschel-Bulkley fluids in different geometries (through pipes, between Couette cylin-
ders, etc.) is described in rheology textbooks [84, 97] and will not be recalled here.

When comparing experimental results for various systems and with theoretical predic-
tions, it is convenient to use appropriate dimensionless quantities. The viscous stress is
scaled by the mean capillary pressure of the bubbles, 7, = 7, R, /0. The shear rate is scaled
by the ratio of the viscous stress and bubble capillary pressure, leading to the so-called
‘capillary number’, Ca = (nyR,,)/c. This number plays the role of a dimensionless shear
rate in this context. Comparing shear flow data for different systems, plotted in terms of the
dimensionless quantities 7, and Ca, eliminates the generic effects of R,,, 0, and 7. Such a
representation highlights the specific influence of the type of dispersion (foam or emul-
sion), surfactant type [14—16] or other specific features, if present.

As an example, we show in Fig. 6.13(b) experimental data 7 (Ca), for a variety of foams
and concentrated emulsions with different values of R,,, o and 1. The requirements met by
all the experimental data compiled on this graph are: (i) the continuous phase of the foam
or the emulsion is Newtonian; (ii) wall slip was suppressed so that the true foam flow curve
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was measured; (ii1) data about the mean bubble or droplet size, interfacial tension and solu-
tion viscosity are available, so that the final results can be presented in dimensionless form;
(iv) the mean radius of the drops and bubbles is larger than about 2 um to avoid possible
effects of surface forces acting in the foam and emulsion films (see [52] for numerical
estimates about the effect of surface forces). Remarkably, all these data collapse onto two
master curves, when plotted in this dimensionless representation. Thus we can distinguish
two qualitatively different cases:

1. Systems in which the power-law index is n = 0.45 £ 0.03 [16, 18, 31, 33, 51, 52, 54, 98].
2. Systems where n is close to 0.25 £ 0.05 [16, 18, 51, 52, 54, 99].

For similar characteristics @, 1, o and R, type 2 systems exhibit much higher viscous fric-
tion compared to those of type 1 [14, 16, 52]. Moreover, local velocity measurements using
MRI techniques showed that the foams of both types exhibit flow that is described well by
the Herschel-Bulkley law (eqn 6.7), without observable indications of shear banding [35]
for gas volume fractions in the range 0.88-0.95. Similar findings were reported for
emulsions [33].

Experiments comparing the interfacial properties of the foaming solutions [16, 52]
showed that the principal difference between systems of type 1 and 2 is the magnitude of
their surface dilatational modulus, E. This parameter characterizes the amplitude of sur-
face tension variation, induced by a sinusoidal perturbation of the solution surface area.
For all systems of the first type (with n = 1/2) the surface modulus, measured at frequen-
cies of the order of 0.1 Hz, is low, E < 10mN/m [16, 52]. In contrast, the surface modulus
is much higher for the systems of the second type, E > 100mN/m [16, 18, 52]. These
results show that the predominant mechanisms of viscous dissipation in foams, stabilized
by surfactants with low surface modulus (LSM) and by surfactants with high surface mod-
ulus (HSM), are different. Therefore, to compare and discuss experimental data obtained
with different foaming solutions, the solution surface properties (including its surface
modulus) must be characterized and taken into account. It is worth noting that some com-
mercial foams used widely in rheological studies (e.g. Gillette shaving foam) are formu-
lated to have HSM, whereas other foaming systems (e.g. dishwashing liquids) usually
have LSM.

Theoretical modelling showed that the experimental data could be described by consid-
ering two principal mechanisms of viscous dissipation of energy in sheared foams: (i) in
the foam films, formed between two neighbouring bubbles, and (ii) in the surfactant adsorp-
tion layers on the bubble surfaces [51, 52]. These two mechanisms are considered consecu-
tively below.

6.6.1 Predominant Viscous Friction in the Foam Films

Let us consider first the viscous dissipation of energy in the foam films, which is due to the
relative motion of the bubbles with respect to each other, and which is the prevailing
mechanism of energy dissipation for foams stabilized by LSM surfactants. The relative
bubble motion creates local velocity gradients in the fluid confined in the foam films:
see Fig. 6.14. The theoretical modelling showed [52] that the liquid motion inside the
sheared foam films could be decomposed into two coexisting ‘elementary’ processes:
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Fig. 6.14 (a) Schematic presentation of the processes of formation, thinning, and
disappearance of a foam film between two bubbles in sheared foam [51, 52]. Note that the
process of formation and expansion, and the subsequent shrinking and disappearance of the
foam film, is accompanied by a change in the total surface area of the colliding bubbles.

(b) Schematic presentation of the process of sliding: opposite film surfaces move at different
velocities, driven by the relative motion of neighbouring bubbles in flowing foam. The film
thickness h determines the local shear rate of the liquid in the film. (c) Schematic
presentation of film thinning. This process is driven by the excess of pressure in the bubbles,
P, as compared to the pressure in the liquid outside the film, P. The viscous dissipation is
predominantly due to the sliding motion.

(i) sliding motion of the opposite film surfaces, driven by the relative motion of the neighbouring
bubbles in sheared foam (Fig. 6.14(b)); (ii) thinning of the foam film, which is due to the
higher dynamic pressure inside the film (imposed by the capillary pressure of the bubbles, P ),
as compared to the pressure in the surrounding Plateau channels; see Fig. 6.14(c).

The numerical estimates showed that the main dissipation of energy in the foam films is
due to the sliding motion of the bubbles, i.e. to process (i) [52]. However, the film thinning
process (ii) should be also considered explicitly, because it determines the instantaneous
film thickness and the resulting velocity gradient inside the foam film. Using a standard
hydrodynamic approach and reasonable assumptions, the rate of energy dissipation inside
the foam films was calculated and used to derive an approximate formula for the viscous
stress in sheared foams [51, 52],

£, =1.16Ca""@" (@ -0.74)"' 1 (1- D)™ (6.8)
7, = T, R/0 is the dimensionless shear stress, related to the friction in the foam films
(the subscript VF denotes viscous friction inside the films). This model predicts n = 0.47,
which is in a very good agreement with the experimental results for LSM systems. Despite
the fact that the theoretical model assumes ordered and monodisperse foam structure, it
was verified experimentally that eqn (6.8) is applicable to both disordered monodisperse
and polydisperse foams and emulsions, if the assumptions used to derive eqn (6.8) are
satisfied (e.g. the surface forces between the foam film surfaces are negligible [52]). These
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experimental tests were carried out in the range of volume fractions 0.8 < @ < 0.98. In
addition, for eqn (6.8) to be valid, the shear rate must be sufficiently high, as discussed
below.

In recent studies of 2D foams (sheared monolayers of bubbles), a conceptually different
explanation of the power-law index n = 1/2 was proposed [46, 47, 61]. This explanation is
based on the results from the numerical simulations of the viscous friction in disordered 2D
foams using the ‘bubble model’ [63, 64]. This model assumes that the friction force
between neighbouring bubbles depends linearly on their relative velocity, and that the fric-
tion coefficient is independent of the shear rate [62] (in contrast to the model leading to
eqn (6.8)). For the macroscopic stress induced by steady shear of the foam, a power-law
index n=0.54 was obtained from the numerical simulations, made under these assump-
tions. Thus, friction forces depending linearly on the relative velocity of neighbouring bub-
bles can give rise to macroscopic non-Newtonian viscous behaviour, The simulations
showed also that the bubble trajectories are highly irregular in the investigated range of low
shear rates. The link between local and macroscopic viscous dissipation in 2D foams was
also investigated experimentally, using bubble rafts floating on a liquid surface [46, 100].
The local viscous interaction between neighbouring bubbles was in this case found to be a
non-linear function of the relative bubble velocity, with a power-law index that was again
different from the one deduced from the macroscopic foam flow data. Both the experimen-
tal and the simulation work led to the suggestion that the disorder of the foam structure may
have a strong impact on foam rheology, and that the highly irregular bubble motion
observed in flowing 2D foams can be the origin of the observed difference between the
macroscopic and the local friction laws.

These findings raise the question whether irregular bubble motion in disordered 3D
foams may also have a strong impact on the non-linear macroscopic viscous dissipation,
or whether the mechanism leading to eqn (6.8), which does not take into account the bub-
ble disorder, is dominant. As evidenced by the experimental results and theoretical analy-
sis, the answer may depend on the foam shear rate: light scattering experiments with
sheared 3D Gillette foam showed that the bubble dynamics was intermittent at rates below
0.5s7", suggesting irregular motion reminiscent of the one discussed above for 2D foams.
In contrast, the flow was found to be approximately laminar at higher shear rates [37], in
qualitative agreement with the observations of bubble trajectories at the surface of rapidly
sheared foams, as reported in [14]. As discussed in ref. [14] (see eqn (6.14) and the related
discussion therein) this transitional shear rate might be explained by comparing the char-
acteristic time for film thinning with the contact time of the bubbles (the latter is approxi-
mately equal to the inverse shear rate of the foam) — in slowly sheared foams, the foam
films have enough time to thin down to their equilibrium thickness, hy,- In contrast, the
bubbles are in contact very shortly in rapidly sheared foams, so that the transient foam
films formed between colliding bubbles have no time to thin down to &, In this regime,
the theoretical model predicts [52] that the thickness of the transient foam film scales with
Ca'?, i.e. it significantly increases with the shear rate. Depending on the system parame-
ters, the threshold shear rate, separating these two different regimes of foam flow, is
expected to be of the order of 0.01 to 157" [14]. These results suggest that the assumptions
used to derive eqn (6.8) are best verified at high shear rates. Indeed, most of the published
flow curves for 3D foams were measured at high shear rates, whereas 2D foams have been
studied mostly at low shear rates. Data where the viscous contribution to the shear stress
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in 3D or 2D foam is resolved well enough to establish accurately the power law exponents
in both regimes would clearly be of interest. We recall that in the limit of very low shear
rates, coarsening-induced creep flow becomes the dominant flow mechanism (see
Section 6.3.3). In this regime, the flow index is equal to 1 and the foam flows like a very
viscous Newtonian fluid.

6.6.2 Predominant Viscous Friction in the Surfactant Adsorption Layer

The viscous stress, measured under the same conditions for foams stabilized by HSM
surfactants, is much higher than in foams stabilized by LSM surfactants. This result shows
that an additional contribution into the viscous stress must exist for these systems.
Theoretical arguments show that the bubble collisions in sheared foams lead to oscillations
of the bubble surface areas around their mean value, A . This variation of the bubble surface
area leads to viscous dissipation of energy in the surfactant adsorption layer, due to the
surface dilatational viscosity. The following expression was derived theoretically for this
contribution (denoted as 7,) to the total viscous stress [52]:

%, =1,,R, /0 =98P(E,, | 0)Pa, (6.9)

E , is the surface dilatational loss modulus of the adsorption layer (viscous surface modu-
lus) and a, is the relative amplitude of the bubble area oscillations. In general, the viscous
stress in sheared foams includes contributions from the energy dissipation in both the foam
films and adsorption layers: 7, = 7, + 7,,. However, the second contribution is important
for HSM systems only [52].

Two series of experimental results, obtained with different types of foam samples,
deserve additional discussion.

Soller and Koehler [32] studied the rheological properties of draining foams, maintained
in a stationary state by continuous perfusion of surfactant solution at the top of the foam.
The measured flow curves were incompatible with the Herschel-Bulkley model, in con-
trast to other results obtained under conditions where drainage is insignificant. The most
probable reason for this difference is that the film thickness is modified in the presence of
liquid drainage in the foam, as previously reported [101]. Since the friction between neigh-
bouring bubbles depends on film thickness, liquid drainage is indeed expected to affect the
bubble—bubble friction and the resulting foam viscous stress. The results obtained in [32],
concerning the specific rheological properties of draining foams, could be of specific inter-
est in several practical applications.

Pilon and co-workers studied foam rheology at lower volume fractions experimentally
(@ varied between 0.54 and 0.70) [102, 103]. The foam viscous stress was determined by
pipe-flow rheometry and the power-law index n was found to be in the range between 0.60
and 0.66 for all foams studied. The authors interpreted these data as a dependence
7, o< Ca? (i.e. n = 2/3), which was assumed to be a result of predominant friction in curved
meniscus regions [103]. Firmly established theoretical models for foam viscosity at low
volume fractions are not yet available. Moreover, the authors’ claim that there was no wall
slip in their experiments deserves more convincing verification. An interesting observa-
tion in this study was that the viscous friction depended strongly on bubble polydispersity,



112 Foam Engineering

most probably, because @ was around the value of @,. In contrast, the experimental
results obtained by other authors at & > (.80 did not indicate a strong dependence of the
viscous stress on bubble or drop polydispersity [16, 31, 52].

6.7 Foam-Wall Viscous Friction

If foam is in contact with a smooth solid wall, the application of external stress often leads
to sliding of the boundary bubbles along the wall surface, thus violating the common ‘non-
slip’ boundary condition for fluid flow at solid surfaces, see Fig. 6.15 [4, 7-9, 15-18]. This
‘foam-wall slip® phenomenon may affect strongly the rheological measurements because,
in its presence, the actual shear rate inside the foam cannot be deduced directly from the
motion of the walls bounding the sample.

Foam-wall slip is conveniently studied by placing the foam in contact with a smooth
solid surface in the rheometer (e.g. with the wall of a Couette cylinder, plate, or cone) and
applying an external stress that is lower than the yield stress of the foam [15-18]. Under
these conditions, foam-wall slip with controlled slip velocity is obtained, and the measured
shear stress is entirely due to the viscous friction of the boundary layer of bubbles with the
wall surface. A similar type of viscous friction is observed when bubbles or drops travel
along a narrow capillary tube (so-called ‘Bretherton problem’). The latter configuration is
relevant to several important applications, such as enhanced oil recovery by surfactant
solutions and microfluidics [5, 7,9, 19, 106-110].

The measured foam-wall stress, 7, is conveniently scaled by the bubble capillary
pressure, T, = 7, R,,/0, while the relative foam-wall velocity, V,, is represented in dimen-
sionless form by the wall capillary number, Ca* = nV,/o. The experimental results for
7, v. Ca* are well represented by a power law, 7, =k (Ca*)"; see Fig. 6.16. These exper-
imental results also provide evidence that the foam-wall yield stress is usually negligible in

<
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Fig. 6.15 If the boundary bubbles slide with respect to the confining solid wall (relative
velocity V), viscous friction appears in the wetting films, formed between the boundary
bubbles and the wall surface. If the applied stress is lower than the foam yield stress, T <1,
the foam is deformed elastically, without bubble rearrangements occurring. In contrast, when
©> 1, the foam also flows and the actual shear rate inside the foam depends on the wall-slip
velocity, V.
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Fig. 6.16 Dimensionless foam-wall friction stress, T /(0/R,,), versus capillary number,

Ca* =V, /0. The foams were prepared from different surfactant solutions whose viscosity
was varied between 1 and 11 mPa.s by adding glycerol. In the various foams studied, the
mean bubble radius varies between 100 and 300 um, and the surface tension varies between
22 and 30mN/m. The lines are drawn as guides to the eye with slopes corresponding to the
indicated flow index, m. The air volume fraction is ® = 0.90 + 0.01.
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Fig. 6.17 Schematic presentation of the zone of bubble-wall contact with the profile of the fluid
velocity [17]. (a) In the case of tangentially mobile bubble surface, there is no velocity gradient in
the wetting film, so that the bubble—wall friction originates in the meniscus zones around the film
only. (b) In the case of tangentially immobile bubble surface, the friction occurs in both zones — of
the film and in the surrounding meniscus regions. The theoretical models show that the friction in
meniscus regions scales as (Ca*)** for both mobile and immobile bubble surfaces, whereas the
friction in the film region scales as (Ca*)'? (for immobile surface) [16, 17, 104, 105, 109].

comparison with the foam-wall viscous stress. As illustrated in Fig. 6.16, the experimental
results obtained with many different foam systems merge around two master lines, depend-
ing on the surface modulus of the foaming solutions: (i) systems with LSM give power-law
index m = 2/3; (ii) systems with HSM give m = 1/2 [16-18, 54].

Several detailed theoretical models of the viscous friction between bubbles and smooth
solid wall have been proposed [5, 16, 17, 104-109]. All of them are based on calculations
of the fluid velocity profile in the wetting films, formed in the bubble—wall contact zone;
see Fig. 6.17. In these calculations, a ‘non-slip’ boundary condition is used for the liquid
flow at the surface of the solid wall, whereas different boundary conditions are considered
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for the gas-liquid interface. For bubbles with tangentially mobile surfaces (those with
LSM) one can assume a stress-free boundary condition, which results in a plug flow of the
liquid inside the wetting films (i.e. flow without velocity gradient; see Fig. 6.17(a)). In
contrast, solutions with HSM give bubbles with tangentially immobile surfaces; the usual
non-slip boundary condition for the liquid flow can be applied and a velocity profile with
a gradient is established in the wetting films (Fig. 6.17(b)). Once this velocity profile has
been calculated, one can determine the resulting viscous stresses acting on the wall surface,
7,,[16, 17]. In most theoretical models, the numerical calculations are made for idealized,
infinitely long cylindrical bubbles (2D bubbles) [S, 16, 17, 104-106]. In [16, 17] it is shown
how the results for such model 2D bubbles could be extended to estimate t,, for real 3D
bubbles in foam slipping on a solid wall.

The theoretical models predict 7, < (Ca*)** for the systems, in which the bubble—wall
friction is dominated by the viscous stress in the curved menisci regions surrounding the
wetting film [104, 105,109]. In contrast, ,, < (Ca*)'? is predicted for bubbles in which the
bubble-wall friction is dominated by the viscous stress inside the wetting film, which is
possible only if the bubble surface is tangentially immobile [16, 17]. These predictions are
in good agreement with the experimental results [14-16]: the solutions with high surface
modulus yield bubbles with tangentially immobile surface and m = 1/2, whereas solutions
with low surface modulus lead to bubbles with tangentially mobile surface and
m = 2/3 is measured; see Fig. 6.16.

It is worth mentioning that the surfactants that give mobile bubble surfaces in the foam-
wall experiments were shown to behave as with immobile bubble surfaces in the inside-
foam friction experiments [53, 110, 111]. Most probably, the reason for this non-trivial
result is the qualitatively different dynamics of the bubbles and of the respective thin films
in the two types of experiments. In the foam-wall friction experiments, the bubbles have
stationary shape and the films have constant radius and thickness at given velocity of the
wall. In contrast, the foam films between colliding bubbles in sheared foams have a limited
lifetime, and continuously change their thickness and radius during this lifetime;
see Fig. 4 in ref. [52]. Therefore, the viscous stresses exerted on the film surfaces, and the
mass-transfer of surfactant towards/from the bubble surface, are qualitatively different in
both types of experiments — steady state configuration is realized in the foam—wall friction
experiments, whereas oscillations of the film and bubble surface areas are realized in
sheared foams, with a frequency = y. Further model experiments with single bubbles or
more detailed theoretical models, accounting for the dynamics of surfactant adsorption,
could be very useful in clarifying this issue.

6.8 Conclusions

In recent years, significant progress towards a physical understanding of the multi-scale
processes that govern the mechanical properties of liquid foams has been made. It has
been demonstrated that foam rheology is controlled by a coupling between elastic and
viscous effects: surface tension forces give rise to an elastic mechanical response, depend-
ing on bubble deformations, whereas viscous friction inside the films and Plateau chan-
nels, and/or in the surfactant adsorption layers, leads to viscous dissipation of energy.
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Depending on the choice of surfactants, shear rate and foam ageing (bubble coarsening),
one among several possible mechanisms of dissipation may prevail. To rationalize this
complexity, it is necessary to identify experimentally the dominant physico-chemical
processes at the scale of the bubbles and foam films, and to define adequate theoretical
models.

The dependencies of foam viscosity, elasticity and yield stress on the bubble size, surface
tension, solution viscosity and coarsening rate have been established experimentally and
explained theoretically. The respective scaling laws have been used to describe conveniently
a large variety of experimental data in terms of appropriate dimensionless quantities. This
approach has provided much insight about the strong effects of the visco-elastic surface
modulus of the foaming solution on several phenomena related to foam rheology —
foam—wall friction, bulk viscous stress in flowing foam, and energy dissipation during fast
visco-elastic relaxations. In addition, the influence of foam ageing (via bubble coarsening)
on foam rheology has been clarified.

Many interesting questions in the field of foam rheology are still open and call for further
investigation. What local mechanisms and macroscopic laws govern the flow of very wet
or very dry foams? How can physico-chemical tools be used to control most efficiently the
foam rheological properties? How deep is the analogy between foam, emulsion, paste and
suspension rheology? A current direction of active research is the foam rheology in very
short time scales. Sound propagation in foams [112], the mechanical impact of solid objects
on foams [113] and blast mitigation by foams [114] all fall into this category. Another
active field of research is the coupling between foam structure and flow. Examples are
bubble break-up induced by shear flow [53], and the coupling between osmotic pressure
and shear flow [2], called also ‘dilatancy’. This non-exhaustive list of open questions
clearly demonstrates how attractive this area currently is for fundamental research studies,
with important practical implications.

Abbreviations

2D, 3D two dimensional and three dimensional, respectively
CAPB  cocoamidopropyl betaine (amphoteric surfactant)

DWS  diffusing wave spectroscopy

HSM high surface modulus

LAOS large amplitude oscillation

LSM low surface modulus

MRI magnetic resonance imaging

SLES  sodium lauryl-trioxyethylene sulfate (anionic surfactant)
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