
Journal of Colloid and Interface Science 368 (2012) 342–355
Contents lists available at SciVerse ScienceDirect

Journal of Colloid and Interface Science

www.elsevier .com/locate / jc is
Role of surfactants on the approaching velocity of two small emulsion drops

Krassimir D. Danov a, Simeon D. Stoyanov b,c,⇑, Nikolay K. Vitanov d, Ivan B. Ivanov e

a Department of Chemical Engineering, Faculty of Chemistry, Sofia University, Sofia 1164, Bulgaria
b Unilever Research & Development, 3133 AT Vlaardingen, The Netherlands
c Laboratory of Physical Chemistry and Colloid Science, Wageningen University, 6703 HB Wageningen, The Netherlands
d Laboratory of Physicochemical Hydrodynamics, Institute of Mechanics, Bulgarian Academy of Science, Sofia 1113, Bulgaria
e Laboratory of Chemical Physics and Engineering, Faculty of Chemistry, Sofia University, Sofia 1164, Bulgaria

a r t i c l e i n f o
Article history:
Received 12 August 2011
Accepted 12 November 2011
Available online 25 November 2011

Keywords:
Hydrodynamic resistance between two
approaching drops
Tangentially mobile surfaces
Soluble and insoluble surfactants
Interfacial rheology effect
Flocculation rate of emulsion droplets
Small Reynolds and Peclet numbers
0021-9797/$ - see front matter Crown Copyright � 2
doi:10.1016/j.jcis.2011.11.031

⇑ Corresponding author at: Unilever Research & De
ingen, The Netherlands. Fax: +31 10 460 6384.

E-mail address: simeon.stoyanov@unilever.com (S
a b s t r a c t

Here we present the exact solution of two approaching spherical droplets problem, at small Reynolds and
Peclet numbers, taking into account surface shear and dilatational viscosities, Gibbs elasticity, surface and
bulk diffusivities due to the presence of surfactant in both disperse and continuous phases. For large
interparticle distances, the drag force coefficient, f, increases only about 50% from fully mobile to tangen-
tially immobile interfaces, while at small distances, f can differ several orders of magnitude. There is sig-
nificant influence of the degree of surface coverage, h, on hydrodynamic resistance b for insoluble
surfactant monolayers. When the surfactant is soluble only in the continuous phase the bulk diffusion
suppresses the Marangoni effect only for very low values of h, while in reverse situation, the bulk diffu-
sion from the drop phase is more efficient and the hydrodynamic resistance is lower. Surfactants with
low value of the critical micelle concentration (CMC) make the interfaces tangentially immobile, while
large CMC surfactants cannot suppress interfacial mobility, which lowers the hydrodynamic resistance
between drops. For micron-sized droplets the interfacial viscosities practically block the surface mobility
and they approach each other as solid spheres with high values of the drag coefficient.

Crown Copyright � 2011 Published by Elsevier Inc. All rights reserved.
1. Introduction

The stability of emulsions (foams) under dynamic conditions
depends on the hydrodynamic resistance between drops (bubbles),
b, on the non-hydrodynamic interactions energy, Ui,j, between their
interfaces, and interparticle distance, h [1–5]. In the general
Smoluchowski scheme for flocculation, the flocculation rates, ai,j,
between two spherical colloid particles with radii Ri and Rj can
be calculated from the expression [1,3,6–9]:

ai;j ¼ 8pkBT
Z 1

hcr

bðhÞ
ðhþ Ri þ RjÞ2

exp
Ui;j

kBT

� �
dh

" #�1

; ð1:1Þ

where kB is the Boltzmann constant and T is the temperature. For
given force F(h) acting on the colloidal particles and approaching
velocity V(h), the hydrodynamic resistance is defined as follows:

bðhÞ � FðhÞ
VðhÞ : ð1:2Þ

The integral in Eq. (1.1) is taken over the interparticle separation,
h, starting from the critical thickness, hcr. For unstable films hcr rep-
resents the distance at which the film between drops (bubbles)
011 Published by Elsevier Inc. All r
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breaks. Droplets flocculate, when the film formed upon their colli-
sion is stable, with hcr, being equilibrium film thickness distance.
The integral in Eq. (1.1) is proportional to the so-called Fuchs factor
[1,10] and its reciprocal value defines the collision efficiency
[3,11,12]. For larger values of the Fuchs factor (smaller values of
the collision efficiency) the flocculation rates are smaller and the
emulsions (foams) are more stable under dynamic conditions.

Except of the energy of non-hydrodynamic interactions, ai,j

depends considerably on the hydrodynamic resistance. For large
interparticle distances b is a constant, while for small h, the hydro-
dynamic friction in the gap between particles increases orders of
magnitude, which makes the precise hydrodynamic calculations
of b of a fundamental importance. Stimson and Jeffery [13] solved
the axisymmetric problem of two solid spheres translating at an
equal velocity along their line of centers. Cooley and O’Neill [14]
recalculated their results for the more general case when the two
spheres are not of equal size. For small gap widths G.I. Taylor
showed that b / 1/h, whose result is widely used in the literature
[1] (in fact the Taylor solution does not appear in any G.I. Taylor’s
publications but in the article by Hardy and Bircumshaw [15] it
was published [16]).

The exact solution of the problem for the motion of two liquid
droplets along their line of centers in a quiescent fluid is reported
in bispherical coordinates in Refs. [17–19]. Davis et al. [20,21]
found asymptotic and numerical results for the hydrodynamic
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Fig. 1. Sketch of two spherical drops with equal radii, a, which stay at a closest
distance between them, h. The drops move toward each other with given
approaching velocity V. The z-axis of Cartesian coordinate system Oxyz coincides
with the axis of revolution and the plane z = 0 represents the plane of symmetry of
the system.
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lubrication resistance force correspondent to different drops vis-
cosities and gap widths. For small interparticle distances the
hydrodynamic resistance has different asymptotic depending on
the viscosity of disperse phase [20–26]: in the case of bubbles
b / ln(h); in the case of droplets b / h�1/2. For large distances the
values of b correspond to the Hadamard–Rybczynski drag force.
Thus, the ratio between the drop and continuous phase viscosities,
that is the mobility of interface, is of a major importance for the
magnitude of the hydrodynamic friction force, especially at small
gap widths between the colloidal particles.

The surface active species (ionic and nonionic surfactants, pro-
teins, polymers, etc.) are used to stabilize all real emulsions and
foams. The surfactants adsorb on the interfaces, decrease the inter-
facial tension, and affect the dynamic behavior of colloidal systems
as follows. First, the surfactant adsorption modifies the non-
hydrodynamic interactions between surfaces at small gap widths.
This effect is accounted for including the different components of
the disjoining pressure (van der Waals attraction, electrostatic
and steric repulsion, hydrophobic and structural interactions,
etc.) into the interaction force between colloidal particles, see Eq.
(1.1) and Refs. [27,28]. Second, the surfactants increase the hydro-
dynamic resistance and modify the interfacial rheology of drops
and bubbles [3–5,29–31]. Non-uniform adsorption creates non-
uniform interfacial tension forces and Marangoni stresses in the
fluid. The bulk and surface diffusions tend to restore the uniform
surfactant distribution and suppress the Marangoni effect. The
interfacial shear and dilatational viscosities play important role
for lowering the interfacial mobility – this is the major effect for
micron-sized colloidal particles, which leads to tangentially immo-
bile interfaces for all interparticle distances.

Most studies of the hydrodynamic problem for approaching of
drops and bubbles for small and arbitrary values of the Peclet num-
ber consider the effect of insoluble surfactants [32–35]. The role of
bulk diffusion in the case of soluble surfactants is described in the
recent works, see Refs. [36,37]. In all publications [32–37]: (i) the
interfacial viscosities do not taken into account; (ii) the numerical
calculations are very complex; (iii) they account also for the defor-
mation of colloidal particles, describe the general phenomena, but
are so time consumable that the incorporation of these computa-
tions in Eq. (1.1) for the prediction of the dependence of floccula-
tion rates on the physicochemical parameters is rather difficult.
The mutual approach and stability of two bubbles in lubrication
approximation is studied in Refs. [38,39]. The material properties
of the interfaces (surface viscosities, Gibbs elasticity, surface and
bulk diffusivity) are taken into account and some asymptotic for-
mulae are reported [38,39]. Nevertheless, the precise calculations
of the Fuchs factor, see Eq. (1.1), need the knowledge of the hydro-
dynamic resistance for all interparticle distances and the use only
of the asymptotic expressions may lead to wrong conclusions.

If the applied force between the colloid particles is large en-
ough, then the drops (bubbles) deform and an almost plane-paral-
lel film between them is formed. In this case the role of surfactants
on the hydrodynamic friction force can be studied only numeri-
cally because of the complex geometry of colloid particles. In the
asymptotic case of lubrication approximation the problem is con-
sidered in Refs. [40–45]. The authors have shown that the solubil-
ity of surfactants in the continuous phase plays important role for
suppressing the Marangoni effect and the film drainage is acceler-
ated with respect to the case when the surfactants are soluble only
in the continuous phase.

Here, our goal is to directly calculate the hydrodynamic resis-
tance of two approaching spherical drops (bubbles) for small Rey-
nolds numbers in the presence of surfactants soluble in disperse
and/or continuous phase. The deformability of the colloidal particles
is not taken into account because of the numerical difficulties of the
respective problem. The role of interfacial rheology, Marangoni
effect, bulk and surface diffusivities is accounted for in the model
equations (Section 2). For small deviation of adsorption from its
equilibrium value the exact solution of the problem in bipolar coor-
dinates is described (Sections 3 and 4). Some useful asymptotic solu-
tions are reported and the numerical results for different systems are
discussed in Section 5.

2. Physical system and basic equations

We consider two identical drops (bubbles) approaching each
other with a given velocity, V (Fig. 1). The physicochemical param-
eters of the fluid phase inside the drops (the disperse phase) will be
denoted with the subscript ‘‘d’’, while the respective parameters of
the continuous fluid phase – with the subscript ‘‘f’’. For example,
the mass densities are denoted as qd and qf, the dynamic viscosi-
ties – as gd and gf, the vectors of the fluid velocity are vd and vf,
and the pressures in the respective phases are pd and pf. We are
interested in the hydrodynamic interactions between small bub-
bles and drops when the distances between them and the relative
fluid velocity are small. In these cases the Reynolds numbers are so
small that the flow can be considered as a viscous, incompressible
creeping motion, which obeys the Stokes equations [2,29]:

r � vk ¼ 0; rpk ¼ gkr2vk ðk ¼ f ;dÞ; ð2:1Þ

where r is the gradient operator and r2 is the Laplace operator.
Generally, both phases can contain dissolved surface-active

components (ionic and nonionic surfactants, protein isolates, etc.)
used for stabilization of emulsions and foams. We will assume that
the bulk solutions in the respective phases contain one type of sur-
face-active component with concentrations cd and cf, which are be-
low the critical micelle concentrations (CMC). The bulk diffusion
equations read [29,46]

@ck

@t
þr � ðckvkÞ ¼ Dkr2ck ðk ¼ f ;dÞ; ð2:2Þ

where t is time and Df and Dd are the bulk diffusion coefficients in
the continuous and disperse phases, respectively.

To account for the influence of surfactants, we consider the
Boussinesq–Scriven constitutive law for the interfaces [47,48].
Then the Newtonian surface-excess stress tensor, S, can be defined
in the following form [29]

S ¼ rIs þ ðgdil � gshÞðIs : DsÞIs þ 2gshDs; ð2:3Þ

where Is is the unit surface idemfactor, Ds is the rate of relative dis-
placement of surface points, r is the interfacial tension, gdil and gsh

are the surface dilatational and shear viscosities at a given point of
the interface, respectively. It is important to note that Eq. (2.3) in-
cludes the surface dilatational and shear viscosities. In rheological
experiments with oscillations of drops or bubbles the elastic and
loss modules are measured [49]. The value of the loss modulus,
E00, multiplied by the frequency, x, is usually called ‘‘the surface vis-
cosity’’, which has different meaning than gdil and gsh [31]. The true
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surface shear and dilatational viscosities, gdil and gsh, are measured
using different experimental techniques [29] and have the same
dimensions as the apparent viscosity, xE00, but considerably
different values [50–52].

The tensor Ds constitutes the symmetric portion of the dyadic of
the surface-velocity vector vs [29], i.e.

2Ds � ðrsvsÞ � Is þ Is � ðrsvsÞtr; ð2:4Þ

where rs is the surface gradient operator and the superscript ‘‘tr’’
means transposition. Eqs. (2.3) and (2.4) are the two dimensional
analogs to the comparable expressions for the bulk phase pressure
tensor Pk and the three-dimensional rate of deformation tensor Dk,
respectively, and

Pk ¼ �pkIþ 2gkDk ðk ¼ f ;dÞ; ð2:5Þ

2Dk � ðrvkÞ � Iþ I � ðrvkÞtr ðk ¼ f ;dÞ: ð2:6Þ

Because in all practical circumstances the surface-excess mass
density is small compared to the bulk-phase mass density the
equation for the interfacial momentum transport is simplified to
the surface stress boundary condition. In our case we have [29,48]

rs � S ¼ ns � ðPd � Pf Þ; ð2:7Þ

written at the mathematical surface between phases with outer
unit normal vector ns.

For concentrations above the critical micelle concentrations the
relaxation time of surfactants is very low (in the order of microsec-
onds [53,54]) and the change of adsorption can be neglected. In
this case the Marangoni effect, which is described by the rsr in
the left-hand side of Eq. (2.7), is negligible compared to the
Boussinesq–Scriven effect, accounting for the surface viscosity
(see Section 5.2).

To close the boundary problem, Eqs. (2.1)–(2.7), the mass bal-
ance equation for the adsorption C at the interface is included in
the considerations [29]:

@C
@t
þrs � ðvsC� DsrsCÞ ¼ ns � ðDfrcf � DdrcdÞ: ð2:8Þ

Eq. (2.8) says that the change of adsorption is balanced by the
bulk diffusion fluxes from the contiguous bulk phases, the surface
convection flux, and the surface diffusion flux with surface diffu-
sivity Ds.

The adsorption processes can be classified as diffusion con-
trolled and barrier controlled. As a rule the barrier control of the
adsorption is operative at the initial stages, when the whole pro-
cess cannot be considered as a steady state thinning of the film be-
tween droplets (these are the cases of intensive emulsification and
foaming in turbulent regimes) [55]. In the case of slow laminar
flows the diffusion control is dominant and the adsorption mecha-
nism is diffusion controlled. During the whole film drainage in this
regime, the adsorption and interfacial tension are related to the
subsurface concentrations with the respective isotherm and two-
dimensional equation of state [3,29]. Moreover, for small values
of the Peclet number (small drainage velocities and radii) the devi-
ations of the concentrations and adsorption, cf, cd, and C, from their
respective values at rest (when V = 0), cf,0, cd,0, and C0, are small.
These deviations are denoted as

C � C0 þ C1; ck � ck;0 þ ck;1 ðk ¼ f ;dÞ: ð2:9Þ

The assumption (2.9) makes possible: (i) to reduce the bulk dif-
fusion equations to the Laplace equation for the concentrations

r2ck;1 ¼ 0 ðk ¼ f ;dÞ; ð2:10Þ

(ii) to simplify the condition for the mass balance of surfactants
at the interface, Eq. (2.8), to its linear form
rs � ðvsC0 � DsrsC1Þ ¼ ns � ðDfrcf ;1 � Ddrcd;1Þ; ð2:11Þ

(iii) to express the subsurface concentrations, ck,s, as linear func-
tions of the deviation of adsorption at the interface

ck;s ¼ ck;0 þ
@ck

@C

� �
0
C1 ðk ¼ f ;dÞ; ð2:12Þ

(iv) to transform the two-dimensional equation of state,
r = r(C), in its linear form

r ¼ rðC0Þ � EG
C1

C0
; ð2:13Þ

where EG is the Gibbs elasticity of the interface corresponding to the
adsorption at rest, which is defined as [3,29]

EG � �
@r
@ ln C

� �
0
: ð2:14Þ

The derivatives appearing in the right-hand side of Eq. (2.12)
represent the reciprocal values of the respective adsorption
lengths. Note that (ock/oC)0 and EG can vary several orders of mag-
nitude depending on the concrete physicochemical parameters
(see Section 5.1).

The two critical limitations of the linearized problem are that
the Peclet number, Pe, has to be small, and that the droplets should
not deform as they approach each other. At large interparticle dis-
tances, Pe is defined as Va/Dk. If the buoyancy force is essential,
then Pe is proportional to the density difference and a3. In the case
of gas-in-water dispersions, the assumption of low Peclet number
is fulfilled for micron-sized bubbles. For emulsions, the density dif-
ference is small, so that Pe can be small even for larger drops. Note,
that for small interparticle distances, the Peclet number is rescaled
with sinhe (see Section 3), that is the Peclet number decreases and
the applicability of the linear model becomes wider. The capillary
number, r/(gkV), characterizes the droplet deformability. For large
capillary numbers, the droplets preserve their spherical form. In
the case of buoyancy force, the velocity, V, is proportional to a2

and then bubbles larger than 5 mm deform. Moreover, the capillary
number becomes /r/(gka2). The interfacial tension of emulsion
drops is considerably lower than that of bubbles, but the typical
dimensions of the drops are much smaller than of the bubbles,
so that in a final reckoning, the capillary number in emulsions is
larger than that in foams.

3. Exact solution of the Stokes equations in bipolar coordinates

3.1. General solution of the Stokes equations

For small particle sizes, a, the capillary numbers are small and
the possible deformations of the interfaces can be neglected when
the leading order solution of the problem is derived. Thus, the con-
sidered problem is steady state, the drainage velocity is V = �dh/dt,
and the analytical solution of the simplified problem for non-
deformed droplets (bubbles) can be obtained in bipolar coordi-
nates. First, one introduces Cartesian coordinate system Oxyz, in
which the z-axis coincides with the axis of revolution and plane
z = 0 represents the plane of symmetry of the system (Fig. 1). The
respective cylindrical coordinate system has radial coordinate r,
polar angle u, and

x ¼ r cos u; y ¼ r sin u: ð3:1Þ

The bipolar coordinates, x1 and x2, are defined with respect to
the positions of the poles at the axis of revolution with coordinates
z = ±c (see Fig. 2) as [18,19]

r ¼ c
b

sin x2; z ¼ c
b

sinh x1; ð3:2Þ

b � cosh x1 � cos x2: ð3:3Þ



Fig. 2. Introduction of bipolar coordinates (x1, x2). The cylindrical coordinates are
(r, u, z) (see Fig. 1), the plane of symmetry is x1 = 0, the pole A corresponds to
x1 ? +1, and the position of the drop surface coincides with coordinate surface
x1 = e.

Fig. 3. Plot of the drag force coefficient for two solid particles, fim, versus the
distance between them, h/a, calculated by means of Eq. (A.8). At long interparticle
distances we illustrate the validity of Eq. (A.10). For small values of h/a the
prediction of Taylor’s formula, Eq. (A.9), is drawn.
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The plane of symmetry (z = 0) corresponds to x1 = 0 in these
coordinates. The part of the axis of revolution, for which |z| > c, is
described by x2 = p, while that, for which |z| < c – by x2 = 0
(Fig. 2). The positions of both poles are obtained as limiting values
for x1 ? ±1.

Coordinate surfaces x1 = const. are spheres with radius
|c/sinhx1| and center z = c/tanhx1 at the axis of revolution (Fig. 2).
Therefore, if the droplet surfaces are defined with coordinates
x1 = ±e, then the values of e and coordinate c of pole A (Fig. 2) are
determined from the relationships

cosh e ¼ 1þ h
2a
; c ¼ a sinh e: ð3:4Þ

In bipolar coordinates the region occupied by the continuous
phase is given by |x1| < e, while that corresponding to the droplet
phase – by |x1| > e. For small film thicknesses (h� a) we have
e � (h/a)1/2 and c � (ah)1/2.

Because of the linearity of the Stokes equations we can invert
the flow [18,19], i.e. we will assume that the droplet above the
plane of symmetry is at rest and the velocity in the plane of sym-
metry obeys the conditions

tf ;1 ¼
V
2
;

@tf ;2

@x1
¼ �V

2
cot

x2

2

� �
at x1 ¼ 0: ð3:5Þ

For this flow the normal component of the fluid velocity at the
drop surface is zero (tf,1 = td,1 = 0 at x1 = e) and the tangential com-
ponents of the velocities are equal to the surface velocity compo-
nent u, i.e. tf,2 = td,2 = u at x1 = e.

The stream function, wk, for any axisymmetric Stokes’ flow is
well known to satisfy the general equations [18,19]

tk;1 ¼
b2

c2 sin x2

@wk

@x2
; tk;2 ¼ �

b2

c2 sin x2

@wk

@x1
ðk ¼ f ;dÞ ð3:6Þ

E2 � r
@

@r
1
r
@

@r

� �
þ @2

@z2 and E4ðwkÞ ¼ 0 ðk ¼ f ;dÞ: ð3:7Þ

Stimson and Jeffery’s general solution of Eq. (3.7) may be ex-
pressed in the following form [13]

wk ¼ b�3=2
X1
n¼1

Uk;nðx1ÞVnðnÞ ðk ¼ f ;dÞ; ð3:8Þ

where n � cosx2; Vn = Pn+1 � Pn�1; Pn is the Legendre polynomial
[56]; the functions Uk,n(x1) are simple linear superposition of the
four exponential functions, exp(kn�1x1), exp(kn+1x1), exp(�kn�1x1),
and exp(�kn+1x1); the parameter kn is defined as

kn � nþ 1
2
: ð3:9Þ

If the surface velocity is known, that is the coefficients, un, of the
serial expansion

u ¼ ð2bÞ1=2V
2 sin x2 sinh e

sinh
e
2

� �X1
n¼1

nðnþ 1Þun

kn
VnðnÞ ð3:10Þ

of function u(x2) describing the tangential component of the surface
velocity are known, then the solution for the stream functions, wd

and wf, is given by Eqs. (A.1)–(A.7), see Appendix A and Refs.
[18,57].

3.2. Hydrodynamic drag force

From a physical viewpoint it is important to calculate the
hydrodynamic drag force acting on the droplet (bubble). Because
of the symmetry the drag force, F, has only z component, which
is directed oppositely to the velocity of the respective drop. The
characteristic of the magnitude of this force is the drag force coef-
ficient, f, defined as

F � pgf aVf : ð3:11Þ

Substituting solution Eq. (A.2) into the general series for the
hydrodynamic drag force from Ref. [18] we obtain that

f ¼ fim � 8 sinh e sinh
e
2

� �X1
n¼1

nðnþ 1Þ coshðkneÞ
un

Dn
; ð3:12Þ

where fim is the drag force coefficient corresponding to the case of
tangentially immobile interfaces and coefficients Dn are calculated
from Eq. (A.3).

Stimson and Jeffery’s formula [13,57] for the drag force coeffi-
cient, fim, in the case of solid spheres approaching each other with
a given velocity, V, is reported in Appendix A, Eq. (A.8). Eq. (A.8) has
a simple asymptotic form for small interparticle distances, Eq.
(A.9), known as Taylor’s formula. The comparison of the calculated
results by means of Eq. (A.8) and Eq. (A.9) is illustrated in Fig. 3. Eq.
(A.10) represents the asymptotic expression for fim valid at large
interparticle distances. For a/h ? 0 the value of fim ? 3 because
the velocity of the individual particle is V/2 and the Stokes formula
reads F = 6pgfa(V/2) = 3pgfaV. It is important to note that all
asymptotic series, like Eq. (A.10), converge very slowly [57]. For



Fig. 4. Plot of the drag force coefficient for two bubbles in pure liquid, f0, versus the
distance between them, h/a, calculated by means of Eq. (A.11) with Nvr = 0. The
validity of approximations, Eqs. (A.12) and (A.13), is illustrated.

Fig. 5. Comparison between the asymptotic and exact expressions for f0: dashed
lines are calculated using Eq. (A.14); solid lines correspond to Eq. (A.11).
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example, at h = 2a one calculates 5.684 from Eq. (A.10), while the
exact expression, Eq. (A.8), gives 4.790. The predictions of Eq.
(A.10) are shown in Fig. 3. The series in the right-hand side of Eq.
(A.8) can be summed up numerically with a high precision. For fas-
ter computations, one could use the interpolation formula [58]

fim � 3þ 3a
2h

� �
1þ 0:3766 exp �ðln h� ln aþ 0:6789Þ2

6:297

" #( )
:

ð3:13Þ

The relative error of Eq. (3.13) is smaller than 0.015 for all val-
ues of h/a. The respective curves calculated by means of Eqs. (A.8)
and (3.13) coincide in Fig. 3.

In the case of pure liquids the jump of the tangential component
of the hydrodynamic friction force across the interfaces is zero –
the left-hand side of the boundary condition, Eq. (2.7), is negligible.
In bipolar coordinates (Section 3.1) one simplifies Eqs. (2.4) and
(2.7) to the following boundary condition:

gd
@

@x1
ðbtd;2Þ ¼ gf

@

@x1
ðbtd;2Þ at x1 ¼ e: ð3:14Þ

We substitute Eqs. (3.6), (A.1), and (A.2) into Eq. (3.14) and
transform the obtained result in series with respect to the func-
tions b3/2Vn (n = 1, 2, . . .). All coefficients of the derived series must
be zero in order to fulfill the boundary condition. From the exact
expressions for the coefficients one obtains (see Appendix B)

un ¼
coshðkneÞ sinh e

coshð2kneÞ � coshð2eÞ þ NvrDn
cosh

e
2

� �
ðn ¼ 1;2; . . .Þ;

ð3:15Þ

where the ratio between the viscosity of the droplet phase, gd, and
that of the film phase, gf, defines the dimensionless number

Nvr �
gd

gf
: ð3:16Þ

Eq. (A.11) describes the series for the drag force coefficient, f0, in
the case of pure liquids [57] and Eq. (A.12) represents the asymp-
totic formula for f0 valid at large distances between droplets. For a/
h ? 0 the value of f0 ? (3Nvr + 2)/(Nvr + 1), which corresponds to
the Hadamard–Rybczynski formula for the drag force coefficient
of an individual droplet in the case of pure liquids.

In the case of two bubbles gd� gf and we can formally substi-
tute Nvr = 0 in Eqs. (A.11) and (A.12). The applicability of serial
expansion (A.12) is illustrated in Fig. 4. Eq. (A.13) corresponds to
the asymptotic expression for f0 valid for small distances between
bubbles. The comparison between Eqs. (A.9) and (A.13) shows that
the drag force coefficient of solid spheres increases much faster
than that of bubbles with the same size. For thin films, h� a, the
difference increases considerably. For example, at h/a = 0.001 one
obtains fim = 1513.4, while for bubbles we have f0 = 9.4502.

Eqs. (A.14) and (A.15) represent the asymptotic expressions for
f0 valid for small distances, h� a. Eq. (A.14) is applicable for typical
viscosity ratio numbers, those are Nvr smaller than (a/h)1/2. The
comparison between the exact formula, Eq. (A.11), and the asymp-
totic one, Eq. (A.14), is given in Fig. 5. It is well illustrated that with
the increase of the viscosity of the disperse phase the asymptotic
expression (A.14) becomes operative at smaller interparticle dis-
tances, h. The respective value of the drag coefficient increases
considerably.

In some cases (for bitumen emulsions) the viscosity of the drop
phase is very large and one can use asymptotic expression, Eq.
(A.15), valid for Nvr� (a/h)1/2. In Refs. [20–23] the reader can find
some other asymptotic formulae valid for arbitrary values of Nvr.
The results reported in Refs. [20,21] cannot be used for bubbles.

The surface-active components change the mobility of inter-
faces. The value of the drag force coefficient, f, for a given system
is always larger than that for pure liquids, f0, and smaller than that
for solid particles, fim: f0 < f < fim. This difference is not significant
for large interparticle distances when 2 < f < 3. In contrast, the dif-
ference between f0 and f can reach order of magnitudes for thin
layers between droplets (bubbles).

4. Role of surface-active components on the interfacial mobility

4.1. General solution of the mass balance equations in the bulk

The general solution of Laplace equations, Eq. (2.10), for devia-
tions of the bulk concentrations, cf,1 and cd,1, of the surface-active
component in bipolar coordinates may be expressed in the form

ck;1 ¼ b1=2
X1
n¼0

Ck;nðx1ÞPnðnÞ ðk ¼ f ;dÞ; ð4:1Þ

where the functions Ck,n(x1) are linear superposition of the two
exponential functions, exp(knx1) and exp(�knx1). If the mathemati-
cal expression for the deviation of adsorption C1 is presented in the
following series with respect to the Legendre polynomials:

C1 ¼ C0
Va
Ds
ð2bÞ1=2 sinhðe=2Þ

cosh e
X1
n¼0

gnPnðnÞ; ð4:2Þ
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where the coefficients gn (n = 0, 1, 2, . . .) are unknown, then the con-
crete form of functions Ck,n(x1) can be obtained. The series in the
right-hand side of Eq. (4.2) is multiplied by the Peclet number,
Va/Ds, defined with respect to the surface diffusion coefficient, Ds.
Therefore, the ratio C1/C0 is small because of the assumption for
small Peclet number of the considered problem.

In the volume of the disperse phase, which contains the pole A
(Fig. 2), Cd,n(x1) is proportional only to exp(�knx1). Using boundary
condition (2.12) and Eqs. (4.1) and (4.2) we obtain

cd;1 ¼
Va
Ds

@cd

@ ln C

� �
0
ð2bÞ1=2 sinhðe=2Þ

cosh e
X1
n¼0

gn exp½knðe� x1Þ�PnðnÞ:

ð4:3Þ

To obtain the solution for cf,1 in the volume of the continuous
phase together with boundary condition, Eq. (2.12), one applies
the condition for symmetry with respect to the plane x1 = 0, which
corresponds to z = 0 (Fig. 1). Hence, Cf,n(x1) is proportional only to
cosh(knx1) and one derives

cf ;1 ¼
Va
Ds

@cf

@ ln C

� �
0
ð2bÞ1=2 sinhðe=2Þ

cosh e
X1
n¼0

gn
coshðknx1Þ
coshðkneÞ

PnðnÞ: ð4:4Þ

In general case of solutions containing one surface-active com-
ponent, two sets of unknown constants have to be determined: u1,
u2, . . . including in the serial expansion for the surface velocity (see
Section 3.1); g0, g1, g2, . . . appearing in the right-hand side of the
expression for the deviation of adsorption, Eq. (4.2). To calculate
them we will use two boundary conditions: (i) the mass balance
equation for adsorption, Eq. (2.11); (ii) the continuity of the tan-
gential stresses at the interface, Eqs. (2.3)–(2.7).

4.2. Boundary conditions for the mass balance of adsorption and for
the tangential stress at the interface in bipolar coordinates

In the case of axial symmetry, the condition for the mass bal-
ance of surfactants at the interface, Eq. (2.11), in bipolar coordi-
nates, Eq. (3.1)–(3.4), is simplified to

1
sin x2

@

@x2
C0u

sin x2

b
� Ds

a
sin x2

sinh e
@C1

@x2

� �

¼ Dd

b
@cd;1

@x1
� Df

b
@cf;1

@x1
at x1 ¼ e: ð4:5Þ

Substituting the series, Eqs. (3.10), (4.2), (4.3), and (4.4), into the
boundary condition, Eq. (4.5), and taking into account that the
Legendre polynomials are orthogonal, one derives an infinite set
of homogeneous algebraic equations, Eq. (B.1), for the unknown
coefficients (see Appendix B). The dimensionless numbers, Ndf

and Ndd, defined as

Ndk � a
@ck

@C

� �
0

Dk

Ds
ðk ¼ f ;dÞ; ð4:6Þ

characterize the ratios between the bulk diffusion fluxes and the
surface diffusion flux. If the surface-active component is soluble
only in the disperse phase, then Ndf = 0, and vice versa, if the surfac-
tants are soluble only in the continuous phase, then Ndd = 0. There
are specific systems, for which the surfactants are soluble in both
phases. For example, some alcohols are soluble in water and in oil
phases and can have small adsorption at the interface (see Section
5.4). The experimental data and theoretical models show that the
surface diffusion coefficient has the same order of magnitude as
the bulk diffusion coefficients [44,61]. In all coefficients (see Appen-
dix B) numbers Ndf and Ndd are multiplied by tanhe. Therefore, the
values of numbers Ndf tanhe and Ndd tanhe depend mainly on the
adsorption length, (oC/ock)0, and on the combined parameter
a tanhe. For large interparticle distances a tanhe ? a, while for thin
layers we have a tanhe ? (ah)1/2 and the relative contribution of the
bulk diffusion fluxes compared to the surface diffusion decreases.
The smaller bulk diffusion fluxes cannot suppress the gradients of
the interfacial tension and the surfaces become more tangentially
immobile.

Using Eqs. (3.1)–(3.4) we reduce the tangential stress boundary
condition, Eqs. (2.3)–(2.7), in bipolar coordinates for an axisym-
metric flow to the following expression

@

@x1
ðbgftf ;2�bgdtd;2Þ ¼ b

@r
@x2
þ2gsh

sinhe
a

uþðgshþgdilÞb
asinhe

	 @

@x2

b2

sinx2

@

@x2

usinx2

b

� �" #
at x1 ¼ e: ð4:7Þ

In the case of diffusion-controlled processes of adsorption the
two-dimensional equation of state for the interface, r = r(C), is
fulfilled at each moment of the droplets motion. Using the assump-
tion for a small deviation of adsorption from its value at rest, Eqs.
(2.13) and (2.14), we can express the Marangoni term in the right-
hand side of Eq. (4.7) in the linear form

@r
@x2
¼ @r

@C

� �
0

@C1

@x2
¼ � EG

C0

@C1

@x2
: ð4:8Þ

Substituting the definition, Eq. (3.6), and the series, Eqs. (A.1),
(3.10), (A.2), (A.4), and (4.2), into the boundary condition, Eqs.
(4.7), (4.8), and taking into account that the Legendre polynomials
are orthogonal, we obtain an infinite system of algebraic equations,
Eq. (B.2), for the unknown coefficients (see Appendix B).

The dimensionless number Nel accounts for the role of Marang-
oni effect and Nel is defined as

Nel �
EGa
gf Ds

: ð4:9Þ

This number appears in all coefficients (see Appendix B) multi-
plied by tanhe. The value of Nel tanhe increases with: (i) the in-
crease of the surfactant concentration because of the increase of
Gibbs elasticity, EG; (ii) the decrease of the viscosity of continuous
phase, gf, and the surface diffusivity, Ds; (iii) the increase of droplet
size, a, at a fixed film thickness, h; (iv) the increase of film thickness
at small interparticle distances, where a tanhe � (ah)1/2. When the
surfactant concentrations are above the CMC the Marangoni effect
is negligible and one formally replaces Nel with zero (see Section
5.2).

Eq. (4.7) shows that the surface shear viscosity, gsh, multiplies
the surface velocity, u, while the surface dilatational viscosity, gdil,
appears as a sum with the surface shear viscosity in the tangential
stress boundary condition. Moreover both contributions have dif-
ferent scaling rules with respect to the interparticle distance, h.
The ratio between the surface-viscosity-friction forces and the
bulk-viscosity-friction forces at the surface is characterized by
dimensionless numbers Nsh and Ndil, defined as

Nsh �
gsh

gf a
and Ndil �

gdil

gf a
: ð4:10Þ

In all coefficients (see Appendix B) these numbers appear as
Nsh tanhe and (Ndil + Nsh)/tanhe. With the increase of these num-
bers the surfaces become more immobile, which takes place for
smaller droplets, larger values of the surface viscosities, and smal-
ler bulk viscosity of the continuous phase. For thin films the surface
viscosity numbers have different dependences on the interparticle
distance h: Nsh tanhe / h1/2 and (Ndil + Nsh)/tanhe / h�1/2 [44].

In the case of large interparticle distances the expression for the
drag force coefficient has a limiting value of (see Appendix B)
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f ¼ 3� 1þ gd

gf
þ 2gdil

3gf a
þ 2EGa

3gf 2Ds þ 2a @cf
@C

� �
0Df þ a @cd

@C

� �
0Dd

h i
8<
:

9=
;
�1

:

ð4:11Þ

Eq. (4.11) gives the exact expression for the drag force coeffi-
cient of an individual drop (bubble), which performs a slow motion
with translation velocity V/2. This expression could be used to
determine the sedimentation velocity of diluted emulsions or dif-
fusion coefficient of colloidal-Brownian-droplets dispersions using
Stokes–Einstein approach.

5. Numerical results and discussions

5.1. Values of the dimensionless numbers

The gradient surface diffusion coefficient, Ds, and Gibbs elastic-
ity EG are related each others. The gradient surface diffusion coef-
ficient is calculated from the surface chemical potential, ls, and
the individual surface diffusion coefficient, Ds0, through the general
relationship [61,62]:

Ds ¼
Ds0

kBT
@ls

@ ln C

� �
0
: ð5:1Þ

Using the Gibbs equation for adsorption layer, that is

dr ¼ �Cdls; ð5:2Þ

and the definition of the Gibbs elasticity, Eq. (2.14), one rewrites Eq.
(5.1) in the following form:

Ds ¼
Ds0EG

kBTC0
: ð5:3Þ

From Eqs. (4.9) and (5.3) we obtain that

Nel ¼
kBTC0a
Ds0gf

¼ kBTC1a
Ds0gf

h and h ¼ C0

C1
; ð5:4Þ

where C1 is the adsorption at close packing of the monolayer and h
is the degree of surface coverage (0 < h < 1). By analogy with the
Einstein formula one defines the effective hydrodynamic radius of
the adsorbed molecule in the surface layer, Rs, that is

Rs �
kBT

6pDs0gf
; ð5:5Þ

and therefore, Nel can be calculated from the expression

Nel ¼ 6paRsC1h: ð5:6Þ

The typical values of Rs are in the order of the radius of surfac-
tant molecule, that of 1/C1 are in the order of pR2

s , and radii a are
larger than 1 lm, which shows that the multiplier 6paRsC1 in Eq.
(5.5) is in the order of 6a/Rs. Thus Nel has large values – values of
Nel � 1 can be reached only for very small degrees of surface cov-
erage h.

The shear and dilatational surface viscosities depend on the de-
gree of surface coverage. The simple linear dependence of gsh and
gdil on h is assumed in the literature [29], that is gsh = gsh0h and
gdil = gdil0h, where gsh0 and gdil0 are the values of the respective
parameters at close packing. Thus the dimensionless numbers,
Nsh and Ndil, are related to h as follows:

Nsh ¼
gsh0

gf a
h and Ndil ¼

gdil0

gf a
h; ð5:7Þ

see Eq. (4.10). Eqs. (5.6) and (5.7) show that: (i) with the increase of
surfactant concentration, that is for larger values of h, the dimen-
sionless numbers, Nel, Nsh, and Ndil, increase; (ii) for a fixed value
of h the increase of radius a leads to the increase of the elasticity
number and respectively, to the decrease of the role of surface vis-
cosity – the numbers, Nsh and Ndil, decrease.

To obtain the formulae for number Ndk (k = d, f) we substitute
the expression for Ds, Eq. (5.3), into the definition, Eq. (4.6). Using
the definition of the Gibbs elasticity, Eq. (2.14), one transforms the
obtained result to the following expression:

Ndk ¼ �kBT
@ck

@r

� �
0
a

Dk

Ds0
: ð5:8Þ

In the case of equilibrium the surface chemical potential, ls, is
equal to the bulk chemical potentials, lk. The bulk phases contain
small concentrations of the surface active species and the Gibbs
equation, Eq. (5.2), acquires the form:

dr ¼ �kBTCd ln ck ¼ �kBT
C
ck

dck: ð5:9Þ

From Eqs. (5.8) and (5.9) we calculate that

Ndk ¼
ack;0

C0

Dk

Ds0
ðk ¼ f ;dÞ: ð5:10Þ

The characteristic adsorption thickness, C0/ck,0, depends on the
degree of surface coverage, h, and the parameters of adsorption iso-
therm ck,0 = ck,0(C0) (energy of adsorption, interaction parameter,
and C1) [3,63]. Thus for a given surface active substance C0/ck,0

depends only on h and it decreases with the increase of h. For very
small degrees of surface coverage the characteristic thickness has a
limiting value of [3,63]

C0

ck;0
! dads;k exp

Eads;k

kBT

� �
for h! 0ðk ¼ f ;dÞ; ð5:11Þ

where dads,k is the thickness of adsorption layer and Eads,k is the en-
ergy of adsorption. Therefore, the values of Ndk increase with the in-
crease of radius a and with the increase of surface coverage h.

5.2. Concentrations above the CMC

For concentrations above the CMC the surfactant relaxation
time is so small, that the interfacial tension does not change during
the motion of drops and Nel = 0. The drag force coefficient, f, de-
pends on the bulk viscosity ratio, surface viscosity, and distance
between drops or bubbles. The influence of the surface viscosity
on the drag coefficient, f, for bubbles and Nsh = Ndil is illustrated
in Fig. 6. One sees that for Nsh > 10 the interface becomes tangen-
tially immobile and f � fim. With the decrease of distance h/a the
role of surface viscosity becomes more pronounced because for
small values of h/a one has (Ndil + Nsh)/tanhe / (a/h)1/2 (see Section
4.2). The slope of the curves f versus h/a for small interparticle dis-
tances is the same as that for solid spheres, that is fim / a/h, see Eq.
(A.9), and the reader can use the asymptotic expressions reported
in Ref. [38]. At large values of h/a the drag force coefficients change
slightly from 2 to 3 according to the solution for an individual bub-
ble, Eq. (4.11), and they depend on the value of the dilatational sur-
face viscosity, that is on Ndil.

The solid line drawn in Fig. 6 corresponds to the hypothetical
case of Nsh = 20 and Ndil = 0. One sees that the calculated drag coef-
ficient is very close to f0 for interparticle distances h > a, which is in
agreement with Eq. (4.11) – the drag force of an individual drop
does not depend on the surface shear viscosity. With the decrease
of h/a, the values of f become closer to the calculated drag coeffi-
cient at Nsh = Ndil = 10, that is Nsh + Ndil = 20. For h/a < 0.001 both
curves coincide. These calculations illustrate that for small distance
h/a the drag force coefficient depends on the sum of surface shear
and dilatational viscosities, that is on (Ndil + Nsh)/tanhe.

In the case of drops the viscosity of the disperse phase influ-
ences the drag force coefficient. The calculated curves f versus



Fig. 6. Dependence of the drag force coefficient for concentrations above the CMC
on the surface viscosity for Nvr = Nel = 0. The solid line corresponds to the
hypothetical case of Nsh = 20 and Ndil = 0.
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h/a for Nvr equals to 0.1, 1.0, and 10.0 (all other parameters are the
same as in Fig. 6) are given in Supplementary material, Section S6.
In all cases when Nvr tanhe > (Nsh + Ndil) the surface viscosity effect
can be neglected, while for Nvr tanhe < (Nsh + Ndil) the interfacial
rheology controls the mobility of surfaces. For micron-sized drop-
lets Nsh is much larger than unity and the drop interfaces are
tangentially immobile.

5.3. Insoluble surfactants monolayer

For an insoluble surfactants monolayer the bulk diffusion num-
bers, Ndd and Ndf, are equal to zero and the drag force coefficient
becomes a function of Nvr, Nel, Nsh, Ndil, and the distance between
drops (bubbles). To illustrate the relative influence of the surface
elasticity on the drag force coefficient, f, we calculate the value of
f for bubbles covered by an insoluble surfactant monolayer with
very low values of surface viscosity (Nvr = Nsh = Ndil = 0). Fig. 7
shows that the increase of Nel leads to more tangentially immobile
bubble surfaces. The surface elasticity effect decreases with the de-
crease of the distance between bubbles – in equations Nel appears
as Nel tanhe and for small distances Nel tanhe � Nel(h/a)1/2 (see Sec-
tion 4.2). For given values of Nel and small distances between bub-
bles the drag force coefficient, f, can be orders of magnitude larger
than that for a clean interface, f0. For small interparticle distances
the slopes of curves f versus h/a are parallel to that of f0, and we
Fig. 7. Dependence of the drag force coefficient for an insoluble monolayer on the
surface elasticity for Nvr = Nsh = Ndil = 0.
found that f / ln(a/h), see the asymptotic expression in Ref. [38].
At large distances, h, the relative difference becomes small, in the
order of 1.5, see the result for an individual bubble, Eq. (4.11).

In the case of drops the viscosity of the disperse phase influ-
ences the drag force coefficient for clean surface and the role of
the surface elasticity becomes less pronounced. The curves f versus
h/a for Nvr equals to 0.1, 1.0, and 10.0 (all other parameters are the
same as in Fig. 7) are given in Supplementary material, Section S7.
The following conclusions can be drawn: (i) for Nel 6 Nvr the role of
surface elasticity can be neglected; (ii) for small values of h/a 6 0.1
and Nel > 10Nvr the viscosity of drops does not influences signifi-
cantly the value of f – the surface elasticity effect is predominant.

Both surface elasticity and viscosities damp the interfacial mobil-
ity in general cases. In Fig. 8 we show the role of surface coverage h
on the drag force coefficient for bubbles. The parameters correspond
to low molecular weight surface active species: gf = 9 	 10�4 Pa s;
T = 25 �C; Ds0 = 3 	 10�9 m2/s [61]; gsh0 = 1.45 	 10�6 Pa m s
[52]; gdil0 = 1.0 	 10�8 Pa m s [52]; C1 = 5.58 	 10�6 mol/m2 [64–
66]; a = 0.3 mm. In this case the respective dimensionless parame-
ters are Nel = 1.54 	 106h, Nsh = 5.19h, Ndil = 0.037h, and Nvr = 0, see
Eqs. (5.4) and (5.7). One sees that for large values of surface cover-
age, h = 0.7, the interface is tangentially immobile for all values of
h. With a 10 times decrease of surface coverage the surface becomes
slightly mobile for h/a < 3 	 10�4, while for larger distances the sur-
face is immobile. Even at trace amount of surface coverage,
h = 7 	 10�5, the drag force coefficient is much larger than that for
clean surface, f0, and for large distances f is very close to fim. This con-
clusion is valid also for: (i) larger bubble sizes, because in this case
Nel increases and Nsh decreases; (ii) smaller bubble sizes, because
in this case Nel decreases but Nsh increases.

In the case of drops the curves f versus h/a for Nvr equals 0.1, 1.0,
and 10.0 (all other parameters are the same as in Fig. 8) are plotted
in Supplementary material, Section S8. It is well illustrated that for
Nvr < 2 the viscosity of the drop phase does not influence consider-
ably the calculated value of f. At large drop viscosity, Nvr = 10, the
drag force coefficients are larger for h = 7 	 10�5 and h = 7 	 10�4,
but for larger degrees of surface coverage the drop viscosity does
not play a role.

5.4. Soluble surfactants. Role of bulk diffusivities

In the case of soluble surfactants the bulk diffusion supplies the
interface with surfactants and suppresses the interfacial tension
gradients. Thus, the bulk diffusion decreases the role of Marangoni
effect and fluidizes the interface. To illustrate the effect of the bulk
Fig. 8. Dependence of the drag force coefficient for an insoluble monolayer on the
degree of surface coverage, h, for Nvr = 0. The values of dimensionless numbers Nel,
Nsh, and Ndil, are given in the text.



Fig. 9. Ratio of the drag force coefficients for nitrobenzene films stabilized by
dodecanol at concentrations 11 mM, 44 mM, and 178 mM.

Fig. 10. Ratio of the drag force coefficients for bubbles stabilized by sodium alkyl
sulfates (CnSO4Na) water solutions at a low degree of surface coverage, h = 0.001.
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diffusion we calculate the ratio, Rf, of the drag force coefficient to
the respective hypothetical drag force coefficient at zero values
of Ndf and Ndd, i.e. without taken into account the bulk diffusion.

First, we note that coefficients un (n = 1, 2, . . .) explicitly depend
on Nel and on the ratio Ndk/Nel, but not on the values of Ndk them-
selves, see Eq. (4.11) and Appendix B. From Eqs. (5.4) and (5.10) we
obtain the following relationship:

Ndk

Nel
¼ gf Dk

kBTC2
1

ck;0

h2 ðk ¼ f ;dÞ: ð5:12Þ

It is important to note that Ndk/Nel does not depend on radius a.
In the simplest case of Langmuir adsorption isotherm [3,63] one
has

Kkck;0 ¼
h

1� h
ðk ¼ f ;dÞ; ð5:13Þ

where Kk is the adsorption constant and Eq. (5.12) acquires the
form:

Ndk

Nel
¼ gf Dk

kBTC2
1Kk

1
hð1� hÞ ðk ¼ f ;dÞ: ð5:14Þ

Therefore, the role of bulk diffusion is not a monotonic function
of concentrations (adsorption). The expression in the right-hand
side of Eq. (5.14) has a minimum at h = 0.5 – the bulk diffusion
effect is more pronounced for small and large values of surface cov-
erage h and less pronounced in the middle region. This conclusion
is not general – for more complex isotherms the minimum of ratio
Ndk/Nel appears at a value of the surface coverage different than 0.5
(see Supplementary material, Sections S4 and S5).

Second, Eq. (5.12) shows that the role of bulk diffusivity is more
pronounced for surfactants with large values of the CMC, those are
ionic surfactants [63–68]. The nonionic surfactants have low values
of the CMC and larger adsorption for smaller bulk concentrations
[63,69]. For nonionic surfactants the interfaces are immobile for
very low concentrations – this conclusion is confirmed by experi-
ments [70].

The solubility of surfactants in the disperse phase or in the con-
tinuous phase plays a different role on the suppression of the sur-
face elasticity effect. Generally, if the surfactants are soluble in the
continuous phase (oil drops in water surfactant solution) they de-
crease Rf smaller than that for the same inverted system (water
surfactant solution drops in oil).

5.4.1. Surfactants soluble only in the continuous phase
Fig. 9 illustrates the dependence of the ratio between drag force

coefficients for bubbles in nitrobenzene stabilized by different con-
centrations of dodecanol: 11 mM; 44 mM; and 178 mM. The
parameters of the adsorption isotherm and all values of physico-
chemical parameters are known from the literature [61] and sum-
marized in Supplementary material, Sections S1–S3. The bubble
radius is a = 1 mm. One sees that for dodecanol concentration
44 mM when h = 0.474 the role of bulk diffusion is the lowest com-
parable to concentrations 11 mM and 178 mM, where h = 0.184
and h = 0.785, respectively. The ratio, Rf, is not a monotonic func-
tion on distance h/a – the curve Rf versus h/a has a minimum at rel-
atively thin films (Fig. 9). This minimum is not so pronounced
when the surfactant is soluble in the disperse phase (see below).

For typical water or oil soluble surfactants the value of Ndf/Nel is
very small – in order to have Ndf/Nel < 0.1 the surface coverage has
to be extremely low, see Eq. (5.14). Therefore, when the surfactants
are soluble only in the continuous phase the bulk diffusion plays a
minor role on the drag force coefficient and the system behaves as
the corresponding one with the same adsorption and insoluble
monolayers. To illustrate this conclusion we calculate Rf for bub-
bles stabilized by sodium alkyl sulfates (CnSO4Na) water solutions
at a low degree of surface coverage, h = 0.001, (Fig. 10). The bubble
radius is a = 1 mm and the parameters of the surface tension iso-
therms are given in Supplementary material, Sections S1, S2, and
S4 [63]. One sees that the increase of number of carbon atoms n
in CnSO4Na decreases the role of bulk diffusion and for n > 10 there
is no difference between drag force coefficients calculated with and
without taken into account the bulk diffusion, Rf � 1. All sodium al-
kyl sulfates have close values of C1 but rather different energies of
adsorption. Kf increases with the increase of n and respectively for
a fixed degree of surface coverage Ndf/Nel decreases (see Supple-
mentary material, Section S4). The shapes of the curves Rf versus
h/a is similar to those depicted in Fig. 9. The minimum of Rf is ob-
served for C7SO4Na and it is equal to 0.472.

The numerical results for the same systems and larger adsorp-
tion, h = 0.01, are given in Supplementary material, Section S9. The
dependencies Rf versus h/a are analogous to those in Fig. 10 but
the minimum of Rf for C7SO4Na is equal to 0.891. The further increase
of the degree of surface coverage leads to Rf � 1 for all investigated
sodium alkyl sulfates. Our calculations for oil drops (Nvr 0) instead
of bubbles (Nvr = 0) show that for the same values of other parame-
ters the values of Rf become closer to unity. Therefore, for most
typical surfactants soluble in the continuous phase the bulk diffu-
sion can play a minor role for very low adsorptions (concentrations).

5.4.2. Surfactants soluble only in the disperse phase
In this case Ndf = 0 and the bulk diffusion of surfactants from the

drop phase to the interface influences the hydrodynamic force



Fig. 12. Ratio of the drag force coefficients for water drops stabilized by sodium
alkyl sulfates (CnSO4Na) in hexadecane at concentrations close to the CMC (h = 0.7).
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between bubbles. For small interparticle distances the diffusion
from the bulk phase is more efficient than that from the narrow
gap between particles (for the same inverted system) and the cal-
culated values of f are lower. Fig. 11 shows the dependence of Rf on
h/a for water drops stabilized by sodium alkyl sulfates (CnSO4Na) in
hexadecane at a low degree of surface coverage, h = 0.01. The
parameters of the interfacial tension isotherms are given in Sup-
plementary material, Section S5, the drop radius is 1 mm and the
viscosity of hexadecane is gf = 3.0 	 10�3 Pa s. For the inverted sys-
tems hexadecane drops in the same water solutions the values of Rf

are close to unity, that is the role of bulk diffusion from the dis-
perse phase is negligible. In contrast, the drag force ratio depicted
in Fig. 11 decreases with distance h and increases with the increase
of the number of carbon atoms n. The minimum value of Rf is
achieved for C7SO4Na and it is equal to 0.218. With the increase
of the energy of adsorption of the respective surfactant at one
and the same degree of surface coverage the bulk diffusion effect
becomes lower.

For the inverted system (see Fig. 10 and Supplementary mate-
rial, Section S9) we found that the increase of the degree of surface
coverage (h > 0.01) eliminates the bulk diffusion effect. In the case
of surfactants soluble in the drops the bulk diffusion plays a role for
all concentrations. For example, for concentrations close to the
CMC the degree of surface coverage is around 0.7 and the calcu-
lated values of Rf versus h/a are illustrated in Fig. 12. One sees that
Rf is smaller than unity and follows the same trend as in Fig. 11.
The minimum value of Rf is achieved for C7SO4Na and it is equal
to 0.297. Even for C12SO4Na the value of Rf for the smallest distance
is equal to 0.841. Note, that the values of the drag force coefficients
increase with the increase of surfactant concentrations because of
the increase of surface elasticity and viscosity numbers (Nel, Nsh,
Ndil). Figs. 9–12 illustrate the relative role of the bulk diffusion
and give deeper understanding of the mechanism of surfactant
influence.

5.4.3. Comparison between systems
In typical emulsion systems the surface active species are more

soluble in one phase and less soluble or insoluble in another phase.
During the homogenization process both types of emulsions are
formed: the continuous phase contains surfactants and the drops
are formed from another pure liquid (system I); drop phase con-
tains surfactants at the same concentration, which are dispersed
in the pure liquid (inverted system II). If the rate constants of floc-
culation of drops in system I are smaller than the rate constants of
flocculation of the same size drops in system II, then emulsion I
will survive under dynamic conditions [4,5]. The rate constants
Fig. 11. Ratio of the drag force coefficients for water drops stabilized by sodium
alkyl sulfates (CnSO4Na) in hexadecane at a low degree of surface coverage, h = 0.01.
of flocculation is integral, in which the hydrodynamic resistance
is in denominator, see Eqs. (1.1) and (1.2). Thus to compare system
I and system II it is important to study the ratio between the
hydrodynamic resistances of these systems, bII/bI.

Figs. 11 and 12 represent Rf as a function of h/a for system param-
eters at which the diffusion in continuous phase does not affect the
hydrodynamic resistance. Therefore, for that system bII/bI is equal to
3.3Rf because the viscosity of hexadecane is 3.0 	 10�3 Pa s. The lar-
ger viscosity of hexadecane comparable to that of surfactant solu-
tion leads to larger values of bII. In contrast, the more efficient
bulk diffusion in system II decreases hydrodynamic resistance bII

compared to bI. As a result the two systems cannot be distinguished
significantly from the hydrodynamic viewpoint. Note, that when
the ionic surfactants are dissolved in the continuous water phase,
the electrostatic interaction between drop surfaces appears and
the repulsive electrostatic disjoining pressure stabilizes such emul-
sions [1,27,28].

If the bulk viscosity of the phase containing surfactants is larger
than that of another pure liquid, then the both bulk diffusion and
viscosity favor the stability of system I. Fig. 13 illustrates the
dependence of bII/bI on h/a for nitrobenzene + dodecanol and water
phases at three concentrations of dodecanol. The system parame-
ters are reported in Supplementary material, Section S3. One sees
that bII/bI is smaller than unity and the ratio decreases with the de-
crease of the gap widths. For larger concentrations of dodecanol
Fig. 13. Ratio between the hydrodynamic resistances bII/bI versus interparticle
distance h for nitrobenzene + dodecanol and water phases. The concentrations of
dodecanol are 11 mM, 44 mM, and 178 mM.



Fig. 14. Ratio between the hydrodynamic resistances bII/bI versus interparticle
distance h for cyclohexane + oleyl alcohol and water phases. The concentrations of
oleyl alcohol are varied from 0.05 mM to 50 mM.
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the difference between the rates of flocculation of systems I and II
becomes smaller.

There are systems with equal bulk viscosities – for example the
bulk viscosities of water and cyclohexane at 25 �C are identical. If
one uses water soluble surfactants the emulsion oil in water will
be stable. In practice it is important to produce inverse water in
oil emulsions stabilized by alcohols [71,72]. Fig. 14 shows an
example of system formed from cyclohexane + oleyl alcohol and
water phases. The parameters of the interfacial tension isotherms
are reported in Supplementary material, Section S3, calculated
using the experimental data from Ref. [73]. The role of oleyl alcohol
concentration is well pronounced (Fig. 14) – the maximum of bII/bI

is observed at a middle concentration of 5 mM. The increase of
amount of oleyl alcohol to 50 mM and the decrease of concentra-
tion below 5 mM, respectively, lead to smaller values of bII/bI. Thus,
in this case water in oil emulsion will survive under dynamic
conditions.
6. Summary and conclusions

The stability of foams and emulsions under dynamic conditions
depends on the rates of flocculation of pairs of bubbles and drops,
Eq. (1.1). The higher hydrodynamic resistance between mutually
approaching colloidal particles decreases the rates of flocculation
and the respective dispersion is more stable. The linear hydrody-
namic problem for mutual approach of two spherical drops (small
Reynolds and Peclet numbers) is solved in bispherical coordinates.
The continuous and disperse phases contain surfactants adsorbing
at the interface. The Marangoni effect accounting for the non-
uniform distribution of adsorption, the surface diffusion tending
to recover the equilibrium adsorption, and the interfacial shear
and dilatational viscosities are accounted for in the model (Section
2). The exact solution is obtained in terms of series with respect to
the Legendre polynomials with coefficients obeying a nine diago-
nal linear system of equations, which is solved numerically (Sec-
tion 4).

The drag force coefficient for solid particles and that for pure
liquids are described by known explicit series, Eqs. (A.8) and
(A.11), and useful asymptotic expressions valid for small gap
widths are reported (Section 3). The role of surfactants is to modify
the interfacial mobility and to increase the drag force coefficient.
The effect of surface viscosity and elasticity to suppress the surface
mobility in a wide range of the respective dimensionless numbers
is illustrated in Figs. 6–8 for insoluble surfactant monolayers and
concentrations above the CMC. For soluble surfactant the bulk dif-
fusion from the continuous phase can decrease the drag force coef-
ficients at small interparticle distances only for very low values of
the degree of surface coverage or for surfactants with a large value
of the CMC, Figs. 9 and 10. In contrast, the bulk diffusion from the
disperse phase affects the hydrodynamic resistance for all degrees
of surface coverage, Figs. 11 and 12, if only Nsh is not greater than
unity. For micron-sized drops the interfacial viscosity effect is so
large that the droplet interfaces are tangentially immobile for all
gap widths. The obtained results can be used for comparison of
the behavior of oil in water or the inverse, water in oil, emulsions
in dynamic conditions, Figs. 13 and 14.

The general conclusions are: (i) the differences between the
hydrodynamic resistances for both types of possible emulsions
are several times (not orders of magnitude) and the role of the dis-
joining pressure is of a major importance for the final state; (ii) the
values of the hydrodynamic resistances themselves, which are con-
trolled on the material properties of the interfaces, are important
for prediction of the rate of flocculation.

In the present work the colloidal particles are assumed to be of
equal sizes. The exact solution of the problem for two drops with
different radii can be solved using an analogous approach and it
is an aim for our future publication.

Appendix A. Expressions for the stream functions and drag
force coefficient

Using the general solution (3.8) one obtains the solution for the
stream function, wd, in the form [18,57]:

wd ¼
Va2

ð2bÞ3=2 sinh e sinh
e
2

� �X1
n¼1

nðnþ 1Þun

kn
fexp½knþ1ðe� x1Þ�

� exp½kn�1ðe� x1Þ�gVn: ðA:1Þ

Because of the linearity of the considered problem the stream
function describing the flow in the continuous phase, wf, can be
presented as a sum of the stream function, wf,im, which gives the
solution of the problem for tangentially immobile surface, and
the contribution corresponding to the interfacial mobility [57]:

wf ¼ wf ;im þ
Va2

ð2bÞ3=2 sinh e sinh
e
2

� �X1
n¼1

nðnþ 1Þ 2un

knDn

	 ½sinhðknþ1eÞ sinhðkn�1x1Þ � sinhðkn�1eÞ
	 sinhðknþ1x1Þ�Vn; ðA:2Þ

where the coefficients Dn are defined as

Dn � sinhð2kneÞ � kn sinhð2eÞðn ¼ 1;2; . . .Þ: ðA:3Þ

Substituting Eq. (A.2) into Eq. (3.6) we derive the expressions
for the velocity components. One checks directly that the obtained
series obey the boundary conditions at the plane of symmetry, Eq.
(3.5), and at the drop surface, Eq. (3.10). The Stimson and Jeffery
solution for wf,im is well known in the literature [13,57] and

wf;im ¼
Va2

ð2bÞ3=2 sinh2e
X1
n¼1

½an coshðkn�1x1Þ þ bn coshðknþ1x1Þ

þ cn sinhðkn�1x1Þ þ dn sinhðknþ1x1Þ�Vn; ðA:4Þ

where the coefficients of the series, Eq. (A.4), are given by the
expressions

an ¼
nðnþ 1Þ

ð2n� 1Þð2nþ 1Þ ; bn ¼ �
nðnþ 1Þ

ð2nþ 1Þð2nþ 3Þ ; ðA:5Þ

cn ¼ �
an

Dn
½coshð2kneÞ þ kn coshð2eÞ� � knþ1bn

Dn
; ðA:6Þ
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dn ¼
kn�1an

Dn
� bn

Dn
½coshð2kneÞ � kn coshð2eÞ�: ðA:7Þ

Stimson and Jeffery’s formula [13,57] for drag force coefficient
fim reads

fim ¼ sinh e
X1
n¼1

	 nðnþ 1Þ
Dn

kn expð2eÞ
2kn�1

þ kn expð�2eÞ
2knþ1

� 1þ expð�2kneÞ
kn�1knþ1

� 	
:

ðA:8Þ

Eq. (A.8) has the following asymptotic form for small interpar-
ticle distances:

fim �
3a
2h

at h 6 a; ðA:9Þ

known as Taylor’s formula.
Expanding Eq. (A.8) in series with respect to a/h we calculate

the formula for the drag force coefficient valid at large interparticle
distances

fim � 3þ 9
a

2h

� �
� 9

a
2h

� �2
� 15

a
2h

� �3
þ 315

a
2h

� �4
þ . . . at a 6 h:

ðA:10Þ

Substituting solution Eq. (3.15) into Eq. (3.12) one obtains the
series for the drag force coefficient, f0, in the case of pure liquids
[57]:

f0 ¼ fim � 4sinh3e
X1
n¼1

nðnþ 1Þ
Dn

	 cosh2ðkneÞ
coshð2kneÞ � coshð2eÞ þ NvrDn

: ðA:11Þ

Expanding Eq. (A.11) in series with respect to a/h we calculate
the asymptotic formula for f0 valid at large distances between
droplets

f0 ¼
3Nvr þ 2
Nvr þ 1

1þ 3Nvr þ 2
Nvr þ 1

a
2h

� �
� ðNvr þ 2Þð3Nvr þ 2Þ

ðNvr þ 1Þ2
a

2h

� �2
"

�5N3
vr þ 2N2

vr � 12Nvr � 8

ðNvr þ 1Þ3
a

2h

� �3

þNvrð5Nvr þ 4Þð21N2
vr þ 48Nvr þ 28Þ

ðNvr þ 1Þ4
a

2h

� �4
þ . . .

#
: ðA:12Þ

Analogous to Eq. (A.10) series (A.12) converges very slowly [57].
In the case of two bubbles and small distances between them the

following asymptotic expression for f0:

f0 � ln
aþ h

h

� �
þ 2:5407 at h 6 a ðfor bubblesÞ ðA:13Þ

is derived in the literature [59,60]. Ivanov et al. [22,23] arrived to
similar formulae for the drag force on two bubbles approaching
each other when the separation between them is very small.

In the case of droplets we derive the following asymptotic
expressions valid for small distances h� a and: (i) not very large
droplet viscosity:

f0 �
3p2Nvr

16
a
h

� �1=2
þ 1� N2

vr

3

 !
ln

aþ h
h

� �

þ 2:5407 at Nvr h1=2
< a1=2 ðA:14Þ

(ii) for very large viscosity of the drop phase:
f0 �
3
2

a
h
� 9p2

64Nvr

a
h

� �3=2
at h 6 a and Nvrh

1=2 P a1=2: ðA:15Þ

The general case of asymptotic expressions, Eqs. (A.14) and
(A.15), for two droplets with unequal sizes is reported in Refs.
[24,25]. The calculation of close interaction between drops, with
internal circulation and slip effect taken into account, is described
in Ref. [26].

Appendix B. Linear system of equations for coefficients gn and
un

Substituting the series, Eqs. (3.10), (4.2), (4.3), and (4.4), into the
boundary condition, Eq. (4.5), we derive the corresponding series
with respect to the Legendre polynomials multiplied by b�3/2.
The Legendre polynomials are orthogonal and therefore, all coeffi-
cients of the series must be zero. The final form of the obtained lin-
ear system of homogeneous equations reads

A1;1gn�2 þ A1;2gn�1 þ A1;3gn þ A1;4gnþ1 þ A1;5gnþ2 þ B1;1un�1

þ B1;2un þ B1;3unþ1 ¼ 0 ðn ¼ 0;1;2; . . .Þ; ðB:1Þ

where in order to make the equations simpler we introduce the
coefficients g�2 = g�1 = u�2 = u�1 = u0 = 0. The coefficients of the lin-
ear equations, Eq. (B.1), are defined as follows:

A1;1 �
nðn� 1Þ

4ðnþ 1Þcosh2e
; A1;5 �

nþ 2

4cosh2e
; ðB:2Þ

A1;2 � �
2n2 þ n tanhðkn�1eÞNdf tanh eþ nNdd tanh e

2ðnþ 1Þ cosh e
; ðB:3Þ

A1;3 � nþ nðnþ 1Þ þ 1

2ðnþ 1Þcosh2e

þ 2nþ 1
2ðnþ 1Þ tanhðkneÞ þ

tanh e
2ðnþ 1Þ

� 	
Ndf tanh e

þ 2nþ 1
2ðnþ 1Þ �

tanh e
2ðnþ 1Þ

� 	
Ndd tanh e; ðB:4Þ

A1;4 � �
2ðnþ 1Þ þ tanhðknþ1eÞNdf tanh eþ Ndd tanh e

2 cosh e
; ðB:5Þ

B1;1 �
nðn� 1Þ

2ðnþ 1Þ cosh e
; B1;2 � �n; B1;3 �

nþ 2
2 cosh e

: ðB:6Þ

To obtain the other set of linear equations we substitute the
definition, Eq. (3.6), and the series, Eqs. (A.1), (3.10), (A.2), (A.4),
(4.2), and (4.8), into the boundary condition, Eq. (4.7). The obtained
result is presented as a series with respect to the polynomials Vn

multiplied by b3/2. All coefficients of the series must be zero, which
leads to the following linear system of equations

B2;1un�2 þ B2;2un�1 þ B2;3un þ B2;4unþ1 þ B2;5unþ2 þ A2;1gn�1

þ A2;2gn þ A2;3gnþ1 ¼ R ðn ¼ 1;2;3; . . .Þ ðB:7Þ
with coefficients defined by the formulae

B2;1 �
ðn� 2Þðn� 1Þ

4ð2nþ 1Þcosh2e
Ndil þ Nsh

tanh e
; ðB:8Þ

B2;2 � �
ðn� 1Þ

ð2nþ 1Þ cosh e
Nvr þ

coshð2kn�1eÞ � coshð2eÞ
Dn�1

þ n
Ndil þ Nsh

tanh e

� 	
;

ðB:9Þ

B2;3 �
nðnþ 1Þ
2nþ 1

1þ 1

2cosh2e

� �
Ndil þ Nsh

tanh e
� 2

2nþ 1
Nsh

	 tanh eþ Nvr þ
coshð2kneÞ � coshð2eÞ

Dn
; ðB:10Þ
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B2;4 � �
nþ 2

ð2nþ 1Þ cosh e
Nvr þ

coshð2knþ1eÞ � coshð2eÞ
Dnþ1

þ ðnþ 1ÞNdil þ Nsh

tanh e

� 	
;

ðB:11Þ

B2;5 �
ðnþ 2Þðnþ 3Þ

4ð2nþ 1Þcosh2e
Ndil þ Nsh

tanh e
; ðB:12Þ

A2;2 �
Nel tanh e

2nþ 1
; A2;1 ¼ A2;3 ¼ �

A2;2

2 cosh e
; ðB:13Þ

R � cosh
e
2

� �
sinh e � n� 1

ð2nþ 1Þ cosh e
coshðkn�1eÞ

Dn�1
þ coshðkneÞ

Dn

�

� nþ 2
ð2nþ 1Þ cosh e

coshðknþ1eÞ
Dnþ1

	
: ðB:14Þ

The linear system of equations, Eq. (B.7), has an exact solution
given by Eq. (3.15) for pure liquids when Nel = Ndil = Nsh = 0.

In the case of large interparticle distances e ?1. From Eqs.
(B.1)–(B.14) we derive the respective solution for an individual
droplet. Indeed, Eqs. (B.1)–(B.14) define the leading order terms
of the solution when n = 1:

ð1þ Ndf þ Ndd=2Þg1 ¼ u1; ðB:15Þ

1þ Nvr þ
2Ndil

3

� �
u1 þ

Nelg1

3
¼ 1

4
: ðB:16Þ

Substituting Eqs. (B.15) and (B.16) into Eq. (3.12) one obtains
Eq. (4.11).

The linear system of equations, Eqs. (B.1)–(B.14), is solved
numerically. To increase the accuracy of calculations we chose large
number N in such a way to have tanh(kNe) � 1. We prove that the
asymptotic solution of the system for n P N can be presented as

un ¼ U expð�kneÞ and gn ¼ Gn expð�kneÞ; ðB:17Þ

where U and G are unknown constants. Substituting Eq. (B.17) into
Eqs. (B.1)–(B.14) and expanding the obtained results in series for
large values of n we obtain that

G ¼ 2U
ð2þ 2Ndf þ NddÞ tanh e

; U ¼ sinh e
Um

cosh
e
2

� �
; ðB:18Þ

where parameter Um is defined as

Um � 1þ Nvr þ
2Nel

3ð2þ 2Ndf þ NddÞ
þ 2

3
Ndil: ðB:19Þ

All coefficients for n < N are calculated numerically and those
for n P N are replaced by Eqs. (B.17)–(B.19). The respective contri-
bution from uN, uN+1, . . . to the drag force coefficient, Eq. (3.12), is
calculated summing up the series

Rf ðNÞ � 8 sinh e sinhðe=2Þ
X1
n¼N

nðnþ 1Þ coshðkneÞ
un

Dn
; ðB:20Þ

which accounts for the tail contribution of the solution to the drag
force coefficient. The obtained result reads

Rf ðNÞ ¼ 2N2 expð�2NeÞ cosh e
N
þ sinh e

� �
sinh e

Um
: ðB:21Þ

From a physical viewpoint the minimum possible value of e is
10�3 (h = 10 nm and a = 1 cm). In this case for N = 25,000 one de-
rives that [Nexp(�Ne)]2 � 1.2 	 10�13, which shows that the upper
limit of the necessary number of coefficients is lower than 25,000.
For the numerical solution of the linear system of equations, Eqs.
(B.1) and (B.7), we order the parameters as follows: x1 = g�2;
x2 = u�2; x3 = g�1; x4 = u�1; x5 = g0; x6 = u0; x7 = g1; x8 = u1; etc. Thus
Eq. (B.1) includes four lower and four upper diagonal elements and
subsequently Eq. (B.7) also includes four lower and four upper
diagonal elements of the matrix of linear system. The numerical
solution of the obtained nine diagonal linear system of equations
is performed efficiently using the Thomas algorithm [74,75].

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jcis.2011.11.031.
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