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The stepwise thinning (stratification) of liquid films containing electrically charged colloidal particles (in our
case — surfactant micelles) is investigated. Most of the results are applicable also to films from nanoparticle
suspensions. The aim is to achieve agreement between theory and experiment, and to better understand the
physical reasons for this phenomenon. To test different theoretical approaches, we obtained experimental
data for free foam films from micellar solutions of three ionic surfactants. The theoretical problem is reduced
to the interpretation of the experimental concentration dependencies of the step height and of the final film
thickness. The surface charges of films and micelles are calculated by means of the charge-regulation model,
with a counterion-binding (Stern) constant determined from the fit of surface tension isotherms. The
applicability of three models was tested: the Poisson–Boltzmann (PB) model; the jellium-approximation (JA),
and the cell model (CM). The best agreement theory/experiment was obtained with the JA model without
using any adjustable parameters. Two theoretical approaches are considered. First, in the energy approach the
step height is identified with the effective diameter of the charged micelles, which represents an integral of
the electrostatic-repulsion energy calculated by the JAmodel. Second, in the osmotic approach the step height
is equal to the inverse cubic root of micelle number density in the bulk of solution. Both approaches are in
good agreement with the experiment if the suspension of charged particles (micelles) represents a jellium, i.e.
if the particle concentration is uniform despite the field of the electric double layers. The results lead to
a convenient method for determining the aggregation number of ionic surfactant micelles from the
experimental heights of the steps.
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1. Introduction

Stepwise thinning of foam filmswas observed long ago by Johonnott
[1] and Perrin [2], and this phenomenon was called stratification [2].
It was explained as a layer-by-layer pressing out of spherical
colloid particles, e.g. surfactant micelles or latex beads, contained in
the film [3–8]; see Fig. 1. The latter give rise to an oscillatory force
between the film surfaces, which was directly detected by the porous-
plate-cell method [9,10] and surface-force apparatus [11,12]. Physically,
this force is analogous to the oscillatory structural force detected
in organic liquids [13,14] and in aqueous solutions [15,16] confined
between two smooth solid surfaces. In the latter case, the structural
units are molecules of the liquid rather than dispersed colloid particles.
The colloid structural forces can stabilize liquid films and disperse
systems, since they hamper the film drainage [7,8,17–20]. Their effect
was studied by light-scattering method [21]; by electron cryomicro-
scopy [22,23]; by colloidal-probe atomic-force microscopy (CP-AFM)
[24–38]; in foam and emulsion films [19,39–42], in asymmetric and
wetting films [43–46]. Such forces are observed also in more complex
systems like protein solutions, surfactant–polymer mixtures, solutions
of polyelectrolytes and amphiphilic block copolymers; for recent
reviews see [19,20,47].

The developed theories are based on modeling by means of the
integral equations of statistical mechanics [34,35,48–51] and numer-
ical simulations [34–37,52–58]. As a rule, these approaches are related
to complicated theoretical expressions or numerical procedures. To
overcome this difficulty, for the case of uncharged particles some
relatively simple semiempirical expressions have been proposed
[59,60] on the basis of fits of theoretical results for hard-sphere fluids.
In recent studies, such a model was applied to determine the micelle
aggregation number from the experimental step-wise transitions in
the thickness of foam films [19], and to interpret the branches of
the oscillatory structural force detected by CP-AFM [38].
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Fig. 1. Sketch of a foam film formed from a micellar solution of an ionic surfactant. The double electric layers around the micelles and near the film surfaces are denoted by dashed
lines; h1 and h2 are the thicknesses in metastable states with one and two micellar layers inside the film.

Fig. 2. Structural formulas of the used three ionic surfactants: sodium dodecyl sulfate
(SDS), cetyltrimethylammonium bromide (CTAB), and cetylpyridinium chloride (CPC).
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For uncharged particles (e.g. nonionic micelles), the height of
the stratification step, Δh, is approximately equal to the diameter of
the hard sphere, slightly decreasing with the rise of the particle
volume fraction [59,60]. Note that Δh coincides with the period of the
oscillatory structural force. However, the studies on stratification with
ionic micelles showed that the height of the step is considerably
greater than the micelle hydrodynamic diameter, dH. The first
proposed estimate is Δh=dH+2κ−1 [4], where the inverse Debye
parameter κ−1 characterizes the thickness of the counterion
atmosphere around the micelle. Despite being quantitatively inaccu-
rate (see below), this first estimate correctly identifies the physical
reason for the larger values of Δh for charged particles.

Another interesting finding is that the step height,Δh, is practically
equal to the mean distance between the micelles in the bulk, δl, that
is Δh=δl≡(cp∞)−1/3, where cp∞ is the bulk micelle (particle) con-
centration [3,4]. This finding was utilized to construct the first
simplified model of the stepwise transitions in stratifying films [5]
using the interaction energy expression in the framework of the
jellium-approximation [61,62]. Later, the fact that Δh=(cp∞)−1/3 was
confirmed in experiments with charged nanoparticles and Monte
Carlo (MC) simulations [26,27,35,36]. Henderson and Wasan et al.
[54,55,63] carried out MC simulations of ionic micelle structuring
in thin films and macroion layering in a wedge film and investigated
the roles of electrostatics and excluded-volume effects. Klapp and
von Klitzing et al. [34–37] combined MC simulations with CP-AFM
measurements and small-angle neutron-scattering (SANS) to detect
the structuring in the bulk and in narrow slits and to investigate the
effects of charged walls [58].

Despite the achievements in this field and the accumulated results
from experiments and numerical simulations, analytical expressions
that describe the oscillatory structural force in the case of charged
particles are still missing. Here, our goal is to develop an analytical
theory that explains the step height, Δh, and the final film thickness,
h0, for stratifying films that contain charged particles. To test for
different models in comparison with experimental data, we carried
out systematic measurements with stratifying films from micellar
solutions of three different ionic surfactants. To determine the charge
of the micelles and film surfaces, electrolytic-conductivity and
surface-tension measurements were also performed. After that,
three possible theoretical models were tested, and it was found that
one of them is in excellent agreement with the experimental data for
h0 and Δh. A theoretical expression for the effective diameter of the
charged micelles is proposed. The results indicate in what concentra-
tion domain the films with charged particles stratify and lead to a
convenient method for determining the aggregation number of ionic
micelles from the stratification step height.

2. Materials and methods

In our experiments, the charged nano-sized particles are micelles
of ionic surfactants. The working surfactant concentrations are
≤100 mM, where the micelles are spherical and relatively monodis-
perse. Three different ionic surfactants have been used: sodium
dodecyl sulfate (SDS, anionic); cetyltrimethylammonium bromide
(CTAB, cationic) and cetylpyridinium chloride (CPC, cationic); see
Fig. 2. The purity of the used surfactants is 99%. The working tem-
perature was 25 °C in all experiments. To prepare all solutions,
deionized water (Milli-Q purification system, Millipore, USA) of
specific resistivity 18.2 MΩ cm was used.

The used SDS (C12H25SO4Na, CAS 151-21-3, molecular mass of
288.38 g/mol) was a product of Across Organics. At 25 °C, the critical
micelle concentration (CMC) of SDS measured in different studies
[64–70] is in the range of 7.6–8.3 mM in the absence of added
electrolyte. Under the same conditions, the micellar aggregation
number Nagg increases from 49 to 71 when the SDS concentration
rises from 8 to 80 mM [69]. The outer (hydrodynamic) diameter of the
smallest spherical SDS micelles is dH=4.6 nm [71–73]. The same
value can be obtained by molecular-size considerations setting dH
equal to the doubled length of the SDS molecule. Thus, using the
Tanford formula [74,75], for SDS we obtain:

dHð ÞSDS = 2× 0:154 + 0:1265×12 + 0:3×2ð Þ=4:544 ðnmÞ ð2:1Þ

where 12 is the number of C atoms in the paraffin tail and 0.3 nm is
the radius of the sulfate headgroup [65,76]. Note that at higher
concentrations of added salt (N0.1 M), SDS exhibits the tendency to
form elongated micelles, which can be modeled as sphero-cylinders
of cross-sectional diameter ≈4.6 nm [72,73].

The used CTAB (C16H33N(CH3)3Br, CAS number 57-09-0, molecular
mass 364.45 g/mol) was a product of Sigma. At 25 °C, the CMC of CTAB
is in the range of 0.83–1.0 mM [77–85] in the absence of added
electrolyte. The mean aggregation number of the CTAB micelles is
Nagg=95 [77,78]. A reasonable estimate of the micelle diameter can
be made if we take the doubled length of the CTAB molecule:

dHð ÞCTAB=2 × 0:154+0:1265×16+0:347×2ð Þ=5:744≈ 5:7 ðnmÞ:
ð2:2Þ
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Fig. 3. Experimental time dependence, h(t), of the equivalent water thickness of foam
films in a SE cell: a) 30 mM and 50 mM SDS; b) 30 mM and 50 mM CTAB; and c) 10 mM
and 50 mM CPC. h3, h2, h1, and h0 are the thicknesses in metastable states with three,
two, one and zero micellar layers inside the film.
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Here, the Tanford formula [74,75] was used to estimate the length
of the C16 paraffin tail; the value 0.347 stands for the radius of the
tetramethyl-ammonium ion [16].

The used CPC (C21H38NCl, CAS number 123-03-5, molecular mass
339.99 g/mol) was a product of Sigma. At 25 °C, the CMC of CPC is
in the range of 0.887–1.24 mM [82,86–89] in the absence of added
electrolyte. The aggregation number of the CPC micelles was found to
vary in the range of Nagg=45–92 at low concentrations of added
salt [87], and Nagg=87–120 at different surfactant concentrations
[90]. For this surfactant, the most popular technique for determining
micellar aggregation numbers, the static fluorescence quenching
method, is inapplicable, because CPC is a good quencher of fluo-
rescence. In the present study, comparing the calculated degree of
micelle ionization with that determined by electrolytic conductivity
measurements, we obtained Nagg≈78 for CPC (see below). As above,
an estimate of the micelle diameter can be made if we take the
doubled length of the CPC molecule:

dHð ÞCPC=2× 0:154+0:1265×16+0:07+0:67ð Þ=5:836≈ 5:8 ðnmÞ:
ð2:3Þ

Here, the Tanford formula [74,75] was used again to estimate the
length of the C16 paraffin tail; the value 0.07 nm stands for the link
between the paraffin chain and the pyridinium ring [16]; the diameter
of the latter is estimated by using the diameter of the benzene ring,
0.67 nm [91].

Here, we are using the term “degree of ionization” of a micelle (or
nanoparticle) as a term different from “degree of dissociation” [77,79].
For example, the sulfate groups on the surface of an SDS micelle are
100% dissociated. However, the ionization degree is only about 57%
(see below) because of the binding (condensation) of hydrated Na+

ions in the Stern layer, which leads to a fractional neutralization of the
surface charge.

The Scheludko–Exerowa (SE) cell [92,93] was applied to study
the stepwise thinning of individual free foam films. The procedure
is as follows. First, the investigated solution is loaded in a cylindrical
capillary (of an inner radius of 1.5 mm) through an orifice in its wall.
Thus, a biconcave drop is formed inside the capillary. Next, liquid is
sucked through the orifice and the two menisci approach each other
until a film is formed in the central part of the cell. By injecting
or sucking liquid through the orifice, one can vary the radius of
the formed film, in which thickness can be measured by means of an
interferometric method [93] of accuracy ±0.5 nm [9]. For this
purpose, the light reflected from the film is supplied to a photo-
multiplier and computer, and the film thickness, h, is recorded as a
function of time, t. The SE cell is placed in a closed container so that
the water vapors are equilibrated with the solution, and evaporation
from the film is prevented. For more details see e.g. [4,19].

To determine the electric charge of the micelles, we measured also
the electrolytic conductivity of the solutions as a function of surfactant
concentration by means of a conductivity-meter, Denver Instruments,
USA. Surface tension isotherms were obtained by using the Wilhelmy
plate method with tensiometer Krüss 10ST.

3. Experimental results and discussion

3.1. Results for stratifying foam films

Fig. 3 shows the typical experimental dependences of the film
thickness, h, on time, t, obtained by means of an SE cell. The films are
formed from micellar solutions of SDS (Fig. 3a), CTAB (Fig. 3b) and
CPC (Fig. 3c) without added inorganic electrolyte (salt). As seen in the
figures, h decreases with time by step-wise transitions. The transitions
occur through the appearance and expansion of darker spots in the
film. As already mentioned, the step-wise transitions were inter-
preted as a layer-by-layer thinning of an ordered structure of spher-
ical particles inside the film [3–5]. In Fig. 3, the thicknesses of the
films that contain 0, 1, 2 and 3 layers of micelles are denoted h0, h1, h2
and h3, each of them corresponding to a metastable state of the film.
As seen in the figure, the number of observed metastable states
(steps) increases with the rise of surfactant concentration.

In Fig. 4, we present experimental data for the dependence of h0,
h1, h2 and h3 on the surfactant concentration. Each experimental
point represents the mean value of 30 experiments. One sees that at
a fixed surfactant concentration, the distances between the curves
are the same, h1−h0≈h2−h1≈… ≈Δh. The height of the step is

image of Fig.�3


Fig. 4. The experimental film thickness hn in the metastable states (with n=0, 1, 2, and
3 layers of micelles in the film) vs. the surfactant concentration, cs: a) SDS; b) CTAB; and
c) CPC. The lines are guides to the eye.

Fig. 5. The experimental height of the steps, Δh, plotted vs. the Debye screening length,
κ−1. The data for each surfactant are fitted by linear regression in accordance with
Eq. (3.4); the parameters of the fits are given in Table 1.
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considerably greater than the micelle hydrodynamic diameter. This
situation (ΔhNdH) is similar for all studied surfactants and con-
centrations, which means that the electrostatic repulsion between
the micelles gives an essential contribution to the heights of the steps
[3–5]. As already mentioned, our aim in the present article is to give
a quantitative interpretation of the experimental curves in Fig. 4,
including the electrostatic contribution to the height of the steps,
Δh, and the effect of micelle osmotic pressure on h0.

Fig. 4 shows that hi (i=0,1,2,…) decreases with the rise of
surfactant concentration. Because the ionic surfactant is an electro-
lyte, a natural explanation of the latter fact is that the counterion
atmospheres around the micelles shrink with the rise of the solution's
ionic strength. In first approximation, the charged micelles could be
modeled as hard spheres of effective diameter deff [4]:

deff = dH + 2κ−1 ð3:1Þ

where dH is the hydrodynamic diameter of the micelle and κ−1 is the
Debye length that characterizes the thickness of the counterion
atmosphere around the micelle. In the case of micellar solutions or
suspensions of charged nanoparticles, not only the background
electrolyte, but also the counterions dissociated from the micelles/
particles contribute to κ. Beresford-Smith et al. [61,62] obtained the
expression:

κ2 = κ20 + κ2
counterions ð3:2Þ

where κ0 is the contribution of the background electrolyte. In the
case of an ionic-surfactant micellar solution (without added salt),
the concentration of background electrolyte is equal to the concen-
tration of surfactant monomers that are in equilibrium with the
micelles, i.e. to the critical micellization concentration, CMC. Then,
Eq. (3.2) acquires the form:

κ2 = 8πLB CMC+
α
2

cs−CMCð Þ
h i

; LB≡
e2

εkT
: ð3:3Þ

Here, cs is the total surfactant concentration; k is the Boltzmann
constant; T is the temperature; ε is the dielectric constant of water;
e is the elementary electric charge; LB is the Bjerrum length
(LB=0.72 nm for water at 25 °C), and α is the degree of micelle
ionization; α expresses the fraction of the surface ionic groups that
are not neutralized by bound counterions.

To check whether we can model a charged particle (micelle) as an
effective hard sphere that comprises the particle and its counterion
atmosphere, in Eq. (3.1) we have set deff≈Δh and plot Δh vs. κ−1,
where Δh is experimentally determined and κ is calculated from
Eq. (3.3). The results for SDS, CTAB and CPC are shown in Fig. 5, where
the data are fitted with a linear regression

Δh = b0 + b1κ
−1

: ð3:4Þ

Fig. 5 shows again that the height of the step, Δh, is considerably
greater than the hydrodynamic diameter, dH, of the respective
micelles. Indeed, for SDS, CTAB and CPC the values of dH are 4.6, 5.7
and 5.8 nm, respectively (see Section 2), whereas in Fig. 5 the
experimental Δh has maximal values of 15.3, 25.9 and 21.2 nm for
the same surfactants. In other words, the maximal Δh can be from 3.3
to 4.5 times greater than themicelle hydrodynamic diameter! This fact
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Fig. 6. Surface tension of CPC solutions vs. the CPC concentration at four concentrations
of added NaCl; T=25 °C. The isotherm without NaCl is from Ref. [87], whereas the
isotherms with 10, 20 and 100 mM NaCl have been obtained by us. The solid lines are
the best theoretical fits, in which parameters are given in Table 2 (the last row).

54 K.D. Danov et al. / Advances in Colloid and Interface Science 168 (2011) 50–70
indicates the existence of a very strong effect of the intermicellar
electrostatic repulsion on the magnitude of the stratification steps.
One of ourmain goals is to give a quantitative explanation of this effect.

The coefficients in Eq. (3.4) determined from the linear-regression
fits in Fig. 5 are collected in Table 1, where the last column gives the
references, from where the values of CMC and α have been taken
to calculate κ from Eq. (3.3).

If Eq. (3.1) was valid, then b0 should be equal to the micelle
hydrodynamic diameter, dH, whereas b1 should be equal to 2. For
CPC, b1 is really close to 2, but b0 is with 1.5 nm greater than dH.
The situation is the worst for SDS, for which b1=7.4, and b0 is
even negative. Hence, we can conclude that Eq. (3.1) cannot be used
as a basis of a quantitative model of the step-wise transitions.

An additional source of uncertainty is the value of the degree
of ionization of the micelles, α. Depending on the used experimental
method, rather different values of α have been obtained; see e.g.
Table 1 in Ref. [64]. For example, for SDS micelles α=0.14 was
obtained by electromotive-force measurements of the activity of Na+

ions [95], whereas α=0.54 was determined from the dependence
of CMC on the Na+ concentration [96,97]. Low values, α=0.05 for
SDS micelles and 0.08 for CPC micelles, were obtained by theoretical
analysis of data for the solutions' osmotic pressure [90]. To be certain
about the value of α, we employed additional surface tension and
conductivity data (see Sections 3.2 and 3.3). From the surface-tension
data, the Stern constant KSt can be determined, which characterizes
the binding of counterions to the ionic headgroups of the surfactant
molecules. Using the determined KSt, we can further calculate α
for micelles (Section 4) and compare the obtained results with α
independently determined from conductivity (Section 3.3).

3.2. Surface tension isotherms and determination of the stern constant

To determine KSt with a good precision, we have to process surface
tension data obtained at several different salt concentrations [98]. In
Fig. 6, such experimental curves are shown for CPC at 0, 10, 20 and
100 mMaddedNaCl. The curve obtained in the absence of NaCl is from
Ref. [87], whereas the other three curves have been obtained by us.
The data are fitted with the help of the van der Waals model. The best
fit is shown by solid line in Fig. 6. The theoretical dependence of
the surface tension, σ, on the surfactant and salt concentrations is
calculated as follows:

The van der Waals adsorption isotherm for an ionic surfactant can
be expressed in the form [98,99]:

1+KSta2sð ÞK1a1s =
Γ1

Γ∞−Γ1
exp

Γ1
Γ∞−Γ1

−2βΓ1
kT

� �
ð3:5Þ

where Γ1 is the surfactant adsorption at the air/water interface; Γ∞ is
the maximal value of Γ1 at saturation; β is a constant parameter that
characterizes the interaction between the adsorbed surfactant
molecules; K1 is the surfactant adsorption parameter, which is related
to the adsorption energy per molecule; a1s and a2s are the subsurface
activities of the surfactant ions and counterions, which are related
to the respective bulk concentrations c1∞ and c2∞ by means of the
Boltzmann equation:

a1s = γ�c1∞ exp −Φsð Þ; a2s = γ�c2∞ expΦs ð3:6Þ
Table 1
Verification of Eq. (3.1) with Δh=deff; see Fig. 5.

Surfactant CMC (mM) α b0 (nm) b1 References

SDS 8.0 0.27 −5.8 7.4 [4,68,70,94]
CTAB 0.9 0.23 5.9 2.9 [11,78,94]
CPC 0.9 0.20 7.3 2.1 [88]
where γ± is the activity coefficient estimated from the Debye–Hückel
theory as explained in Ref. [99]; Φs=(zeψs) /(kT) is the dimension-
less surface electric potential; z=+1 and −1, respectively, are for
positively and negatively charged surface of potential ψs. To close the
system of equations, we have to use also the Gouy equation that
connects the surface charge and potential,

Γ1−Γ2 =
2c2∞
πLB

� �1=2
sinh

Φs

2

� �
ð3:7Þ

and the Stern isotherm of counterion adsorption (binding):

Γ2
Γ1

=
KSta2s

1 + KSta2s
ð3:8Þ

with Γ2 being the surface density of counterions, which are bound
(adsorbed) in the Stern layer. Note that c2∞=c1∞+c3∞, where c1∞, c2∞
and c3∞ are the bulk concentrations of surfactant ions, counterions
and added salt. Eqs. (3.5)–(3.8) represent a system of 5 equations
for determining the 5 unknown variables, Γ1, Γ2, a1s, a2s and Φs, at
every given surfactant and salt concentrations, c1∞ and c3∞. The
principles of the numerical procedure for solving this system of
equations are described in Ref. [99]. After solving the above system of
equations, the surface tension is calculated from the expression [99]:

σ0−σ
kT

=
Γ∞Γ1
Γ∞−Γ1

−β
Γ21
kT

+
8c2∞
πLB

� �1=2
cosh

Φs

2

� �
−1

� �
ð3:9Þ

where σ0 is the surface tension of pure water.
All four experimental curves in Fig. 6 are simultaneously fitted

with the theoretical dependence σ(c1∞,c3∞) given by Eqs. (3.5)–(3.9)
using Γ∞, β, K1 and KSt as four adjustable parameters. Their values,
corresponding to the best fit, are given in the last row of Table 2.

The parameters of the isotherms for SDS solutions (Table 2)
have been determined in Refs. [76,98] and those for CTAB solutions—
in Refs. [100,101]. One sees that the area per adsorbed surfactant
molecule, 1/Γ∞, is the smallest for SDS and the largest for CPC, which
reflects the size of the surfactant headgroup. The Stern constant is the
smallest for SDS and the largest for CTAB. These results correlate with
the fact that the Br− ions are the least hydrated in comparison with
the Cl– and Na+ ions [16], and have the greatest affinity to bind to
surfaces [102,103].
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Table 2
Parameters of the surface tension isotherms for SDS, CTAB, and CPC.

Surfactant 1/Γ∞ (nm2) 2βΓ∞/(kT) K1 (1/mM) KSt (1/mM)

SDS [76,98] 0.298 2.7 99.2 6.53×10−4

CTAB [100,101] 0.395 1.0 4.87×103 7.45×10−3

CPC [Fig. 6] 0.510 0.99 1.38×104 5.93×10−3

Fig. 7. Plots of electrolytic conductivity, κ̃ , vs. the surfactant concentration, cs, for three
surfactants: (a) SDS; (b) CTAB and (c) CPC. The solid lines are the best fits by Eq. (3.15);
the values of α determined from the fits are shown. The dashed lines showwhat would
be the conductivity if literature values of α are used; details in the text.
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The degree of micelle ionization is α=(Γ1−Γ2) /Γ1. The combi-
nation of the Stern isotherm, Eq. (3.8), with Eq. (3.6) yields:

α =
1

1 + KStγ�c2∞ expΦs:
ð3:10Þ

The values of KSt for the investigated surfactants are given in Table 2.

3.3. Conductivity measurements and determination of micelle charge

Our experimental data for the electrolytic conductivity, κ̃, of the
investigated surfactants in aqueous solutions are given in Fig. 7.
The kinks in the conductivity curves agree very well with the known
CMC values for these surfactants; see Section 2. In general, our
conductivity data are very close to analogous data by other authors
for SDS [104–110]; CTAB [83,111–113] and CPC [86–89]. The lower
slope of the conductivity curves above the CMC (Fig. 7) is mostly due
to the fact that a fraction of the counterions are bound to the micelles.
Consequently, the theoretical interpretation of the conductivity
curves can give the degree of micelle ionization, α.

The electrolytic conductivity of micellar solutions without added
background electrolyte, can be calculated using the following
relationship [114,115]:

κ̃ = λ0
cα cs−CMCð Þ + λ0

miccmic−AI3=2 + BI2 + const: ð3:11Þ

whereλc
0 is the limitingmolar ionic conductance of the counterions; cmic

is the concentration of micelles and λmic
0 is their molar conductance; I is

the ionic strength of the solution;A andB are empirical coefficients in the
augmented Kohlrausch law, which take into account the interactions
between the ions [116]. The parameters λc

0, A and B are tabulated in Ref.
[117]. The additive constant in Eq. (3.11) represents the conductivity of
some ions, whose concentrations do not change upon increasing the
amount of surfactant above the CMC. Such are the surfactantmonomers
and some background ions as H+, OH−, and (probably) HCO3

−.
The term λmic

0 cmic in Eq. (3.11) gives a small contribution to κ̃, but
for a greater precision we estimate also this term. λmic

0 can be
expressed in the form [115,116]:

λ0
mic≡αNagg λ̃mic

0 ð3:12Þ

where by definition

λ̃mic
0 =

e2NA

3πηwdH
ð3:13Þ

characterizes the hydrodynamic mobility of the micelle and does not
depend on its charge; NA is the Avogadro number; ηw is the viscosity
of water and, as usual, dH is the micelle hydrodynamic diameter. The
ionic strength and micelle concentration are:

I≈CMC +
α
2

cs−CMCð Þ; cmic =
cs−CMC

Nagg
: ð3:14Þ

Substituting Eqs. (3.12) and (3.14) in Eq. (3.11), we obtain:

κ̃ = α λ0
c + λ̃mic

0
� �

cs−CMCð Þ−AI3=2 + BI2 + const: ð3:15Þ
Note that Eq. (3.15) contains α, but it does not contain Nagg. The
values of λc

0 for Na+, Cl− and Br− ions are, respectively, 50.10; 76.35
and 78.14 cm2 S/mol [117,118]. The values of λ̃mic

0 estimated from
Eq. (3.13) are 4.2 cm2 S/mol for SDSmicelles and 3.4 cm2 S/mol for CTAB
and CPC micelles. These values of λ̃mic

0 are much smaller than those
of λc

0, and the contribution of the micelles to the total conductivity, κ̃,
is really small. Because A and B are insensitive to the type of electro-
lyte [114,116], we proceeded as follows. For SDS and CPC (with Cl−

anion), we used their values for NaCl [117]: A=88.55 mS cm−1 M−3/2

and B=93.61 mS cm−1 M−2. For CTAB (Br− anion), we used the

image of Fig.�7
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respective values for NaBr [117]: A=88.20 mS cm−1 M−3/2 and
B=63.00 mS cm−1 M−2.

To determine α from the conductivity data above the CMC, we
used the following iteration procedure.

(1) The input data are the values of λc
0, λ̃mic

0 , A and B; see above.
(2) A tentative value is given to α;
(3) The ionic strength I is calculated from Eq. (3.14).
(4) In view of Eq. (3.15), the data for conductivity above the

CMC are plotted as κ̃ + AI3=2−BI2 vs. cs–CMC.
(5) The obtained dependence is fitted with a linear regression,

from which slope a new value of α is obtained, and the pro-
cedure continues from step (3).

Usually 5 steps are enough to obtainαwith a relative error smaller
than 10–4.

The fits are shown in Fig. 7 by solid lines. The obtained values of α,
their errors and the values of the regression coefficient of the fits are
given in Table 3.

The dashed lines in Fig. 7 show what would be the conductivity κ̃
if literature data for α are substituted in Eq. (3.15), as follows: for
SDS: α=0.27 determined by electromotive-force measurements
[64]; for CTAB: α=0.23 obtained by several methods [94,119–121];
for CPC: α=0.20 determined by analysis of SANS data [88]. As seen
in Fig. 7, the aforementioned literature data for α lead to predicted
conductivity curves that are considerably different from the exper-
imental data, except in the case of CTAB where the difference is not
so significant.

It should be noted that the differences in the obtained values of α
depend not only on the used experimental method but also on the
way of their interpretation. For example, in Refs. [96,97] α=0.54 was
obtained from the slope of the log(CMC) vs. log(c2∞) plot for SDS,
which is close to the value α=0.567 in Table 3. However, if the
activity coefficient γ± is taken into account in the mass-action law
and the data from Refs. [96,97] are plotted as log(CMC) vs. log
(γ±c2∞), the result becomes α=0.313.

It should be also noted that if the values of α from Table 3 are
substituted in Eq. (3.3) and the plot in Fig. 5 is redrawn, the result
again does not agree with Eq. (3.1). For this reason, a more complex
model is needed, which takes into account the energy of interaction
between the micelles (see below).
4. Electrostatic potential near a charged spherical particle

4.1. General equations

To calculate α from Eq. (3.10) for nano-sized particles (including
micelles), we have to determine the particle dimensionless surface
potential,Φs. The difficulties with this problem are due to the fact that
a dispersion of charged nano-sized particles represents a strongly
asymmetric electrolyte that contains small monovalent ions and
larger multivalent nanoparticles. Here, we consider and compare
three different approaches to the solution of this problem: (i) the
conventional Poisson–Boltzmann model; (ii) the jellium approxima-
tion [61,62] and (iii) the cell model [122–125]. First, the physical
system and the basic equations that are common for the three models
are specified.
Table 3
Degree of micelle ionization, α, determined from conductivity (Fig. 7).

Surfactant α Error Δα Regression coefficient

SDS 0.567 ±0.001 0.9999
CTAB 0.289 ±0.003 0.9995
CPC 0.379 ±0.001 0.9998
In general, the particles can be surfactant micelles, solid spheres,
liquid drops, or gas bubbles. Let us consider an electrically charged
spherical particle of radius a (a=dH/2, where dH is the hydrodynamic
diameter). The particle belongs to a dispersion of similar particles,
which can contain also dissolved 1:1 electrolyte. The results could
be generalized to the case of m:n electrolyte (m,n≥1) following
the approach in Ref. [99]. The electrostatic potential, ψ, around the
considered particle satisfies the Poisson equation:

1
r2

d
dr

r2
dψ
dr

� �
= −4π

ε
ρb for r N a ð4:1Þ

where r is the radial coordinate (with origin in the particle center) and
ρb is the bulk charge density; as usual, ε is the dielectric constant
of the continuous phase, in our case water. The electric field inside
the spherical particle is considered to be zero, so that the standard
electrostatic boundary condition at the particle surface reads [126–
128]:

dψ
dr

= −4π
ε

ρs at r = a ð4:2Þ

where ρs is the surface charge density. In addition, we have

ρs =
Ze

4πa2
and Φ ≡ zeψ

kT
ð4:3Þ

where Z is the effective particle (micelle) charge in units of the
elementary charge e; in the case of micelles, Z=αNagg; Φ is the
dimensionless electrostatic potential; z=+1 or −1, respectively,
for a positively or negatively charged particle. In view of Eq. (4.3)
and the definition of the Bjerrum length in Eq. (3.3), Eq. (4.2) acquires
the form:

dΦ
dr

= − ZLB
a2

at r = a: ð4:4Þ

In the case of ionic-surfactant micelles, we have three types of
small ions: (i) surfactantmonomers of concentration c1; (ii) counterions
of concentration c2 and (iii) coions of the added electrolyte of con-
centration c3. Here and hereafter, we assume that the counterions
dissociated from the micelles (particles) and the counterions from the
added electrolyte are of the same kind (e.g. Na+ ions in the case of SDS,
or Cl− ions in the case of CPC). In the electric field of the considered
micelle (particle), the small ions are assumed to obey the Boltzmann
distribution:

c1 = c1∞ exp −Φð Þ; c2 = c2∞ expΦ; c3 = c3∞ exp −Φð Þ ð4:5Þ

where ci∞ (i=1, 2, 3) are the mean concentrations of the respective
ions far from the charged micelle (particle). Because counterions
are dissociated from both the particles (micelles) and the dissolved
electrolyte, the electroneutrality condition reads:

c2∞ = Zcp∞ + c1∞ + c3∞ ð4:6Þ

where, cp∞ is the mean concentration of particles far from the
considered charged particle. In the cases of particles and micelles, we
have, respectively:

c1∞ = 0 particlesð Þ ð4:7Þ

c1∞ = CMC; Zcp∞ = α cs−CMCð Þ; Z = αNagg micellesð Þ: ð4:8Þ
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4.2. Poisson–Boltzmann (PB) model

In this model, the particles (micelles) obey the Boltzmann
distribution [16,129]:

cp = cp∞ exp −ZΦð Þ ð4:9Þ

just as the small ions; see Eq. (4.5). With the help of Eqs. (4.3), (4.5),
(4.6) and (4.9), Eq. (4.1) can be represented in the form:

1
r2

d
dr

r2
dΦ
dr

� �
= 4πLB 2 c1∞ + c3∞ð Þ sinh Φð Þ + Zcp∞ eΦ−e−ZΦ

� �h i
ð4:10Þ

for rNa. Eq. (4.10) represents the Poisson–Boltzmann equation for
the considered asymmetric system. In the case of small electrostatic
potential, ZΦ≪1, Eq. (4.10) reduces to:

1
r2

d
dr

r2
dΦ
dr

� �
= κ2PBΦ for r N a ð4:11Þ

where the Debye parameter for the PB model is defined as follows:

κ2PB ≡ 8πLB c1∞ + c3∞ +
1
2

Z + Z2
� �

cp∞

� �
: ð4:12Þ

The electrostatic potential vanishes at long distances from the
particle:

Φ→0 for r→∞: ð4:13Þ

Thus the PB boundary problem consists of Eq. (4.10) and two
boundary conditions, Eqs. (4.4) and (4.13).

In the case of a strongly asymmetric electrolyte, the considered
version of Poisson–Boltzmann model is not completely adequate
because it treats both the small ions and the larger particles (micelles)
as point ions of different charges. However, in reality the size of the
particles is much greater than that of the conventional ions, and the
particles repel each other much stronger than two similar small ions.
For this reason, other models have been proposed to account more
adequately for the asymmetry of the system; see below.

4.3. Jellium approximation (JA) model

In the jellium approximation [61,62], instead of the Boltzmann
distribution, Eq. (4.9), we have a uniform distribution of particles
(micelles):

cp = cp∞ = const: ð4:14Þ

Physically, Eq. (4.14) means that the interparticle electrostatic
repulsion is much stronger than the effect of the double-layer electric
field. In view of Eq. (4.14), the Poisson–Boltzmann equation in the
jellium approximation acquires the form:

1
r2

d
dr

r2
dΦ
dr

� �
= 4πLB 2 c1∞ + c3∞ð Þ sinh Φð Þ + Zcp∞ eΦ−1

� �h i
ð4:15Þ

for rNa. For small values of the electrostatic potential, Φ≪1,
Eq. (4.15) can be linearized:

1
r2

d
dr

r2
dΦ
dr

� �
= κ2Φ for r N a ð4:16Þ

where the screening parameter κ is defined as follows:

κ2 ≡ 8πLB c1∞+ c3∞+
Z
2
cp∞

� �
: ð4:17Þ
Note that Eq. (4.17) is identical to Eq. (3.3), which has been already
used.

The comparison of Eqs. (4.12) and (4.17) shows that κPBNκ.
Physically, this difference originates from the fact that in the PBmodel
the macro-ions (particles or micelles) also take part in the Debye
screening of the electric field, unlike the case of jellium approxi-
mation. The JA boundary problem consists of Eq. (4.15) and two
boundary conditions, Eqs. (4.4) and (4.13).

The JA model was first introduced in Refs. [61,62] and further
applied to study phase diagrams of charged colloids [130,131]; struc-
turing and short time dynamics in suspensions of charged particles
[132,133]; contributions of macroion correlations and volume
exclusion effects to the osmotic pressure [134–137], as well as the
reappearance of structures in colloidal suspensions [138–140].

4.4. Cell model (CM)

The cell model was originally proposed to describe the osmotic
pressure and bulk modulus of colloidal crystals [122–125]. The
particles (micelles) are assumed to be fixed in the nodes of a regular
lattice. The small ions are distributed in the electric field of the fixed
particles. The Poisson–Boltzmann equation for the mean electrostatic
potential, Φ, is written for a separate Wigner–Seitz cell of the lattice,
which is usually approximated with a spherical cell of radius b:

1
r2

d
dr

r2
dΦ
dr

� �
= 4πLB 2 c1∞ + c3∞ð Þ sinh Φð Þ + Zcp∞e

Φ
h i

ð4:18Þ

for ab rbb. Because the potential Φ should be minimal in the middle
between two particles, its derivative is set to zero at the outer
boundary of the cell:

dΦ
dr

= 0 for r = b: ð4:19Þ

The CM boundary problem consists of Eq. (4.18) and two boundary
conditions, Eqs. (4.4) and (4.19). In this model, each cell is
electroneutral, which guarantees the electroneutrality of the whole
system. The outer radius of the cell, b, is determined from the
condition of the volume of the cell to be equal to the volume per
particle (micelle) in the solution, viz. (4/3)πb3=1/cp∞.

The cell model has found applications in the theory of growth of
charged micelles [141]; for calculation of the effective charge and
charge renormalization [142–149]; for measurements and dynamic
tests of interaction potentials of charge-stabilized colloids [150,151];
for calculation of the force between macroions [152–155]; for studies
on stability and phase behavior of charged colloids [156–161]; and
for complex colloid systems such as lamellar colloids, swollen clays,
and microgels [162–164]. Klein et al. [165] generalized the cell model
by including the Stern isotherm of charge regulation.

The limits of validity of the Poisson–Boltzmann model, jellium
approximation, and cell model are discussed in Refs. [166,167].
Their predictions regarding Φ(r) and α(cs) are compared in the next
section.

4.5. Numerical results: potential and degree of micelle ionization

To determine the dependenceΦ(r) of the electrostatic potential on
the distance from the center of the particle (micelle), we solved the
nonlinear Poisson–Boltzmann equation numerically, along with
the respective boundary conditions (see above). Thus, for the PB, JA
and cell models we solved, respectively, Eqs. (4.10), (4.15) and (4.18).

An additional difficulty is related to the fact that the parameter α
(degree of micelle ionization) appears in both the differential
equation and boundary condition, but to determine α we have to
substitute the calculated surface potential Φs into Eq. (3.10). For this
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reason, we applied iterations, using the values of α in Table 3 as a
zero-order approximation. The computational procedure is described
in Appendix A. The values ofα shown in Figs. 8–10 represent results of
the iteration procedure.

The values of the input parameters are listed in Table 4. Themicelle
radius is determined as a=dH/2, where dH is given by Eqs. (2.1)–
(2.3). The micelle aggregation number, Nagg, taken from different
references, is given in the last column of Table 4.

Fig. 8 compares the electrostatic potentials predicted (i) by the
approximate linearized models, based on Eqs. (4.11) and (4.16), and
denoted LPB and LJA, and (ii) by the exact models based on the
respective nonlinear differential equations, Eqs. (4.10) and (4.15) for
the PB and JA models. The principles of the computational procedure
are described in Appendix A. In the considered example, the system is
a 30 mM solution of SDS with 0 and 100 mM NaCl. Under these
conditions, the boundary problem is solved for each model; the
potential at the micelle surface, Φs, is determined and substituted in
Eq. (3.10) to calculate the degree of ionization,α. The values of α thus
obtained are different for the different models and are given in Fig. 8.
The values ofα in Fig. 8a (no added salt) for the two nonlinear models
(0.578 for PB and 0.569 for JA) are very close to the value α=0.567
independently determined from the data for conductivity (Table 3).
The presence of 100 mM NaCl leads to a decrease in the ionization
degree with Δα≈0.04 for both PB and JA (Fig. 8b), which means that
more Na+ counterions are bound to the micelle –SO4

− groups at a
Fig. 8. Plots of the calculated dimensionless surface potential,Φ, vs. the distance, r from
a spherical micelle of radius a=2.3 nm in a solution of 30 mM SDS. The values of the
ionization degree, α, calculated for this SDS concentration using KSt (charge regulation)
are shown for each curve. The curves correspond to the Poisson–Boltzmann (PB) and
jellium approximation (JA) models, and to their linearized versions, LPB and LJA. (a) No
added salt; Φs is the JA surface potential; Φ0 is the renormalized surface potential, i.e.
the coefficient in the asymptotic Eq. (4.20), which is plotted by dash–dot line. (b) With
100 mM added NaCl.

Fig. 9. Comparison of the three models, PB, JA and CM, with respect to their predictions
for the dimensionless electrostatic potential, Φ(r). The systems and parameter values
are as in Fig. 8. The values of the ionization degree, α, calculated for cs=30 mM SDS
using KSt (charge regulation) are shown for each curve. (a) No added salt. (b) With
100 mM added NaCl.
higher NaCl concentration. Note that the value of the binding constant
KSt for SDS in Table 2 is essentially used in these calculations.

The Φ(r)-curves predicted by the linearized models, LPB and
LJA, considerably differ from the exact dependences of the PB
and JA models (note that the vertical scale in Fig. 8 is logarithmic).
The difference is greater for the PB model and in the absence of
NaCl. These results demonstrate that the problem is essentially non-
linear, so that a numerical solution of the exact nonlinear boundary
problem cannot be avoided if the aim is to obtain quantitatively
correct results.

However, it should be noted that at sufficiently large distances
from the particle the potential Φ always becomes low, so that the
differential equation, Eq. (4.10) or (4.15), can be linearized in that
region. In other words, the asymptotic behavior of the dependence
Φ(r) is described by the solution of the linearized problem:

Φ rð Þ≈Φ0
a
r
exp −κ r−að Þ½ � for Φ bb 1: ð4:20Þ

where κ is given by Eq. (4.17) for the JA model, and κ=κPB for the PB
model; see Eq. (4.12); Φ0 is the limiting value predicted by Eq. (4.20)
upon being extrapolated to r/a→1; see the dash–dotted line in
Fig. 8a. Φ0 is sometimes called the renormalized surface potential. It is
a parameter of the asymptotic Eq. (4.20) that, in general, is different
from the true surface potential Φs (Fig. 8a). In Fig. 8a, Φ0bΦs for the
JA model. Similar extrapolation for the PB model would lead to
Φ0NΦs.
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Fig. 10. Calculated degree of micelle ionization, α, vs. the surfactant concentration, cs:
predictions of the three models: PB, JA and CM. The dashed lines denote the mean value
of α determined from the conductivity data (Fig. 7). (a) SDS; (b) CTAB, and (c) CPC.
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Another feature of the investigated problem is that the values of
the surface potential Φs calculated by using the different nonlinear
models (PB and JA) are practically the same; see Fig. 8. This is seen also
Table 4
Parameters used to calculate the curves in Figs. 8–10.

Surfactant Micelle radius, a (nm) Aggregation number, Nagg Reference for Nagg

SDS 2.27 67 [168]
CTAB 2.87 95 [169]
CPC 2.92 78a [87]

a From the comparison of the JA model with conductivity data at 20 mM CPC, Fig. 10c.
in Fig. 9, where the three nonlinear models, PB, JA and CM, are
compared. In fact, there are some differences that are reflected by the
values of α for the different models, see Eq. (3.10), however these
differences are so small that they are invisible in Figs. 8 and 9. The
reason for this behavior is that the surface potential is not low so
that the counterion term ∝ sinh(Φ), which is the same in Eqs. (4.10),
(4.15) and (4.18), determines Φ(r) near the surface. On the other
hand, the linearized models (Fig. 8) give different Φs, because the
linearization sinh(Φ)≈Φ is incorrect close to the micelle surface.

Fig. 9 shows that at greater distances the three models give
different predictions. In the range of distances shown in Fig. 9, JA
predicts the greatest Φ(r); CM predicts the smallest Φ(r), whereas
the prediction of the PB model is in the middle. At longer distances,
PB predicts the fastest decay of Φ(r) [we recall that κPBNκ and the
asymptotics is given by Eq. (4.20)], whereas in CM Φ(r) is defined
only inside the cell, a≤ r≤b. The long-range asymptotics of Φ(r) is
important, because it determines the interaction between themicelles
(particles) in the thin films, and the height of the stratification steps,
Δh; see Section 6.2.

Fig. 10 shows the dependence of the degree of micelle ionization,
α, on the surfactant concentration, cs. Because cs affects the con-
centration of the ionic species and the Debye screening parameter, κ,
it influences also the surface potentialΦs, and the degree of ionization,
α, see Eq. (3.10). As seen in Fig. 10,α decreases with the rise of cs (due
to increased counterion binding), but the variations in α are not too
large. For the three investigated surfactants, the JA model gives the
smallest α, whereas CM yields the largest α (Fig. 10). The value of α
strongly depends on the Stern binding parameter KSt. The reliable
determination of this parameter is crucial for the quantitative theory
considered in the present article. A very important result is that
all three models give α close to that independently determined from
conductivity (the dashed line in Fig. 10; see also Table 3), the latter
being an average value for the whole concentration region above
the CMC (see Fig. 7). This agreement supports the adequacy of the
approach based on the charge-regulation concept, expressed by
Eq. (3.10). Below, we will use the calculated α-vs.-cs dependencies,
like those shown in Fig. 10, to quantitatively interpret the experi-
mental h0(cs) and Δh(cs) curves; see Figs. 4 and 5.

5. Disjoining pressure and thickness of the final stable film

The equilibrium thickness, h0, of the thinnest final stable film can
be found by using the condition for mechanical equilibrium of the
film [170]:

Π h0ð Þ = Pc ð5:1Þ

where Π(h) is the theoretical dependence of disjoining pressure
Π on the film thickness h, and Pc is the experimental capillary
pressure. Eq. (5.1) expresses the fact that the applied sucking
pressure, Pc, that presses the two film surfaces against each other
is counterbalanced by the repulsion between the film surfaces,
expressed by the disjoining pressure Π. The value of Pc can be
estimated from the capillary pressure of the meniscus in the SE cell
[4]: Pc≈2σ/Rc, where Rc=1.5 mm is the inner radius of the used SE
cell, and σ is the surface tension of the surfactant solution at the
CMC; see Table 5.
Table 5
Solution's surface tension at the CMC, σ, and capillary pressure Pc.

Surfactant σ (mN/m) Pc (Pa)

SDS 39 52
CTAB 37 49
CPC 42 56
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Fig. 11. The final state of the film with thickness h0: Sketches of the two possible
models. (a) Micelles do not penetrate in the film. (b)Micelles are present in the film at a
concentration, which is much lower than that in the bulk solution.
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In the considered case (h=h0), the disjoining pressure is a
superposition of van der Waals attraction, Πvw, and electrostatic
repulsions, Πel [171,172]

Π hð Þ = Πvw hð Þ + Πel hð Þ: ð5:2Þ

The depletion interaction due to the micelles in the Plateau border
is taken into account in Πel (see below). The van der Waals com-
ponent can be accurately calculated from the equation

Πvw hð Þ = − A hð Þ
6πh3

: ð5:3Þ

The Hamaker parameter A(h) depends on the film thickness, h,
because of the electromagnetic retardation effect, as follows [173]:

A=2κhA0 exp −2κhð Þ+ 3hPνe

4π

n2
w−1

� �2
n2
w+1

� 	3=2 ∫
∞

0

1+2h̃z
� �
1+2z2
� 	2 exp −2h̃z

� �
dz:

ð5:4Þ

Here: hP=6.63×10−34 J⋅s is the Plank constant; νe=3×1015 Hz
is the main electronic adsorption frequency; nw≈1.333 is the
refractive indexes of water; c0=3.0×108 m/s is the speed of light in
vacuum; h̃≡ 2πνehnw n2

w + 1
� 	1=2

= c0 is a dimensionless thickness; z
is an integration variable; and A0 is the “zero-frequency” contribution
to A(h). In our case, the contribution of the term with A0 is negligible
because the orientation and induction interactions are screened by
the electrolyte [16], which is taken into account by the factor exp
(−2κh) in Eq. (5.4).

The electrostatic component of disjoining pressure equals the
difference between the osmotic pressures in the midplane of the film
and in the bulk solution [16,127,128,174]:

Πel = Posmð Þmidplane− Posmð Þbulk: ð5:5Þ

The bulk osmotic pressure can be estimated from the expression:

Posmð Þbulk = kT 2 c1∞+ c3∞ð Þ + Z+1ð Þcp∞
h i

: ð5:6Þ

The first term in the brackets in Eq. (5.6) expresses the con-
tributions from the surfactant monomers (c1∞), coions from the added
electrolyte (c3∞) and their counterions (the multiplier 2). The second
term in the brackets is the contribution of the micelles/particles
(cp∞) and of the counterions dissociated from them (Zcp∞).

We consider a liquid film of electrically charged surfaces that
contains micelles (or particles), which have the same sign of the
charge as the film surfaces. Such are the foam films from micellar
solutions of an ionic surfactant that are experimentally investigated in
Section 3; see Figs. 1–3. There are two possible models for the final
equilibrium state that is reached after the thinning of such a film.
Model A: micelles/particles are not present inside the film (Fig. 11a).
Indeed, most frequently, it is intuitively expected that the final state
of a stratifying film should not contain micelles/particles [5,16].
Model B: the micelles/particles are present inside the final film
(Fig. 11b). Model B is counterintuitive, but it should be noted that
the experimental final thickness, h0, is several times greater that
the micelle diameter, dH; compare Eqs. (2.1)–(2.3) with Fig. 4. Hence,
in principle the micelles could penetrate between the surfaces of a
film of thickness h0. However, the film surfaces strongly repel the
similarly charged micelles, so that their concentration inside the film
(if different from zero) should be rather low.

We carried out calculations using the two versions of the model
(Fig. 11a and b). The results show that the predictions of the model
corresponding to Fig. 11a do not agree with the experimental h0-vs.-cs
data. In contrast, the model from Fig. 11b agrees excellently with
these data, without adjusting any parameters. For this reason, here
we present only the latter model, which leads to the following
expression for the osmotic pressure in the film's midplane:

Posmð Þmidplane=kT c1∞+c3∞ð Þ eΦm +e−Φm
� �

+ Zcp∞e
Φm + cp∞e

−ZΦm
h i

:

ð5:7Þ

Correspondingly, the Poisson–Boltzmann equation can be pre-
sented in the form:

d2Φ
dx2

= 4πLB 2 c1∞ + c3∞ð Þ sinhΦ + Zcp∞ðeΦ−e−ZΦ
h �

�: ð5:8Þ

Here, the x-axis is perpendicular to the film surfaces and x=0
corresponds to the midplane of the film. To take a first integral,
we multiply Eq. (5.8) by 2dΦ/dx and integrate from x=0 to an
arbitrary x:

dΦ
dx

� �2
= 8πLBF Φ;Φmð Þ ð5:9Þ

F Φ;Φmð Þ≡ 2 c1∞+ c3∞ð Þ coshΦ− coshΦmð Þ+ Zcp∞ðeΦ−eΦm Þ
+ cp∞ðe−ZΦ−e−ZΦm Þ:

ð5:10Þ

In Eq. (5.9), the boundary condition (dΦ/dx)x=0=0 has been
taken into account. Furthermore, we take a square root of Eq. (5.9)
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Fig. 12. (a) Disjoining pressure, Π=Πel+Πvw, vs. the film thickness, h, calculated for
two surfactant concentrations, cs=20 and 50 mM SDS, as explained in the text. The
condition Π(h0)=Pc determines the theoretical equilibrium thickness h0 of the final
stable film. (b) Plots of h0 vs. cs: the points are data from Fig. 4; the solid lines are
predicted by the theory without using any adjustable parameters.
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and integrate from the midplane x=0 to the film surface at
x= h̃= 2:

2πLBð Þ1=2h̃ = ∫
Φs

Φm

F Φ;Φmð Þ½ �−1=2dΦ ð5:11Þ

where h̃ = h−ha is the thickness of the aqueous core of the film; h is
the full film thickness, including the two surfactant adsorption layers,
each of them of thickness ha/2; see Fig. 11; Φs is the electrostatic
potential at the film surface.

To calculate the electrostatic potential at the film surfaces, Φs, we
used the boundary condition that relates the derivative of surface
potential to the surface charge density [16,127,128]:

dΦ
dx j

x=h̃=2
= 4πLB Γ1−Γ2ð Þ ð5:12Þ

where Γ1 and Γ2 are the adsorptions of surfactant and counterions at
the film surface. Substituting dΦ/dx from Eq. (5.9) into the left-hand
side of Eq. (5.12), we obtain:

Γ1−Γ2 =
1

2πLB
F Φs;Φmð Þ

� �1=2
: ð5:13Þ

Eq. (5.13) represents a generalization of the Gouy equation, Eq. (3.7).
Numerically, it is convenient to seek the dependence Πel(h) in

parametric form, viz. Πel=Πel(Φm) and h=h(Φm). For a given Φm,
Eqs. (3.5), (3.6), (3.8) and (5.13) form a system determining a1s, a2s,
Γ1, Γ2 and Φs. We are using the same computational procedure as
in Section 3.2, with the only difference that Eq. (3.7) is replaced by
Eq. (5.13). The obtained value of Φs is substituted in Eq. (5.11) and h
(Φm) is determined by numerical calculation of the integral. In
addition,Πel(Φm) is calculated from Eqs. (5.5)–(5.7) for the sameΦm.
Thus, by varying Φm, we obtain the whole dependence Πel(h).

This proceduregeneralizes theknownDLVOprocedure [127,128,171]
in two respects: (i) presence of micelles (particles) in the bulk of solu-
tion is taken into account, and (ii) the more general boundary condition
of charge regulation is applied.

In our calculations, we used the following parameter values: KSt

was taken from Table 1; Z=αNagg, where Nagg is given in Table 4; α
was calculated by the JA model as in Fig. 10; Pc is from Table 5;
c1∞=CMC; c3∞=0 (no added salt); c2∞ is given by Eq. (4.6) and cp∞ —

by Eq. (4.8).
As an illustration, Fig. 12a shows the disjoining-pressure isotherms,

Π(h)=Πwv+Πel, for twoSDS concentrations, cs=20 and50 mM. The
isotherm at cs=50 mM corresponds to smaller film thicknesses
because of the higher ionic strength that suppresses the electrostatic
repulsion. The intersection point of each isotherm with the horizontal
line Π=Pc determines the value of h0 for the respective cs. The
results for h0 vs. cs thus obtained are shown with the solid lines in
Fig. 12b, where the points represent the respective experimental data
from Fig. 4. One sees that the theoretical curves excellently agree with
the experimental data; no adjustable parameters have been used.

If Φm=0.1 and Z=30, then exp(−ZΦm)≈0.05, i.e. the concen-
tration of micelles in the film of thickness h0 is only 5% of the bulk
micelle concentration cp∞; see the last term in Eq. (5.7). In other
words, in its final state of thickness h0, the film contains separate
micelles (Fig. 11b), which take part in the balance of osmotic
pressures between the film interior and the bulk solution. In contrast,
the film of thickness h1 (Fig. 1) contains a real monolayer of micelles,
whose counterion atmospheres are pressed against each other
(see below).

It should be noted that the model of a film where micelles or other
charged particles do not penetrate (the model A in Fig. 11a) can be
also realized, although at other experimental conditions. For exam-
ple, if a sufficient amount of electrolyte is added to the solution, the
obtained films would become so thin that micelles would be unable to
penetrate them.

If the model A is applied to the considered case of foam films from
micellar solutions of ionic surfactants without added salt, then the
calculated Π-vs.-h curves are shifted downwards with respect to the
curves in Fig. 12a, which have been obtained bymeans of themodel B.
This is due to the sucking osmotic pressure of the micelles (and their
dissociated counterions) in the Plateau border around a film that does
not contain micelles (model A).

6. Interpretation of the step height, Δh

6.1. Effective diameter of a charged particle (micelle)

In the case of nonionic surfactant, the micelles can be successfully
modeled as hard spheres. Then, the height of the step, Δh is very close
to the hard-sphere diameter [19,38,59,60]. As discussed in Section 3,
in the case of electrically charged particles an effective diameter,
deff, can be introduced. We compared the consequences of different
possible definitions of deff with the experimental data in Fig. 4, and
established that the only definition, which leads to agreement
between theory and experiment, is given by the expression:

2
3
π deffð Þ3 =

1
2
∫
∞

0

1− exp −u rð Þ
kT

� �� �
4πr2dr ð6:1Þ
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where u(r) is the energy of interaction between two charged particles.
From a statistical viewpoint, the right-hand side of Eq. (6.1) equals
the second virial coefficient, B2, in the expansion of pressure in powers
of the density [175]. As is known, B2 accounts for the two-particle
interactions. In the two-dimensional case, a similar expression was
proposed by Adamczyk and Weronski [176], which was successfully
applied to interpret data for the adsorption of charged particles at
solid surfaces [177–179].

To test Eq. (6.1), let us first consider the case of hard spheres:

u rð Þ = ∞ for r b 2a
0 for r N 2a :



ð6:2Þ

Substituting Eq. (6.2) in Eq. (6.1), we obtain that the effective
diameter is equal to the hard-sphere diameter, deff=2a, as it should be
expected. In the case of charged particles, instead of Eq. (6.2), we have:

u rð Þ = ∞ for r b 2a
uel rð Þ for r N 2a

:



ð6:3Þ

Here, uel(r) is the energy of electrostatic repulsion between two
particles. The substitution of Eq. (6.3) in Eq. (6.1) yields:

deff = 2a 1 +
3
2að Þ3 ∫

∞

2a

1− exp −uel rð Þ
kT

� �� �
r2dr

( )1=3

: ð6:4Þ

For uel≡0, Eq. (6.4) gives again deff=2a, as it should be.

6.2. Energy approach to the interpretation of Δh

To calculate deff from Eq. (6.4), we need an expression for uel(r).
The force of interaction between two charged particles immersed
in electrolyte solution can be estimated from the expression (see
Appendix B for details):

Fx =
kT

8πLB
∫
∞

−∞
∫
∞

−∞
Φ1 + Φ2ð Þ ∂

2 Φ1 + Φ2ð Þ
∂x2

dydz at x = 0: ð6:5Þ

In Eq. (6.5), the integration is carried out in the midplane between
two particles; see Fig. 13 for the notations. There, the electrostatic
potential has been assumed to be low, Φ|x=0≪1, so that the super-
position approximation can be applied, Φ=Φ1+Φ2 at x=0, where
Φ1 and Φ2 are the dimensionless electrostatic potentials created at a
distance L/2 by each of the two particles in isolation. Furthermore,
for a low potential in the midplane, Φ1 and Φ2 can be expressed by
the asymptotic Eq. (4.20). Then, the integrals in Eq. (6.5) can be
solved analytically, and we obtain the following expression for the
electrostatic force:

Fx =
kTa2Φ2

0

LBL
2 1+ κLð Þ exp −κ L−2að Þ½ � ð6:6Þ
Fig. 13. Sketch of two identical particles separated at a center-to-center distance L. The
x-axis of the Cartesian coordinate system passes through the particles' centers, whereas
the midplane coincides with the yz-plane.
where L is the center-to-center distance between the two particles; Fx
is the force exerted on particle 2, which is acting along the positive
direction of the x-axis (see Fig. 13); it has been assumed that the
two particles are identical. Integrating Eq. (6.6) with respect to L, we
obtain an asymptotic expression for the interaction energy uel:

uel Lð Þ
kT

=
a2

LBL
Φ2

0 exp −κ L−2að Þ½ �: ð6:7Þ

As demonstrated in Appendix B, Eq. (6.7) holds for both the PB
and JA models, for which κ is defined by Eqs. (4.12) and (4.17),
respectively. We recall thatΦ0 in Eq. (6.7) is the renormalized surface
potential that enters Eq. (4.20). Alternatively, Eq. (6.7) can be
expressed in terms of the renormalized particle charge, Z0, as follows.
First, we formally substitute Φ(r) from Eq. (4.20) into the boundary
condition, Eq. (4.4) with Z≡Z0, which yields Φ0=Z0LB / [(1+κa)a].
Next, we substitute the latter expression for Φ0 in Eq. (6.7) and use
the definition for LB in Eq. (3.3); the result reads:

uel Lð Þ = Z2
0e

2

1 + κað Þ2
exp −κ L−2að Þ½ �

εL
: ð6:8Þ

Eq. (6.8) is widely used; see e.g. Refs. [173,178,179]. However, it
should be noted that it is an asymptotic equation that is valid in the
case of low potential in the midplane, Φ|x=0≪1. Moreover, Z0 is
the renormalized, rather than the true surface charge.

Setting r=L/2 in Eq. (4.20), we obtain:

Φ L = 2ð Þ = Φ0
2a
L

exp −κ L = 2−að Þ½ �: ð6:9Þ

Next, we express Φ0 from Eq. (6.9) and substitute the result in
Eq. (6.7); after some transformations, we obtain:

uel rð Þ
kT

=
r

4LB
Φ r=2ð Þ½ �2 ð6:10Þ

(r=L). In our numerical calculations, the computed Φ(r) curves
(like those shown in Figs. 8 and 9; see Appendix A) were converted
into uel(r) dependencies with the help of Eq. (6.10); next, uel(r) was
substituted in Eq. (6.4) to calculate deff by numerical integration. The
results are as follows.

Illustrative uel(r)-dependencies are shown in Fig. 14a for the
interaction between two CPC micelles at different surfactant concen-
trations, cs. The JAmodel has been used.With the rise of cs, κ increases,
see Eq. (3.3), and consequently the energy of electrostatic repulsion,
uel(r), decreases. In addition, Fig. 14b shows the respective values of
the function

f rð Þ = 1− exp −u rð Þ
kT

� �
; ð6:11Þ

which is present in the integrand of Eq. (6.1); see also Eq. (6.3). At
shorter interparticle distances (2b r/ab3), where uel/(kT)≫1, we
have f(r)≈1; compare Fig. 14a and b. In other words, f(r) and the
integral in Eq. (6.4) that expresses deff are not sensitive to the exact
value of uel in the region of short distances and high potentials.
However, both f(r) and deff are sensitive to the behavior of uel at longer
distances (r/aN3) and low potentials, where the asymptotic expres-
sions, Eqs. (6.7) and (6.10), are accurate. The latter fact explains why
deff can be accurately calculated using only the asymptotics of uel(r) at
not-too-short distances, despite the circumstance that Eq. (6.1)
contains integration over all distances (0b rb∞).

Fig. 15a compares the experimental values of Δh for SDS (see
Fig. 4) with the theoretical curves Δh=deff(cs) calculated using
Eqs. (6.4) and (6.10), the latter with Φ(r/2) computed in the
framework of two different models: PB and JA (see Section 4). It is
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Fig. 14. (a) Dimensionless energy of electrostatic repulsion between two micelles, uel
(r)/kT, calculated from Eq. (6.10) by the JA model for several CPC concentrations as
explained in the text. (b) The function f(r) calculated from the above uel(r)/kT curves
with the help of Eq. (6.11).

Fig. 15. Plots of the step height, Δh, vs. the surfactant concentration, cs. The points are
data from Fig. 4; the solid lines are theoretical curves calculated by means of the JA
model without using any adjustable parameter. (a) Comparison of the data for SDS with
the predictions of the JA model (solid line) and PBmodel (dashed line). (b) Comparison
of the data for CTAB and CPC with the predictions of the JA model.
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seen that the theoretical curve predicted by the JA model is in
excellent agreement with the experiment (no adjustable parameters).
In contrast, the PB model predicts considerably smaller Δh, which can
be explained with the stronger screening of the electrostatic in-
teractions because of the greater value of the screening parameter κPB;
compare Eqs. (4.12) and (4.17).

Fig. 15b shows that an excellent agreement between the theory
based on the JA model and the experiment is present also in the cases
of CTAB and CPC (no adjustable parameters). For all three surfactants,
the values of Nagg have been taken from Table 4, whereas the α(cs)
dependencies are those in Fig. 10 for the JA model.

In general, the results for Δh (Fig. 15) indicate that the JA model
adequately describes the interaction between the micelles, whereas
the PB model underestimates the interaction energy. We did not
use the cell model to calculate deff, because Eq. (6.4) includes inte-
gration over the whole range of distances, whereas the cell model
gives Φ(r) only inside the cell, i.e. for ab rbb. If the definition of Φ
is extended as Φ(r)=0 for rNb, then in view of Fig. 9 and Eq. (6.10)
the CM would predict the smallest deff among the three considered
models.

6.3. Osmotic approach to the interpretation of Δh

Another, completely different approach to the interpretation of
the magnitude, Δh, of the stepwise transitions in the film thickness
is related to the observation by Nikolov et al. [3–5] that the
experimental values of Δh for micellar SDS solutions is approximately
equal to the average distance, δl, between two micelles in the bulk of
solution:

Δh≈δl≡ cp∞
� �−1=3

=
cs−CMC

Nagg

 !−1=3

; ð6:12Þ

see Table 1 in Ref. [3], or Table III in Ref. [4]. Later, analogous results
have been obtained by Walz et al. [26,27] for silica nanoparticles. The
most probable explanation of this experimental finding is the
following. Because of the large number of dissociated counterions,
the micelles (the charged particles) give a considerable contribution
to the osmotic pressure of the solution. The latter is much greater than
the applied capillary pressure Pc (see Table 5) and the van der Waals
component of disjoining pressure, Πvw, which is also small in view of
the larger thickness of films that contain charged micelles. For this
reason, at equilibrium the osmotic pressures of themicelles in the film
and in the bulk must be approximately equal, and consequently, the
respective average micelle concentrations have to be practically the
same.

From Eq. (6.12), we obtain the following expression for themicelle
mean aggregation number:

Nagg≈ cs−CMCð Þ Δhð Þ3: ð6:13Þ

With the help of Eq. (6.13), we calculated Nagg substituting the
experimental Δh at different surfactant concentrations cs for the three
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Fig. 16. Plot of Δh vs. ϕ−1/3, where ϕ is the volume fraction of silica particles. The points
are data from Fig. 3 in Ref. [36]. The straight line is drawn in accordance with Eq. (6.14).
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investigated surfactants (Fig. 15). The used values of CMC are 8, 0.9
and 1 mM, respectively, for SDS, CTAB and CPC. The results are given
in Table 6, where the last column contains literature data for Nagg. As
seen, the predictions of Eq. (6.13) agree well with the literature data.

Eq. (6.12) implicitly assumes that the micelles are spherical, so
that the method based on Eq. (6.13) is applicable only to spherical
micelles. From this viewpoint, the largest values of Nagg for CTAB in
Table 6 might correspond to elongated micelles, so that the calculated
Nagg might not be so accurate.

In general, Eq. (6.13) predicts that Nagg increases with the rise of
surfactant concentration (Table 6), which was found for nonionic
surfactants [19,38] and for SDS as well [69]. The predictions of this
equation should be tested against additional data for Nagg obtained by
other methods.

Another way to test the osmotic approach is to use experiments
with solid particles, for which the complications with the variable
micelle aggregation number do not exist. Such experiments have
been already carried out by colloidal-probe-atomic-force microscopy
(CP-AFM) and by Monte Carlo (MC) simulations [36], and it was
established thatΔh~(ϕ)−1/3 withϕ being the particle volume fraction.
(In the CP-AFM experiments, Δh is the period of the measured
oscillatory force.) The diameter of the used silica particles was
2a=25 nm in [36]. In view of Eq. (6.12), we can predict the coefficient
in the dependence Δh~(ϕ)−1/3, viz.

Δh = cp∞
� �−1=3

=
4
3
π

� �1=3
a ϕ−1=3 ≈ 1:612 aϕ−1=3

: ð6:14Þ

To check this prediction, in Fig. 16we have plotted (as Δh vs. ϕ−1/3)
the data from Fig. 3a in Ref. [36] from both the CP-AFMmeasurements
and MC simulations. As seen in Fig. 16, these data excellently agree
with a straight line of coefficient 1.612a. This is an additional argument
in favor of the osmotic approach.

The method based on the osmotic approach, namely, Δh
measurements and use of Eq. (6.13), could become one of the most
convenient and reliable methods for determining the aggregation
number of spherical micelles in ionic surfactant solutions.

6.4. Discussion

The energy approach to the interpretation of Δh (Sections 6.1
and 6.2) is based on the relation Δh=deff, where the effective
diameter of the micelles (charged particles) is determined by the
energy of electrostatic interparticle repulsion through the second
virial coefficient; see Eq. (6.4). Following this approach, we were able
Table 6
Micelle aggregation number, Nagg, calculated from Eq. (6.13) vs. literature data for Nagg.

cs (mM) Δh (nm) Nagg from Eq. (6.13) Nagg from literature

SDS
30 15.32 48 50 [68], 59 [69]
40 14.71 61 64 [69]
50 13.72 65 64 [68,69]
100 10.55 65 65 [77], 70 [68]

CTAB
10 25.85 95 88 [77], 95 [169]
20 21.77 119 –

30 19.86 137 100 [169]
40 17.95 136 –

50 16.57 135 139 [85], 140 [169]

CPC
10 21.18 52 45–90 [87]
20 18.72 75 78 (Table 4)
30 16.61 80 –

40 15.80 93 –

50 14.64 93 87 [90]
to interpret the data for Δh vs. cs (Fig. 15) using a fixed aggregation
number for all cs values (see Table 4).

The osmotic approach to the interpretation of Δh (Section 6.3),
which is based on the relationΔh=(cp∞)−1/3, relates the stratification
steps to the mean distance between the micelles in the bulk and gives
an increase in Nagg with the rise of surfactant concentration, cs
(Table 6).

It is interesting that both approaches are consistent with a simple-
cubic-lattice packing of the micelles in the film. Indeed, if the packing
of the micelles was hexagonal, then we should have Δh=(2/3)1/2deff
[40]. Likewise, the relation δl=(cp∞)−1/3 in Eq. (6.12) also presumes
simple-cubic-lattice packing. For the time being, it is unclear whether
this result is just a feature of the considered models or it reflects the
real packing structure of the charged particles within the plane-
parallel thin films. The Monte Carlo simulations of the structuring of
charged colloid particles confined between two walls gave simple
cubic packing for mica walls with surface potential ψs=160 mV,
however, hexagonal packing was obtained for silica walls with
ψs=80 mV [58].

As already mentioned, deff=δl for the experimental systems
studied by us. However, if electrolyte is added to the micellar
surfactant solution, deff should decrease because the micelle counter-
ion atmosphere shrinks. In contrast, δl should remain (almost)
constant if the variation of Nagg with the salt concentration is not so
significant for spherical micelles. To illustrate the effect of electrolyte,
in Fig. 17 we have plotted δl=(cp∞)−1/3 and deff computed by means
of the full procedure described in Section 6.2. The calculations are
carried out for micellar solutions of CPC, using the respective values of
KSt, a and Nagg from Tables 1 and 4.

As seen in Fig. 17, deff=δl at the lower concentrations of NaCl. At
higher salt concentrations, we have deffbδl. Thus, deff becomes equal to
90% of δl at 0.71 and 3.9 mMNaCl, respectively, for cs=10 and 50 mM
CPC. Our results (the agreement between the JA-based theory and
the experiment in Figs. 12b and 15 without using any adjustable
parameters) indicate that in the first region, where deff=δl, the
micellar solution behaves as a jellium, i.e. the concentration of the
micelles remains uniform even if an electric-double-layer field is
present, as sketched in Fig. 18a. In other words, our experimental data
(Figs. 3 and 4), corresponding to c3∞=0, belong to the jellium region.
In this region, the micelles together with their counterion atmo-
spheres could be considered as soft, compressible particles, which can
accommodate their diameter, deff, to the available distance between
the particles, δl=(cp∞)−1/3, which is determined by the micelle
concentration (Fig. 18a). For this reason, in the jellium region the JA
model is the best among the threemodels considered in Section 4. The
term “jellium” originates from the quantum theory of electron gas in
metals (solid state physics) [180] and it was introduced in colloid
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Fig. 17. Effect of NaCl concentration, c3∞, on the effective diameter, deff, of the
counterion atmospheres of CPC micelles at two surfactant concentrations denoted in
the figure: Theoretical curves calculated using the values of KSt, a and Nagg for CPC
(details in the text). At lower salt concentrations, deff coincides with the mean distance
between the micelles, δl=(cp∞)−1/3 (jellium region). At higher salt concentrations, we
have deffbδl (Boltzmann region).
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science (interactions between charged particles in suspensions) by
Beresford-Smith et al. [61,62].

The region with deffbδl in Fig. 17 corresponds to a system of
particles, in which counterion atmospheres are not pressed to each
other, i.e. the mean distance between the particles, δl, is greater than
the effective diameter, deff, of their counterion atmospheres (Fig. 18b).
If a double-layer electric field is present, the particles (micelles)
will obey the Boltzmann distribution. This Boltzmann region can be
realized at sufficiently high concentrations of added electrolyte
Fig. 18. (a) In the jellium region (deff=δl), the micelles together with their counterion
atmospheres could be considered as soft, compressible particles, which accommodate
their diameter, deff, to the available distance between the particles that is determined
by the micelle concentration, δl=(cp∞)−1/3. If the applied electric field ψ is not too
strong, it does not affect the uniform distribution of the micelles so that the jellium
approximation is applicable (see Section 4.3). (b) In the Boltzmann region (deffbδl), the
effective diameter of the micelles, deff, is smaller than the average distance between
them, δl, so that they obey the Boltzmann distribution in external field, ψ.
(Fig. 17), or at sufficiently low particle (micelle) concentrations
[35]. As a rule, in such cases stepwise thinning of liquid films
(stratification) is not observed. Therefore, we could hypothesize that
the boundary between the “jellium” (deff=δl) and “Boltzmann”
(deffbδl) regions corresponds to the boundary between stratifying
and non-stratifying films.

7. Summary and conclusions

In this article, we investigated the stepwise thinning of aqueous
films containing electrically charged colloidal particles, in our case —

surfactant micelles. Although the paper is focused on micellar
solutions, most of the results are applicable also to films from nano-
particle suspensions.

To test different theoretical approaches, we obtained experimental
data for the stepwise thinning of free foam films from solutions of
three ionic surfactants (see Figs. 2 and 3). The film thickness at each
of the film's metastable states was determined as a function of the total
surfactant concentration (Fig. 4). The experiment indicates that heights
of the steps are equal: h3−h2≈h2−h1≈h1−h0=Δh. Thus, the
theoretical problem is reduced to the interpretation of the experi-
mental dependencies of Δh and h0 on the surfactant concentration cs.

Because the electrostatic interactions between the micelles play a
central role, it is important to know the degree of micelle ionization,
α. However, different experimental methods give rather different
values of α [64]. The problem can be solved by using the Stern
model, which considers the binding (condensation) of counterions
at the charged groups on the micelle surface. The values of the Stern
constant, KSt, used in this paper (Table 1) are determined from fits of
data for the surface tension as a function of the surfactant and
salt concentrations (see e.g. Fig. 6). After that, α was calculated as a
function of cs (Fig. 10). The obtained values of α are close to those
determined by electrolytic conductivity experiments (Fig. 7).

To calculate α from KSt and to interpret the experimental h0 and
Δh, an adequate theoretical model has to be applied. The applicability
of three models was tested. The first one is the conventional Poisson–
Boltzmann (PB) model that assumes Boltzmann distribution of the
micelles in the electric field of a selectedmicelle in the solution. In this
case, the Debye parameter κPB includes a contribution from the
micelles as multivalent ions, Eq. (4.12). The second is the jellium-
approximation (JA), which assumes a uniform distribution of the
micelles around each selected micelle in the solution. In this case, the
Debye parameter κ includes contributions only from the small
ions, Eq. (4.17). The third is the cell model (CM), which considers
separately each micelle together with its counterion atmosphere as a
cell of volume equal to the volume per micelle in the solution.

The best agreement with the experiment was obtained with the JA
model, which gives excellent agreement with the experimental
data for h0(cs) and Δh(cs) without using any adjustable parameters;
see Figs. 12b and 15. In contrast, the PB model is not in quantitative
agreementwith the experiment; see e.g. Fig. 15a. From this viewpoint,
the values of α predicted by the JA model can be considered as the
most realistic. In contrast, the CM model gives the worst predictions
for α among the three investigated models (Fig. 10).

The thinnest stable films (those of thickness h0 in Fig. 4), which
have been experimentally observed, are thick enough to contain
surfactant micelles. The comparison of theory and experiment with
respect to h0 (Section 5) reveals that these films really contain
micelles (at a very low concentration) to ensure the osmotic balance
between the film and the bulk solution. Furthermore, two approaches
to the interpretation of the step height Δh have been proposed. In the
energy approach, Δh is identified with the effective diameter of the
charged particle, deff, which is determined by the second virial
coefficient; see Sections 6.1 and 6.2. In the osmotic approach, Δh=δl,
where δl=(cp∞)−1/3 is themean distance between twomicelles in the
bulk (Section 6.3).

image of Fig.�18
image of Fig.�17
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For the considered experimental systems (no added salt), the
energy and osmotic approaches give coinciding predictions,
which coincide also with the experimental height of the step, i.e.
deff=δl=Δh; see Figs. 15b and 17. This coincidence and the excellent
performance of the JA model mean that the micellar phase in the
bulk of solution and in the liquid film represents a jellium, i.e. the
electrostatic repulsion between the micelles (particles) leads to their
uniform distribution. In this respect, the micelles, together with
their counterion atmospheres behave as soft balls that adjust their
size in accordance with the volume per micelle, which equals the
inversemicellar number density (Fig. 18a). However, upon addition of
electrolyte (or at low micelle concentrations) we have deffbδl
(Fig. 17), which means that the counterion atmospheres of the
micelles are no longer pressed against each other, and then the
solution cannot be considered as a jellium (Fig. 18b). This is the limit
of applicability of themodels presented here, but as a rule, beyond this
limit stepwise film-thickness transitions are not experimentally
observed.

In brief, the predictions of the energy and osmotic approaches to
stratification coincide because (and wherever) the dispersion of
charged particles behaves as a jellium. Conversely, it is possible to
judge whether a jellium distribution is present by the coincidence of
the predictions of these two approaches with respect to Δh.

Finally, it is worthwhile mentioning that in the jellium region,
where stepwise transitions are observed, the aggregation number of
spherical charged micelles can be determined from the experimental
step height, Δh; see Table 6 and Eq. (6.13).
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Appendix A. Principles of the numerical procedure for the
electrostatic potential

Let us consider the equation:

∂Φ
∂τ =

∂2Φ
∂χ2 +

2
χ
∂Φ
∂χ −Fb α;Φð Þ: ðA:1Þ

Here, as usual, Φ is the dimensionless electrostatic potential,
Eq. (4.3); χ≡r/a is a dimensionless radial distance; τ is a dimension-
less numerical time of iterations, and Fb represents the right-hand side
of either of Eqs. (4.10), (4.15) or (4.18). The stationary solution,
for which the left-hand side of Eq. (A.1) is equal to zero, represents
the solution of our boundary problem. The boundary condition at the
particle (micelle) surface is:

∂Φ
∂χ = Fs αð Þ at χ = 1 ðA:2Þ

where Fs(α)=−αNaggLB/a for ionic micelles; see Eq. (4.4). In the case
of PB and JA models, to avoid the use of a boundary condition at
infinity, we employed Eq. (4.20) that expresses the known asymptotic
solution for Φ≪1. Differentiating Eq. (4.20) with respect to r, we
obtain the following linear boundary condition:

dΦ
dr

+ κ +
1
r

� �
Φ = 0 at r = a∞ for JA and PB ðA:3Þ

where κ is given by Eq. (4.17) for the JA model, and κ=κPB for the
PB model, Eq. (4.12); in our computations, a∞, was chosen in such a
way that [exp(−κa∞)] /(κa∞)=10–16. In the case of CM, the boundary
condition at the outer cell boundary reads

dΦ
dr

= 0 at r = b for CM: ðA:4Þ

The boundary conditions, Eqs. (A.3) and (A.4), can be presented in
the following general form

∂Φ
∂χ = βΦ at χ = b̃≡ a∞

a
or

b
a

ðA:5Þ

where b̃ is the boundary of the numerical domain and β is a constant
(β=−κa∞−1 or 0).

To avoid the slow oscillatory relaxation of the Crank–Nicholson
scheme,weused the idea of theKeller boxnumerical scheme [181,182]
and replaced the second-order differential equation with a system of
two first-order equations for the functions X and Y defined as follows:

X ≡Φ and Y ≡ ∂Φ
∂χ : ðA:6Þ

With the help of Eq. (A.6), we bring Eq. (A.1) in the form:

∂X
∂τ =

∂X
∂χ +

2
χ
Y−Fb α;Xð Þ ðA:7aÞ

∂X
∂χ = Y ðA:7bÞ

for 1bχb b̃ and τ N0, with boundary conditions:

Y = Fs αð Þ at χ = 1 and τ N 0 ðA:8aÞ

Y = βX at χ = b̃ and τ N 0: ðA:8bÞ

As initial conditions (at τ=0), we used the respective solutions of
the linearized problems, X0(χ) and Y0(χ).

In what follows, the subscripts k, k+1/2, and k+1 denote the
values of a given function calculated at timemoments kΔτ, (k+1/2)Δτ,
and (k+1)Δτ, respectively, where Δτ is the numerical time step.
Eq. (A.7a) is replaced with its second-order-precision difference
scheme:

Xk+1−Xk

Δτ
=

∂Xk+1=2

∂χ +
2
χ
Yk+1=2−Fb αk+1=2;Xk+1=2

� �
ðA:9Þ

for 1bχb b̃. Furthermore, the functions in Eq. (A.9) are calculated in
the half-time node, keeping the second order precision of the
numerical scheme:

Xk + 1−Xk

Δτ
=

1
2
∂Xk + 1

∂χ +
1
2
∂Xk

∂χ +
Yk + 1 + Yk

χ

−Fb
αk + 1 + αk

2
;
Xk + 1 + Xk

2

� � ðA:10Þ

for 1bχb b̃. The nonlinear function Fb in the right-hand side of the
latter equation is linearized by using the Newtonmethod with second
order precision:

Fb
αk + 1 + αk

2
;
Xk + 1 + Xk

2

� �
= Fb jαk;Xk

+
∂Fb
∂α j

αk ;Xk

∂α
∂X j

Xk 1ð Þ
Xk + 1 1ð Þ−Xk 1ð Þ

2

+
∂Fb
∂X j

αk ;Xk

Xk + 1−Xk

2
:

ðA:11Þ
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From Eqs. (A.7b) and (A.10), along with Eq. (A.11), we obtain
the following linear system of equations for the functions at the
moment (k+1)Δτ:

Xk + 1−Xk

Δτ
=

1
2
∂Xk + 1

∂χ +
1
2
∂Xk

∂χ +
Yk + 1 + Yk

χ
−Fb jαk ;Xk

−∂Fb
∂α j

αk ;Xk

∂α
∂X j

Xk 1ð Þ
Xk + 1 1ð Þ−Xk 1ð Þ

2
−∂Fb

∂X j
αk ;Xk

Xk + 1−Xk

2
ðA:12Þ

∂Xk+1

∂χ = Yk+1 ðA:13Þ

for 1bχb b̃. The boundary condition, Eq. (A.8a), can be written at the
half-time step:

Yk+1=2 = Fs αk+1=2

� �
at χ = 1: ðA:14Þ

In Eq. (A.14), the functions calculated in the half-time node can be
replaced with their mean values keeping the second order precision:

Yk+1+Yk
2

= Fs
αk+1+ αk

2

� �
at χ = 1: ðA:15Þ

In the right-hand side of the latter equation, we expand Fs in
analogy with Eq. (A.11):

Yk+1 1ð Þ+Yk 1ð Þ = 2Fs jαk ;Xk

+
∂Fs
∂α j

αk

∂α
∂X j

Xk 1ð Þ
Xk+1 1ð Þ−Xk 1ð Þ� �

:

ðA:16Þ

The boundary condition Eq. (A.8b) can be expressed in the form:

Yk+1 b̃
� �

= βXk + 1 b̃
� �

: ðA:17Þ

The linear system of equations, Eqs. (A.12)–(A.13), is solved by
introducing a uniformgridwith respect toχ, with a stepΔχ=(b̃−1)/N,
where N is the number of space intervals. We are using superscripts n,
n+1/2, and n+1 to denote the function calculated at nodes 1+nΔχ,
1+(n+1/2)Δχ, and 1+(n+1)Δχ, respectively. Thus, for the half-
space node Eq. (A.12) acquires the form:

1
2
∂Fb
∂X j

αk ;Xk

+
1
Δτ

 !
Xn+1 = 2
k+1 −Xn+1 = 2

k

� �
=

Xn+1
k+1−Xn

k+1

2Δχ
+

Xn+1
k −Xn

k

2Δχ

+
Yn + 1=2
k + 1 + Yn + 1=2

k

χn + 1=2 −Fb jαk ;Xk

−1
2
∂Fb
∂α j

αk ;Xk

∂α
∂X j

Xk 1ð Þ
X 0

k+1−X0
k

� �
ðA:18Þ

for n=0, 1, 2, …, N−1. Replacing the values at the half-space node
with their mean values, we obtain:

1
4
∂Fb
∂X j

αk ;Xk

+
1

2Δτ

 !
Xn+1
k+1 + Xn

k+1−Xn+1
k −Xn

k

� �
=

Xn+1
k+1−Xn

k+1

2Δχ
+

Xn+1
k −Xn

k

2Δχ

+
Yn+1
k+1 + Yn

k+1 + Yn+1
k +Yn

k

2χn+1=2 −Fb jαk ;Xk
−1

2
∂Fb
∂α jαk ;Xk

∂α
∂X jXk 1ð Þ X0

k+1−X0
k

� �
ðA:19Þ

for n=0, 1, 2, …, N−1. Likewise, Eq. (A.13) acquires the form:

Xn+1
k+1−Xn

k+1

Δχ
=

Yn+1
k+1 + Yn

k+1

2
for n = 0;1;2;…;N−1: ðA:20Þ

The matrix of the linear system of equations, Eqs. (A.16), (A.17),
(A.19) and (A.20), has a three-diagonal form with a nonzero first
column, because of the termwith Xk+1
0 in Eq. (A.19). There is a simple

and exact rule for inverting such matrices, which was used in our
program. The numerical method fast converges to the stationary
solution, which represents the solution of the considered boundary
problem. To achieve a good precision, we used a large number of
intervals, N=105.

Appendix B. Derivation of the expression for the interaction force

Let us consider two identical spherical particles separated at a
center-to-center distance L, see Fig. 13. The origin of the Cartesian
coordinate system is located in the middle between the particles,
so that their centers have coordinates (−L/2,0,0) and (L/2,0,0).
The electric force, F, acting on the particle 2 (Fig. 13) is given by the
expression:

F = ∫
S

P⋅ndS ðB:1Þ

n is the running unit normal vector to the surface S of this particle; the
Maxwell pressure tensor, P, is defined as follows [126]:

P ≡ p +
ε
8π

∇ψ⋅∇ψ
� �

U− ε
4π

∇ψ∇ψ ðB:2Þ

where U is the spatial unit tensor; ∇ is the del operator, and p is the
scalar pressure. As before, ψ is the electrostatic potential and we
assume that the small ions are monovalent, whereas the particles
(micelles) have a charge of magnitude Z (in electronic-charge units).

(a) Poisson Boltzmann (PB) model. In this model, the pressure p and
the bulk charge density ρb are given by the expressions:

p−p0
kT

= 2 CMC + c3∞ð Þ coshΦ + Zcp∞e
Φ + cp∞e

−ZΦ ðB:3Þ

ρb
ze

= −2 CMC + c3∞ð Þ sinhΦ−Zcp∞e
Φ + Zcp∞e

−ZΦ
: ðB:4Þ

Here, p0 is a constant pressure; Φ is the dimensionless surface
potential defined by Eq. (4.3); z=+1 or −1, respectively, for
positively or negatively charged particle (micelle); with this defini-
tion, we have Φ≥0. With the help of Eqs. (B.2)–(B.4), one can verify
that the equation ∇⋅P=0 is equivalent to the Poisson equation,
Eq. (4.1). In other words, the condition for local mechanical
equilibrium, ∇⋅P=0, is fulfilled. Using the latter equation and the
Gauss–Ostrogradsky divergence theorem, it can be proven that the
integration in Eq. (B.1) over the surface of the particle 2 can be
replaced by integration over the midplane, i.e. the yz-plane (Fig. 13):

F = ∫
∞

−∞
∫
∞

−∞
P⋅ex−p∞exð Þdydz ðB:5Þ

where p∞ is the scalar pressure at a large distance from the particle
(micelle) and ex is the unit vector of the x-axis.. Because of the
symmetry of the system only the x-component of F is different from
zero, and then Eq. (B.5) reduces to

Fx = ∫
∞

−∞
∫
∞

−∞
Pxx−p∞ð Þdydz

= ∫
∞

−∞
∫
∞

−∞
p−p∞ +

ε
8π

∂ψ
∂y

� �2

+
ε
8π

∂ψ
∂z

� �2
" #

dydz at x = 0:

ðB:6Þ

Integrating by parts, we obtain:

Fx = ∫
∞

−∞
∫
∞

−∞
p−p∞−

εψ
8π

∂2ψ
∂y2

+
∂2ψ
∂z2

 !" #
dydz at x = 0: ðB:7Þ
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Using the Poisson equation, Eq. (4.1), we bring Eq. (B.7) in the
form:

Fx = ∫
∞

−∞
∫
∞

−∞
p−p∞ +

ρbψ
2

+
εψ
8π

∂2ψ
∂x2

Þ
" #

dydz at x = 0: ðB:8Þ

At sufficiently large distances between the particles, the values of
the dimensionless potential in the midplane between the particles
are small, so that we can expand Eqs. (B.3) and (B.4) in a series for
Φ|x=0≪1:

p−p∞ = kT 2 CMC + c3∞ð Þ + Zcp∞ + Z2cp∞
h iΦ2

2
ðB:9Þ

ρb = −ze 2 CMC + c3∞ð Þ + Zcp∞ + Z2cp∞
h i

Φ ðB:10Þ

at x=0. Substituting Eqs. (B.9) and (B.10) into Eq. (B.8), we establish
that the contributions from the terms with p–p∞ and ρb cancel each
other, and then Eq. (B.8) acquires the form:

Fx =
kT

8πLB
∫
∞

−∞
∫
∞

−∞
Φ
∂2Φ
∂x2

dydz at x = 0: ðB:11Þ

(b) Jellium approximation (JA). In this model, the bulk charge
density ρb is given by the expression:

ρb
ze

= −2 CMC + c3∞ð Þ sinhΦ−Zcp∞e
Φ + Zcp∞: ðB:12Þ

Substituting Eq. (B.2) into the local hydrostatic equilibrium
equation ∇⋅P=0, and using Eqs. (4.1) and (B.12), we obtain the
expression for the pressure, p in the framework of the JA model:

p−p0
kT

= 2 CMC + c3∞ð Þ coshΦ + Zcp∞e
Φ−Zcp∞Φ: ðB:13Þ

Because the relationship ∇⋅P=0 is fulfilled, Eqs. (B.5)–(B.8) hold
again. Expanding Eqs. (B.12) and (B.13) in the midplane between the
two particles for Φ|x=0≪1, we obtain:

ρb = −ze 2 CMC + c3∞ð Þ + Zcp∞
h i

Φ ðB:14Þ

p−p∞ = kT 2 CMC + c3∞ð Þ + Zcp∞
h iΦ2

2
ðB:15Þ

at x=0. Substituting Eqs. (B.14) and (B.15) into Eq. (B.8), we establish
again that the contributions from the terms with p–p∞ and ρb cancel
each other, and Eq. (B.8) reduces to Eq. (B.11). In other words,
Eq. (B.11) holds for both the PB and JA models.

Insofar as the electrostatic potential in the midplane has been
assumed to be low, we can apply the superposition approximation,
Φ=Φ1+Φ2, where Φ1 and Φ2 are the dimensionless electrostatic
potentials created at a distance L/2 by each of the two particles in
isolation. Substituting Φ=Φ1+Φ2 in Eq. (B.11), we obtain the
expression for the interaction force, Eq. (6.5).
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