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This work presents a generalized lubrication approximation of the drainage and relaxation of thin liquid
films with tangentially mobile surfaces. The proposed model accounts for the dynamic effects and the
role of surface forces of intermolecular origin. The van der Waals and hydrophobic attractive and the elec-
trostatic and steric repulsive components of the disjoining pressure are included in the numerical calcu-
lations of the dynamics and relaxation of one-dimensional films. Different regimes of film drainage are
discussed: regular and unstable mechanisms of thinning depending on the magnitude of the Reynolds
number; pimple formation in the presence of large enough attractive surface forces; and stabilizing
effects of the disjoining pressure repulsive components. In the case of relaxation, it is proven that the dis-
turbances in the film thickness: decrease exponentially to the equilibrium state without taking into
account the role of the disjoining pressure; increase very fast to the point of film rupture in the presence
of attractive surface forces; oscillate with exponentially decreasing amplitudes towards the state of stable
equilibrium when the electrostatic and steric repulsive forces are significant.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The modeling of thin liquid film drainage and stability plays an
important role for the thorough comprehension of the emulsion
and foam formation and stability under dynamic and static condi-
tions [1–4]. Depending on the magnitude of hydrodynamic forces
[2–5], the collision of two emulsion droplets or foam bubbles
may be accompanied by deformation, more specifically flattening
in the zone of contact and subsequent dimple formation. At close
distances between interfaces surface forces of intermolecular ori-
gin (namely the disjoining pressure [6]) become active and deter-
mine the final stage of film formation. When the attractive
components of the disjoining pressure are predominant, the film
is unstable and ruptures; if the repulsive forces prevail, an equilib-
rium thin film is formed between the colliding fluid particles. In
addition the fluid phases usually contain different kinds of surface
active components: surfactants, protein isolates, polymers, etc. [7].
Surfactants not only influence in different ways the magnitude of
the surface forces, but also create gradients of the interfacial ten-
sion (Marangoni effect) and give rise to surface dilatational and
shear viscosities. The interfacial rheology hinders the mobility of
interfaces and reduces the rate of their approach.
ll rights reserved.

).
The problem of near-contact motion of drops was solved
numerically using the Stokes equations written for the bulk phases
and taking into account the interfacial rheology of insoluble surfac-
tant monolayers [8,9]. The effect of the van der Waals attraction
and the electrostatic repulsion components of the disjoining pres-
sure on the drainage and rupture of a film between drops was stud-
ied by Chesters et al. [9] and Blawzdziewicz et al. [10]. These
models are too complex for systematic investigation of the differ-
ent factors affecting the behavior of emulsion systems: they are
not applicable for films formed in frames; they are only valid when
the inertia terms in the momentum balance equations are negligi-
ble, as the Reynolds number is formally substituted by zero. Other
simpler models are based on the lubrication approximation
[5,7,11,12] when the local film thickness is assumed to be much
smaller than the lateral dimensions. These models are developed
for different kinds of surfactants (ionic and nonionic), different re-
gimes of adsorption (diffusion or barrier controlled), and different
types of interfacial rheology [5,13–18]. The linear and nonlinear
stability analysis and the role of intermolecular forces on the crit-
ical film thickness are widely studied in the literature; see the re-
view article by Valkovska et al. [19]. However, the lubrication
approximation fails for foam surfactant-free films or for films with
fully mobile surfaces. Indeed, in lubrication approximation the
solution of the hydrodynamic problem is expressed in terms of
three unknown functions: the lateral velocity components, wa
(a = 1, 2), and the dynamic pressure, q, see Eqs. (2.7) and (2.8) be-
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Fig. 1. Sketch of a symmetric thin liquid film with a local film thickness H. The
vertical coordinate axis of the Cartesian coordinate system, OX1X2X3, is perpendic-
ular to the film middle plane, X3 = 0. The characteristic lateral length, a, is much
larger than the characteristic vertical length, b. The position of the upper film
surface is defined as X3 = H/2 and the position of the lower one – as X3 = �H/2. The
upper surface normal and tangent vectors are n, t1, and t2, respectively.
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low. The kinematic boundary condition at the film surface, see Eq.
(2.10) below, introduces an additional function, the local film
thickness, h. Hence, the kinematic boundary condition does not de-
crease the number of unknown parameters. To determine them,
the dynamic boundary condition at the interface must be taken
into account. In lubrication approximation the normal stress
boundary condition relates wa (a = 1, 2), q, and h, see Eq. (2.12) be-
low. However, the tangential stress boundary condition, Eq. (A.9),
is automatically fulfilled by the leading order solution of the prob-
lem. For that reason, the second order terms should be considered.
This approach is known in the literature as ‘‘the extended lubrica-
tion approach” [20–24].

For some recent practical applications it is very important to
produce thin liquid films from surfactant-free phases or from
phases with a very small amount of surface active components.
Similar problems arise when the films are stabilized by nanome-
ter-sized particles. In these cases: (i) the lateral dimensions are
much larger than the local film thickness; (ii) the film drainage oc-
curs in a dynamic regime at arbitrary values of the Reynolds num-
ber. Modeling of the dynamics of such systems is possible using the
extended lubrication approach [20–24], formerly applied to study
linear and nonlinear stability of films. This approach has also
proved its wide applicability for modeling the drainage and stabil-
ity of evaporating films [25–30] and for modeling the solidification
of free thin films attached to a frame and pulled from a melt [31].
Originally these models account for the van der Waals interactions
between interfaces. Recent experimental and theoretical investiga-
tions manifest the importance of a number of other components of
the disjoining pressure. Experimental measurements show that,
even in pure liquid, the gas bubbles have f-potential of �65 mV
[32], which for the xylene, dodecane, hexadecane, and perfluorom-
ethyldecalin droplets changes from �100 mV to �20 mV, depend-
ing on the electrolyte concentration and pH of the solution [33].
The charge accumulation on the surfaces is due to the spontaneous
adsorption of hydroxyl ions, which causes electrostatic repulsion
between the film interfaces. Many experiments with emulsion
and foam films [34–38] suggest that the long range hydrophobic
attraction forces can be considerably larger than the van der Waals
interactions, and must be included as a disjoining pressure compo-
nent. At close distances between film interfaces strong steric inter-
actions between adsorbed particles can stabilize film drainage and
prevent film rupture [39–41]. The aim of the present study is to
take into account the role of different types of intermolecular inter-
actions for the film drainage and stability in dynamic conditions,
using the extended lubrication approach.

The paper is organized as follows. In Section 2, we describe the
extended lubrication approach applied for films with tangentially
mobile surfaces in the framework of the disjoining pressure ap-
proach. The dimensionless numbers appearing in the model equa-
tions for one-dimensional symmetric films are introduced in
Section 3. They take into account the contribution of inertia, inter-
facial tension, van der Waals, hydrophobic, electrostatic and steric
forces. Therein, the boundary conditions and possible regimes of
the film drainage and relaxation are discussed. The effect of the
intermolecular forces and the magnitudes of the Reynolds and We-
ber numbers on film drainage are studied in Section 4 and their
influence on film relaxation – in Section 5. The general conclusions
are given in Section 6.
2. Modeling of the dynamics of thin liquid free films

2.1. Conservation of mass and momentum in the bulk phase

We consider a symmetric thin foam film with a local thickness
H (Fig. 1). The bulk phase in the film is described as an incompress-
ible homogeneous liquid with velocity vector U, pressure P, con-
stant dynamic viscosity g and density q. The Cartesian
coordinate system, OX1X2X3, is placed in the plane of film symme-
try X3 = 0, where Xa (a = 1, 2) are the lateral coordinates and X3 is
the vertical coordinate (Fig. 1). The characteristic lateral velocity
is U, the lateral length scale is a, and the natural scale of time, T,
is a/U. The film thickness, H, is measured with the vertical length
scale, b, and is assumed to be so small that the ratio, e � b/a� 1,
can be considered as a small parameter in the problem. The dimen-
sionless time, t, the lateral coordinates and components of the
velocity vector, xa and ua (a = 1, 2), are defined as follows

t � UT
a
; xa �

Xa

a
; and ua �

Ua

U
ða ¼ 1;2Þ: ð2:1Þ

The dimensionless film thickness, h, the vertical coordinate, x3, and
the vertical component of the velocity, u3, are introduced through
the following relationships

h � H
b
; x3 �

X3

b
; and u3 �

aU3

bU
: ð2:2Þ

Eq. (2.2) accounts for the facts that: (i) in the case of thin liquid
films the vertical component of the velocity is much smaller than
the respective lateral components; (ii) the continuity equation must
be invariantly expressed in terms of dimensionless quantities
[22,24]:

oub

oxb
þ ou3

ox3
¼ 0; ðb ¼ 1;2Þ: ð2:3Þ

In Eq. (2.3) and below we will use the Einstein summation conven-
tion, where the Greek letter subscripts (a and b) indicate sums re-
lated to the lateral components denoted with indexes 1 and 2.

For Newtonian fluids the momentum balance is described by
the Navier–Stokes equation. For foam films with fully mobile sur-
faces (see Section 2.2) a viscous scale, gU/a, is appropriate for mea-
suring the pressure P. The dimensionless pressure, p, and the
Reynolds number, Re, are introduced by the definitions

p � aP
gU

and Re � qaU
g

: ð2:4Þ

Using the above expressions, Eqs. (2.1), (2.2) and (2.4), we obtain
the dimensionless form of the momentum balance equation in the
lateral directions (a, b = 1, 2) [42]:

Re
oua

ot
þ o

oxb
ðubuaÞ þ

o

ox3
ðu3uaÞ

� �

¼ � op
oxa
þ o2ua

oxboxb
þ 1

e2

o2ua

ox2
3

: ð2:5Þ
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The respective dimensionless form of the vertical projection of the
Navier–Stokes equation reads [42]

Re
ou3

ot
þ o

oxb
ðubu3Þ þ

o

ox3
ðu3u3Þ

� �

¼ � 1
e2

op
ox3
þ o2u3

oxboxb
þ 1

e2

o2u3

ox2
3

: ð2:6Þ

The Reynolds number, Re, appearing in Eqs. (2.5) and (2.6) and de-
fined by Eq. (2.4), is assumed not to be very large, i.e. Re 6 O(1/e).
For example, for water films (q = 103 kg/m3, g = 10�3 Pa s) with an
initial thickness b = 1 mm and a frame lateral length a = 1 cm
(e = b/a = 0.1), the lateral velocity, U, at which eRe = qbU/g = 1 is
equal to 1 mm/s, thus in that case the model would be applicable
for suction velocities smaller than 1 mm/s. The effect of the inertia
on the film drainage is discussed in Section 4.1 (see Fig. 3).

Because of the symmetry of the considered problem oua/ox3 = 0
at the middle plane x3 = 0. Taking into account Eq. (2.3) one obtains
the leading order solution of Eqs. (2.5) and (2.6) [22]:

ua ¼ waðt; x1; x2Þ þ Oðe2Þ and

pþ owb

oxb
¼ qðt; x1; x2Þ þ Oðe2Þ; ð2:7Þ

where the functions q and wa depend on time, t, and lateral coordi-
nates, x1 and x2. After substituting Eq. (2.7) into the continuity equa-
tion, Eq. (2.3), integrating the obtained result with respect to x3 and
using the symmetry condition u3 = 0 at the middle plane, we obtain
the leading order expression for the vertical velocity component:

u3 ¼ �
oub

oxb
x3 þ Oðe2Þ: ð2:8Þ

The unknown functions h, q, and wa are determined from the kine-
matic and dynamic boundary conditions at the film interface x3 = h/2
using an appropriate asymptotic procedure (see Section 2.2 and
Appendix A).

2.2. Kinematic and dynamic boundary conditions at the interface

Using the above definitions, Eqs. (2.1) and (2.2), one presents
the kinematic boundary condition at the film surface in a simple
dimensionless form [42]

oh
ot
þ ub

oh
oxb
¼ 2u3 at x3 ¼

h
2
: ð2:9Þ

Through substituting the leading order solutions, Eqs. (2.7) and
(2.8), into Eq. (2.9) we obtain the respective expression describing
the conservation of mass in the continuous film phase

oh
ot
þ o

oxb
ðhwbÞ ¼ 0: ð2:10Þ

In surfactant-free films the interfacial tension, r, is constant and
the surface shear and dilatational viscosities are negligible. There-
fore, in this case, the bulk viscous friction force at the film surface
is zero [7]. The leading order of the tangential stress boundary con-
dition at x3 = h/2 is calculated in Appendix A, see Eq. (A.8). After
combining the obtained result with the integrated form of Eq.
(2.5) in Appendix A, we derive the asymptotic form of the momen-
tum balance equation in the film:

Re
o

ot
ðhwaÞ þ

o

oxb
ðhwbwaÞ

� �
¼ �h

o

oxa
qþ owb

oxb

� �

þ o

oxb
h

owb

oxa
þ owa

oxb
þ 2

owc

oxc
dab

� �� �
;

ð2:11Þ

where dab is the Kronecker delta.
It is important to clearly indicate for which systems the
momentum balance Eq. (2.11), originally derived for pure liquids,
is applicable.

(i) If the solution contains only indifferent electrolytes (salts),
then the change of the surface tension with the ionic
strength is small, the Gibbs elasticity is small and the
Marangoni stress can be neglected [43]. The electrostatic
and van der Waals components of the disjoining pressure
appear at small film thickness and control the film drainage
and stability.

(ii) In the case of small amount of low molecular weight surfac-
tants, the surfactant relaxation time is comparable to the
characteristic time of film drainage and the Marangoni effect
becomes evident. This effect suppresses the surface mobility
and decreases the rate of film thinning [5,13,18]. The
account of the Marangoni stress makes the respective ana-
logue of Eq. (2.11) much more complex.

(iii) In the case of large amount of low molecular weight surfac-
tants (close or above the critical micelle concentration) the
surfactant relaxation time decreases considerably and it is
of the order of or smaller than several microseconds [44].
In these systems the surface tension does not change due
to the film drainage and the Marangoni stress can be
neglected. From the literature it is known that low molecular
weight surfactants have very small values of surface viscos-
ity [45,46] and therefore, the role of interfacial rheology is
also negligible. For such systems Eq. (2.11) is valid. In addi-
tion to the classical components of the disjoining pressure,
the steric, oscillatory, etc. non-DLVO surface forces should
be considered.

(iv) Films stabilized by proteins or polymers have significant val-
ues of the surface dilatational and shear viscosities, which
considerably increase the effect of the surface rheology on
the drainage and relaxation dynamics. For such systems
our model is not applicable.

For small film thicknesses (below 200 nm) the surface forces
of intermolecular origin must be accounted for. One type of such
forces is the van der Waals attraction force, which is character-
ized by the Hamaker constant, AH [6,47]. Many authors include
the van der Waals interactions as a bulk potential force in the
Navier–Stokes equation. This approach is known in the literature
as the body force approach [20–26]. The body force approach ap-
plied for ionic solutions leads to very complex mathematical
problems [5,16,48–51]. Many other types of surface forces are
theoretically and experimentally investigated in the literature
(the steric repulsion, the hydrophobic attraction, the oscillatory
structural forces, etc.). In many cases the origin of the obtained
interactions is not clearly understood [35,39]. For that reason,
a more convenient way to account for the role of the surface
forces is to use the so called disjoining pressure approach
[6,47]. In this approach the bulk force density in the Navier–
Stokes equation is omitted and all intermolecular interactions
in the film are taken into consideration by introducing an addi-
tional disjoining pressure term, P, in the normal stress boundary
condition. The disjoining pressure depends only on the local film
thickness, H, and the physicochemical properties of the solutions.
The specific expressions for the different components of P are
given in Section 3. The normal component of the bulk force act-
ing on the film surface is then compensated by the film capillary
and disjoining pressures and the pressure in the gas phase, Pg. In
Appendix A we derive the asymptotic form of the normal stress
boundary condition. The obtained result reads



Fig. 2. Sketch of one-dimensional symmetric thin liquid film attached to a frame
with a left-hand-side height bL, right-hand-side height b, and width 2a. The initial
film thickness is H0(X), the flow rates at the left and right borders of the frame are
characterized by velocities UL and UR, respectively.

276 S.S. Tabakova, K.D. Danov / Journal of Colloid and Interface Science 336 (2009) 273–284
qþ owb

oxb
þ e

2Ca
o2h

oxboxb
þ pdp � pg

 !
¼ 0; ð2:12Þ

where the capillary number, Ca, the dimensionless disjoining pres-
sure, pdp, and the pressure in the gas phase, pg, are defined as
follows

Ca � gU
r
; pdp �

2Pa2

rb
; and pg �

2Pga2

rb
: ð2:13Þ

Substituting Eq. (2.12) into Eq. (2.11) we arrive to the final equation
of the model:

Re
o

ot
ðhwaÞ þ

o

oxb
ðhwbwaÞ

� �
¼ eh

2Ca
o

oxa

o2h
oxboxb

þ pdp

 !

þ o

oxb
h

owb

oxa
þ owa

oxb
þ 2

owc

oxc
dab

� �� �
:

ð2:14Þ

Note that the typical values of the capillary number are small. Thus
the parameter e/Ca in Eq. (2.14) is of the order of or larger than
unity.

Erneux and Davis [22] showed that the model is analogous to a
respective approach in gas dynamics. Eqs. (2.10) and (2.14) corre-
spond to the two-dimensional viscous-flow equations if we iden-
tify the ‘‘thickness h” as the ‘‘density q” of the compressible gas,
the ‘‘thickness h” as the ‘‘shear viscosity g”. The first term in the
right-hand side of Eq. (2.14) can be considered as the ‘‘pressure
tensor pab(q)”, which admits the following complex ‘‘equation of
state”

pabðqÞ ¼ �
eq

2Ca
o2q

oxaoxb

þ e
4Ca

2
Z 1

q
n

dpdpðnÞ
dn

dnþ oq
oxc

oq
oxc

� �
dab ð2:15Þ

generalized for an arbitrary function pdp(q). For small values of the
film thickness, h, the ‘‘density q” in Eq. (2.15) is very small and the
‘‘sound speed c” becomes equal to

c2 ¼ � eq
2Ca

dpdp

dq
: ð2:16Þ

Eq. (2.16) shows that if dpdp/dq > 0 the ‘‘sound speed” is imaginary,
which corresponds to instability. In contrast, if dpdp/dq < 0 the sys-
tem has a real ‘‘sound speed”, corresponding to wave propagation.
This fact is well known in the literature, i.e. dP/dH > 0 destabilizes
and dP/dH < 0 stabilizes the drainage of thin liquid films [19].

3. One-dimensional thin liquid films attached to frames

We consider the simple case of one-dimensional thin liquid film
attached to a frame (Fig. 2). The parameters of the frame are: width
2a; left- and right-hand-side heights bL and b, respectively. The
flow rates from both frame channels are characterized by the
velocities, UL and UR (Fig. 2), the film surfaces are symmetric with
respect to the middle plane and have fixed contact lines at the
frame borders. At initial time, T = 0, the film thickness is given by
the function H0(X), which determines the initial liquid volume
caught in the frame. The model equations, Eqs. (2.10) and (2.14),
describing the dynamics of such films, are simplified to the
following:

oh
ot
þ o

ox
ðhwÞ ¼ 0; ð3:1Þ

ow
ot
þw

ow
ox
¼ 1

We
o3h
ox3 þ

4
Re

o2w
ox2 þ

4
Re

ow
ox

o ln h
ox
þ o

ox
pdp

We

� �
; ð3:2Þ
where v is the dimensionless volume of the liquid caught in the
film, per unit channel length; x, h, and w are the dimensionless lat-
eral coordinate, thickness and velocity, respectively; and the classi-
cal Weber number is rescaled with the small parameter e as follows

We � 2
e

CaRe ¼ 2
qa2U2

rb
¼ 2g2

qrb
Re2: ð3:3Þ

At initial time, t = 0, the liquid is at rest, the film profile is a known
function, h0(x), and the liquid volume is v0. Therefore, the initial
conditions for numerical calculation of Eqs. (3.1) and (3.2) are

hð0; xÞ ¼ h0ðxÞ; wð0; xÞ ¼ 0; and vð0Þ ¼ v0 ¼
Z 1

�1
h0ðxÞdx:

ð3:4Þ

The film surfaces have fixed contact lines with the frame, which as-
signs the following boundary conditions for the film thickness:

hðt;�1Þ ¼ bL=b and hðt;1Þ ¼ 1: ð3:5Þ

The flow rates from both sides of the frame are known (Fig. 2); they
define the boundary conditions for velocity

wðt;�1Þ ¼ �ULðtÞ=U and wðt;1Þ ¼ URðtÞ=U at t > 0; ð3:6Þ

where U is the characteristic lateral velocity (see Section 2.1). The
minus sign in the first equation of Eq. (3.6) accounts for the direc-
tion of the flow (Fig. 2). In Section 4 we will study the process of
film drainage to the point of minimum possible film thickness, hmin.
In this case the flow rates are non-zero during the whole process. In
Section 5 the film thins under the action of the suction velocities, UL

and UR, for a time, tf, necessary to reach a given volume, vf. At t = tf

suction is stopped and the film is allowed to relax to its final shape.
In this case the right-hand sides of both equations in Eq. (3.6) are set
to zero for t > tf, which does not change the numerical scheme de-
scribed in Appendix B.

The disjoining pressure appearing in Eq. (3.2) can be presented
as a sum of the van der Waals and hydrophobic attraction, P1, elec-
trostatic repulsion, P2, steric repulsion, P3, and other interactions.
Here we consider only the first three components:
P = P1 + P2 + P3. The respective dimensionless components of
the disjoining pressure are denoted as p1, p2, and p3. The van der
Waals and hydrophobic components of the disjoining pressure
are calculated by the expression P1 = �Atot/(6 pH3), where Atot is
an effective constant [6,47]. It is important to note that recent
experiments suggest the hydrophobic interactions are in many
cases stronger than the van der Waals interaction [34–38]. The
authors show that the hydrophobic interactions are described by
the same expression as that for the van der Waals component of
the disjoining pressure, but with much larger interaction constant,
K232, than the Hamaker constant, AH. For that reason the effective
constant Atot = AH + K232 is used below. From Eqs. (2.13) and (3.3)



Fig. 3. Time evolution of the film profiles in the case of symmetric boundary
conditions, bL = b and UL = U, and an initial condition h(x) = 1: (a) Re = 1 and We = 1
(solid lines), Re = 1 and We = 10 (dash-dotted lines), and Re = 5 and We = 25
(dashed lines); (b) Re = 0.2 and We = 0.04 (solid lines) and Re = 1 and We = 0.1
(dashed lines).
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the attractive component of the disjoining pressure is presented in
the following form:

p1

We
¼ �B1

h3 and B1 �
Atot

6pqb3U2
; ð3:7Þ

where B1 is the dimensionless interaction constant.
In the case of 1:1 electrolytes the electrostatic component of the

disjoining pressure, P2, is calculated from the expression
P2 = 2ETI(coshUm � 1), where ET is the thermal energy, I is the ionic
strength of the solution, and Um is the dimensionless electric po-
tential at the middle plane [6,47]. From Eqs. (2.13) and (3.3) we ob-
tain the relationship between the electrostatic component of the
dimensionless disjoining pressure and the dimensionless ionic
strength, B2:

p2

We
¼ B2ðcosh Um � 1Þ and B2 �

2ET I

qU2 : ð3:8Þ

It is well known in the literature [6,47] that the solution of the Pois-
son–Boltzmann equation for the electric potential in the film leads
to the transcendental equation,

h ¼ 1
jb

Z Us

Um

2
cosh U� cosh Um

� �1=2

dU; ð3:9Þ

which relates the electric potential at the middle plane, Um, with
the surface electric potential, Us, the local film thickness, h, and
the Debye screening length, j�1. For a given system the surface
electric potential changes insignificantly during the film drainage.
Only small variations of Us are possible for very thin films when
the local film thickness is smaller than 10 nm [6]. Below we will as-
sume that: (i) the constant values of Us and jb are known; (ii) the
numerical solution of Eq. (3.9) provides the dependence
Um = Um(h); (iii) Eq. (3.8) defines p2 = p2(h). Various simpler
approximations of Eqs. (3.8) and (3.9) are known in the literature
[6,47]. These approximations are valid for jH� 1 or jH� 1 and
cannot be applied for the whole film profile where H changes
significantly.

The power law expressions for the steric component of the dis-
joining pressure, widely used in the literature [6,7,47] for protein
and polymer solutions, are not consistent with our model, as seen
in the discussion after Eq. (2.11). In the case of low molecular
weight surfactants, the adsorbed molecules, for which our model
can be applied, often possess bulky hydrophilic heads, e.g., when
the polar part of the amphiphile consists of oxyethylene chains
[39–41]. As the film thins, the two surfaces packed with surfactant
molecules closely approach one another and the hydrophilic heads
may begin to overlap. Let d be the characteristic threshold distance
at which the steric interaction becomes active. The repulsive force
will be described by means of a model expression for the respec-
tive disjoining pressure component, P3 = Astexp(�H/d), where Ast

is the interaction constant. The validity of this asymptotic equation
is discussed by many authors [7,41,47]. From Eqs. (2.13) and (3.3)
one obtains the expressions for p3 and for the interaction constant,
B3:

p3

We
¼ B3 exp �hb

d

� �
and B3 �

Ast

qU2 : ð3:10Þ

The nonlinear system of equations, Eqs. (3.1) and (3.2), with ini-
tial and boundary conditions, Eqs. (3.4)–(3.6), can be solved
numerically by appropriate conservative finite difference scheme
on staggered grids and iterative algorithms [52]. Here, we develop
a faster numerical method briefly described in Appendix B. We
chose a regular space and time grid with a length step, Dx, and
time step, Dt. The precision of the numerical scheme (Appendix
B) is O(Dx2, Dt2), which guarantees high accuracy and efficiency
of the algorithm. All calculations below are performed with
Dx = Dt = 10�4. These small values of Dx make it possible to calcu-
late the formulated problem up to the minimum film thickness,
hmin, of the order of or larger than 10�3. More precisely, the value
of hmin depends on the precision of the difference formula used for
the first derivative of disjoining pressure, Eq. (3.7). In the case of a
central difference scheme with precision O(Dx2) the relative error
of the derivative calculated at hmin = 10Dx is 3.4%. This error de-
creases with the increase of hmin: for hmin = 20Dx the relative error
is 0.84%; for hmin = 30Dx it is 0.37%, etc.

4. Drainage of one-dimensional thin liquid films

4.1. No disjoining pressure

When the disjoining pressure has no effect on the film dynam-
ics, the model, given by Eqs. (3.1) and (3.2), contains two dimen-
sionless numbers, Re and We, defined by Eqs. (2.4) and (3.3).
These numbers change in a different way for given physicochemi-
cal parameters of the liquid phase depending on the velocity, U,
and on the ratio b/a. For example, if for a given configuration
Re = 1 and We = 1 (solid lines in Fig. 3a), then the five times in-
crease of the velocity, U, leads to Re = 5 and We = 25 (dashed lines
in Fig. 3a), while the five times decrease of U reduces these num-
bers to Re = 0.2 and We = 0.04 (solid lines in Fig. 3b). For a fixed va-
lue of Re the Weber number increases with the increase of



Fig. 4. Plots of h(t,x) for film drainage in the absence of a flow from the left-hand-
side border: (a) bL = b and initial condition h0(x) = 1 at Re = 1, We = 0.1, till t = 1.4
(solid lines) and at Re = 1, We = 0.01, t = 1.4 (dashed line); (b) Re = 1, We = 0.01, bL/
b = 0.2, and initial condition h0(x) = 0.6 + 0.4x.

278 S.S. Tabakova, K.D. Danov / Journal of Colloid and Interface Science 336 (2009) 273–284
viscosity, g, and We decreases with the increase of density, q,
frame height, b, and surface tension, r, see Eq. (3.3). Note that
the possible changes of the surface tension of foam films are from
72 mN/m (surfactant-free systems) to 25 mN/m (close or above the
critical micelle concentration), while the other parameters (g, q,
and b) can vary in orders of magnitude. The examples for the evo-
lution of the film profile, h(t,x), in the case of Re = 1, We = 10 and
Re = 1, We = 0.1 are illustrated in Fig. 3a (dash-dotted lines) and
in Fig. 3b (dashed lines), respectively.

For symmetric boundary conditions, bL = b and UL = U, and a
constant value of the initial film thickness, h0(x) = 1, the initial film
volume is v0 = 2 and the dimensionless time needed for the com-
plete suction of this volume is equal to 1. For Re = 1 and We = 1
the film drains up to t = 0.7 without dimple formation and with a
virtually fixed length of its plane-parallel region (Fig. 3a – solid
lines). Subsequently the film ring spreads to the borders, a pro-
nounced dimple is formed, and at t = 0.9 the film ruptures because
the menisci at the film periphery ‘‘touch” the frame borders. There-
fore, the rupture is not a result of reaching the minimal possible
thickness, hmin. With the five times increase of the flow rate a well
pronounced dimple is formed at an early stage, the dimple grows,
the film ring spreads, and at t = 0.6 the film ruptures before reach-
ing hmin (Fig. 3a – dashed lines). At the final moment the dimple
height at x = 0 has quite a large value of 0.6, thus the dimple covers
40% of the initial film volume. Increasing the Weber number
(Re = 1 and We = 10) results in the film surfaces becoming more
deformable (Fig. 3a – dash-dotted lines). In this case the evolution
of h(t,x) is similar to the case with the ten times smaller Weber
number: the thicknesses of the two films at x = 0 are close to each
other; the film ring for We = 10 is initially larger than that for
We = 1, but at the final stage both film profiles are virtually identi-
cal. Therefore, the Weber number can be considered as a character-
istic of the deformability of film surfaces.

From a practical viewpoint it is very important to produce films
with thickness as uniform as possible and with a large plane-par-
allel area. One way is to reduce the flow rate: as it is shown in
Fig. 3b (solid lines), the five times decrease of the flow rate
(Re = 0.2, We = 0.04) leads to a regular film thinning with a contin-
uous increase of the plane-parallel region up to t = 0.9 when the
film thickness at x = 0 is 4.25 � 10�2 and the film ring is placed
approximately at x � 0.8. Another way is to decrease the deforma-
bility of film surfaces: for Re = 1 the ten times decrease of the We-
ber number, We = 0.1, stabilizes the process of film drainage
(Fig. 3b – dashed lines). Such films have regular profiles, h(t,x), dur-
ing the whole process. At moment t = 0.9 their thickness at x = 0 is
2.31 � 10�2, i.e. smaller than that for the case of Re = 0.2 and
We = 0.04, and the film ring is placed approximately at the same
place x � 0.8.

In the case of unsymmetrical boundary conditions the produc-
tion of films with large plane-parallel areas is a more complicated
task. One can expect that the increase of the surface tension will
help to solve this problem. Our calculations for Re = 1, We = 0.1,
bL = b, h0(x) = 1, and without a liquid flow from the left-hand-side
boundary (Fig. 4a) show that in this case a dimple does not form,
i.e. a large amount of liquid is left captured close to the left-
hand-side boundary. Because of the twice smaller flow rate (only
from one side) the dimensionless time necessary for the complete
suction of the initial volume is equal to 2. The film reaches its min-
imal thickness slightly after t = 1.4 with a complex shape without
plane-parallel regions. The minimal film thickness is located at
x = 0.75. The process of film drainage is regular, without waves
and instabilities. We have performed calculations for the same case
decreasing the Weber number to We = 0.01. The film profile at the
moment of reaching of hmin is plotted in Fig. 4a (dashed line),
where it can be seen that hmin is located at x = 0.38. The following
conclusions can be drawn: these films reach the minimal thickness
at approximately the same time; the decrease of deformability of
film surfaces leads to more symmetric film thicknesses but the
plane-parallel areas of the films are very small for unsymmetrical
boundary conditions.

To extend the plane-parallel film region we have decreased five
times the height of the left-hand-side border assuming that bL/
b = 0.2 and have used the same conditions as in Fig. 4a with a smal-
ler value of the Weber number, We = 0.01 (Fig. 4b). Starting with
an initial condition, h0(x) = 0.6 + 0.4x, corresponding to an initial
dimensionless volume, v0 = 1.2, we have obtained that the evolu-
tion of such films is regular until the minimal film thickness, hmin,
is reached at t = 0.9 and x = 0.23. Therefore, the considerable de-
crease of the deformability of film surfaces and the frame height,
bL, is not sufficient to produce large plane-parallel film areas. The
calculations illustrated in Figs. 3 and 4 show that the most efficient
way to accomplish this technological task is to use symmetric flow
rates and symmetric geometrical parameters of the frames as
much as possible.

4.2. Effect of van der Waals and hydrophobic attraction

The van der Waals and hydrophobic attractions, accounted for
by the disjoining pressure component P1, are always active and
have the longest range compared to the other components of P.
The role of this kind of attraction forces on the evolution of the film
profiles in the case of symmetric boundary conditions for Re = 1,
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We = 1, and B1 = 0.1 is illustrated in Fig. 5a (solid lines). The com-
parison between Figs. 3a and 5a (solid lines) shows that up to time
t = 0.7 the disjoining pressure does not considerably affect the pro-
cess of the film drainage. When the local film thickness decreases
to a certain critical value, the attraction forces become significant
and the area of the film ring thins faster. At time t = 0.818 the film
reaches hmin at position x = 0.984 and breaks. The final dimple cov-
ers 1.82% of the initial liquid volume. One expects that the decrease
of the flow rate always makes the film drainage more regular (see
Fig. 3). When keeping all the other parameters constant and
decreasing five times the flow rate, the value of B1 increases 25
times, see Eq. (3.7). The obtained numerical results for Re = 0.2,
We = 0.04, and B1 = 2.5 are plotted in Fig. 5a (dashed lines). The
comparison of these results with those plotted in Fig. 3b (solid
lines) in the case without disjoining pressure taken into account
shows that both films follow the same regular behavior up to time
t = 0.4. At subsequent moments the attraction molecular forces sig-
nificantly accelerate the film thinning in the central zone, x = 0
(compare the respective profiles for t = 0.5, 0.55, 0.58, and 0.591).
At t = 0.591 a typical instability appears and the film breaks. This
effect is known in the literature as ‘‘pimple” formation as opposed
to the case of the film breakage at the ring [53].

4.3. Effect of electrostatic and steric repulsion

One possibility to reduce the destabilizing role of the attractive
components of the disjoining pressure is to use ionic surfactants
Fig. 5. Role of disjoining pressure on the drainage of films with symmetric
boundary conditions and initial condition h0(x) = 1: (a) Re = 1, We = 1, B1 = 0.1 (solid
lines) and Re = 0.2, We = 0.04, B1 = 2.5 (dashed lines); (b) Re = 1, We = 0.1, B1 = 1
(solid lines) and additionally Bel = 104, and jb = 10 (dashed lines).
and thus increase the electrostatic component of P. It is proven
in the literature that even without added surfactants the surface
potential is different from zero: its origin for such systems is the
surface charge due to the spontaneous adsorption of hydroxyl ions
[32,33]. In the case of large values of jH the asymptotic expression
for the electrostatic component of the disjoining pressure, P2,
reads P2 = 64ETItanh2(Us/4)exp(�jH) [6]. Therefore, a more con-
venient dimensionless parameter, characterizing the magnitude
of this force is Bel � 32B2tanh2(Us/4), see Eq. (3.8). In Fig. 3b
(dashed lines) we have illustrated that at Re = 1 the decrease of
the Weber number to We = 0.1 leads to a regular drainage of such
films. If we take into account the action of the attractive compo-
nent of the disjoining pressure by assuming that B1 = 1 and calcu-
late the film evolution, we obtain the solid lines in Fig. 5b. It is
clearly seen that after t = 0.4 the profiles h(t,x) accelerate in time,
at t = 0.537 a pimple instability appears at the central zone and
subsequently the film breaks. Note that the film in Fig. 3b obtained
at the same process parameters but without the action of P1 has a
wide plane-parallel region at t = 0.9. In order to have an idea about
the magnitude of Bel one calculates its value for water solution
without surfactants at pH = 9 and room temperature: Bel = 45a2/
(bWe). Taking the values We = 0.1, b = 1 lm, and a = 5 mm we ob-
tain that Bel = 1.1 � 104 and the respective value of jb is 10.3.
Experiments for film drainage and equilibrium thickness of similar
systems are reported in Ref. [54]. The increase of the surface poten-
tial and ionic strength increases Bel and jb. The film, which is
unstable without accounting for the electrostatic repulsion, be-
comes more stable for Bel = 104 and jb = 10, see Fig. 5b (dashed
lines). The comparison between Figs. 3b and 5b (dashed lines)
shows that in the presence of disjoining pressure the electrostatic
repulsion counterbalances the attraction forces in a wide plane-
parallel central zone. Nevertheless, at the latest stage of film drain-
age a well pronounced film ring at x = 0.864 is formed and subse-
quently the film breaks down.

The decrease of the surface potential, Us, suppresses the elec-
trostatic interactions. For example, if we take the above system
and change pH to 5 while keeping all the other parameters con-
stants, the value of Bel decreases ten times. The smaller repulsive
force is not sufficient to prevent the pimple formation, see Fig. 6
(solid line). The comparison between Figs. 5b and 6 (solid lines)
illustrates that the electrostatic component of P decelerates the
appearance of such kind of instabilities. The film (Fig. 6, solid line)
thins regularly for a longer time t = 0.65 compared to that without
P2, which thins in a similar manner up to t = 0.52 (Fig. 5b, solid
line). Nevertheless, at t = 0.682 (Fig. 6, solid lines) the attractive
components of the disjoining pressure prevail and the film rup-
tures at its center line. In addition, the shorter range repulsive force
can be included, namely the effect of steric interactions can be
investigated. As a rule [39–41] for such forces b/d is much larger
than jb, except for the cases of large ionic strengths, and the inter-
action constant, Ast, is very large, see Eq. (3.10). In Fig. 6 (dashed
lines) we calculate the film evolution additionally accounting for
the steric interactions at b/d = 20 and B3 = 3 � 104. In this case
the drainage process stabilizes and regular film thinning is ob-
served up to t = 0.9. The mechanism of the film rupture changes
to a ring formation at position and time, x = 0.916 and t = 0.921,
respectively, and a large plane-parallel central zone with thickness
0.064 is formed. Figs. 5b and 6 show that the dynamic effects can-
not be suppressed by the action of the repulsive disjoining
pressure.
5. Relaxation of one-dimensional thin liquid films

If one wants to produce a film with a given volume, vf, the flow
rates are stopped after time, tf. Depending on the magnitudes of



Fig. 6. Role of electrostatic and steric components of the disjoining pressure for the
drainage of films with symmetric boundary conditions and initial condition
h0(x) = 1 for Re = 1, We = 0.1, B1 = 1, Bel = 103 and jb = 10 (solid lines), and
additionally B3 = 3 � 104 and b/d = 20 (dashed lines).

Fig. 7. Relaxation of films for Re = 1, We = 1, and vf = 1: (a) Local film thickness,
h(t,x), with initial profile, h0(x) = (5 + 3x2)/8, and initial volume, v0 = 1.5, tf = 0.25
(solid lines). For t > 0.35 solid lines correspond to time step 0.2; (b) thickness
difference, h(t,x) � hst(x), lines plotted with time step 0.1 for h0(x) = 1, v0 = 2, tf = 0.5
(solid lines) and for case (a) (dashed lines). The inset shows the difference
h(t,0) � hst(0) in time, t � tf, for the two cases after the film suction is stopped.
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interaction forces and regimes of film drainage the film surfaces
will relax to the steady state film profile, hst(x), or eventually the
film may rupture before reaching hst(x) (see below). In the case
of thick films when the role of the disjoining pressure can be ne-
glected, the static variant of Eq. (3.2), simplifies to d3hst(x)/
dx3 = 0. The solution for films with symmetric boundary condi-
tions, hst(±1) = 1, and a fixed volume, vf, is

hstðxÞ ¼
3vf � 2

4
þ 6� 3vf

4
x2: ð5:1Þ

Therefore, the minimum possible dimensionless volume (minimum
static equilibrium volume) is 2/3 and if vf < 2/3 the Laplace equation
of capillarity has no solution, thus no static equilibrium exists.
Therefore, if one stops the flow rates at tf > 2/3 in the case shown
in Fig. 3 the respective films will break. When the disjoining pres-
sure is taken into account, the static variant of Eq. (3.2) has no ana-
lytical solution and hst(x) is obtained as a limit of h(t,x) after
complete relaxation.

The first step in our study is to obtain the characteristic relaxa-
tion time and the type of film profile relaxation in the simplest
case, without the disjoining pressure effect being taken into ac-
count. We consider two cases for Re = 1, We = 1, and volume
vf = 1, larger than the minimum possible one, 2/3: initial film pro-
file is h0(x) = 1 (flat surfaces) and tf = 0.5, and parabolic initial pro-
file, h0(x) = (5+3x2)/8 with v0 = 1.5 and tf = 0.25 (Fig. 7). The
drainage of these films is illustrated in Fig. 3a (solid lines) and
Fig. 7a (dashed lines); the respective relaxation curves show a sim-
ilar behavior. The solid lines in Fig. 7a show the evolution of film
profiles, h(t,x), during the process of relaxation for t > tf. The stable
regular approach to the equilibrium state hst(x) = (1 + 3x2)/4 is well
illustrated. The changes of the thickness difference, h(t,x) � hst(x),
with time for both sets of initial conditions are shown in Fig. 7b.
One sees that in these cases the initial conditions do not affect
the type of relaxation for all values of the lateral coordinate. In
the inset of Fig. 7b we present the changes of thickness difference
in the central zone, h(t,0) � hst(0), in a logarithmic scale as a func-
tion of t � tf. The excellent parallel straight lines with a slope of
�1.5 proves that the relaxation obeys an exponential rule,
/exp(�1.5t), for both kinds of initial conditions. Therefore, the
elastic force arising from the action of the surface tension is strong
enough to stabilize such films.

The attraction component of the disjoining pressure destabi-
lizes the films not only in the film drainage process (see Fig. 5a),
but also during the film relaxation. If we take the films given in
Fig. 5a and stop the flow rates at tf = 0.45, when the liquid volume
vf = 1.1 is larger than that for the films in Fig. 7, the films cannot
reach the steady state and therefore rupture, as seen on Fig. 8. In
the case of Re = 1, We = 1, and B1 = 0.1 the change of h(t,x) for
t P 0.45 with a time step 0.1 is shown in Fig. 8. The pimple type
instability appears at t = 2.245 and subsequently the film ruptures
in its central zone. The inset of Fig. 8 demonstrates the decrease of
h(t,0) with time for this film (solid line) and for the film with the
same physicochemical parameters, but with 5 times smaller suc-
tion velocity (dashed line). One sees that in both cases the instabil-
ity appears at x = 0 and for smaller flow rates the dimensionless
rupture time of 0.707 for Re = 0.2 is lower than that of 2.245 for
Re = 1. Taking into account the definition, Eq. (2.1), one concludes
that due to the 5 times smaller flow rate the real rupture time, T,
for Re = 0.2 becomes longer (5 � 0.707 = 3.535) than that for
Re = 1. This fact can be explained by the longer time needed to sup-
press the larger local surface velocities after stopping the film
drainage at larger flow rates.

As discussed above, the production of plane-parallel films with
small volumes, vf < 2/3, and thicknesses is impossible without
using additives, which increase the repulsive components of the
disjoining pressure. However, the attractive disjoining pressure al-
ways appears and cannot be excluded from consideration. The
dashed lines in Figs. 5b and 6 represent regular film drainage in



Fig. 8. Relaxation of film surfaces in the case of symmetric boundary conditions for
Re = 1, We = 1, B1 = 0.1, and tf = 0.45. Solid lines are plotted with time step 0.1 and
the moment before the film rupture is 2.245. The inset compares the relaxation of
h(t,0) for this film (solid line) with the case of relaxation of the same film but with
five times smaller flow rate Re = 0.2, We = 0.04, B1 = 2.5, and tf = 0.45 (dashed line).
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the presence of P2 and P3. We took these systems and stopped the
flow rates at two different times, at t = 0.7 when vf = 0.6, and at
t = 0.85 when the volume is smaller, vf = 0.3. For both systems
and times the final film profiles, hst(x), are shown in Fig. 9. One sees
that the films contain large almost plane-parallel central zones and
steep menisci around them. These films are stable because the
repulsive components of the disjoining pressure, P2 and P3, prevail
the respective van der Waals and hydrophobic components, P1.
The inset of Fig. 9 illustrates the type of relaxation of these films
– in all cases the film thickness, h(t,0), for t > tf oscillates around
the equilibrium thickness, hst(0), but the amplitudes of oscillations
exponentially decrease with time. By applying linear stability anal-
ysis, analogous to that given in Ref. [23], for the disturbances of the
film surfaces in a central plane-parallel zone one proves that the
critical wavelengths for the cases illustrated in Fig. 9 are much lar-
ger than the lateral dimension of the frame. Therefore, the final
film thicknesses correspond to a stable equilibrium.
Fig. 9. Equilibrium film thicknesses for Re = 1, We = 0.1, and B1 = 1 corresponding to
tf = 0.7 and tf = 0.85. Solid lines are plotted for Bel = 104 and jb = 10 without
accounting for the steric interactions (see Fig. 5b) and dashed lines – for Bel = 103,
jb = 10, B3 = 3 � 104, and b/d = 20 (see Fig. 6). The inset illustrates the respective
relaxations of h(t,0) after stopping the flow rates.
These conclusions are important for practical applications be-
cause they give one possible way for a controllable production of
large thin films.

6. Summary and conclusions

A model describing the drainage and relaxation dynamics of
symmetric thin liquid films with tangentially mobile surfaces is
developed. The obtained equations, Eqs. (2.10)–(2.12), are applica-
ble for laminar flows when the film thicknesses are much smaller
than the characteristic lateral dimensions. The model describes the
film profile, surface velocity and pressure for arbitrary values of the
Reynolds and capillary number, accounting for different compo-
nents of the disjoining pressure. In the case of one-dimensional
film attached to a frame the problem is simplified in Section 3
and the van der Waals, hydrophobic, electrostatic and steric inter-
actions between film surfaces are included in the disjoining pres-
sure. A fast algorithm for numerical solution of this problem,
which has a second order precision in time and space, is developed
in Appendix B and applied in Sections 4 and 5.

In the case of unsymmetrical boundary conditions (different flow
rates or frame heights) the films drain with complex shapes of their
surfaces, therefore the formation of large plane-parallel areas by
controlling the flow rates is difficult (Fig. 4). For films with symmet-
rical boundary conditions the increase of flow rates leads to a pro-
nounced dimple formation with a ring close to the frame (Fig. 3a).
The process of film drainage becomes more regular with almost no
dimple formation by decreasing the flow rate or the deformability
of the film surfaces, i.e. for smaller values of the Reynolds and Weber
numbers (Fig. 3b). The attractive disjoining pressure favors the film
breakage in two different ways: for larger flow rates the dimple rup-
tures at its ring; for smaller flow rates the film breaks in its central
zone (Fig. 5). The electrostatic and steric repulsive components of
the disjoining pressure can suppress the van der Waals and hydro-
phobic attraction, making the process of film drainage regular, with
a wide central plane-parallel zone (Figs. 5 and 6). The type of film
drainage can be efficiently controlled by varying the magnitudes of
different components of the disjoining pressure.

When the flow rates are stopped, the film surfaces either relax to
their final equilibrium profile, or the film ruptures. For a given liquid
volume the Laplace equation of capillarity describes the steady film
thickness, hst(x). Without accounting for the repulsive components
of the disjoining pressure, hst(x) has a parabolic or pimple form with-
out plane-parallel areas. The films can be either stable with an expo-
nential decay of surface corrugations (Fig. 7) or unstable if attractive
surface forces are present (Fig. 8). The only possible way to produce
films with small volumes and thicknesses is to control the magni-
tudes of electrostatic and steric interactions (Fig. 9). These films
are stable: their thicknesses oscillate around the equilibrium pro-
files, hst(x), and the amplitudes of surface corrugations exponentially
decrease with time. The equilibrium profiles contain large almost
plane-parallel central zones and steep menisci close to the frames.

The model described in Section 2 can be applied to study the
drainage and relaxation dynamics of circular films. However in this
case the films thin under the action of a constant pressure differ-
ence, which changes the boundary conditions. The change of
geometry and boundary conditions must be taken into account in
the model equations and numerical scheme. This problem is an
aim for our future publication.
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Appendix A. Derivation of the leading order of the dynamic
boundary conditions at the film surface

To obtain the density of the force, Fs, acting from the bulk fluid
onto the upper film interface one needs to calculate the normal
projection of the bulk stress tensor, P, at the surface. We will use
the following notations: ek (k = 1, 2, 3) are the unit vectors of the
Cartesian coordinate systems OX1X2X3; ta (a = 1, 2) are the tangen-
tial vectors at the upper film surface; n is the respective surface
normal vector. Therefore,

ta ¼ ea þ
1
2

oH
oXa

e3

� �
1þ 1

2
oH
oXa

� �2
" #�1=2

ða ¼ 1;2Þ; ðA:1Þ

n ¼ �1
2
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oXb
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1þ 1

2
oH
oX1
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þ 1
2

oH
oX2

� �2
" #�1=2

: ðA:2Þ

For incompressible Newtonian fluids the stress tensor, P, is given by
the definition [42]

Pik ¼ Pdik � g
oUi

oXk
þ oUk

oXi

� �
; ðA:3Þ

where dik is the Kronecker delta. From Eqs. (A.1)–(A.3) one derives
the expression for the force density, Fs = P � n:

Fs � ek ¼ � Pkb
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oXb
þ Pk3

� �
1þ 1
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oX1
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þ 1
2
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� �2
" #�1=2

; ðA:4Þ

where all parameters are calculated at X3 = H/2 and k = 1, 2, 3.
From Eqs. (A.1) and (A.4) we obtain the formula for the tangen-

tial component of the force:

Fs � ta ¼ Pa3 þ
P33
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at X3 ¼
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2
: ðA:5Þ

The tangential stress boundary condition (see Section 2.2) for free
surfaces reads Fs � ta = 0. Substituting the definition of the stress
tensor, Eq. (A.3), into Eq. (A.5) one reduces the tangential stress
boundary condition to the following relationship
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2
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From Eqs. (2.1),(2.2) and (A.6) we obtain the dimensionless form of
this boundary condition:
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Using the leading order solution of the considered problem, Eqs.
(2.7) and (2.8), we simplify the right-hand side of Eq. (A.7) to the
asymptotic expression:

1
e2

oua

ox3

����
x3¼h=2

¼ h
2

o2wb

oxaoxb
þ oh

oxa

owb

oxb
þ 1

2
owa

oxb
þ owb

oxa

� �
oh
oxb
þ Oðe2Þ:

ðA:8Þ
Substituting Eq. (2.7) into Eq. (2.5) we reduce it to the asymptotic
relationship:

1
e2

o2ua

ox2
3

¼ o

oxa
q� owb

oxb

� �
� o2wa

oxboxb

þ Re
owa

ot
þ o

oxb
ðwbwaÞ þ

o

ox3
ðu3waÞ

� �
þ Oðe2Þ: ðA:9Þ

Integrating Eq. (A.9) with respect to x3 from 0 to h/2 and accounting
for the kinematic boundary condition, Eq. (2.9), one derives

1
e2

oua

ox3

����
x3¼h=2

¼ h
2

oq
oxa
� h

2
o2wb

oxaoxb
� h

2
o2wa

oxboxb

þ Re
o

ot
h
2

wa

� �
þ o

oxb

h
2

wbwa

� �� �
þ Oðe2Þ: ðA:10Þ

Therefore, the right-hand sides of Eqs. (A.8) and (A.10) must be
equal and after simple transformations we arrive to the result given
by Eq. (2.11) in Section 2.2.

From Eqs. (A.2) and (A.4) one calculates the expression for the
normal component of the force density:

Fs � n ¼
Pab

4
oH
oXa

oH
oXb
� oH

oXb
Pb3 þ P33

� �

� 1þ 1
2

oH
oX1

� �2

þ 1
2

oH
oX2

� �2
" #�1

; ðA:11Þ

where all parameters are calculated at X3 = H/2. By substituting the
definitions of the stress tensor, Eq. (A.3), and of the dimensionless
parameters, Eqs. (2.1), (2.2) and (2.4), in Eq. (A.11) we derive the
relationship

Fs �n¼
gU
a

pþgU
a

2
oub

oxb
þ oh

oxb

oub

ox3
þe2 oh

oxb

ou3

oxb

�

�e2

4
oua

oxb
þoub

oxa

� �
oh
oxa

oh
oxb

�
1þe2 1

2
oh
ox1

� �2

þe2 1
2

oh
ox2

� �2
" #�1

ðA:12Þ

written at x3 = h/2.
From the leading order solution, Eq. (2.7), the tangential stress

boundary condition, Eq. (A.8), and Eq. (A.12) one obtains:

Fs � n ¼
gU
a

qþ owb

oxb
þ Oðe2Þ

� �
: ðA:13Þ

The normal stress boundary condition reads (see Section 2.2 and
[55])

Fs � nþ Pc þP ¼ Pg; ðA:14Þ

where Pg is the pressure in the gas phase, Pc is the film capillary
pressure, and P is the disjoining pressure. From Eqs. (A.13) and
(A.14) the leading order form of the normal stress boundary condi-
tion is reduced to

qþ owb

oxb
þ rb

2gUa
o2h

oxboxb
þ 2Pa2

rb
� 2Pga2

rb

 !
¼ 0: ðA:15Þ

By defining the capillary number and the dimensionless disjoining
and gas pressures by Eq. (2.13) we transform Eq. (A.15) into the fi-
nal result given by Eq. (2.12).

Appendix B. Numerical scheme

To construct the numerical scheme we denote the values of all
parameters at time t with the superscript (-) and those calculated
at time t + Dt with the superscript (+), where Dt is the local numer-
ical time step. For example, h(�) and w(�) are taken at time level t,
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while h(+) and w(+) – at the subsequent time level t + Dt. The respec-
tive time differences, Dh and Dw, are defined as Dh � h(+) � h(�)

and Dw � w(+) � w(�). Eqs. (3.1) and (3.2) are considered at mo-
ment t + Dt/2 and the time derivatives appearing therein are
approximated with precision Dt2:
Dh
Dt
¼ RhjtþDt=2 þ OðDt2Þ and

Dw
Dt
¼ RwjtþDt=2 þ OðDt2Þ; ðB:1Þ

where the operators, Rh and Rw, are defined by the expressions

Rh � �
o

ox
ðhwÞ; ðB:2Þ

Rw � �
o

ox
w2

2

� �
þ 1

We
o3h
ox3 þ

o

ox
pdp

We

� �
þ 4

Re
o2w
ox2 þ

4
Re

ow
ox

o ln h
ox

:

ðB:3Þ
Using the Crank-Nicolson method [56,57] the right-hand sides of
the equations in Eq. (B.1) are replaced with the mean values of
operators at time levels t and t + Dt with accuracy O(Dt2), i.e.
Dh
Dt
� RðþÞh � Rð�Þh

2
¼ Rð�Þh þ OðDt2Þ and

Dw
Dt
� RðþÞw � Rð�Þw

2
¼ Rð�Þw þ OðDt2Þ: ðB:4Þ

In order to apply the Newton method for linearization [56,57] we
calculate the variations of RðþÞh � Rð�Þh and RðþÞw � Rð�Þw with second or-
der precision O(Dh2, Dw2) using the above definitions, Eqs. (B.2) and
(B.3). After simple transformations one arrives to the relationships
Dh
Dt
þ 1

2
o

ox
½hð�ÞDwþwð�ÞDh	 ¼ Rð�Þh ; ðB:5Þ

Dw
Dt
þ o

ox
wð�ÞDw

2

� �
� 1

2We
o3Dh
ox3 �

o

ox
d

dh
ð
pdp

We
Þ

� �ð�Þ Dh
2

( )

� 2
Re

o2Dw
ox2 �

2
Re

o ln hð�Þ

ox
oDw
ox
� 2

Re
owð�Þ

ox
o

ox
Dh

hð�Þ

� �
¼ Rð�Þw : ðB:6Þ

To solve numerically Eqs. (B.5) and (B.6) we use a regular grid for
the space coordinate, x, defined as xk = �1 + kDx (k = 0, 1, 2, . . ., n),
where n is the number of intervals with a length Dx = 2/n. The val-
ues of the functions in the nodes of the grid are denoted with the
subscript k. For example, the central difference in space with preci-
sion O(Dx2) applied to Eq. (B.5) gives

�wð�Þk�1

4Dx
Dhk�1 �

hð�Þk�1

4Dx
Dwk�1 þ

Dhk

Dt
þ

wð�Þkþ1

4Dx
Dhkþ1 þ

hð�Þkþ1

4Dx
Dwkþ1 ¼ Rð�Þh;k ;

ðB:7Þ

where

Rð�Þh;k ¼
hð�Þk�1wð�Þk�1 � hð�Þkþ1wð�Þkþ1

2Dx
ðB:8Þ

and k = 1, 2, . . ., n � 1.
The respective difference scheme with precision O(Dx2) applied

to Eq. (B.6) is

ln hð�Þkþ1 � ln hð�Þk�1

2ReDx2 �wð�Þk�1

4Dx
� 2

ReDx2

" #
Dwk�1

þ
wð�Þkþ1 �wð�Þk�1

2ReDx2hð�Þk�1

þ 1
4Dx

d
dh

pdp

We

� �� �ð�Þ
k�1

( )
Dhk�1

þ 1
Dt
þ 4

ReDx2

� �
Dwk �

1
2We

DkðDhÞ

þ
wð�Þkþ1

4Dx
� 2

ReDx2 �
ln hð�Þkþ1 � ln hð�Þk�1

2ReDx2

" #
Dwkþ1

þ 1
2WeDx3 �

1
4Dx

d
dh

pdp

We

� �� �ð�Þ
kþ1
�

wð�Þkþ1 �wð�Þk�1

2ReDx2hð�Þkþ1

( )
Dhkþ1 ¼ Rð�Þw;k;

ðB:9Þ
where

Rð�Þw;k ¼
wð�Þk�1wð�Þk�1 �wð�Þkþ1wð�Þkþ1

4Dx
þ 1

We
Dk½hð�Þ	

þ
pð�Þdp;kþ1 � pð�Þdp;k�1

2WeDx
þ 4

Re
wð�Þkþ1 � 2wð�Þk þwð�Þk�1

Dx2

þ
wð�Þkþ1 �wð�Þk�1

ReDx2 ln hð�Þkþ1 � ln hð�Þk�1

h i
ðB:10Þ

and Dk is the difference operator representing the third derivative
with respect to the space coordinate x.

Because of the third derivative with respect to x, the difference
operator, Dk, in the nodes k = 2, 3, . . ., n � 2 has different form than
those written for the nodes 1 and n � 1. For k = 2, 3, . . ., n � 2 we
use the following central difference expression for Dk [58],

Dkðf Þ ¼
fkþ2 � 2f kþ1 þ 2f k�1 � fk�2

2Dx3 ; ðB:11Þ

D1 is defined by the relationship [58]

D1ðf Þ ¼ �
f4 � 6f 3 þ 12f 2 � 10f 1 þ 3f 0

2Dx3 ; ðB:12Þ

and Dn�1 is calculated using the values of the function in the nodes
n � 4, n � 3, n � 2, n � 1, and n through equation [58]

Dn�1ðf Þ ¼
3f n � 10f n�1 þ 12f n�2 � 6f n�3 þ fn�4

2Dx3 : ðB:13Þ

The matrix of the obtained linear system of equations, Eqs. (B.7)
and (B.9), completed with the boundary conditions, Eqs. (3.5) and
(3.6), written in terms of the unknown vector (Dh0, Dw0, Dh1, Dw1,
Dh2, Dw2, . . ., Dhn�1, Dwn�1, Dhn, Dwn), contains 5 upper and 7
lower diagonals. The numerical solution of this system is per-
formed efficiently using the Thomas algorithm [59]. The described
numerical scheme is stable, of the second order of time, and is
therefore, applicable for Dt � Dx.
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