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Abstract

Here, we calculate the hydrodynamic ejection force acting on a microscopic emulsion drop, which is continuously growing at a capillary tip.
This force could cause drop detachment in the processes of membrane and microchannel emulsification, and affect the size of the released drops.
The micrometer-sized drops are not deformed by gravity and their formation happens at small Reynolds numbers despite the fact that the typical
period of drop generation is of the order of 0.1 s. Under such conditions, the flow of the disperse phase through the capillary, as it inflates the
droplet, engenders a hydrodynamic force, which has a predominantly viscous (rather than inertial) origin. The hydrodynamic boundary problem
is solved numerically, by using appropriate curvilinear coordinates. The spatial distributions of the stream function and the velocity components
are computed. The hydrodynamic force acting on the drop is expressed in terms of three universal functions of the ratio of the pore and drop radii.
These functions are computed numerically. Interpolation formulas are obtained for their easier calculation. It turns out that the increase in the
viscosity of each of the two liquid phases increases the total ejection force. The results could find applications for the interpretation and prediction
of the effect of hydrodynamic factors on the drop size in membrane emulsification.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The method of membrane emulsification attracted a con-
siderable interest and found numerous applications during the
last decade. The method was applied in many fields, in which
monodisperse emulsions are needed. In food industry it was
used for production of oil-in-water (O/W) emulsions: dress-
ings, artificial milk, cream liqueurs, as well as for preparation
of some water-in-oil (W/O) emulsions: margarine and low-fat
spreads. Another application of this method is for fabrication
of monodisperse colloidal particles: silica–hydrogel and poly-
mer microspheres; porous and cross-linked polymer particles;
microspheres containing carbon black for toners, etc. A third
field is the production of multiple emulsions and microcapsules,
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which have found applications in pharmacy and chemother-
apy. Detailed reviews could be found in Refs. [1–5]. Closely
related to the membrane emulsification is the method employ-
ing capillary tubes or microchannels to produce monodisperse
emulsions [6–9].

The key problem of membrane emulsification is related to
the explanation and prediction of the dependence of the drop
size on the system’s parameters: pore diameter; flux of the dis-
perse phase along the pores; applied cross flow in the contin-
uous phase; viscosity of the oil and water phases; interfacial
tension and kinetics of surfactant adsorption, etc. (Here and
hereafter we call “disperse” the phase from which the drops
are made, despite the fact that this phase is continuous before
the drop detachment from the membrane.) Different approaches
have been used to solve this problem: by regression analysis
of experimental data [9]; by modeling of the drop expansion
and surfactant adsorption by surface evolver [10,11]; by three-
dimensional computational fluid dynamics simulations [12,13],
and by lattice Boltzmann simulations [14]. The quantitative the-
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oretical analysis demands one to determine the forces exerted
on the growing emulsion drop and to establish the mechanism
of drop detachment from the pores.

In some experiments, cross flow is applied in the continuous
phase parallel to the membrane surface. It gives rise to drag and
lift hydrodynamic forces that tilt the protruding drop and help
for its detachment from the membrane [4,14,15]. In addition,
the flow of the disperse phase through the capillary, as it inflates
the droplet, engenders a hydrodynamic ejection force that also
tends to detach the droplet from the pore [15].

It is possible to produce monodisperse emulsions by mem-
brane emulsification in the absence of cross flow in the outer
liquid phase [3]. In this case, the drag and lift hydrodynamic
forces are missing, but the ejection force alone is able to de-
tach the drops from the pores. The hydrodynamic estimates (see
Section 3 below) show that under typical experimental con-
ditions this process happens at small Reynolds numbers, for
which the inertial terms in the Navier–Stokes equation are neg-
ligible. Hence, under such conditions the ejection force has a
predominantly viscous (rather than inertial) character.

The full hydrodynamic problem for detachment of emulsion
drops in cross flow is rather complicated. It could be split into
two separate problems: (i) calculation of the ejection force in
the absence of cross flow in the outer liquid, and (ii) accounting
for the effect of the cross flow. Our goal in the present article is
to solve the first problem.

The paper is organized as follows. In Section 2, we con-
sider the kinematics of drop expansion. In Section 3, the basic
equations and boundary conditions are formulated. In Section 4,
appropriate curvilinear coordinates are introduced to transform
the three physical domains (capillary channel, drop and outer
phase) into rectangles. The hydrodynamic boundary problem is
solved numerically and the velocity field is calculated. Finally,
in Section 5 the hydrodynamic force acting on the emulsion
drop is computed and interpolation formulas are obtained for
its easier calculation. Details of the theoretical derivations are
given as appendices to this paper—see Supplementary material.

2. Kinematics of drop expansion

We consider the expansion of an emulsion drop, which is
growing at the tip of a capillary. Our purpose is to quantify the
hydrodynamic forces acting on the drops, which are formed at
the openings of the pores of an emulsification membrane. We
are dealing with microscopic drops, for which the gravitational
deformation of the drop is negligible. Here, we consider the
simpler case, in which there is no cross-flow in the outer liq-
uid phase; i.e., the only motion in the outer liquid is due to its
displacement by the growing drop.

Because we are dealing with small drops, we will simplify
our treatment by the assumption that the drop surface is (ap-
proximately) spherical. The membrane pore will be modeled as
a cylindrical channel, see Fig. 1. We will denote the radius of
the drop surface by Rs, and the inner radius of the pore—by Rp.
To describe the process of drop formation, we will use cylindri-
cal coordinates (r , z), where the z-axis coincides with the axis

Fig. 1. Drop from the liquid phase ‘a’ growing at the orifice of a membrane
pore. Phase ‘b’ is the outer liquid medium. Rp and Rs are, respectively, the
radii of the cylindrical pore and spherical drop surface. The “protrusion” an-
gle α characterizes the size of the drop (0 � α � 180◦), whereas the angle θ

characterizes the positions of the material points at the drop surface; vs is the
surface velocity.

of rotational symmetry of the system, and the plane z = 0 coin-
cides with the outer membrane surface (Fig. 1).

The inner and outer liquids will be referred as “phase a” and
“phase b,” respectively. For example, “phase a” could be oil
and “phase b”—water, or vice versa. Due to the symmetry, the
velocity fields, va and vb, in the respective phases can be ex-
pressed in the form:

(2.1)va = uaer + waez, vb = uber + wbez,

where er and ez are the unit vectors of the r- and z-axes. Inside
the cylindrical channel, far from its orifice, we have Poiseuille
flow of the inner liquid [16]:

ua = 0, wa = 2vm

(
1 − r2

R2
p

)
(2.2)for 0 � r � Rp and z → −∞.

Here vm is the mean velocity, and the subscript “a” denotes the
inner liquid phase. The flow rate, Q, of the inner liquid is

(2.3)Q = πR2
pvm = dV

dt
,

where V is the volume of the growing drop, and t is time. The
volume can be expressed in the form:

(2.4)V = πR3
p

3

2 + cosα

(1 + cosα)2
sinα,

where the angle α characterizes the protrusion of the droplet
from the pore (Fig. 1), and will be termed below “protrusion
angle.” The differentiation of Eq. (2.4), in view of Eq. (2.3),
yields:

(2.5)
dα

dt
= vm

Rp
(1 + cosα)2.
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The time derivative of the drop radius, Rs, is

(2.6)
dRs

dt
= d

dt

(
Rp

sinα

)
= −vm

1 + cosα

1 − cosα
cosα.

Likewise, for the z-coordinate of the drop center, zd, we ob-
tain

(2.7)
dzd

dt
= − d

dt
(Rp cotα) = vm

1 + cosα

1 − cosα
.

The spherical drop surface obeys the equation

(2.8)F(rs, t) ≡ r2
s + (zs − zd)

2 − R2
s = 0,

where (rs, zs) are the coordinates of a material point on the drop
surface with respect to the immobile cylindrical coordinate sys-
tem bound to the channel of the pore (Fig. 1); rs is the position
vector bound to this material point. In view of Eq. (2.8), the ma-
terial derivative of the function F (rs, t ) should be equal to zero
[17–19]:

(2.9)
∂F

∂t
+ vf · ∇F = 0, f = a,b,

where ∇ is the spatial gradient operator. Substituting Eq. (2.8)
into Eq. (2.9), one derives the following relationship at the drop
surface:

(2.10)
rs

Rs
uf + zs − zd

Rs
wf = dRs

dt
+ zs − zd

Rs

dzd

dt
, f = a,b.

It is convenient to introduce polar coordinates:

(2.11)rs = Rs sin θ, zs = zd + Rs cos θ,

where θ is the polar angle that characterizes the position of
the surface material points (Fig. 1). Further, with the help of
Eqs. (2.1), (2.10), and (2.11) we deduce the following expres-
sion for the normal projection of the surface velocity with re-
spect to the drop surface:

n · vs = n · vf = vm
1 + cosα

1 − cosα
(cos θ − cosα),

(2.12)f = a,b,

where n is the running unit normal to the drop surface:

(2.13)n = er sin θ + ez cos θ.

The magnitude of the normal component of surface velocity,
calculated from Eq. (2.12), is illustrated in Fig. 2. As it could
be expected, the normal surface velocity has a maximum at the
apex of the drop surface, where θ = 0 and n ·vf/vm = 1+cosα,
and decreases with the increase of the protrusion angle, α

(Figs. 2a and 2b).

3. Basic hydrodynamic equations and boundary conditions

The formation and detachment of micrometer-sized drops
during membrane emulsification occurs at small values of
the Reynolds number. To check that, we present Eq. (2.3)
in the form πR2

pvm ≈ 4πR3
d/(3�t), where �t is the pe-

riod of drop formation and Rd is the radius of the detached
drop. Then, the Reynolds number could be estimated as Re =

(a)

(b)

Fig. 2. The normal projection of the dimensionless surface velocity, n · vs/vm,
plotted vs the polar angle, θ , for different values of the protrusion angle:
(a) α � 90◦ , (b) α � 90◦ .

ρvmRp/η ≈ 4ρR3
d/(3ηRp�t), where η is the dynamic viscos-

ity of the liquid. Substituting typical parameter values: density
ρ = 1 g/cm3; dynamic viscosity η = 0.01 poises, �t = 0.1 s;
Rd ≈ 3Rp, and Rp � 20 µm, one obtains Re ≈ 0.14. Hence, the
Reynolds number is small and the classical Stokes equations
can be used to describe the flow in the inner and outer liquid
phases [20,21]:

(3.1)∇ · vf = 0, ∇pf = ηf∇2vf, f = a,b.

As usual p, v, and η stand for pressure, velocity, and dynamic
viscosity; the subscripts “a” and “b” denote quantities related
to the inner and outer liquid phases, respectively (see Fig. 1).

It is convenient to introduce dimensionless variables, de-
noted by tilde, as follows:

(3.2)r ≡ Rpr̃ , z ≡ Rpz̃, va ≡ vmṽa, vb ≡ vmṽb,

(3.3)pa ≡ p∞ + 2σ

Rs
+ ηavm

Rp
p̃a, pb ≡ p∞ + ηbvm

Rp
p̃b,

where p∞ is the equilibrium bulk pressure in the outer phase
far from the forming drop; σ is the oil/water interfacial tension.
With the help of Eqs. (2.1), (3.2), and (3.3), we bring the system
of equations (3.1) in the form [20,21]:
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(3.4)
1

r̃

∂

∂r̃

(
r̃ ũf

) + ∂w̃f

∂z̃
= 0,

(3.5)
∂

∂r̃

[
1

r̃

∂

∂r̃

(
r̃ ũf

)] + ∂2ũf

∂z̃2
= ∂p̃f

∂r̃
,

(3.6)
1

r̃

∂

∂r̃

(
r̃
∂w̃f

∂r̃

)
+ ∂2w̃f

∂z̃2
= ∂p̃f

∂z̃
,

where f = a, b. Equations (3.4)–(3.6), along with the respective
boundary conditions (see below), form a system of equations
for determining p̃f, ũf ≡ uf/vm, and w̃f ≡ wf/vm. To obtain
a single partial differential equation for the considered prob-
lem, we apply a standard hydrodynamic approach that is based
on introducing a dimensionless stream function, ψf, as follows
[20,21]:

(3.7)ũf ≡ ∂ψf

∂z̃
, w̃f ≡ −1

r̃

∂

∂r̃

(
r̃ψf

)
, f = a,b.

In view of Eq. (3.7), the continuity equation (3.4) is auto-
matically satisfied and the stream function obeys the equation
[20,21]:

(3.8)L
[
L(ψf)

] = 0, f = a,b,

where the linear differential operator L is defined as

(3.9)L(f ) ≡ ∂

∂r̃

[
1

r̃

∂

∂r̃
(r̃f )

]
+ ∂2f

∂z̃2
,

where f is an arbitrary function. Note that the partial differ-
ential equation (3.8) is of the fourth order and two boundary
conditions at each boundary are needed for its solution [17,20,
21]. The pressure, p̃f, f = a,b, is simply related to the stream
function, ψf, through the basic Stokes equations (3.5) and (3.6).

An important step in the modeling of the drop expansion is to
transform the hydrodynamic boundary conditions in the terms
of the stream function.

At the axis of symmetry, r̃ = 0, the radial velocity, uf, and
the curl of the liquid flow must be zero, irrespective of the value
of z. Therefore, the stream function must be an odd function
of r [20,21], and the following boundary conditions take place:

(3.10)ψf = 0,
∂2ψf

∂r̃2
= 0 at r̃ = 0, f = a,b.

Inside the channel of the pore, far from its orifice, we
have Poiseuille flow with a parabolic velocity profile given by
Eq. (2.2). Then, from Eqs. (2.2), (3.2), and (3.7) we derive

(3.11)
ψa = r̃3

2
− r̃ ,

∂ψa

∂z̃
= 0 at 0 � r̃ � 1 and z̃ → −∞.

At the solid wall of the cylindrical pore (r̃ = 1, see Fig. 1),
we must have ua = wa = 0. Substituting r̃ = 1 in Eq. (3.11), we
get ψa = −1/2. Further, we substitute the latter relationships in
the expression for w̃f in Eq. (3.7) to derive:

(3.12)ψa = −1

2
,

∂ψa

∂r̃
= 1

2
at r̃ = 1 and z̃ � 0.

Likewise, we have ub = wb = 0 at the solid surface z̃ = 0 for
r̃ � 1, which represents the boundary of the membrane with the
outer liquid (Fig. 1). For this boundary, we obtain

(3.13)ψb = − 1

2r̃
,

∂ψb

∂z̃
= 0 at r̃ � 1 and z̃ = 0.

Here, we have used the fact that the substitution of ψb ∝ 1/r̃

into Eq. (3.7) yields w̃f = 0; the constant of proportionality is
determined from the condition ψb = ψa = −1/2 at r̃ = 1, see
Eq. (3.12).

At the drop surface we impose the kinematic boundary con-
dition given by Eq. (2.12); thus, we derive (Appendix A in
Supplementary material):

ψa = ψb = (1 + cosα) sin θ

(1 − cosα) sinα

(
cosα

1 + cos θ
− 1

2

)
(3.14)at the drop surface.

It is important to note that the stream function (3.14) is continu-
ous at the edge of the pore, i.e., the value of ψf is equal to −1/2
at θ = α, see also Eqs. (3.12) and (3.13).

At the oil–water interface, the tangential components of the
velocities in the two phases should be equal, t · va = t · vb [16];
here, t is a running unit tangent to the drop surface. In the
case of membrane emulsification, a high concentration of sur-
factant is used to stabilize the obtained emulsion droplets. The
adsorbed surfactant molecules give rise to a considerable sur-
face elasticity (Marangoni–Gibbs effect) and surface viscosity,
which have to be taken into account in the tangential stress bal-
ance [18,19,22]. It has been proven both experimentally and
theoretically [18,22–24] that the surface (Gibbs) elasticity and
viscosity damp the surface mobility even at very low surfactant
concentrations. Therefore, we could treat the oil–water inter-
face as tangentially immobile, i.e., t · va = t · vb = 0 at the drop
surface. The tangential immobility leads to a boundary condi-
tion of Neumann type for the stream function (see Appendix A
in Supplementary material):

(3.15)
∂ψf

∂n
+ ψf sinα = 0 at the drop surface,

where f = a,b. The directional derivative in Eq. (3.15) is

(3.16)
∂ψf

∂n
= n · ∇ψf = sin θ

∂ψf

∂r̃
+ cos θ

∂ψf

∂z̃
.

In view of Eqs. (3.15) and (3.16), the problem splits into two
separate boundary problems in the phases “a” and “b.”

4. Solution of the problem in curvilinear coordinates

The hydrodynamic equations (3.8) for the stream func-
tions ψa and ψb, along with the respective boundary conditions
(3.10)–(3.15), have no analytical solution. To solve the prob-
lem numerically, we parameterized the three spatial domains of
the considered system by means of appropriate curvilinear co-
ordinates (Section 4.1). The derived equations are reformulated
in terms of the new coordinates (Section 4.2). The obtained nu-
merical results for the stream function and velocity components
are presented and discussed in Section 4.3.

4.1. Coordinate transformations

It is convenient to transform the physical space, occupied by
the two liquid phases, including the emulsion drop, into a finite
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(a)

(b)

Fig. 3. (a) Curvilinear coordinates (x1, x2) introduced in Section 4. (b) The
pore interior, the drop interior and the outer phase are transformed into the
rectangular domains A, B, and C, respectively.

rectangular domain. For this goal, we consider three separate
domains (Fig. 3). Domain A represents the interior of the cylin-
drical capillary. Domain B is the interior of the emulsion drop.
Domain C is the outer liquid (the continuous phase of the emul-
sion).

In the domain A, it is convenient to replace the cylindrical
coordinates (r̃, z̃) by curvilinear coordinates (x1, x2), defined
as follows:

(4.1)x1 ≡ r̃ , x2 ≡ z̃

1 − z̃
.

Thus, the domain corresponding to 0 � r̃ � 1 and z̃ � 0, is
transformed into a finite rectangle, for which 0 � x1 � 1 and
−1 � x2 � 0 (Fig. 3). The coordinate surfaces x1 = const. are
vertical cylinders, whereas the coordinate surfaces x2 = const.
are horizontal planes. Using the curvilinear coordinates defined
by Eq. (4.1), we derive

(4.2)
∂f

∂r̃
= ∂f

∂x1
,

∂f

∂z̃
= (1 + x2)

2 ∂f

∂x2
.

Because the domains B and C are separated by a spherical
phase boundary (the drop surface), it is convenient to introduce
orthogonal toroidal coordinates in these two regions:

(4.3)r̃ ≡ 2x1

h
, z̃ ≡ 1 − x2

1

h
sinx2,

(4.4)h ≡ 1 + x2
1 + (

1 − x2
1

)
cosx2.

The coordinates x1 and x2, defined by Eqs. (4.3)–(4.4), are
similar to the conventional toroidal coordinates [25–27]. In our

case, the coordinate surfaces x1 = const. are toroids, whereas
the surfaces x2 = const. are spheres (Fig. 3). The latter obey the
equation:

(4.5)r̃2 + (
z̃ + cotx2

)2 = 1

sin2 x2
.

One could check that (irrespective of the value of x2) all
spheres described by Eq. (4.5) are passing through the circum-
ference r̃ = 1, z̃ = 0, which is the edge at the orifice of the pore.
Because the drop surface represents a sphere of dimensionless
radius R̃s ≡ Rs/Rp = 1/ sinα (Fig. 1), from Eq. (4.5) we find
that x2 = α at the drop surface (at the boundary between the
domains B and C). In addition, the boundary between the do-
mains A and B corresponds to x2 = 0; see Eqs. (4.1) and (4.3)
and Fig. 3. Thus, the domain B represents a rectangle, for which
0 � x1 � 1 and 0 � x2 � α, whereas for the domain C we have
0 � x1 � 1 and α � x2 � π .

From the definition of the toroidal coordinates (4.3) and
(4.4), it follows that

∂r̃

∂x1
= 2

h2

[(
1 − x2

1

) + (
1 + x2

1

)
cosx2

]
,

(4.6)
∂z̃

∂x2
= 1 − x2

1

2

∂r̃

∂x1
,

(4.7)
∂r̃

∂x2
= 2

h2
x1

(
1 − x2

1

)
sinx2,

∂z̃

∂x1
= − 2

1 − x2
1

∂r̃

∂x2
.

The respective metric (Lamé) coefficients are [25,26]:

(4.8)h1 = 2

h
, h2 = 1 − x2

1

h
.

Two other useful relationships connect the derivatives in
terms of the cylindrical and toroidal coordinates:

∂f

∂r̃
= 1

2

[(
1 − x2

1

) + (
1 + x2

1

)
cosx2

] ∂f

∂x1

(4.9)+ 2x1 sinx2

1 − x2
1

∂f

∂x2
,

(4.10)
∂f

∂z̃
= −x1 sinx2

∂f

∂x1
+

(
1 + 1 + x2

1

1 − x2
1

cosx2

)
∂f

∂x2
.

The introduced curvilinear coordinates are convenient, be-
cause the boundary conditions are imposed on coordinate sur-
faces. In the next sections, we specify the form of the differen-
tial equations and boundary conditions for the domains A, B,
and C.

4.2. Hydrodynamic equations and boundary conditions in
curvilinear coordinates

As mentioned above, the domain A is a rectangle for which
0 � x1 � 1 and −1 � x2 � 0 (Fig. 3). In this domain, the linear
differential operator L, defined by Eq. (3.9), acquires the form:

L(f ) = ∂2f

∂x2
1

+ (1 + x2)
4 ∂2f

∂x2
2

+ 1

x1

∂f

∂x1

(4.11)+ 2(1 + x2)
3 ∂f

∂x2
− f

x2
1

.
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In the domain A, the stream function ψa satisfies Eq. (3.8),
where the linear differential operator L is given by Eq. (4.11).

Furthermore, with the help of Eqs. (4.3), (4.4), (4.9), and
(4.10), one can express the differential operator L in terms of
the toroidal coordinates (x1, x2):

L(f ) = 1

h2
1

∂2f

∂x2
1

+ 1

h2
2

∂2f

∂x2
2

+
(

h

2x1
− 2x1

1 − x2
1

)
1

h1

∂f

∂x1

(4.12)+ sinx2

h2

∂f

∂x2
− f

h2
1x

2
1

.

In the domains B and C, the stream functions ψa and ψb satisfy
Eq. (3.8), in which the linear differential operator L is given by
Eq. (4.12).

At the axis of symmetry, r̃ = 0, which corresponds to x1 = 0,
the stream function is an odd function of x1 [20,21], and the
boundary conditions (3.10) reduce to

ψf = 0,
∂2ψf

∂x2
1

= 0 at x1 = 0 and −1 � x2 � 0,

(4.13)f = a,b.

In the interior of the capillary channel, far from its orifice,
we have z̃ → −∞ and x2 = −1. Then, from the boundary con-
dition, Eq. (3.11), using Eq. (4.1) we derive

(4.14)

ψa = x3
1

2
− x1,

∂ψa

∂x2
= 0 at 0 � x1 � 1 and x2 = −1.

The second relation in Eq. (4.14) follows from the fact that
the perturbations of the Poiseuille flow in cylindrical chan-
nels decay exponentially with the distance z [20,21]. Therefore,
∂ψa/∂z̃ decays faster for z̃ → −∞ than (1+x2)

2 for x2 → −1.
The solid wall of the cylindrical channel corresponds to

r̃ = x1 = 1. With the help of the definitions in Eq. (4.1), the
respective boundary conditions, Eq. (3.12), can be rewritten in
the form:

(4.15)

ψa = −1

2
,

∂ψa

∂x1
= 1

2
at x1 = 1 and −1 < x2 � 0.

At the outer membrane wall, where z̃ = 0 and x2 = π

(Fig. 3), with the help of Eqs. (3.13), (4.3), (4.4), and (4.10),
we derive the following boundary conditions:

(4.16)ψb = −x1

2
,

∂ψb

∂x2
= 0 at 0 � x1 � 1 and x2 = π.

At the drop surface (the oil–water interface), we have
x2 = α. With the help of Eqs. (4.3) and (4.4), after some math-
ematical transformations one can express boundary conditions,
Eqs. (3.14) and (3.15), in the form (Appendix B in Supplemen-
tary material):

(4.17)

ψf = −x1

h

[
1 + (

1 − x2
1

)
cosα

]
at x2 = α and 0 � x1 � 1,

(4.18)
1

h2

∂ψf

∂x2
+ ψf sinα = 0 at x2 = α and 0 � x1 � 1,

where f = a,b.

The present formulation of the problem introduces two ad-
ditional boundaries (Fig. 3b): (i) The circumference of the pore
edge, which is the point (1, 0) in cylindrical coordinates (r̃, z̃),
in curvilinear coordinates is expanded in the segment x1 = 1
and 0 � x2 � π of the domains B and C. (ii) The domains A
and B at x2 = 0 are separated by an imaginary boundary, which
appears because of the used different coordinates and the re-
spective different forms of the differential operator L given by
Eqs. (4.11) and (4.12).

At the edge of the pore, the values of the stream functions are
determined from Eqs. (4.15) and (4.16). In addition, using the
nonslip boundary condition one derives (Appendix B in Sup-
plementary material):

ψf = −1

2
,

∂ψf

∂x1
= cosx2

2
at x1 = 1, 0 � x2 � π,

(4.19)and f = a,b.

To have a continuous stream function at the boundary
between the domains A and B, the values of ψa and its
z-derivatives on both sides of the boundary must be equal. To
fulfill this requirement, it is enough to have

{ψa} = 0,

{
∂ψa

∂z̃

}
= 0,

{
∂2ψa

∂z̃2

}
= 0,

(4.20)

{
∂3ψa

∂z̃3

}
= 0 at 0 � r̃ � 1,

where {f } means the jump of the respective function across the
boundary:

(4.21){f } ≡ f
∣∣
z̃→0+0−f

∣∣
z̃→0−0.

In terms of the introduced coordinates, the derivatives in
Eq. (4.20), calculated in the domains A and B have a different
forms. After some mathematical transformations, the boundary
conditions (4.20) can be represented in the form (Appendix C
in Supplementary material):

(4.22)
∂ψa

∂x2

∣∣∣∣
x2=0−0

= 2

1 − x2
1

∂ψa

∂x2

∣∣∣∣
x2=0+0

,

(
∂2ψa

∂x2
2

+ 2
∂ψa

∂x2

)∣∣∣∣
x2=0−0

(4.23)=
[

4

(1 − x2
1)2

∂2ψa

∂x2
2

− 2x1

1 − x2
1

∂ψa

∂x1

]∣∣∣∣
x2=0+0

,

(
∂3ψa

∂x3
2

+ 6
∂2ψa

∂x2
2

+ 6
∂ψa

∂x2

)∣∣∣∣
x2=0−0

=

=
[

8

(1 − x2
1)3

∂3ψa

∂x3
2

− 12x1

(1 − x2
1)2

∂2ψa

∂x1∂x2

(4.24)− 4(1 + 3x2
1)

(1 − x2
1)3

∂ψa

∂x2

]∣∣∣∣
x2=0+0

.

We solved numerically the partial differential equations,
Eqs. (3.8), in which the linear differential operator L is de-
fined by Eqs. (4.11) and (4.12), using the boundary conditions
(4.13)–(4.19) and (4.22)–(4.24). For this purpose, in each of
the domains A, B, and C a regular numerical grid of 101 × 101
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points was introduced. The derivatives appearing in the equa-
tions and boundary conditions were replaced by their finite
difference approximations of the second order [25,28–31]. The
resulting system of linear equations was solved by means of a
direct algorithm developed by us, which gives the exact solu-
tion in the frame of the computer’s double precision. Thus, the
problem was solved by one step, without iterations.

4.3. Results for the velocity field

The numerical solution of the boundary problem yields the
stream function, and the two components of velocity in each
phase: ψf(x1, x2), ũf(x1, x2), and w̃f(x1, x2), f = a,b. First,
the stream functions, ψa and ψb, are computed. Next, the radial
and z-components of velocity, ũf and w̃f, f = a,b, are calculated
by using Eqs. (3.7) and (4.2) in the domain A,

(4.25)ũa = (1 + x2)
2 ∂ψa

∂x2
, w̃a = −∂ψa

∂x1
− ψa

x1
,

and by using Eqs. (3.7), (4.3), (4.9), and (4.10) in the domains B
and C:

(4.26)ũf = −x1 sinx2
∂ψf

∂x1
+

(
1 + 1 + x2

1

1 − x2
1

cosx2

)
∂ψf

∂x2
,

w̃f = −1

2

[(
1 − x2

1

) + (
1 + x2

1

)
cosx2

]
∂ψf

∂x1

(4.27)− 2x1 sinx2

1 − x2
1

∂ψf

∂x2
− h

2x1
ψf,

where f = a,b. The derivatives appearing in Eqs. (4.25)–(4.27)
are determined numerically from computed values of ψf, f =
a,b, in the domains A, B, and C, using the respective finite dif-
ference approximations of the second order [25,28–31].

Illustrative contour plots of the z-component of velocity, wf,
are shown in Fig. 4 for α = 30◦,90◦, and 150◦. The vertical
dashed lines in Figs. 4a, 4b, and 4c represent the boundaries
between the domains A, B, and C; see Fig. 3. As it could be
expected, wf is maximal at the axis of symmetry (x1 = 0).
Moreover, wf decreases with the distance from the capillary
tip in the domains B and C. The role of the drop surface on
the flow inside the capillary (in the domain A) is more pro-
nounced for small values of the protrusion angle (Fig. 4a). For
α � 90◦, the flow in the capillary does not deviate consider-
ably from the Poisseuille flow (Figs. 4b and 5c). In addition,
for α = 90◦ wf exhibits a significant change at the oil–water in-
terface. For α > 90◦ the magnitude of wf at the drop surface
is small and decreases with the increase of α. However, the in-
tegral effect of wf on the hydrodynamic drag force acting on
the drop surface is not negligible because of the increase of the
interfacial area (see Section 5).

Contour plot diagrams of the radial velocity component, ũf,
f = a,b, are shown in Fig. 5 for protrusion angles α = 30◦,90◦,
and 150◦. For α = 30◦ (Fig. 5a), the radial component of the
velocity has a shallow minimum inside the capillary; its nega-
tive value means that the radial projection of velocity is directed
toward the axis of symmetry. In this region, the radial compo-
nent is much smaller than the z-component, |ua/wa| � 0.02.

For α < 90◦, the maximum of ũf is located in the outer phase,
domain C (Fig. 5a). For α = 90◦, the maximum of ũf is on the
drop surface (Fig. 5b), whereas for α = 150◦ this maximum is
located inside the drop (Fig. 5c). Moreover, for α � 90◦, the ra-
dial velocity component ũf is positive in the whole region, i.e.,
and the velocity vector is always tilted outwards with respect to
the axis of symmetry. Note also that for α = 90◦ (Fig. 5b), the
maximum of ũf at the capillary tip is about 0.02, whereas for
α = 150◦ (Fig. 5c) it increases up to about 0.18.

The toroidal coordinates (x1, x2) are convenient for numeri-
cal calculations, and the contour plots (Figs. 4 and 5) are useful
for estimating the magnitudes of the stream function and ve-
locity components. However, these curvilinear coordinates are
not convenient for spatial presentation of the flow pattern, be-
cause they distort the shape of the real system. For this reason,
in Fig. 6 we show the velocity vector, v, recalculated in the con-
ventional Cartesian coordinates; as usual, the z-axis coincides
with the axis of symmetry of the system. The drop in Fig. 6 cor-
responds to Rs/Rp = 1/ sinα = 2/

√
3(α = 120◦). The general

pattern of the velocity field in Fig. 6 does not indicate existence
of vorticity structures inside the drop (symmetric curls on the
left and right of the z-axis in Fig. 1), as expected under other
physical conditions [32]. The flow is predominantly directed
along the z-axis, out of the pore, with a superimposed additional
radial flow, engendered by the radial expansion of the drop sur-
face. The flow pattern is similar (without vorticity structures in
the drop) also for the other values of α. We recall that the used
boundary conditions at the drop surface, Eqs. (2.12) and (3.15),
physically correspond to a tangentially immobile oil–water in-
terface. In other words, the displacement vector of the material
points on the expanding drop surface is directed along the nor-
mal to this surface. Such a kinematic regime is expected when
adsorbed surfactant molecules give rise to a considerable sur-
face elasticity (Marangoni–Gibbs effect).

5. Hydrodynamic force acting on the emulsion drop

5.1. Hydrodynamic force coefficients

Our aim here is to calculate the hydrodynamic force, Fh,
acting on the drop. For this goal, we could formally consider
the drop that is protruding from the capillary (Fig. 1) as being
“solidified,” and could integrate the pressure in the surround-
ing phases over the drop surface, S. The latter surface consists
of the oil–water interface, i.e., the boundary SBC between the
domains B and C, and of the imaginary planar boundary SAB
between the domains A and B; SAB separates the drop from the
pore channel; see Fig. 3. Thus, Fh can be presented as a sum of
contributions from the pressures in the phases “a” and “b”:

Fa =
∫

SAB

dsn ·
[

Pa −
(

p∞ + 2σ

Rs

)
U

]
,

(5.1)Fb =
∫

SBC

dsn · (Pb − p∞U),

where U is the spatial unit tensor; n is the outer running nor-
mal. In Eq. (5.1), we have subtracted the static pressure in the
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(a)

(b)

Fig. 4. Contour-plot diagrams of the dimensionless z-component of velocity, w̃f(x1, x2), for different protrusion angles: (a) α = 30◦ , (b) α = 90◦ , (c) α = 150◦ .
The vertical dashed lines correspond to the boundaries between the domains A, B, and C in Fig. 3b.

respective phase from the pressure tensor. The pressure tensors,
Pa and Pb, are determined by the Newton’s law for a viscous
fluid [16–21]:

(5.2)Pf ≡ pfU − ηf
[∇vf + (∇vf)

tr], f = a,b,

where the superscript “tr” means transposition. The Stokes
equations, Eq. (3.1), are equivalent to ∇ · Pf = 0. Then, in ac-
cordance with the Gauss–Ostrogradsky theorem, the force Fb

given by Eq. (5.1) can be calculated at every mathematical sur-
face that together with SBC forms a closed surface; this is the
Faxen theorem [20]. The calculation of Fb is simpler if we
choose the surface z = 0 at r > Rp as integration domain. Thus,
both integrals in Eq. (5.1) are taken over portions of the plane
z = 0: at 0 < r < Rp for Fa, and at Rp < r < ∞ for Fb:

(5.3)Fa = 2πez

Rp∫
0

(
Pa,zz − p∞ − 2σ

Rs

)
r dr,

(5.4)Fb = 2πez

∞∫
Rp

(Pb,zz − p∞)r dr,

where the values of the tensorial components Pa,zz and Pb,zz are
taken at z = 0. Because, Fa and Fb have purely hydrodynamic
character, we could seek expressions for their magnitudes in the
conventional Stokes form [16,20,21]:

(5.5)Fa = faηaRpvm, Fb = fbηbRpvm.

Of course, the coefficients, fa and fb, are, in general, different
from 6π . Our aim below is to determine their values. For this
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(c)

Fig. 4. (continued)

goal, we express Pf,zz from Eq. (5.2) and use the continuity
equation (3.1):

(5.6)Pf,zz = pf − 2ηf
∂wf

∂z
= pf + 2ηf

1

r

∂

∂r
(ruf), f = a,b.

From the boundary conditions, we have ua(r = Rp) = ub(r =
Rp) = ub(r → ∞) = 0. Therefore, when substituting Eq. (5.6)
into Eqs. (5.3) and (5.4), and integrating, the last term in
Eq. (5.6) gives zero contribution and the obtained results read:

(5.7)Fa = 2π

Rp∫
0

(
pa − p∞ − 2σ

Rs

)
r dr at z = 0,

(5.8)Fb = 2π

∞∫
Rp

(pb − p∞)r dr at z = 0.

Finally, in Eqs. (5.7) and (5.8) we introduce dimensionless
variables in accordance with Eq. (3.3). As a result, we obtain
Eq. (5.5), where the dimensionless coefficients of the hydrody-
namic force are given by the expressions:

(5.9)fa = 2π

1∫
0

p̃ar̃ dr̃, fb = 2π

∞∫
1

p̃br̃ dr̃ at z = 0.

To determine the pressures pa and pb in the phases ‘a’ and
‘b,’ we need two boundary conditions. In the bulk of phase ‘b’
this is the condition pb → p∞. To obtain the respective bound-
ary condition in the phase ‘a,’ we will use the Laplace equation
of capillarity. For this goal, we present pa and pb in the form:

(5.10)pa ≡ p∞ + 2σ

Rs
+ pa,dyn, pb ≡ p∞ + pb,dyn,

where pa,dyn and pb,dyn are the respective dynamic contribu-
tions to the pressure. Next, we consider the force balance at the

apex of the drop surface (Fig. 1), that is the point where the
z-axis pierces the drop surface:

(5.11)
2σ

Rs

+
(

pb − 2ηb
∂wb

∂z

)
ap

=
(

pa − 2ηa
∂wa

∂z

)
ap

,

where the subscript ‘ap’ denotes that the expression in the
parentheses should be estimated at the apex of the drop sur-
face. Substituting pa and pb from Eq. (5.10) into Eq. (5.11), we
get

(5.12)

(
pb,dyn − 2ηb

∂wb

∂z

)
ap

=
(

pa,dyn − 2ηa
∂wa

∂z

)
ap

.

Further, in view of Eqs. (3.2), (3.3), and (5.11), we introduce
dimensionless variables in Eq. (5.12):

(5.13)ηb

(
p̃b − 2

∂w̃b

∂z̃

)
ap

= ηa

(
p̃a − 2

∂w̃a

∂z̃

)
ap

.

In the computations, it is convenient to express p̃a in the form:

(5.14)p̃a(r) = p̃a,0(r) +
(

p̃a − 2
∂w̃a

∂z̃

)
ap

,

where the last term in the parentheses is a constant (indepen-
dent of r). Equation (5.14) represents the definition of p̃a,0 (r).
At the apex of the drop surface, Eq. (5.14) gives the boundary
condition for p̃a,0:

(5.15)p̃a,0
∣∣
ap = 2

∂w̃a

∂z̃

∣∣∣∣
ap

.

In view of Eqs. (5.9), (5.13), and (5.14), we obtain

(5.16)

fa = fa,0 + π

(
p̃a − 2

∂w̃a

∂z̃

)
ap

= fa,0 + ηb

ηa
π

(
p̃b − 2

∂w̃b

∂z̃

)
ap

,

where
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(a)

(b)

Fig. 5. Contour-plot diagrams of the dimensionless radial component of velocity, ũf(x1, x2), for different protrusion angles: (a) α = 30◦ , (b) α = 90◦ , (c) α = 150◦ .
The vertical dashed lines correspond to the boundaries between the domains A, B, and C in Fig. 3b.

(5.17)fa,0 = 2π

1∫
0

p̃a,0r̃ dr̃ at z = 0.

Finally, in view of Eqs. (5.5) and (5.16), we can express the
total hydrodynamic ejection force exerted on the drop in the
following form:

(5.18)Fh = Fa + Fb = fhηaRpvm,

where

(5.19)fh ≡ fa,0(α) + ηb

ηa

[
fb(α) + fab(α)

]
,

(5.20)fab(α) = π

(
p̃b − 2

∂w̃b

∂z̃

)
ap

.

Note, that because of the scaling procedure used in Section 3 the
coefficients fa,0, fb, and fab depend only on the protrusion an-
gle, α. Equation (5.19) shows that the total hydrodynamic coef-
ficient, fh, depends linearly on the ratio, ηb/ηa, of the dynamic
viscosities of phases “b” and “a.” Numerical results, as well
as some approximate analytical expressions for fa,0(α), fb(α),
and fab(α) are given in Section 5.2.

5.2. Numerical results and discussion

In the computations, it is convenient to express the coeffi-
cients fa,0, fb, and fab in terms of the obtained solution for the
stream functions. After mathematical transformations given in
Appendices D, E, and F in Supplementary material, we obtain
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(c)

Fig. 5. (continued)

Fig. 6. Plot of the vectorial field of velocity for protrusion angle α = 120◦ .

the following expressions for the three force coefficients:

(5.21)fa,0 = c1 + c2 + c3 + c4, fab = c5 − c1,

(5.22)fb = 8π

1∫
0

x2
1

(1 − x2
1)2

∂3ψb

∂x3
2

dx1 at x2 = π,

where the coefficients cj , j = 1, . . . ,5, are defined as follows:

(5.23)c1 ≡ −2π sinα(1 + cosα),

(5.24)c2 ≡ −4π
∂2ψa

∂x1∂x2
at x1 = 0 and x2 = 0 − 0,

c3 ≡ π

3

α∫
0

(1 + cosx2)
2 ∂3ψa

∂x3
1

dx2

+ 4π

α∫
0

sinx2(1 + cosx2)
∂2ψa

∂x1∂x2
dx2

(5.25)− 2π

α∫
0

sin2 x2
∂ψa

∂x1
dx2 at x1 = 0,

c4 ≡ π

1∫
0

(
∂3ψa

∂x3
2

+ 6
∂2ψa

∂x2
2

+ 6
∂ψa

∂x2

)(
1 − x2

1

)
dx1

(5.26)at x2 = 0 − 0,

c5 ≡ π

3

π∫
α

(1 + cosx2)
2 ∂3ψb

∂x3
1

dx2

+ 4π

π∫
α

sinx2(1 + cosx2)
∂2ψb

∂x1∂x2
dx2

(5.27)− 2π

α∫
0

sin2 x2
∂ψa

∂x1
dx2 at x1 = 0.

It is important to note that the integrands in Eqs. (5.25)–(5.27)
do not have any singular points and they can be calculated by
using standard methods of numerical integration.

Knowing the values of stream functions, ψa and ψb, in the
nodes of the numerical domains A, B, and C, we calculated
their derivatives appearing in Eqs. (5.22), (5.24)–(5.27) by us-
ing their finite difference approximations of the second order
[25,28–31]. Next, we calculated the integrals in Eqs. (5.22),
(5.25)–(5.27) by means of the Simpson rule [29]. The latter has
a higher precision than the finite difference approximation for
the derivatives.

The calculated force coefficient fa,0(α) is plotted in Fig. 7.
As it could be anticipated from the velocity distributions
(Figs. 4–6), fa,0(α) has a maximum value at α close to 90◦.
The calculated maximal value of fa,0 is equal to 19.66 and
its position corresponds to α = 93.71◦. Further increase of the
protrusion angle, α, leads to a decrease in fa,0 followed by



Author's personal copy

K.D. Danov et al. / Journal of Colloid and Interface Science 316 (2007) 844–857 855

Fig. 7. Dependence of the hydrodynamic force coefficient fa,0 on the protrusion
angle α.

Fig. 8. Plots of the numerical results for the force coefficients fab, fb, and their
sum, vs the protrusion angle α.

a plateau at α → 180◦. The latter plateau corresponds to the
regime of free flow of liquid from a capillary. Our numerical
calculations yielded fa,0(180◦) = 13.04. Analytical solution of
this problem cannot be found [21], because the operator L2

is not separable in the case of rotational symmetry. The value
fa,0(180◦) = 13.04 (and the full dependence fa,0(α)) was not
known before our computations.

The obtained numerical results for the force coefficients fab
and fb are shown in Fig. 8. The force coefficient fab is ap-
proximately constant for protrusion angles α < 40◦. A further
increase of α leads to a fast decrease of fab to zero at α = 180◦.
The force coefficient fab is positive for all values of α, which
means that it favors the drop detachment. We recall that fab ac-
counts for the jump of the hydrodynamic pressure across the
drop surface at its apex. In contrast, the force coefficient fb is
negative for 0 � α < 127◦, which means that fb opposes the
drop detachment from the pore (because of the hydrodynamic
resistance of the outer liquid).

For 127◦ < α < 180◦, fb becomes positive and has a maxi-
mum value of 2.965 at α = 162◦; see Fig. 8. The positive values
of fb in this range of angles is due to the lifting action of the
hydrodynamic resistance against the displacement of the outer
liquid from the wedge-shaped zone between the drop surface

and the flat horizontal solid surface around the opening of the
pore (see Fig. 1). This lifting effect favors the drop detachment
for 127◦ < α < 180◦.

Note that in the total hydrodynamic force coefficient, fh, the
contributions of fab and fb cannot be separated—they appear
as a sum fab + fb in Eq. (5.19). Fig. 8 shows that fab + fb
is positive for all values of the protrusion angle, α. In other
words, the net effect of fab + fb favors the drop detachment.
The limiting value of both fab and fb for α → 180◦ is zero
(Fig. 8).

To find the exact limiting values of fab and fb for α → 0, we
obtained an analytical solution of the respective hydrodynamic
problem (see Appendix G in Supplementary material). From
this solution, we obtained fab(0) = 8π ≈ 25.13 and fb(0) =
−32/3 ≈ −10.67. Our independent numerical solution (Fig. 8)
gives practically the same values, with a relative error that is
smaller than 10−4.

5.3. Approximate analytical expressions for the force
coefficients

In the process of membrane emulsification (without applied
cross flow), the radii of the detached drops are always greater
than 2Rp [3]. This fact implies that the drop detachment oc-
curs at protrusion angles α � 150◦. For easier calculation of the
forces acting on the drop in this case, we obtained accurate an-
alytical expressions for fa,0(α), fab(α), and fb(α), which are
applicable in the interval 150◦ � α � 180◦.

Interpolating our numerical results for fa,0(α), we obtained

fa,0 ≈ 15.4891 − 1.5710 cos(2α) − 3.0621 cos2(2α)

(5.28)+ 2.1847 cos3(2α),

which is applicable for 150◦ � α � 180◦ with a relative error
smaller than 10−3. For the force coefficient, fab, we obtained
the following interpolation formula:

(5.29)fab ≈ 9

2
πξ

(
1 + 1 − 433.64ξ

12.063 + 9255.6ξ

)
,

(5.30)ξ ≡ (1 + cosα) sinα.

Equations (5.29) and (5.30) are applicable for 150◦ � α � 180◦
with a relative error smaller than 10−3. Note that the first term in
the right hand side of Eq. (5.29) corresponds to the combination
of an expansion flow and a motion of a sphere in a viscous
liquid [21], whereas the second term in the parenthesis is an
interpolation correction, which accounts for the role of the solid
surface (Fig. 1).

As mentioned above, for α > 127◦ the coefficient fb is dom-
inated by the hydrodynamic resistance against the displacement
of the outer liquid from the region between the drop surface and
the flat horizontal solid surface around the opening of the pore
(see Fig. 1). For α → π , we could consider π–α as a small pa-
rameter, and we could use the lubrication approximation [21] to
solve the hydrodynamic problem in this wedge-shape region. In
Appendix H in Supplementary material, we have solved exactly
this problem, in the framework of the lubrication approxima-
tion, and we have derived an analytical expression for the con-
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Fig. 9. Plot of the hydrodynamic force coefficients fa,0, fab, and fb vs the
protrusion angle α. The symbols represent numerical results, whereas and lines
are drawn using the interpolation formulas, Eqs. (5.28)–(5.32).

tribution, fwedge, of the wedge-shaped region to the force co-
efficient, fb. The formula for fwedge contains cosine integrals,
and it is not so convenient for computations. More convenient
is its series expansion:

fwedge ≈ 6π cot

(
α

2

)[
0.79381 − ln(π − α)

(5.31)+ (π − α)2

24
− (π − α)4

1440

]
,

which is applicable for 150◦ � α � 180◦ with a relative error
smaller than 10−7. In other words, Eq. (5.31) is practically the
exact solution of the problem in lubrication approximation. To
obtain fb we added to fwedge the effect of the flow around the
apex of the drop. To quantify the latter effect, we scaled the
contribution of the flow around the apex with the half of the
Stokes friction coefficient, and fitted the numerical results. The
final interpolation formula for fb reads:

fb = fwedge − 3π cot

(
α

2

){
1 + 0.94095

(5.32)×
[

1 − exp

(
−25.822 cot

α

2

)]}
.

Equation (5.32) has a relative error smaller than 10−3 for
150◦ � α � 180◦.

Fig. 9 illustrates the accuracy of the approximate analyti-
cal expressions, Eqs. (5.28)–(5.32). The symbols in the figure
correspond to the numerical results, whereas the solid lines are
drawn in accordance with Eqs. (5.28)–(5.32). The plot confirms
the excellent accuracy of the interpolation formulas.

5.4. The total hydrodynamic force coefficient, fh

Equation (5.18) for the total hydrodynamic ejection force,
Fh, can be represented in the form:

(5.33)
Fh

Rpvm
≡ ηafh = ηafa,0(α) + ηb

[
fab(α) + fb(α)

]
.

Fig. 10. Plot of the total hydrodynamic force coefficient, fh, vs the protrusion
angle, α, for four different values of the viscosity ratio, ηb/ηa.

We recall that fa,0(α), fab(α) and fb(α) are universal func-
tions of α, which are independent of the viscosities of the two
liquid phases: ηa and ηb. As seen in Figs. 7 and 8, for α → 0 we
have fa,0 → 0, whereas fab + fb → 14.45. Hence, for small α

the hydrodynamic force is sensitive to the viscosity of the outer
phase, ηb, and insensitive to the viscosity of the inner phase, ηa;
see Eq. (5.33).

In contrast, for α → 180◦ we have fa,0 → 13.04, whereas
fab + fb → 0. Hence, for large α the hydrodynamic force is
sensitive to the viscosity of the inner phase, ηa, and not so sen-
sitive to the viscosity of the outer phase, ηb; see Eq. (5.33).

To illustrate the effect of the total hydrodynamic force on
the viscosities of the two phases, in Fig. 10 we have plot-
ted the hydrodynamic force coefficient fh(α) for 150◦ � α �
180◦ and for four different values of the viscosity ratio, ηa/ηb.
The curves in Fig. 10 are calculated by means of Eq. (5.19),
along with Eqs. (5.28)–(5.32). As mentioned above, the inter-
val 150◦ � α � 180◦ corresponds to the region where the drops
detach from the pore in the process of membrane emulsifica-
tion. Fig. 10 indicates that fh noticeably increases with the rise
of ηb/ηa. Hence, at fixed ηa, the increase of the viscosity of the
outer phase, ηb, will favor the drop detachment from the pore.
The latter effect is due to the lifting action of the hydrodynamic
resistance against the displacement of the outer liquid from the
wedge-shaped region between the drop surface and the flat hor-
izontal solid surface around the opening of the pore; see Fig. 1
and Eq. (5.31).

Finally, because fa,0 and fab + fb are nonnegative (Figs. 7
and 8), the increase of both ηa and ηb increases the total hy-
drodynamic ejection force, Fh, see Eq. (5.33). The calculation
of Fh is a necessary condition for prediction of the size of the
detached drops. In the second part of this study [33], a theo-
retical model is proposed, which assumes that at the moment
of breakup, the hydrodynamic ejection force acting on the drop
is equal to the critical capillary force that corresponds to the
stability–instability transition in the drop shape. In its own turn,
the capillary force is related to the effects of interfacial tension
and surfactant adsorption. A comparison of the full theory with
experimental data could be found in Ref. [33].
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6. Summary and conclusions

Our aim in the present study is to calculate the hydrody-
namic ejection force acting on a microscopic emulsion drop,
which is continuously growing at a capillary tip (Fig. 1). This
force could cause drop detachment in the process of membrane
and microchannel emulsification, and affects the size of the
released drops. Such microscopic drops are not deformed by
gravity and their formation happens at small Reynolds numbers
despite the fact that the typical period of drop generation is of
the order of 0.1 s.

First, we calculated the distribution of the velocity field in-
side the capillary, within the growing droplet and in the outer
liquid phase. For this goal, we introduced appropriate curvilin-
ear coordinates, which transform the inner and outer integration
domains into rectangles (Fig. 3). The hydrodynamic problem is
reduced to a single partial differential equation for the stream
function; see Eqs. (3.8), (4.11), and (4.12). The respective
boundary conditions are represented in terms of the curvilin-
ear coordinates (Section 4.2). The boundary problem is solved
numerically and the spatial distributions of the stream function
and the velocity components are calculated (Figs. 4–6).

Second, we calculated the hydrodynamic force acting on the
drop. The problem is reduced to the determination of three uni-
versal functions of the protrusion angle, α, viz. fa,0(α), fab(α),
and fb(α); see Eqs. (5.18)–(5.22). The latter functions are in-
dependent of the pore size, of the viscosities of the two liquids,
and of the characteristic rate of the process. These universal
functions were computed numerically and plotted in Figs. 7
and 8. In addition, for their easier calculation, simple interpo-
lation formulas are obtained; see Eqs. (5.28)–(5.32) and Fig. 9.
It turns out that the increase in the viscosity of each of the two
liquid phases increases the total hydrodynamic force, Fh, and
its tendency to detach the drop from the tip of the capillary; see
Eq. (5.33) and Fig. 10.

The results of the present paper are utilized in the second
part of this study [33], where a physical condition for drop de-
tachment from the pore is formulated; the size of the detached
drops is calculated under the alternative conditions of constant
pressure and constant flow rate and, finally, the theory is applied
to interpret experimental size distributions of drops obtained by
membrane emulsification.
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Appendix A. Derivation of the boundary conditions (3.14) and (3.15) 

 

 From Eqs. (2.13) and (3.7), we express  the normal component of velocity at the drop 

surface: 

f
ff

f ~
cos

~cos~sin~ ψθ
ψ

θ
ψ

θ
rrz

−
∂
∂

−
∂
∂

=⋅ vn ,        (A.1) 

where f = a, b. Equation (A.1) can be simplified with the help of spherical coordinates 

connected to the drop center, Os, with dimensionless coordinates ),~( sph θr : 

θsin~~
sphrr = , θcos~~~

sphd rzz += .          (A.2) 

Thus, Eq. (A.1) reduces to: 

)sin(
sin~
1~

f
sph

f θψ
θθ ∂
∂

−=⋅
r

vn .          (A.3) 

In view of Eq. (3.2), the dimensionless spherical coordinate at the drop surface is equal to 

αsin/1~
sph =r . Using the expression for the normal velocity component at the drop surface, 

Eq. (2.12), we bring Eq. (A.3) in the form: 

α
θαθ

α
αθψ

θ sin
sin)cos(cos

cos1
cos1)sin( f −

−
+

−=
∂
∂ .       (A.4) 

Further, we integrate Eq. (A.4) from 0 to θ to obtain: 



 2

)]1(coscos
2

1cos[
cos1
cos1

sin
1sin

2

f −−
−

−
+

= θαθ
α
α

α
θψ .      (A.5) 

After mathematical transformations, Eq. (A.5) acquires the form: 

)
2
1

cos1
cos(

sin)cos1(
sin)cos1(

f −
+−

+
=

θ
α

αα
θαψ ,         (A.6) 

which is identical to Eq. (3.14). It is important to note that the stream function in Eq. (A.6) is 

continuous at the edge of the pore, i.e. the value of ψf is equal to −1/2 at θ = α, see also Eqs. 

(3.12) and (3.13). With the help of Eqs. (2.13) and (3.7), we calculate the tangential 

component of velocity at the drop surface: 

f
ff

f ~
sin

~sin~cos~ ψθ
ψ

θ
ψ

θ
rrz

+
∂
∂

+
∂
∂

=⋅ vt ,        (A.7) 

where f = a, b. At the drop surface, ps /)sin(~ RRr θ= , and then Eq. (A.7) reduces to: 

αψ
ψ

θ
ψ

θ sin~cos~sin~
f

ff
f +

∂
∂

+
∂
∂

=⋅
zr

vt .        (A.8) 

The sum of the partial derivatives in Eq. (A.8) is equal to the directional (normal) derivative 

of the stream function at the drop surface: 

zrn ~cos~sin ff
f

f

∂
∂

+
∂
∂

=∇⋅=
∂
∂ ψ

θ
ψ

θψ
ψ

n .        (A.9) 

which coincides with Eq. (3.15). 

 

 

Appendix B. Derivation of the boundary conditions (4.17)−(4.19) 

 

 In view of Eq. (A.2), the radial and vertical coordinates at the drop surface are related to 

the polar angle, θ, as follows: 

α
θ

sin
sin~ =r , 

α
αθ

sin
coscos~ −

=z .           (B.1) 

Substituting z~  from Eq. (4.3) into Eq. (B.1), and having in mind that x2 = α at the drop 

surface, we derive an expression for cosθ: 

α
α

αα
α

θ
cos)1(1
cos)1(1

cossin
cos)1(1

1
cos 2

1
2
1

2
1

2
12

2
1

2
1

2
1

xx
xx

xx
x

−++
++−

=+
−++
−

= .     (B.2) 

With the help of Eqs. (3.14), (B.1) and (4.3), the stream function at the drop surface can be 

presented in the form: 



 3

)1
cos1

cos2(
)cos1(
)cos1( 1

ba −
+−

+
==

θ
α

α
α

ψψ
h
x  at x2 = α.        (B.3) 

Next, substituting cosθ from Eq. (B.2) into Eq. (B.3), one derives: 

)cos1cos(
cos1
1 1

ba αα
α

ψψ −−
−

== h
h
x  at x2 = α.       (B.4) 

At the drop surface, Eq. (4.4) acquires the form: 

αcos)1(1 2
1

2
1 xxh −++=  at x2 = α.          (B.5) 

Substituting Eq. (B.5) into Eq. (B.4), we get: 

α
α

ψψ
cos)1(1

cos)1(1
2
1

2
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2
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1ba xx
x

x
−++

−+
−==  at x2 = α,        (B.6) 

which is equivalent to Eq. (4.17). Further, with the help of Eq. (4.8), we express the 

directional derivative in the form [1,2]: 

2
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−
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∂
∂

=
∂
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The substitution of Eq. (B.5) into Eq. (B7) yields: 
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With the help of Eqs. (4.3) and (B.8), we bring the boundary condition, Eq. (3.15), in the 

form: 

0sin)cos
1
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f
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2
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αψ
ψ
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xx

x  at x2 = α and f = a, b,       (B.9) 

which is equivalent to Eq. (4.18). Furthermore, the projection f2 ve ⋅  (Fig. 3a) is calculated 

from the following general relationship [1,2]: 
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Substituting the radial and vertical velocity components from Eq. (3.7) into Eq. (B.10), we 

obtain: 
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With the help of Eqs. (4.6) and (4.7), we transform the right-hand side of Eq. (B.11): 
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Next, from Eq. (4.8) and (B.12) we derive: 
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The circumference ( 1~ =r , 0~ =z ), which represents the edge at the orifice of the pore, 

corresponds to the coordinate line x1 = 1. From Eqs. (4.3), (4.4) and (4.8) it follows: 

2=h , 11 =h , 2
1

cos
~

x
x
r
=

∂
∂  at x1 = 1.                (B.14) 

Therefore, from Eqs. (B.13) and (B.14) the non-slip boundary condition, vf = 0 at the edge 

reads: 

2
coscos 2

2f
1

f xx
x

=−=
∂
∂ ψψ  at x1 = 1, 0 ≤ x2 ≤ π, and f = a ,b;            (B.15) 

see Eq. (4.19). 

 

 

Appendix C. Derivation of the boundary conditions (4.22)−(4.24) 

 

 With the help of Eq. (4.2), we express the derivatives in Eq. (4.20) for the domain A: 
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From Eqs. (C.1)−(C.3), we obtain the values of the derivatives at the boundary 0~ =z , which 

corresponds to x2 = 0: 
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With the help of Eq. (4.10), we calculate the first and second z-derivatives in the domain B: 
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After some mathematical transformations, Eq. (C.6) reduces to: 
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At the boundary x2 = 0, Eqs. (C.5) and (C.7) yield: 
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which, in view of Eq. (C.4), are equivalent to Eqs. (4.22) and (4.23). Further, by 

differentiation of Eq. (C.5) one obtains the third z-derivative at the boundary x2 = 0: 
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Substituting Eq. (C.7) into Eq. (C.9) and setting x2 = 0, we derive: 
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Combining Eqs. (C.4) and (C.10), one obtains Eq. (4.24). 

 

 

Appendix D. Expression for the force coefficient fa,0 

 

 To obtain a convenient expression for numerical calculation of the force coefficient fa,0, 

we represent the integral in Eq. (5.17) as follows: 
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Integrating Eq. (D.1) by parts, one derives: 

∫ ∂
∂

−
∂
∂

−−
∂
∂

−=
1

0
aa,0

2
aa,0a,0

~d)]~~(~~
1~[~)1~()]~~(~~

1~[ rur
rr

p
r

rur
rr

pf O ππ  at z = 0,  (D.2) 
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where the subscript “O” denotes the respective value calculated at the origin of the cylindrical 

coordinate system. Eq. (D.2) can be simplified by means of the Stokes equations, Eqs. (3.4) 

and (3.5): 

∫ ∂
∂

−−
∂
∂

+=
1

0
2
a

2
2a

a,0a,0
~d~

~
)1~()~

~
~( r

z
u

r
z

w
pf O ππ  at z = 0.      (D.3) 

Integrating the Stokes equation (3.6) with respect to the vertical coordinate, z, from 0 to the 

apex of the drop, one obtains the following relationship at the axis of symmetry: 

∫ ∂
∂

∂
∂

=
∂
∂

−−
∂
∂

−
ap

~

0

aa
a,0ap

a
a,0

~d)~
~

~(~~
1)~

~
~()~

~
~(

z

O z
r

w
r

rrz
w

p
z

w
p  at r = 0,     (D.4) 

where ap
~z  is the dimensionless vertical coordinate of the drop apex. Using Eqs. (5.15) and 

(D.4), we determine the pressure at the origin of the cylindrical coordinate system: 

∫ ∂
∂

∂
∂

−
∂
∂

+
∂
∂

=
ap

~

0

aa
ap

a
a,0

~d)~
~

~(~~
1)~

~
()~

~
()~(

z

OO z
r

w
r

rrz
w

z
w

p  at r = 0.     (D.5) 

Substituting Eq. (D.5) into Eq. (D.3), we obtain: 

4321a,0 ccccf +++= ,            (D.6) 

where 

ap
a

1 )~
~

(
z

wc
∂
∂

≡ π ,     Oz
wc )~
~

(2 a
2 ∂

∂
≡ π ,         (D.7) 

∫ ∂
∂

∂
∂

−≡
ap

~

0

a
3

~d)~
~~(~~

1
z

z
r

wr
rr

c π  at r = 0,         (D.8) 

∫ −
∂
∂

−≡
1

0

2
2
a

2

4
~d)1~(~

~
rr

z
uc π  at z = 0.          (D.9) 

Our next task is to transform Eqs. (D.7)−(D.9) in terms of the stream functions in the domains 

A and B, which are parameterized by the respective curvilinear coordinates (Fig. 3). Because 

the stream function is an odd function of the radial coordinate, its series expansion close to the 

axis of symmetry reads [1]: 

...~)~(
!5

1~)~(
!3

1~)~( 5
05

f
5

3
03

f
3

0
f

f +
∂
∂

+
∂
∂

+
∂
∂

= === r
r

r
r

r
r rrr

ψψψ
ψ  (f = a, b).           (D.10) 

From Eqs. (D10) and (3.7), we derive the respective series for the vertical velocity 

component: 
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...~)~(
!5

6~)~(
!3

4)~(2~ 4
05

f
5

2
03

f
3

0
f

f +
∂
∂

−
∂
∂

−
∂
∂

−= === r
r

r
rr

w rrr
ψψψ  (f = a, b).           (D.11) 

Therefore, c1 and c2 can be calculated using the following expression: 

zrz
w

~~2~
~

a
2

a

∂∂
∂

−=
∂
∂ ψ

 at r = 0.                  (D.12) 

From Eqs. (4.9), (4.10), and (D.12) written at the drop apex (x1 = 0 and x2 = α), one obtains: 

ap
21

a
2

1

a
ap

a ])cos1()[sincos1()~
~

(
xxxz

w
∂∂

∂
+−

∂
∂

+=
∂
∂ ψ

α
ψ

αα .             (D.13) 

With the help of Eqs. (4.4) and (4.8), the boundary condition (4.18) can be represented in the 

form: 

0sin
)1(

cos)1(1
a

2

a
2
1

2
1

2
1 =+

∂
∂

−
−++

αψ
ψα
xx

xx  at x2 = α.              (D.14) 

The first derivative of Eq. (D.14) with respect to x1, written at the drop apex, reads: 

0]sin)cos1[( ap
1

a

21

a
2

=
∂
∂

+
∂∂

∂
+

xxx
ψαψα .                (D.15) 

Using Eqs. (D.13) and (D.15), we calculate: 

ap
1

a
ap

a ))(cos1(sin2)~
~

(
xz

w
∂
∂

+=
∂
∂ ψ

αα .                (D.16) 

The first derivative of the boundary condition (4.17) with respect to x1, written at the drop 

apex, gives: 

1)( ap
1

a −=
∂
∂

x
ψ

.                    (D.17) 

Thus, we obtain the following exact analytical expression for c1: 

)cos1(sin21 ααπ +−=c .                  (D.18) 

Eqs. (C.4), (D.12) and (D.7) imply that c2 could be calculated easier at the boundary of the 

domain A. Thus we obtain: 

21

a
2

2 4
xx

c
∂∂

∂
−=

ψπ  at x1 = 0 and x2 = 0−0.                (D.19) 

To calculate c3, defined by Eq. (D.8), the values of the derivatives of the vertical velocity 

component at the axis of symmetry have to be obtained. From Eq. (D.11) it follows: 

...~)~(
!5

24~)~(
!3

8
~
~~ 4

05
f

5
2

03
f

3
f +

∂
∂

−
∂
∂

−=
∂
∂

== r
r

r
rr

w
r rr

ψψ  (f = a, b)            (D.20) 
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and therefore, 

3
f

3
f

~3
8)~

~~(~~
1

rr
w

r
rr ∂

∂
−=

∂
∂

∂
∂ ψ  at r = 0 and f = a, b.              (D.21) 

In view of Eq. (D.21), the expression for c3 reduces to: 

∫ ∂
∂

=
ap

~

0
3
a

3

3
~d~3

8
z

z
r

c ψπ  at r = 0.                  (D.22) 

From the expression for the first derivative, Eq. (4.9), we deduce the following formula for 

the second derivative of the stream function with respect to the radial coordinate: 

+
∂
∂

++−
−

+
∂
∂++−

=
∂
∂

1

f
2

2
1

2
1

21
2
1

f
22

2
2
1

2
1

2
f

2

]cos)1()1[(
2

)1(cos
4

]cos)1()1[(
x

xxxxx
x

xxx
r

ψψψ  

 −
∂
∂

−

+
+

∂∂
∂

−
++−+ ]

)1(
1

sin
1

sin2
][cos)1()1[(

2

f
22

1

2
1

2
21

f
2

2
1

21
2

2
1

2
1 xx

x
x

xxx
xx

xxx
ψψ  

 
2

f
22

1

22
2
1

2
2

f
2

22
1

2
22

1

1

f
2
1

2
22

11

)1(
cossin4

)1(
sin4

1
sin)1(

xx
xxx

xx
xx

xx
xxx

∂
∂

−
+

∂
∂

−
+

∂
∂

−
+

−
ψψψ .          (D.23) 

Eqs. (4.9) and (D.23) imply that at the axis of symmetry (r = 0) we have: 

1

f
2

2

21

f
2

223
1

f
3

2
23

f
3

2
sin6)cos1(sin12)cos1(

cos1
8

x
x

xx
xx

x
x

rx ∂
∂

−
∂∂

∂
++

∂
∂

+=
∂
∂

+
ψψψψ .       (D.24) 

From Eq. (4.6), we calculate the differential of the vertical coordinate in the domains B and C 

at the axis of symmetry: 

2

2

cos1
d~d

x
x

z
+

=  at x1 = 0.                  (D.25) 

Finally, from Eqs. (D.22), (D.24), and (D.25) we derive the following expression for c3: 

−
∂∂

∂
++

∂
∂

+= ∫ ∫
α α ψ

π
ψπ

0 0
2

21

a
2

2223
1

a
3

2
23 d)cos1(sin4d)cos1(

3
x

xx
xxx

x
xc  

  ∫ ∂
∂

−
α ψ

π
0

2
1

a
2

2 dsin2 x
x

x  at x1 = 0.               (D.26) 

Substituting the definition (3.7) into the integral in Eq. (D.9), one obtains: 

∫ −
∂
∂

−=
1

0

2
3
a

3

4
~d)1~(~ rr

z
c ψπ  at z = 0.                 (D.27) 

In view of Eq. (4.1), this integral is simpler in the domain A: 

∫ −
∂
∂

=
1

0
1

2
13

a
3

4 d)1(~ xx
z

c ψ
π  at z = 0−0 and x2 = 0−0.              (D.28) 
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Finally, using the formula for the third derivative in Eq. (C.4), we obtain: 

∫ −
∂
∂

+
∂
∂

+
∂
∂

=
1

0
1

2
1

2

a
2
2

a
2

3
2

a
3

4 d)1)(66( xx
xxx

c ψψψπ  at x2 = 0−0.             (D.29) 

 

 

Appendix E. Expression for the force coefficient fb 

 

 Integrating by parts in Eq. (5.9), we get: 

∫∫
∞∞

∂
∂

−−=−=
1

b2

1

2
bb

~d~
~

)1~()1~d(~ r
r
p

rrpf ππ  at z = 0.       (E.1) 

The derivative of pressure, which appears in the last integral, can be expressed from the 

Stokes equation (3.5), having in mind that the velocity at the membrane surface is zero: 

∫
∞

∂
∂

−−=
1

2
b

2
2

b
~d~

~
)1~( r

z
u

rf π  at z = 0.          (E.2) 

With the help of the definition of the stream function, Eq. (3.7), we bring Eq. (E.2) in the 

form: 

∫
∞

∂
∂

−−=
1

3
b

3
2

b
~d~)1~( r

z
rf

ψ
π  at z = 0.          (E.3) 

To calculate the last integral in terms of the curvilinear coordinates (Fig. 3), we apply the 

definitions (4.3) and (4.4) at the membrane surface: 

1

1~
x

r = , 2
1

1d~d
x
xr −=  at x2 = π.           (E.4) 

From Eqs. (E.3) and (E.4), one obtains: 

∫ ∂
∂−

−=
1

0
13

b
3

4
1

2
1

b d~
1 x

zx
xf

ψ
π  at z = 0.          (E.5) 

To calculate the third derivative that appears in Eq. (E.5), we substitute Eq. (C.7) into Eq. 

(C.9) and estimate the result at x2 = π: 

2

b
32

1

2
1

4
1

21

b
2

22
1

4
1

3
2

b
3

32
1

6
1

3
b

3

)1(
)3(4

)1(
12

)1(
8

~ xx
xx

xxx
x

xx
x

z ∂
∂

−
+

+
∂∂

∂

−
+

∂

∂

−
−=

∂

∂ ψψψψ
.     (E.6) 

From the boundary condition (4.16), it follows that the last two terms in the right-hand side of 

Eq. (E.6) are zero, and therefore Eq. (E.5) reduces to the following final expression for the 

force coefficient: 
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∫ ∂
∂

−
=

1

0
13

2

b
3

22
1

2
1

b d
)1(

8 x
xx

xf
ψ

π  at x2 = π;          (E.7) 

see Eq. (5.22). 

 

 

Appendix F. Expression for the force coefficient fab 

 

 To calculate the pressure at the drop apex, we in the Stokes equation (3.6) we set r = 0, 

and integrate with respect to the vertical coordinate. The result reads: 

∫
∞

∂
∂

∂
∂

−=
∂
∂

−
ap

~

b
ap

b
b

~d)~
~~(~~

1)~
~~(

z

z
r

wr
rrz

wp  at r = 0.         (F.1) 

We took into account the fact that the dynamic pressure and the velocity vanish at infinity. 

Substituting Eq. (F.1) into Eq. (5.20) we obtain: 

∫
∞

∂
∂

∂
∂

−
∂
∂

−=
ap

~

b
ap

b
ab

~d)~
~~(~~

1)~
~

(
z

z
r

wr
rrz

wf ππ  at r = 0.        (F.2) 

Using the definition (D.7) and introducing the new notation, 

∫
∞

∂
∂

∂
∂

−≡
ap

~

b
5

~d)~
~~(~~

1

z

z
r

wr
rr

c π  at r = 0,          (F.3) 

we present the force coefficient fab in the form: 

15ab ccf −= .              (F.4) 

With the help of Eqs. (D.21) and (F.3), we obtain: 

∫
∞

∂
∂

=
ap

~
3
b

3

5
~d~3

8

z

z
r

c ψπ  at r = 0.            (F.5) 

In Eq. (F.5), ap
~z  corresponds to x2 = α and the infinity point is given by x2 = π. Then, 

combining Eqs. (D.24), (D.25), and (F.5), we derive the final expression for c5: 

−
∂∂

∂
++

∂
∂

+= ∫ ∫
π

α

π

α

ψ
π

ψπ
2

21

b
2

2223
1

b
3

2
25 d)cos1(sin4d)cos1(

3
x

xx
xxx

x
xc  

  ∫ ∂
∂

−
π

α

ψ
π 2

1

b
2

2 dsin2 x
x

x  at x1 = 0;         (F.6) 

see Eq. (5.27). 
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Appendix G. Solution of the hydrodynamic problem in the outer phase for α = 0 

 

 If the protrusion angle α is equal to zero, the hydrodynamic problem in the outer phase 

(described in Section 3) has an exact solution. Indeed, eliminating the velocity from the 

Stokes equations (3.4)−(3.6), we obtain a Laplace-type equation for the pressure: 

0~
~

)~
~

~(~~
1

2
b

2
b =

∂
∂

+
∂
∂

∂
∂

z
p

r
p

r
rr

.           (G.1) 

Using the Hankel transformation [3], and the fact that the pressure tends to zero at large 

distance z from the capillary, the general solution of Eq. (G.1) can be presented in the form: 

∫
∞

−=
0

0b d)~exp()~()()~,~(~ kkzkrkJkAzrp ,         (G.2) 

where J0 is the zero-order Bessel function and A(k) is an unknown function, which is to be 

determined from the boundary conditions. Substituting the general solution (G.2) into the 

Stokes equation (3.6), and solving the resulting equation, we derive the following integral 

expression for the vertical velocity component: 

∫
∞

−+=
0

0b d)~exp()~()](
2

~
)([)~,~(~ kkzkrkJkBzkAzrw .       (G.3) 

Eq. (G.3) contains a new unknown function, B(k), that could be found from the boundary 

conditions. 

Because of the boundary conditions, the radial component of velocity, ub, is equal to 

zero at z = 0 for α = 0. Hence, from the continuity equation (3.4), written at z = 0, it follows 

that: 

0~
~

b =
∂
∂

z
w

 at z = 0.            (G.4) 

From Eqs. (G.3) and (G.4), we obtain: 

k
kAkB

2
)()( =              (G.5) 

and 

∫
∞

−+=
0

0b d)~exp()~()~1)((
2
1)~,~(~ kzkrkJzkkAzrw .       (G.6) 

The boundary condition, Eq. (2.12), reduces to the Poiseuille-flow expression, Eq. (2.2) for α 

= 0, which can be presented in terms of the dimensionless variables: 



 12

)~1(2~ 2
b rw −=  at z = 0 and 1~0 ≤≤ r .         (G.7) 

From the integral representation (G.6), from the boundary condition at the membrane surface, 

and from Eq. (G.7) it follows that the unknown function A(k) must satisfy the following 

conditions: 

)~1(4d)~()( 2

0
0 rkrkJkA −=∫

∞

 at 1~0 ≤≤ r ,        (G.8) 

0d)~()(
0

0 =∫
∞

krkJkA  at r~1≤ .          (G.9) 

Taking the inverse Hankel transformation of Eqs. (G.8) and (G.9), we derive [4]: 

)(8~d~)~1)(~(4)( 2

1

0

2
0 kJ

k
rrrrkJkkA =−= ∫ ,               (G.10) 

where J2 is the second order Bessel function. 

From the definition (5.20), we obtain the force coefficient, fab, for α = 0: 

)0,0(~)0( bab pf π= .                   (G.11) 

Substituting Eqs. (G.2) and (G.10) into Eq. (G.11), one derives [4]: 

ππ 8d)(8)0(
0

2ab == ∫
∞

kkJf .                  (G.12) 

To determine the value of the force coefficient, fb, we will use the definition (5.1), which 

yields: 

∫−=
1

0
bb

~d~)0,~(~2)0( rrrpf π .                  (G.13) 

Combining Eqs. (G.2) and (G.10), we obtain an expression for the pressure at z = 0: 

∫
∞

=
0

02b d)~()(8)0,~(~ krkJkJrp .                 (G.14) 

Substituting Eq. (G.14) into Eq. (G.13), we derive: 

∫∫ ∫
∞∞

−=−=
0

21

0

1

0
02b d)()(16d]~d~)~()[(16)0( k

k
kJkJkrrrkJkJf ππ ,           (G.15) 

where J1 is the first order Bessel function; see Ref. [4]. The integral in the right hand side of 

Eq. (G.15) is of Weber-Schafheitlin type [4] and can be solved exactly. The result reads: 

3
32)0(b −=f .                    (G.16) 
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Appendix H. Application of the lubrication approximation in the wedge-shaped region 

of the outer phase for large protrusion angles 

 

 For α→π, the difference π − α can be used as a small parameter when solving the 

hydrodynamic problem in the outer phase. We will denote by v1 and v2 the components of the 

dimensionless velocity in the outer phase with respect to the curvilinear coordinate system. 

From the general assumptions of the lubrication approximation [5], it follows that: (i) The 

leading order function for the pressure depends only on the coordinate x1: 

)(~),(~
1b21b xpxxp ≈ ,            (H.1) 

(ii) The velocity components obey the following general conditions: 

21 vv >>  and 
2

2

1

1

x
v

x
v

∂
∂

≈
∂
∂ .           (H.2) 

With the help of the vectorial identity [1] 

)()( bbb
2 vvv ×∇×∇−⋅∇∇=∇           (H.3) 

we represent the Stokes equations (3.1) in the form: 

bbb )( p−∇=×∇×∇ vη ,           (H.4) 

where ∇ is the spatial gradient operator. In the case of rotational symmetry, the curl of 

velocity has only one component directed along the vector eφ, where φ is the azimuthal angle. 

In our curvilinear coordinates, the dimensionless curl is [1]: 

)]()([1)~( 11
2

22
121

b vh
x

vh
xhh ∂

∂
−

∂
∂

=×∇ φv .        (H.5) 

In view of Eq. (H.5), the Stokes equation (H.4) acquires the following dimensionless form: 

1

b

1
b

22

~1])~(~[~
1

x
p

h
r

xrh ∂
∂

−=×∇
∂
∂

φv ,          (H.6) 

2

b

2
b

11

~1])~(~[~
1

x
p

h
r

xrh ∂
∂

=×∇
∂
∂

φv .          (H.7) 

Equation (H.7) confirms that in lubrication approximation, the pressure depends only on x1 

[5], in agreement with Eq. (H.1). Therefore, using Eqs. (4.3), (4.4), and (4.8), we obtain the 

lubrication approximation of Eq. (H.6): 

hx
p

xxr
x

1
d

~d
)1(])~(~[

1

b2
11b

2
−−=×∇

∂
∂

φv .         (H.8) 

Integrating Eq. (H.8) with respect to x2, one derives: 
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)(),(
d

~d
)1()~(~

1121
1

b2
11b xAxx

x
p

xxr −Φ−−=×∇ φv ,       (H.9) 

where A1(x1) is an unknown function, which is to be determined from the boundary 

conditions; the function Φ(x1,x2) and ϕ(x1,x2) are defined as follows: 

1

21
21

),(),(
x

xxxx ϕ
≡Φ ;        )]

2
tan(arctan[),( 2

121
xxxx ≡ϕ .             (H.10) 

In view of Eq. (H.2), equation (H.5) reduces to: 

)(1)~( 11
221

b vh
xhh ∂
∂

−=×∇ φv .                 (H.11) 

Substituting Eq. (H.11) into Eq. (H.9), and using Eqs. (4.3), (4.4), and (4.8), we obtain: 

])(),([
d

~d
)1()( 1121

1

b22
111

2 h
xA

h
xx

x
p

xvh
x

+
Φ

−=
∂
∂ .              (H.12) 

Integrating Eq. (H.12) with respect to x2, one derives: 

)](),()(
2

),([
d

~d
)1( 122111

21
2

1

b22
111 xAxxxAxx

x
p

xvh +Φ+
Φ

−= ,            (H.13) 

where A2(x1) is an unknown function, which is to be determined from the boundary 

conditions. At both drop and membrane surfaces, which correspond to x2 = α and x2 = π, 

respectively, the velocity component v1 is equal to zero. Appling these boundary conditions to 

Eq. (H.13), we get the final expression for the velocity component: 

)],(),()][,(),([
d

~d
2

)1(
121121

1

b
22

1
11 πα xxxxxx

x
pxvh Φ−ΦΦ−Φ

−
= .           (H.14) 

Note that the pressure distribution in Eq. (H.14) is unknown and it must be calculated, which 

is a usual procedure in the lubrication approximation [5]. For this goal, we use the continuity 

equation in curvilinear coordinates [5]: 

0)~()~( 21
2

12
1

=
∂
∂

+
∂
∂ vrh

x
vrh

x
.                 (H.15) 

Equation (H.15) is integrated with respect to x2 from α to π to obtain: 

πα

π

α
==

−=∫ 22
2121212

1

~~)~(
d
d

xx vrhvrhdxvrh
x

.               (H.16) 

The last term in the right-hand side of Eq. (H.16) is equal to zero because the velocity at the 

membrane surface is zero. The first term in the right-hand side of Eq. (H.16) is to be 

calculated from the boundary condition at the drop surface, Eq. (2.12). Thus, Eq. (H.16) 

reduces to: 
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2
32

1
2
1
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Integrating Eq. (H.17) from x1 to x1 = 1 (the edge of the pore), and taking into account that the 

velocity at the edge of the pore is zero, one obtains: 
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After some mathematical transformations, using Eqs. (H.14), (4.3), (4.4), and (4.8) one 

derives the following expression for the term in the left-hand side of Eq. (H.18): 
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The integral in the right-hand side of Eq. (H.19) can be solved analytically: 
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where we have used also the definition of the function Φ(x1,x2), Eq. (H.10). From Eqs. (H.18) 

and (H.20), we derive the final analytical expression for the gradient of pressure: 
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To obtain the contribution, fwedge, of the hydrodynamic resistance in the wedge-shaped region 

between the drop and the horizontal solid wall (Fig. 1), we represent Eq. (E.1) in the form: 
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Substituting Eq. (H.21) into Eq. (H.22), we derive the final expression for the respective force 

coefficient: 
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Introducing a new integration variable, )]2/tan(arctan[ 1 αxt ≡ , the right-hand side of Eq. 

(H.23) can be simplified: 
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The integral in Eq. (H.24) can be expressed as follows [4]: 
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where ci is the cosine integral [4] defined by the relationship: 
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In our case, π − α is a small parameter, and then Eq. (H.25) can be expanded in series: 
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Substituting Eq. (H.27) into Eq. (H.23), we obtain the final asymptotic expression for fwedge: 
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see Eq. (5.31). We checked the precision of the asymptotic formula (H.28) and found that it 

gives the value of the integral (H.24) with a relative error smaller than 10−7 for 150° ≤ α ≤ 

180°. 
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