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Abstract

Systematic experimental study of the effects of several factors on the breakage rate constant, kBR, during emulsification in turbulent flow is
performed. These factors are the drop size, interfacial tension, viscosity of the oil phase, and rate of energy dissipation in the flow. As starting
oil–water premixes we use emulsions containing monodisperse oil drops, which have been generated by the method of membrane emulsification.
By passing these premixes through a narrow-gap homogenizer, working in turbulent regime of emulsification, we study the evolution of the
number concentration of the drops with given diameter, as a function of the emulsification time. The experimental data are analyzed by a kinetic
scheme, which takes into account the generation of drops of a given size (as a result of breakage of larger drops) and their disappearance (as a
result of their own breakage process). The experimental results for kBR are compared with theoretical expressions from the literature and their
modifications. The results for all systems could be described reasonably well by an explicit expression, which is a product of: (a) the frequency
of collisions between drops and turbulent eddies of similar size, and (b) the efficiency of drop breakage, which depends on the energy required
for drop deformation. The drop deformation energy contains two contributions, originating from the drop surface extension and from the viscous
dissipation inside the breaking drop. In the related subsequent paper, the size distribution of the daughter drops formed in the process of drop
breakage is analyzed for the same experimental systems.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

At sufficiently high surfactant concentrations, the outcome
of the emulsification process is determined by the drop break-
age only [1–14]. The classical studies of emulsification in tur-
bulent flow by Kolmogorov [1] and Hinze [2] showed that the
maximum diameter of stable drops, dMAX, formed while emul-
sifying liquids of low viscosity, is determined by the balance
between the fluctuations in the hydrodynamic pressure of the
continuous phase and the drop capillary pressure, which op-
poses the drop deformation. A simple theoretical expression
was derived [1,2] relating dMAX with the rate of energy dissipa-
tion per unit mass of the fluid, ε (the main characteristic of the
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turbulent flow in the Kolmogorov’s theory) and the interfacial
tension of the drops, σ .

The theory for the maximum diameter of the stable drops
was further developed for viscous and non-Newtonian drops
[9–14]. Following the approach from Refs. [1,2], Davies [9]
and Lagisetty et al. [10] used a stress balance to derive expres-
sions for dMAX. Davies [9] included the contribution from the
viscous dissipation inside the drops, whereas Lagisetty et al.
[10] considered the effects of the time required for drop defor-
mation and of possible non-Newtonian rheological behavior of
the drop phase. Calabrese et al. [11–14] suggested another ap-
proach, in which the energy required for drop deformation was
compared to the kinetic energy of the turbulent eddies. Experi-
ments for clarifying the effects of drop viscosity and interfacial
tension on dMAX were performed in Refs. [11–14], and a good
agreement with the theoretical expressions was observed.

http://www.elsevier.com/locate/jcis
mailto:nd@lcpe.uni-sofia.bg
http://dx.doi.org/10.1016/j.jcis.2007.04.064
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The maximum diameter of the stable drops is determined ex-
perimentally after a sufficiently long period of emulsification,
when a steady-state drop-size distribution is reached. Along
with this steady-state distribution, the rate of drop breakage is
another important characteristic of the emulsification process,
which is of great interest from practical and scientific view-
points. For practice, the problem is important, because a very
long emulsification time (or large number of passes of the emul-
sion through the homogenizer) might be needed to reach the
steady state, e.g., for viscous oils and/or high interfacial ten-
sions. From scientific viewpoint, the problem is challenging,
because the kinetic aspects of the interactions between the tur-
bulent eddies and the breaking drops are still poorly understood,
and no general theoretical description of the kinetics of drop
breakage is available.

Three main types of theoretical models for the rate of drop
breakage in turbulent flow are discussed in literature (see the
review in Ref. [15]). In the first type of models, the rate con-
stant of drop breakage, kBR, is constructed as a product of the
reciprocal time of drop deformation (assumed to be equivalent
to the characteristic frequency of drop deformation) and the ef-
ficiency of drop breakage [16,17]. In the second type of models,
kBR is considered as a product of the eddy–drop collision fre-
quency and the efficiency of drop breakage [18–20]. In both
cases, the efficiency of drop breakage is expressed as an expo-
nential term, including the ratio of the surface energy for drop
deformation and the kinetic energy of the turbulent eddies. In
the third type of models (called “kinematic models”), kBR is as-
sumed equal to the inverse drop breakage time, which in turn is
determined from the balance of stresses acting on the breaking
drop [15,21–24]. Further explanations about these models are
given in Section 6 below.

The above models of drop breakage are often implemented
in the so-called “population balance equation” (PBE) to de-
scribe the temporal evolution of the drop-size distribution,
which can be determined experimentally [16,18–20,25–30]. In
several of the studies, the PBE was tested with emulsifica-
tion experiments in the absence of surfactants, so that both
drop breakage and drop–drop coalescence were simultaneously
present [16,18–20]. The process of drop coalescence is still
poorly understood, and as a consequence, the PBE in these stud-
ies included expressions for the rate of drop–drop coalescence,
which were uncertain and also required verification [16,18–20].
Therefore, it turned out impossible to perform a direct, unam-
biguous verification of the drop breakage models in Refs. [16,
18–20], due to the strong coupling between the processes of
drop breakage and drop coalescence.

In other studies, the drop breakage probability was deter-
mined by direct observation of drop breakage events in turbu-
lent flow by a high-speed camera [31,32]. The probability for
drop breakage was determined as a function of the drop diam-
eter, d , at different Weber numbers, defined as We = Pd/σ ,
where P is the applied pressure and σ is the interfacial tension.
This approach has the advantage that the number of daughter
drops, formed upon drop breakage, is directly determined in
the observation. However, the method is time-consuming, so
that only limited amount of data about the effects of the various
factors of interest was obtained [31,32].

In Refs. [33,34], an effective breakage rate constant was de-
termined from the observed decrease of the mean drop size with
the emulsification time in stirred tanks. The experimental re-
sults were described by an empirical equation, which included
several adjustable constants. The comparison of these results
with the theoretical models is not straightforward, because the
rate of decrease of the mean drop size is related in a complex
way with the breakage rate constants of the drops with various
sizes in the emulsion (see Section 4.5 in Ref. [35]).

In more elaborated studies by Narsimhan et al. [36–39], the
change of drop-size distribution during emulsification in stirred
tanks was used to determine kBR. The experiments were per-
formed in the absence of surfactants and, to minimize the pos-
sible effect of drop–drop coalescence, the oil was dispersed at
very low volume fractions. To interpret the experimental data,
the so-called “self-similarity” assumption was proposed, which
relates the probability for formation of daughter drops of given
size with the dependence of kBR on drop size (see Refs. [36–
39] for detailed explanations). The experimentally determined
breakage rate constant was found to increase with the drop
diameter, and to decrease with the interfacial tension and oil
viscosity. Semi-empirical expression was proposed to describe
these dependences [38].

In our previous studies [40–43] we explored experimentally
and theoretically the effects of several factors (interfacial ten-
sion, oil viscosity, and rate of energy dissipation in the turbulent
flow) on the maximum diameter of the stable drops, dMAX, in
emulsions prepared by narrow-gap homogenizer. We found that
dMAX in the inertial regime of emulsification is well represented
by an equation proposed by Davies [9], and that the viscous oils
are better emulsified in the viscous regime of turbulent emulsi-
fication.

The current paper is a direct continuation of our previous
study [43], aimed to elucidate further the effects of several
factors on the rate of drop breakage in turbulent flow. The
emulsification of oils of different viscosities, ranging from 3 to
500 mPa s, is studied. Two surfactants are used, Na caseinate
and Brij 58, to clarify the effect of interfacial tension. The
experiments were performed at relatively high surfactant con-
centration and low oil volume fraction to avoid drop–drop coa-
lescence. Different driving pressures were applied to quantify
the effect of the rate of energy dissipation. As starting oil–
water premixes we used emulsions containing monodisperse oil
drops, which had been generated by the method of membrane
emulsification. By passing these premixes through a narrow-
gap homogenizer, we determined the evolution of the drop-size
distribution, as a function of the emulsification time. The exper-
imental data were analyzed by using a detailed kinetic scheme,
which allowed us to evaluate kBR, as a function of drop di-
ameter and of the other factors studied. The results for kBR
are compared to theoretical models from literature and their
modifications. The current paper is directly linked to the sub-
sequent paper of this series [35], where the size distribution of
the daughter drops, formed after breakage of a larger drop, is
analyzed and discussed for the same emulsions.
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2. Materials and methods

2.1. Materials

As emulsifiers we used the non-ionic surfactant polyoxy-
ethylene-20 hexadecyl ether (Brij 58, product of Sigma) and
the protein derivative sodium caseinate (Na caseinate; ingre-
dient name Alanate 180; product of NXMP). The emulsifiers
were used as received, with concentration of 1 wt% Brij 58
or 0.5 wt% Na caseinate in the aqueous phase. All solutions
were prepared with deionized water, which was purified by a
Milli–Q Organex system (Millipore), and contained 150 mM
NaCl (Merck, analytical grade). The protein solutions con-
tained also 0.01 wt% of the antibacterial agent NaN3 (Riedel-de
Haën, Seelze, Germany).

As dispersed phase we used the following oils: hexadecane
with viscosity ηD = 3.0 mPa s (product of Merck), soybean oil
with ηD = 50 mPa s (SBO, commercial product), and four sil-
icone oils with ηD = 50, 95, 194, and 494 mPa s (denoted for
clarity as SilXX, where XX denotes the oil viscosity in mPa s).
Hexadecane and soybean oil were purified from surface-active
contaminants by passing the oils through a glass column, filled
with Florisil adsorbent [44]. The silicone oils were products of
different companies (BASF, Rhodia and TDCS) and were used
as received.

2.2. Emulsification procedures

All emulsions were prepared by a two-step protocol, which
included two experimental techniques: (1) membrane emul-
sification, used to prepare the initial oil–water premix, and
(2) emulsification with a narrow-gap homogenizer, which was
used to quantify the kinetics of drop breakage in turbulent flow.

2.2.1. Membrane emulsification
An initial emulsion (oil–water premix) containing monodis-

perse oil drops, was first prepared by membrane emulsification.
This method is based on the use of microporous membranes,
made of glass, ceramics, or metal, and having relatively nar-
row pore-size distribution [45,46]. The dispersed phase (hexa-
decane, SBO, or silicone oil in our experiments) is emulsified
by passing it through the membrane pores under pressure, into
the continuous phase (the surfactant solution). We used a lab-
oratory Microkit membrane emulsification module from Shi-
rasu Porous Glass Technology (SPG, Miyazaki, Japan) [47–49],
which works with tubular glass membranes of outer diameter
10 mm and working area of approximately 3 cm2. Four mem-
branes, with mean pore size of 1.1 µm (denoted as SPG1.1 in
the text); 3.2 µm (SPG3.2); 10.7 µm (SPG10.7) and 19.3 µm
(SPG19.3), were used for preparing initial emulsions with dif-
ferent drop diameters. After completion of this stage, samples
for determination of the initial drop-size distribution (before
starting the actual emulsification experiments in turbulent flow)
were taken with a pipette.

The main advantage of using membrane emulsification for
preparing the initial oil–water premix is that this method pro-
duces relatively monodisperse emulsions with sharp upper
Fig. 1. Optical microscopy images of an initial emulsion prepared by membrane
emulsification and of the final emulsion, obtained after 100 passes (u = 100)
through the narrow-gap homogenizer. The distance between the vertical marks
in the two photos is 20 µm.

boundary in the drop-size distribution. Such emulsions ensure
much better statistics for the change in the concentrations of
the large drops in the emulsions, with the emulsification time,
which was very helpful in determining the kinetic constants of
drop breakup.

2.2.2. Narrow-gap homogenizer
The second homogenization step was accomplished by

100 passes of the emulsion through a custom-made “narrow-
gap” homogenizer with an axially symmetric cylindrical mixing
head [42]. The mixing head contained a processing element,
with two consecutive annular slits (each of them with gap-
width of 395 µm and length of 1 mm), through which the
oil–water mixture was passed under pressure, see Fig. 1. The
drop breakage occurs predominantly in the intensive turbulent
flow realized in the second narrow slit and in the zone just be-
hind this slit, where the rate of energy dissipation is the highest
[42].

The driving pressure for this emulsification step was pro-
vided by a gas N2-bottle. Pressure control system was used to
regulate the pressure during emulsification with an accuracy of
±500 Pa. Two driving pressures were used in the various se-
ries of experiments, ≈0.95 × 105 and ≈2.0 × 105 Pa, to clarify
the effect of the rate of energy dissipation on the drop break-
age rate constant. After each pass through the homogenizer, the
emulsion was collected in a container attached to the outlet of
the equipment (see Fig. 2 in Ref. [43]). Then the gas pressure in
the inlet container was released, and the emulsion was poured
back in the inlet container (under the action of gravity), by using
a bypass tube. Afterwards, the gas pressure in the inlet container
was increased again and the emulsion was pushed to make an-
other pass through the homogenizer. In Table 1 we summarize
the operating conditions for all systems discussed below.

After each of the first 10 passes, and then after each fifth
pass, emulsion samples were taken for determination of the
drop-size distribution. Thus we determined how the drop-size
distribution and the mean drop size evolved, as functions of the
number of passes (viz. of the emulsification time).

2.3. Determination of drop-size distribution, oil viscosity and
interfacial tension

The drop-size distribution was determined by optical mi-
croscopy. The oil drops were observed and video-recorded in
transmitted light by means of microscope Axioplan (Zeiss, Ger-
many), equipped with objective Epiplan, ×50, and connected
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to a CCD camera and video-recorder. The diameters of the oil
drops were measured one by one, from the recorded video-
frames, by using custom-made image analysis software oper-
ating with Targa+ graphic board (Truevision, USA).

The viscosity of hexadecane and soybean oil was measured
by capillary viscometer, whereas the viscosity of the silicone
oils was measured on Gemini research rheometer (Bohlin &
Malvern Instruments, UK) at the temperature of the emulsifica-
tion experiments.

The equilibrium and the dynamic oil–water interfacial ten-
sions were measured by a drop-shape-analysis of pendant oil
drops and by the stopped jet method, respectively, as explained
in Section 3.5 of Ref. [43].

3. Kinetic scheme for the process of drop breakage

In this section we present the kinetic model used for inter-
pretation of the experimental data and for determination of the
breakage rate constants, kBR.

3.1. Main assumptions of the model

The main assumptions of the model are: (1) The drop–drop
coalescence is negligible; (2) The process of drop breakage is
considered as an irreversible reaction of first order; (3) The
drops are classified in discrete drop–diameter intervals—all
drops falling in a given interval are considered as having the
same diameter, dS , which is the average diameter of the inter-
val; (4) The intervals are chosen in such a way, that the ratio of
the average drop volumes for two consecutive intervals is equal
to two, i.e. vS+1 = 2vS . This procedure defines a geometric grid
for discretization of the drop sizes and was originally suggested
by Bleck [50]. The used discretization scheme falls in the cate-
gory of the so-called “fixed pivot techniques,” see Section 3 in
Ref. [51]. Note, however, that the geometric grid used here is
different from the discretization grid used in Ref. [51]. (5) Ki-
netic equations are constructed for the number concentration of
the drops falling in a given interval, nS = n(dS), under the as-
sumption that the drop breakage occurs only in the processing
element of the homogenizer, which is modeled as a reactor with
ideal displacement of the fluid [52].

More detailed description of the system and the equations
stemming from the above assumptions are presented in the fol-
lowing Sections 3.2–3.5.

3.2. Discrete description of the drop-size distribution

We consider a hypothetical emulsion, which contains drops
with discrete set of volumes (diameters). The volume of the
smallest drops in the system is denoted as v0 and the respec-
tive drop diameter is d0. The volumes of the larger drops are
2v0, 4v0, 8v0, etc. The volume of the largest drops in the
emulsion under consideration is 2Nv0, where N is an integer,
which depends on the specific emulsion. The drop diameters
in this emulsion are d0,

3
√

2d0,
3√

22d0, . . . ,
3√

2Nd0. To simplify
the notation, we denote these diameters by d0, d1, d2, . . . , dN ,
where dS = 3√

2Sd0 and S is an integer between 0 and N . The
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diameter of the smallest drops, d0 = 0.25 µm, was chosen to
be close to the resolution of the optical microscope used to de-
termine the experimental drop-size distribution (direct checks
showed that the final results and conclusions do not depend on
the particular choice of d0, if it is chosen to be <0.5 µm).

The width of the interval with average diameter dS is de-
noted by 	yS and was chosen to be proportional to dS [53].
In other words, the ratio of the widths of two neighboring in-
tervals, 	yS+1/	yS , is equal to the ratio of the neighboring
diameters, dS+1/dS = 21/3, which leads to the following defin-
ition for the boundaries of the interval around dS :

(1)0.885dS < dS < 1.115dS.

In the studied emulsions, we distinguish three qualitatively
different types of drops: (1) The largest drops with diameter
dN could only disappear due to their breakage and cannot be
formed from other (larger) drops, because no such larger drops
are present. (2) The drops with diameter smaller than dN and
larger than a certain diameter, dK , can break and, simultane-
ously, can be formed as a product of breaking of larger drops.
(3) The drops with diameter dS � dK could only be formed as a
product of breakage of larger drops. The diameter of the largest
drops that could not break, dK , is found as a part of the overall
solution of the problem (see Section 4 below). In our discrete
drop-size distribution, dK is the analogue of the maximum di-
ameter of the stable drops in the Kolmogorov–Hinze theory of
emulsification [1,2].

3.3. Determination of drop number concentration, nS , from
the experimental data

To determine the breakage rate constants, kBR, from the ex-
perimental data, we analyze the changes in the number concen-
tration, nS , of drops with given diameter dS , after passing the
emulsion through the homogenizer in multiple passes. To find
the experimental dependence of nS on the number of passes,
u, we classified the drop diameters measured in the emulsion
after a given pass, into discrete intervals as explained in Sec-
tion 3.2. To determine the number concentration, nS , from the
number of drops, NS , measured to be in the interval with mean
diameter dS , we used the following identities:

(2)nS = n(dS) ≡ NS

VEM
= NSΦ

VOIL
= 6Φ

π

NS∑N
i=0 Nid

3
i

,

where Φ is the oil volume fraction, VEM is the total emulsion
volume, VOIL is the total volume of emulsified oil, and Ni is the
number of drops, which are measured microscopically to have
diameter di .

3.4. Distribution by size of the daughter drops formed upon
drop breakage

To design kinetic equations for the evolution of the drop-
size distribution during emulsification, we should consider the
probability for formation of a “daughter” drop of diameter dS

as a result of breakage of larger “mother” drop with diameter
dM (K < M � N). The analysis of our experimental results
shows clearly [35] that the breakage of a drop with diameter
dM leads to formation of several daughter drops, which might
have diameters in the range between d0 and dM−1. The fraction
of the volume of the mother drop, which is transformed into
drops with diameter dS (0 � S � M − 1) is denoted by pS,M .
Taking into account the fact that in our model, by definition
vM/vS = 2M−S , one can deduce that the value (2M−SpS,M)

gives the average number of drops with diameter dS , which are
formed as a result of breakage of one mother drop with diame-
ter dM . The mass balance requires that the total volume of the
daughter drops should be equal to vM , which corresponds to the
relation:

(3)
M−1∑
S=0

pS,M = 1, K < M � N.

Equation (3) should be satisfied for every value of M in the
interval K < M � N , where K is the index of the largest non-
breaking drops and N is the index of the largest drops in the
emulsion.

3.5. Kinetic equations describing the drop-size evolution
during emulsification

To formulate the kinetic equations, we assume that the drop
breakage occurs only inside the processing element of the ho-
mogenizer, which is considered as a “reactor” with ideal dis-
placement [52], see Fig. 2. The ideal displacement model im-
plies that there is no longitudinal mixing of the fluid elements,
as they move along the reactor, and that all fluid elements travel
for the same period of time (so-called “residence time,” θ ) from
the inlet to the outlet of the reactor [52]. Since the composi-
tion of the emulsion entering the reactor during a given pass
with number u (1 � u � 100) does not depend on time, a
steady-state drop-size distribution is established inside the re-
actor within a very short period after starting this pass. One can
expect that the establishment of the steady-state requires a pe-
riod, comparable to the residence time of the emulsion inside
the homogenizer head (≈1 ms), which is much shorter than the
overall duration of the emulsion pass through the homogenizer
(≈15 s)—therefore, the drop-size distribution obtained after a
given pass is determined exclusively by the steady-state period
of emulsification in the reactor. For simplicity and without mak-
ing a significant error, we assume in the following consideration
that the steady-state is reached immediately after starting the
flow in the element.

Fig. 2. Schematic presentation of the processing element as a plug–flow re-
actor with ideal displacement. The number concentration of drops with mean
diameter dS , nS(x,u), depends on the distance from the inlet of the processing
element, x, and on the number of the emulsion pass through the homogenizer, u.



N. Vankova et al. / Journal of Colloid and Interface Science 313 (2007) 612–629 617
During the steady-state period, the number concentration of
drops with diameter dS , which is denoted by nS(x,u), depends
only on the distance, x, from the beginning of the reaction zone
[52], see Fig. 2. Thus, we can formulate the following differ-
ential equation, describing the decrease of the concentration of
the largest drops with diameter dN along the processing ele-
ment (valid for any pass with number u):

(4)U1
dnN(x)

dx
= −kNnN(x),

where U1 is the average linear velocity of the fluid along the
processing element, x is the distance from the beginning of the
element, nN(x) is the number concentration of the largest drops
in the emulsion, and kN is the breakage rate constant for these
drops.

The differential equation, which describes the number con-
centration, nS , of drops with diameter dS , which could simulta-
neously break and form during emulsification, is:

U1
dnS(x)

dx
= −kSnS(x) +

N∑
M=S+1

2M−SpS,MkMnM(x),

(5)for K < S < N,

where the first term in the right-hand side of Eq. (5) gives the
rate of drop breakage, whereas the second term describes the
rate of formation of these drops, as a result of breakage of larger
drops. The multiplier (2M−SpS,M) gives the average number of
drops with diameter dS , which are formed from the breakage of
one drop with diameter dM , where N � M > S.

The drops with diameter dS � dK could be formed only as
a result of breakage of larger drops, which means that the first
term in Eq. (5) is zero and the kinetic equation simplifies to:

(6)

U1
dnS(x)

dx
=

N∑
M=K+1

2M−SpS,MkMnM(x), for 0 � S � K.

The solution of the set of Eqs. (4)–(6) can be found explicitly
for each pass, u. For the first pass of the emulsion through the
reactor, u = 1, we can use as initial conditions:

(7)nS(u = 1, x = 0) = n0
S, for 0 � S � N,

where n0
S is the number concentration of the drops with diam-

eter dS in the initial emulsion (the premix), which was pre-
pared by membrane emulsification. The general solution for the
concentrations of the drops of various sizes along the reactor,
nS(x), during the first pass of the emulsion through the reactor
(u = 1) can be written as follows:

(8)nN(x) = n0
N exp

(
−kNx

U1

)
,

nS(x) = exp

(
−kSx

U1

)(
const

+ 1

U1

N∑
M=S+1

2M−SpS,MkM

∫
exp

(
kSx

U1

)
nM(x)dx

)
,

(9)for K < S � N − 1,
nS(x) = n0
S + 1

U1

N∑
M=K+1

2M−SpS,MkM

x∫
0

nM(ξ)dξ,

(10)for 0 � S � K,

where the constant in Eq. (9) is found from the initial condition
at x = 0. The integrals in Eqs. (9) and (10) were evaluated ana-
lytically (resulting in explicit but long expressions), after the ex-
pressions for the concentrations of the larger drops nM(x) were
obtained by solving the respective equations for these drops
(M > S). Thus by solving one after the other Eqs. (8)–(10),
starting with the largest drops in the emulsion, S = N , we ob-
tain a chain of explicit expressions for nS(x) for all values of S

between 0 and N .
Experimentally, we measure the drop number concentration

at the outlet of the homogenizer, i.e., at x = L, see Fig. 2. After
substituting x = L in Eqs. (8)–(10) and taking into account that
(L/U1) = θ is the residence time of the drops in the processing
element, we obtain explicit expressions for the concentrations
of the drops with different sizes at the outlet of the equipment
after the first pass through the homogenizer. The result for the
largest drops in the emulsion reads:

(11)nN(u = 1, x = L) = n0
N exp

(
−kNL

U1

)
= n0

N exp(−kNθ).

The solution for the number concentration of the second
fraction of drops, nN−1, having a diameter dN−1, is:

nN−1(u = 1, x = L)

=
(

n0
N−1 − 2pN−1,NkNn0

N

kN−1 − kN

)
exp(−kN−1θ)

(12)+ 2pN−1,NkNn0
N

kN−1 − kN

exp(−kNθ),

where kN−1 and kN are the breakage rate constants for drops
with diameters dN−1 and dN , respectively; n0

N−1 and n0
N are

their concentrations in the initial premix; and 2pN−1,N gives
the average number of drops with diameter dN−1, which are
formed as a result of breakage of a single drop with diame-
ter dN . It is seen from Eq. (12) that the concentration of drops
with diameter dN−1 at the outlet of the processing element de-
pends not only of the rate constant of breakage of these drops,
kN−1, but also on the rate of their formation from the largest
drops, viz. on the values of kN and pN−1,N . In a similar way,
we derived expressions for the number concentrations of the
smaller drops in the emulsion with diameters, dN−2, dN−3,

. . . , d0.
To describe the evolution of the number concentration of the

various drops, after different number of passes through the ho-
mogenizer, nS(u > 1), we solved Eqs. (4)–(7) by using as initial
conditions for the pass of number u the number concentrations,
which were calculated for the previous pass, nS(u− 1). For ex-
ample, for the second pass through the homogenizer we solve
Eq. (4) for the largest drops, by using Eq. (11) instead of Eq. (7)
as an initial condition. The result for arbitrary u � 1 reads:

nN(u, x = L) = n0
N exp(−ukNθ) = n0

N exp(−kN tEM),

(13)u � 1,
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where u is the number of passes of the emulsion through the
homogenizer and n0

N is again the number concentration of the
drops in the initial premix obtained by membrane emulsifica-
tion. Note that the product tEM = uθ gives the total time of
emulsion residence inside the processing element (in the reac-
tor), that is, tEM is the total actual emulsification time.

In a similar way, we were able to obtain explicit expressions
for the number concentrations of all drops in the emulsion, as
functions of the number of passes through the homogenizer, u.
For example, the respective equation for the drops with diame-
ter dN−1 is

nN−1(u, x = L)

=
(

n0
N−1 − 2pN−1,NkNn0

N

kN−1 − kN

)
exp(−ukN−1θ)

(14)+ 2pN−1,NkNn0
N

kN−1 − kN

exp(−ukNθ), u � 1.

The equations for the smaller drops are rather long and will not
be reproduced here.

Therefore, Eqs. (13)–(14) and their counterparts for the
smaller drops in the emulsions, combined with the initial drop-
size distribution measured before starting the emulsification in
turbulent flow, n0

S , are used for interpretation of the experimen-
tal data, which are the drop-size distributions, determined after
different number of passes of the emulsion through the narrow-
gap homogenizer. By comparing the calculated with the mea-
sured drop-size distributions after different number of passes
we were able: (i) to determine the rate constants of drop break-
age, and (ii) to gain non-trivial information about the constants,
pS,M , i.e., for the size distribution of the daughter drops, ob-
tained as a result of breakage of one larger drop.

The direct determination of all constants pS,M from the in-
terpretation of the experimental data by the kinetic scheme
outlined above is impossible, because the number of unknown
constants is much larger than the number of equations. Indeed,
the constructed set consists of (N + 1) equations, describing
the evolution of the number concentration of drops with diam-
eters between d0 and dN , plus (N − K) equations expressing
the mass balance of the breaking drops, Eq. (3). On the other
hand, we have (N − K) unknown breakage rate constants for
the drops larger than dK , as well as (N −K)(N +K +1)/2 un-
known constants of type pS,M . Since the number of unknown
constants is much larger than the number of equations, we
encounter an undetermined mathematical problem and should
make additional assumptions for the constants pS,M to solve
the set of equations [39].

The detailed procedure used for determination of the con-
stants pS,M is described in our subsequent paper [35]. Here we
outline only the main features of the model daughter drop-size
distributions (expressed through the constants pS,M ), which
we found to describe the experimental data for all emulsions
studied. Briefly, based on the analysis of the drop-size dis-
tribution histograms, determined after subsequent passes of a
given emulsion through the homogenizer, we propose the so-
called “combined model” [35]. In this model we split the size-
distribution of the formed daughter drops into two regions—
Fig. 3. Schematic presentation of the number probability for formation of
daughter drops, as a function of the daughter drop diameter.

small daughter drops with diameter dS � dK and large daughter
drops with diameter dS > dK , see Fig. 3. For reasons explained
in Ref. [35], we assume that the number probability for forma-
tion of the small daughter drops (dS � dK) is proportional to the
number concentration of the respective drops (with the same
diameter dS ) in the final emulsion, obtained after 100 passes
of the emulsion through the homogenizer, see Eq. (9) in Ref.
[35]. The constant of proportionality, denoted by bM , depends
on the size of the breaking mother drop, dM , and is determined
from the mass balance, see Eq. (3) above and Eq. (14) in Ref.
[35]. Next, we assume that the number probability for formation
of the larger drops (dK < dS < dM−1) is equal to the number
probability for formation of the drops with size dK (see Eqs.
(12) and (13) in [35]), except for the largest daughter drops
(dS = dM−1), for which the number probability was assumed
to be proportional to that of dK with a constant of proportion-
ality, denoted by b2 (Eq. (11) in [35]). The constant b2 does
not depend on the size of the breaking drop, dM , and on the
number of passes, u (though b2 depends on the composition of
the emulsion and the hydrodynamic conditions during emulsifi-
cation). Therefore, the proposed combined model includes only
one adjustable parameter for a given emulsion, b2, related to the
probabilities for the formation of the daughter drops, which was
determined (along with the kinetic constants kS ) by compar-
ing the theoretical predictions for the evolution of the number
concentrations of the drops on the number of emulsion passes
through the homogenizer, nS(u)—see the following Section 4.
In practice, b2 was determined by the method of trials and
errors—assuming a certain value, we first calculated all con-
stants pS,M from Eqs. (9), (11)–(14) in Ref. [35] and then used
the procedure from Section 4 to determine the values of kS . If
the value of b2 was inappropriately chosen, we could not find a
set of kinetic constants kS that describes the entire set of data for
nS(u). In contrast, when the appropriate value of b2 was used,
we could describe the experimental data nS(u) for all drops and
after all passes of the emulsion through the homogenizer. Di-
rect numerical checks showed that the appropriate value of b2

was unique and that the obtained set of constants pS,M and kS

was stable—no qualitatively different multiple solutions could
be obtained within the frames of the used model. Note that the
used procedure reduced the number of unknown constants to
(N − K + 1) only, which is much smaller than the number of
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Fig. 4. Experimental data for the number concentration of the drops, as a func-
tion of drop diameter, in emulsion Sil50_Br_P 1 (see Table 1): u = 0 (") is for
the premix, u = 5 (1) is after 5 passes, and u = 100 (P) is after 100 passes of
the emulsion through the homogenizer.

equations (2N − K + 1) and the number of experimental data
sets to be fitted by these constants.

In the following sections of the current paper we discuss only
the values of the breakage rate constants, kBR, whereas the re-
sults for pS,M are described and discussed in the subsequent
paper of the series, Ref. [35].

4. Determination of the breakage rate constants from the
experimental data

Typical histograms for the initial monodisperse emulsion
(the premix), and for the same emulsion after 5 and 100 passes
through the homogenizer, are presented in Fig. 4. One sees from
Fig. 4 that the number concentration of the largest drops de-
creases due to their breakage after the first pass, whereas the
concentration of the smaller drops increases. From such his-
tograms we can construct the dependence nS(u)—see Fig. 5
below.

Equation (13) shows that the evolution of the number con-
centration of the largest drops, nN , is independent of the break-
age of the other drops in the emulsion. Therefore, we can
determine kN without information on how the smaller drops
break. In contrast, to determine the breakage rate constant of
the next fraction of drops, kN−1, we need the value of pN−1,N ,
which is not known in advance. The problem for determina-
tion of the rate constant for the smaller drops, kN−2, is even
more complex, because these drops could form in the process of
breakage of the larger drops with diameters dN and dN−1. Thus,
to describe the dependence of nN−2(u) we need the values of
kN, kN−1, kN−2,pN−1,N ,pN−2,N ,pN−2,N−1. To illustrate the
procedure for determination of kBR from the experimental data,
we demonstrate below the data analysis procedure under the
assumption that the values of pS,M are known (i.e., they are
calculated from Eqs. (9), (11)–(14) in Ref. [35], after assuming
a certain value for the constant b2).

From the best fit of the experimental data for nS(u) by equa-
tions similar to Eqs. (13) and (14) above, one can determine the
values of kS . Note that the values for the drops larger than dS
(viz. kS+1, kS+2, . . . , kN ), which are determined from the best
fits to the number concentrations of the respective drops (i.e.,
with diameters dS+1, dS+2, . . . , dN ) are introduced into the ki-
netic equation for nS , so that the only adjustable parameter in
the equation for the drops with diameter dS is kS .

To illustrate this procedure, we present in Fig. 5 the exper-
imental data, along with the best fits of the dependence nS(u)

for the drops having diameters dK � dS � dN for one of the
systems studied, Sil50_Br_p1 (see Table 1 for detailed descrip-
tion). For this particular emulsion, the indexes K = 18 and
N = 22, which corresponds to dK = 16 µm and dN = 40 µm.
One sees from Fig. 5 that the experimental data are well repre-
sented by the theoretical fits for all values of S varied between
K and N . The concentration of the largest drops in the system
decreases to zero after the first 8 passes, whereas the concentra-
tion of the drops with diameter dN−1 decreases more slowly, see
Fig. 5a. These different rates of drop disappearance lead to dif-
ferent values of kN and kN−1 (225 and 140 s−1, respectively).
The number concentrations of the drops with diameters dN−2
and dN−3 first increase (due to the formation of these drops af-
ter breakage of the larger drops) and than decrease, see Figs. 5b
and 5c. The breakage rate constants for these drops were de-
termined as 20 and 7 s−1. The concentration of the drops with
diameter dN−4 = 16 µm increases during all passes, see Fig. 5d.
This means that the rate of their formation is significantly larger
than the rate of their breakage during the entire emulsification
procedure. For these drops we cannot determine kBR, because
the breakage rate is too slow to be significant in the time-
frame of our experiments. We consider these drops as the largest
drops, which could not break, with a diameter dK . These drops
remain in the final emulsion obtained after 100 passes through
the homogenizer.

Let us compare now the values of dK determined as ex-
plained above, with the diameter of the maximum stable drops
in the final emulsions (after 100 passes). As shown in our pre-
vious paper [43], the maximum drop diameter (associated with
the experimental data for dV95) was described well by Davies’
equation [9]:

dD = A3

(
1 + A4

ηDε1/3d
1/3
D

σ

)3/5

σ 3/5ρ
−3/5
C ε−2/5

(15)= A3

(
1 + A4

ηDε1/3d
1/3
D

σ

)3/5

dKI,

where σ is the interfacial tension, ρC is the mass density of the
continuous phase, ηD is the drop oil viscosity, ε is the rate of
energy dissipation per unit mass, and dKI (having the dimension
of length) is defined as:

(16)dKI = σ 3/5ρ
−3/5
C ε−2/5.

In Ref. [43] we found that the best description of the experi-
mental data for dV95 with Eq. (15) is obtained at A3 = 0.86 and
A4 = 0.37.

One could expect that the value of dK (diameter of the
largest drops that cannot break in our kinetic scheme) should
approximately correspond to the value of the maximum drop di-
ameter, dD, calculated by Eq. (15). The comparison of these two
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(a) (b)

(c) (d)

Fig. 5. Experimental data (", 1) for the number concentration, nS , vs the number of passes of the emulsion through the homogenizer, u, along with the best fits,
according to the kinetic scheme (- · - ·, - - -) in the system Sil50_Br_P 1 for drops with diameters: (a) dN = 40 µm (") and dN−1 = 32 µm (1); (b) dN−2 = 25.4 µm;
(c) dN−3 = 20.2 µm and (d) dN−4 = dK = 16 µm.
characteristic diameters is presented in Table 1. One sees that
the values of dD are higher by 20–40% than the values of dK .
In fact, we found that dD falls in the interval of drops with di-
ameter dK+1, which have relatively small, but still measurable
breakage rate constant. We can conclude from this compari-
son, that the value of dD is determined by the largest drops,
which have survived the emulsification process for the spe-
cific characteristic time of our experiments, tEXP = 100 × θ ,
but could break and would disappear, if much longer emul-
sification time was used. Because the breakage rate constant,
k(dK+1), is smaller than the inverse characteristic time of our
experiment, tEXP = 100 × θ , some noticeable fraction of drops
with diameter dK+1 ≈ dD have remained in the final emulsions
after 100 passes, only because the emulsification time was not
sufficiently long to allow breaking of these drops, see Fig. 5c.

In other words, the steady-state observed after 100 passes of
the emulsion through the homogenizer is due to the rapid de-
crease of the breakage rate constant when the largest drops in
the emulsion become with diameter d ≈ dD. If we have per-
formed experiments with much longer characteristic time (e.g.,
with 1000 instead of 100 passes of the emulsion through the
homogenizer), the maximum diameter of the stable drops in the
final emulsions (and, respectively, the constant A3 in Eq. (15))
would be slightly smaller. For a detailed theoretical investiga-
tion and discussion of this relation between the experimentally
determined maximum drop diameter and the duration of the
emulsification process see Refs. [28,29].

5. Experimental results for the breakage rate constant

In this section we present and discuss briefly the experimen-
tal results for the breakage rate constant, kS , for the various
emulsions. More detailed discussion of the effects of the vari-
ous factors on kS is presented in the following section.

As explained in the Section 4, the effect of drop size on kBR
is very strong (see also Figs. S1–S3 in the supporting mater-
ial). The breakage rate constants decreased very rapidly with
the decrease of drop size and became negligible at drop diame-
ters d < dD.

The effect of oil viscosity on the dependence kBR(d) was
studied with silicone oils at two different rates of energy dissi-
pation, ε = 0.6 × 105 and ε = 2.5 × 105 J/(kg s) (see Fig. S1
and Table 1). At the lower value of ε we performed experi-
ments with oils of viscosity ηD = 50 mPa s and ηD ≈ 100 mPa s
(Fig. S1A), whereas experiments with oils having viscosities of
200 and 500 mPa s were performed at the higher value of ε. All
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emulsions were stabilized by 1 wt% Brij 58, which ensures in-
terfacial tension of around 10.5 mN/m in all these systems. As
seen from Fig. S1, the breakage rate constants decrease signif-
icantly with the increase of ηD for given drop size d > dK , at
fixed other conditions.

The effect of interfacial tension on kBR was studied with
hexadecane-in-water (ηD = 3 mPa s) and soybean oil-in-water
(ηD = 50 mPa s) emulsions, stabilized by two different sur-
factants, 1 wt% Brij 58 and 0.5 wt% Na caseinate. The in-
terfacial tensions for the hexadecane emulsions were 7.0 and
28.8 mN/m, whereas for the SBO emulsions they were 7.4
and 20.5 mN/m, respectively [43]. The emulsification exper-
iments for the hexadecane emulsions were performed at ε ≈
0.7 × 105 J/(kg s), whereas ε ≈ 2.9 × 105 J/(kg s) was ap-
plied for the SBO emulsions. The results presented in Fig. S2
show that the dependence of kBR on the interfacial tension,
σ , is strong—the values of kBR for emulsions stabilized by
Na caseinate, which have higher interfacial tension, are much
lower than those for Brij-stabilized emulsions. Just for exam-
ple, for the hexadecane emulsion prepared with Brij 58 (σ =
7.0 mN/m) kBR was ≈ 400 s−1, whereas kBR for the emulsion
stabilized by Na caseinate (σ = 28.8 mN/m) was ≈ 22 s−1 for
drops with d = 20 µm, see Fig. S2A.

The effect of the rate of energy dissipation on kBR is il-
lustrated in Fig. S3. For hexadecane emulsions stabilized by
Na caseinate, the increase of ε from 0.8 to 3.4 × 105 J/(kg s)
leads to a 20-fold increase of kBR at d = 20 µm. Similarly, for
SBO emulsions stabilized by Brij 58 we observe that kBR in-
creases more than 10 times when ε increases from 0.57×105 to
2.95×105 J/(kg s) for drops with d = 20 µm; the respective in-
crease of kBR is more than 100 times for drops with d = 16 µm,
see Fig. S3B.

In conclusion, all factors studied (drop diameter, oil drop vis-
cosity, interfacial tension, and rate of energy dissipation) affect
significantly kBR. For all of the systems studied, kBR becomes
negligible (in the timeframe of our experiment), when d be-
comes smaller than the value of dD, as calculated from Eq. (15).

6. Comparison of the experimental results for kBR with
theoretical models

As explained in the introduction, three main types of models
are discussed in literature [15–24,54,55]: (1) In the first type,
kBR is presented as a product of the reciprocal time of drop
deformation and the efficiency of drop breakage. (2) kBR is pre-
sented as a product of the eddy–drop collision frequency and
the efficiency of drop breakage. (3) kBR is assumed equal to
the inverse drop breakage time, which in turn is determined
from the stress balance in the deforming drop [15,21–24]. In
this section we briefly describe some of these models and their
modifications, which are suggested in the current study for bet-
ter description of our experimental data. The predictions of the
various models are compared with the experimental data and,
on this basis, these models are discussed.
6.1. Models based on drop deformation time and activation
energy

The model for the rate of drop breakage proposed by
Coulaloglou and Tavlaridies [16] is based on the assumption
that kBR is a product of the fraction of drops (from the to-
tal number of drops with given size in the emulsion), which
have sufficiently high energy to undergo drop breaking, and the
reciprocal time needed for the drop breakage to occur:

kBR =
(

1

breakage time

)(
fraction of

drops breaking

)

(17)≈ 1

tBR
exp

(
− Eσ

EKIN

)
.

The drop breakage time is estimated by assuming that it is ap-
proximately equal to the characteristic time for drop deforma-
tion, tBR ≈ tDEF (see Eqs. (23) and (25) below). The exponential
factor is assumed equal to the ratio of the surface energy re-
quired for drop deformation and the mean kinetic energy of the
turbulent eddies. The drop surface energy is estimated as [16]:

(18)Eσ ∼ πd2σ.

The mean turbulent kinetic energy, EKIN(d), of an eddy with
size d , can be estimated from the theory of turbulence [16], by
multiplying the mass and the mean square velocity, 〈U2〉, of the
eddy:

(19)EKIN ∼ πρDd3〈U2〉/6,

where ρD is the mass density of the dispersed phase. For the
inertial subrange, 〈U2〉 is given by [1,2,56]

(20)
〈
U2〉 ∼ ε2/3d2/3.

Following Refs. [16,29], we assume that the eddies with size
comparable to the drop diameter, d , are most efficient in caus-
ing drop breakage, because the smaller eddies have much lower
energy (see Eqs. (19)–(20)) and the larger eddies predominantly
drag the drop instead of deforming it.

In Ref. [16], the drop breakage time in Eq. (17) is assumed
equal to the so-called “deformation time,” needed for deforming
the drop to a sufficiently large aspect ratio, so that a Rayleigh
type of capillary instability could occur. The equation for the
deformation time depends on the Reynolds number in the drops,
defined as [57]:

(21)ReDR = UDINdρD

ηD
,

where UDIN is the velocity of the liquid inside the drops, and
ηD is the dynamic viscosity of the dispersed phase. For our esti-
mates we can use the approximation UDIN ∼ 〈U2〉1/2 ∼ (εd)1/3

to obtain:

(22)ReDR ∼ d4/3ε1/3ρD

ηD
,

which allows us to estimate ReDR from known parameters.
If ReDR > 1, which is the typical case for drops with low

viscosity, the deformation time is estimated by comparing the
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force acting on the drops, due to fluctuations in the dynamic tur-
bulent pressure, to the acceleration of the fluid subdomains in
the drop interior, ∇P ∼ ρC

∂v
∂t

(see Section 127 in Ref. [57] for
detailed explanation). The respective expression for the defor-
mation time reads (cf. with Eq. (127.6) in Ref. [57]):

(23)tDEF = d2/3

ε1/3

√
ρD

ρC
, ReDR > 1.

Combining Eqs. (17)–(23), one derives the following equation
for the rate constant of drop breakage:

(24)

kBR = B1
ε1/3

d2/3

√
ρC

ρD
exp

(
−B2

σ

ρDε2/3d5/3

)
, ReDR > 1,

which is very similar to the original equation proposed in
Ref. [16], where the mass densities were not included in the
pre-exponential term. B1 and B2 are unknown constants, which
could be determined from the comparison of the predictions of
Eq. (24) with experimental data. From the derivation of Eq. (24)
one could expect that the constants B1 and B2 are of the order
of unity.

In the case of viscous dispersed phase, corresponding to
ReDR < 1, the drop deformation time should be estimated by
neglecting the acceleration term and comparing the pressure
fluctuations in the continuous phase with the viscous stress
inside the drops (quasi-stationary approximation) [57]. The re-
spective equation reads (cf. with Eq. (127.7) in Ref. [57]):

(25)tDEF = ηD

ε2/3d2/3ρC
, ReDR < 1.

Note that tDEF increases with the viscosity of the dispersed
phase, ηD, in Eq. (25), whereas it does not depend on ηD
in Eq. (23). Furthermore, Eq. (25) predicts that the deforma-
tion time decreases with the drop diameter for viscous drops,
whereas Eq. (23) for non-viscous drops predicts the opposite
trend.

Combining Eqs. (17)–(20) and (25), we obtain the following
expression for the breakage rate constant of drops with viscous
dispersed phase (ReDR < 1), which is a counterpart of Eq. (24):

(26)

kBR = B3
ρCd2/3ε2/3

ηD
exp

(
−B4

σ

ρDε2/3d5/3

)
, ReDR < 1.

Equations (24) and (26) differ in the pre-exponential term,
which reflects the different expressions for the deformation
times of the less viscous (ReDR > 1) and more viscous
(ReDR < 1) drops. One sees from Eq. (24) that according to
this model, the main parameters governing the rate of break-
age for ReDR > 1 are the average rate of energy dissipation, ε,
and the interfacial tension, σ . For viscous drops, ReDR < 1, the
viscosity of the oil phase, ηD, also affects kBR, see Eq. (26).

The comparison of Eq. (26) with the experimental results
(see below) showed that this equation strongly underpredicts
the effect of oil viscosity on kBR. For this reason, we modi-
fied Eq. (26) to account for the effect of oil viscosity in the
activation energy of drop breakage. As shown in our previous
study [43], the effect of oil viscosity on the mean and maxi-
mum drop diameters for the steady-state drop-size distribution
Fig. 6. Comparison of the experimental data for kBR, obtained with hexadecane
emulsions, with the model of Coulaloglou and Tavlaridies [16]. The depen-
dence of ln[(kBRd2/3/ε1/3)(ρD/ρC)1/2] on [(dKI/d)5/3(ρC/ρD)] is plotted
for emulsions prepared at different values of ε and stabilized by different sur-
factants. The points are experimental data, whereas the dashed line is the best
of the data by Eq. (24). The values of B1 and B2 are determined from the fit.

is well described by the Davies’ equation [9], which includes
a viscosity-related term. Following the same idea, we included
an additional exponential term in the expression for kBR to ac-
count for the viscous dissipation of energy, EDIS, inside the
drops during their breakage:

EDIS = π

6
d3τD = π

6
d3

[(
ηDε1/3d1/3

√
ρC

ρD

)/
d

]

(27)= π

6
ηDε1/3d7/3

√
ρC

ρD
.

Here τD is the viscous stress inside the breaking drop, which is
estimated as proposed in Ref. [11]. Thus, the “activation” en-
ergy opposing drop deformation is presented as a sum of the
surface and dissipated energies, Eσ and EDIS, thus leading to
the following equation for kBR (for simplicity, ρD ≈ ρC is as-
sumed):

kBR(d) ≈ 1

tDEF
exp

[
− (Eσ + EDIS)

EKIN

]

= B5
ρCd2/3ε2/3

ηD

× exp

[
−B6

(
dKI

d

)5/3(
1 + B7

ηDε1/3d1/3

σ

)]
,

(28)ReDR < 1,

where B7 is a constant, which accounts for the relative contri-
bution of the viscous dissipation inside the drops as compared
to the surface energy. To the best of our knowledge, Eqs. (26)
and (28) for estimate of kBR are original.

To the end of this section we compare our experimen-
tal results with the predictions of Eqs. (24), (26) and (28).
First, from Eq. (22) we found that ReDR > 1 for all hexade-
cane emulsions studied in the current paper, see Table 1. To
compare the experimental data for these emulsions and the
corresponding theoretical prediction, we constructed the plot
ln[(kBRd2/3/ε1/3)(ρD/ρC)1/2] versus [(dKI/d)5/3(ρC/ρD)],



N. Vankova et al. / Journal of Colloid and Interface Science 313 (2007) 612–629 623
Table 2
Values of the adjustable constants determined from the best fit to the experi-
mental data by the various theoretical models (see Section 6)

Model
equation

Systems Bσ Bη

Eq. (24) Hexadecane B1 = 0.033 B2 = 3.6 –
Eq. (28) All, except

hexadecane
B5 = 0.05 B6 = 11.4 B7 = 0.05

Eq. (36) All systems B8 = 0.086 B9 = 5.12 B10 = A4 = 0.37

which should be a “master” straight line, according to Eq. (24);
dKI is calculated by Eq. (16). As seen from Fig. 6, the experi-
mental data for the three hexadecane emulsions follow a linear
dependence down to drop size d ≈ dKI, which corresponds to
(dKI/d)5/3(ρC/ρD) ≈ 1.3. Furthermore, the data for the various
hexadecane emulsions fall on the same “master” line, which in-
dicates that Eq. (24) adequately represents the dependence of
kBR on d,σ and ε for these emulsions. The adjustable constants
found from the best fit to the data are B1 = 0.033 and B2 = 3.6
(see Table 2); these values are discussed in Section 6.4.

For the emulsions of more viscous oils (SBO and silicone
oils), the estimated values of ReDR become smaller than unity
for drops with given diameter, dRE, which depends on the spe-
cific system, see Eq. (22) and Table 1. Note also that according
to Eq. (24), kBR should not depend on the oil viscosity, which
contradicts the experimental results (see Fig. S1). Therefore,
for drops with d < dRE we should use Eq. (26) or (28), in-
stead of Eq. (24). In accordance with Eq. (26), we constructed
the plot ln[kBRηD/(ρCd2/3ε2/3)] versus [(dKI/d)5/3(ρC/ρD)],
which should correspond to a “master” straight line. As seen
from Fig. 7a, the experimental points do not fall on a straight
line or on a single “master” curve—the data for oils with vari-
ous viscosities differ very significantly from each other. There-
fore, the observed effect of oil viscosity on kBR cannot be de-
scribed by Eq. (24) or (26).

In contrast, the comparison of the experimental data with the
predictions of Eq. (28), shown in Fig. 7b, revealed much better
agreement between experiment and theory. One sees that the ex-
perimental data fall on almost linear dependence and converge
to a single “master” line, when the appropriate plot correspond-
ing to Eq. (28) is used. The values of the adjustable constants
B5 = 0.05, B6 = 11.4, and B7 = 0.05 were determined from
the best fit to the data and are all rather reasonable (see Sec-
tion 6.4 for discussion). It is worthwhile noting that the results
for hexadecane emulsions with ReDR > 1 (not shown in Fig. 7),
did not comply with Eq. (28), which emphasizes the need for
using appropriate expressions for the deformation times of less
viscous and more viscous drops [57].

We can conclude that the experimental data for kBR(d) for
hexadecane emulsions are reasonably well described by the
model proposed in Ref. [16]. However, this model is inapplica-
ble to emulsions prepared with more viscous oils (such as SBO
and silicone oils), for which ReDR < 1. We described these
emulsions after modifying the model from Ref. [16] by: (1) us-
ing appropriate equation for the deformation time of viscous
drops, and (2) accounting for the effect of energy of viscous
dissipation inside the breaking drops—see Eq. (28).
(a)

(b)

Fig. 7. Comparison of the experimental data for kBR with the model based on
drop deformation time, for drops with ReDR < 1 (viscous oils). The points are
experimental data for different systems, whereas the line in (b) is the best fit
according to Eq. (28). The data do not merge into a single master line on (a),
which shows that Eq. (26) does not describe well the systems studied.

6.2. Models based on the drop–eddy collision frequency

In the model proposed by Prince and Blanch [18] and by
Tsouris and Tavlaridies [19], the breakage rate is assumed to be
proportional to the frequency of drop–eddy collisions and the
breakage efficiency:

vBR = (eddy–drop collision frequency)

(29)× (breakage efficiency).

The probability for drop–eddy collisions is estimated by
analogy with the molecular collision theory of gases. The col-
lision frequency h(d) between drops of size d and eddies of
size de that can break these drops (i.e., eddies with size equal
or smaller than drop diameter) is presented as [18]:

(30)h(d) =
∫
ne

Sd,e
(
U2

d + U2
e

)1/2
nd dne,

where Sd,e = π
4 (de + d)2 is the collision cross-section area;

nd is the number concentration of drops with size d ; Ud is the
mean drop velocity; dne is the number concentration of eddies



624 N. Vankova et al. / Journal of Colloid and Interface Science 313 (2007) 612–629
with size between de and de + δde; and Ue is the mean velocity
of these eddies. The number concentration of the eddies can be
determined from the expression [18,58]:

(31)dne(κ) ≈ 0.1κ2

ρC
dk.

Here ne(κ) is the number concentration of eddies with wave
number κ ≈ 2/de per unit mass of the fluid, and ρC is the mass
density of the continuous phase.

In this approach [18,19], the efficiency of drop breakage is
expressed by the equation:

(32)Y(d) = exp

(
− Eσ

EKIN

)
,

where Eσ is the drop surface energy given by Eq. (18), whereas
EKIN is the kinetic energy of the eddies, expressed as [19]:

(33)EKIN = 0.43πρC(2/κ)11/3ε2/3.

Thus, the final equation for the breakage rate constant in this
model reads [19]:

kBR(d) = 0.1
π

4
ε1/3

2/λ0∫
2/d

(
2

κ
+ d

)2(
8.2κ−2/3 + 1.07d2/3)1/2

(34)× κ2 exp

(
− Eσ

EKIN

)
dκ,

where λ0 is the size of the smallest eddies in the system.
If one assumes that most efficient for drop breakage are the

collisions of the drops with eddies of similar size (because these
eddies have highest kinetic energy from all eddies able to de-
form the drops [57,59]), one derives the following expression
for the rate constant of drop breakage, which is a simplified
version of Eq. (34):

(35)kBR(d) ∼ ε1/3

d2/3
exp

(
− σ

ρCε2/3d5/3

)
.

The pre-exponential term in the above equation arises from
the frequency of eddy–drop collisions, whereas the exponen-
tial term accounts for the breakage efficiency. It is seen that
Eq. (35) is very similar in structure to Eq. (24), with the only
difference that the density of the continuous phase, instead of
that of the dispersed phase, appears in the exponential term (see
the discussion on this point in Ref. [18]). Since ρC ≈ ρD in most
emulsions, Eqs. (24) and (35) predict very similar numerical re-
sults. It is obvious that we cannot describe the experimentally
observed dependence of kBR on the oil viscosity by Eq. (35),
because ηD does not appear in this equation. Therefore, follow-
ing the same argumentation as in Section 6.1, we included in
the exponent of Eq. (35) a term, accounting for the viscous dis-
sipation inside the drops:

(36)

kBR(d) = B8
ε1/3

d2/3
exp

[
−B9

(
dKI

d

)5/3(
1 + B10

ηDε1/3d1/3

σ

)]
,

where B8, B9, and B10 are unknown constants.
According to Eq. (36), the experimental data for the various
systems should fall on a master line, if the following scaling is
used:

ln

(
kBR(d)d2/3

ε1/3

)

(37)= ln(B8) − B9

(
dKI

d

)5/3(
1 + B10

ηD(εd)1/3

σ

)
,

where dKI is defined by Eq. (16); B8, B9, and B10 appear as
adjustable constants (which could be found by best fit to the
experimental data); and all remaining parameters are known.
Since B10 accounts for the relative contribution of the viscous
dissipation in the breaking drop (as compared to the contribu-
tion of the capillary pressure) one should expect this constant to
be the same as the one appearing in Eq. (15) for the maximum
stable drop diameter, dMAX. Therefore, in the following consid-
eration we fixed the value B10 = A4 = 0.37, whereas the values
of B8 and B9 were determined from the best fit to the data. Note
that this assumption allows us to describe both dMAX at steady
state and the kinetic constants kBR (leading to this steady state)
by a self-consistent approach.

As seen from Fig. 8, the experimental data for all systems
(except for the silicone oil with viscosity 500 mPa s—see below
for explanation on this point) indeed fall on a linear dependence
down to drop diameter d ≈ dKI (the last points on the right-hand
side). This plot indicates that Eq. (36) adequately represents the
dependence of kBR on the drop diameter, oil viscosity (up to
200 mPa s), interfacial tension, and rate of energy dissipation
for all systems studied. The obtained values of B8 = 0.086 and
B9 = 5.12 are reasonable and are discussed in Section 6.4 be-
low. Note that Eq. (36) has the advantage over Eqs. (24), (26)

Fig. 8. Comparison of the experimental data for kBR for all emulsions studied
(the symbols) with the predictions of Eq. (37) (the dashed line). The logarithm
of the normalized breakage rate constants, ln(kBRd2/3/ε1/3), is plotted as a
function of the inverse normalized diameter of the drops, dD/d . The Davies
diameter, dD, is calculated from Eq. (15), except for the silicone oil with
ηD = 494 mPa s, for which the experimental value of the maximum diame-
ter was used, dD = dV95. The adjustable constants B8 = 0.086 and B9 = 5.12
are determined from the best fit to the data. The constant accounting for the rel-
ative effect of oil viscosity on drop breakage, B10 = A4 = 0.37, was taken to
be the same as that for the maximum drop diameter [43].
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and (28) in being able to describe all systems studied, including
those of less viscous and more viscous oils.

It is worthwhile noting that Eq. (37) with B10 = A4 = 0.37
(taken to be the same as in Eq. (15) for dD), could be repre-
sented in the form:

(37a)ln

(
kBR(d)d2/3

ε1/3

)
= ln(B8) − B ′

9

(
dD

d

)5/3

,

where dD is defined by Eq. (15) and B ′
9 = B9/A3 = 5.94. The

combination of Eqs. (15) and (37a) is very convenient for es-
timates of kBR. For example, we can easily estimate that in
our systems kBR < 0.2 s−1 (i.e., kBR ≈ 0 in the timeframe and
accuracy of our experiments) for drops with d � dK ≈ 0.7dD,
because the argument of the logarithm in the left-hand side of
Eq. (37a) is ≈2 × 10−6 and ε1/3/d2/3 ∼ 105.

We found that the experimental data for the most viscous
silicone oil with ηD ≈ 500 mPa s deviate from the master curve
in Fig. 8, if the plot corresponding to Eq. (37) is used. The latter
observation is related to the fact that the value of dD calculated
by Eq. (15) is higher than the experimentally determined value
for this oil—see the discussion of Fig. 6 in Ref. [43]. That is
why, we used the experimental value of dV95 (instead of dD) to
plot the data in Fig. 8 for this oil, and found a reasonably good
description by Eq. (37a)—see the “stars” in Fig. 8, which fall
very close to the theoretical dashed line.

In conclusion, Eq. (36), based on the drop–eddy collision
frequency is able to describe relatively well the experimental
data for kBR for all systems studied with the values B8 = 0.086,
B9 = 5.12, and B10 = 0.37.

6.3. Other models

In Ref. [55], the drop–eddy collisions are described as a
Poisson process, and kBR is evaluated by the equation:

kBR = B11ε
1/3

(38)

× erfc

(√
B12

σ

ρCε2/3d5/3
+ B13

ηD√
ρCρDε1/3d4/3

)
,

where B11 is an empirical constant with dimensions m−2/3, and
B12 and B13 are dimensionless constants. The meaning of B13
is similar to that of our constant A4 in Eqs. (15) and (37)—it
accounts for the relative contribution of the viscous dissipation
inside the breaking drops. Assuming B13 = A4 ≈ 0.37, we ob-
tain the following simplified form of Eq. (38):

(38a)kBR = B11ε
1/3erfc

(√
B ′

12

(
dD

d

)5/3)
.

To check the applicability of the above equation to our data,
we plot in Fig. S4 the function kBR/ε1/3 versus (dD/d)5/6 for
all emulsions studied. As seen from Fig. S4, the data from the
various systems do not merge toward a single master curve,
which means that Eq. (38a) does not describe our data with a
unique pair of values of B11 and B ′

12.
In the so-called “kinematic” type of models, kBR is assumed

equal to the inverse drop breakage time, which is determined
from the stress balance including the drop capillary pressure
and the viscous stress inside the breaking drop [22,23]. The pe-
riod, during which the stress of the continuous phase acts on
the drop surface, is assumed equal to the eddy lifetime. The ex-
pression proposed for kBR in Refs. [22,23] contains a function
describing the breakage probability of the larger drop into two
smaller drops of unequal sizes. However, we found experimen-
tally that the breakage of a large drop in our systems leads to
formation of multiple small drops [35]. Therefore, the assump-
tion for binary drop breakage, used in Ref. [22,23] to derive
the expression for kBR, is not applicable to our systems. For
this reason, we have not attempted to describe our data by the
expressions from Refs. [22,23] or their modifications. Another
model for kBR was proposed in Ref. [24], however, it does not
account for the effect of oil viscosity and, therefore, it could not
describe all of our results.

6.4. Discussion—comparison of the various models

The comparison of the various models with the experimen-
tal data, discussed in Sections 6.1–6.3, shows that we can de-
scribe adequately the experimental data for kBR by Eq. (24) for
hexadecane emulsions in which the Reynolds number Re > 1,
and by Eq. (28) for the other systems, in which Re < 1, see
Figs. 6 and 7b. On the other hand, the experimental data for all
systems could be described by Eq. (36), as well (see Fig. 8).
The other models tested do not describe adequately the exper-
imental data. The values of the adjustable constants appearing
in Eqs. (24), (28), and (36) found from the best fit of the exper-
imental data are all reasonable (see Table 2).

The comparison of the models with the experimental data
shows also that the values of kBR for the viscous oils could
be adequately described only when the term accounting for the
viscous dissipation inside the breaking drops is included in the
energy balance for the breakage efficiency (i.e., in the exponen-
tial terms in Eqs. (28) and (36)). The fact that Eq. (24) describes
relatively well the experimental data for hexadecane (despite
the absence of such viscous term), is explained by the negli-
gible contribution of the viscous term in comparison with the
term accounting for the surface energy of the deforming drop.
Therefore, the most important conclusion from the screening of
the theoretical expressions is that for all systems studied and
for both types of models described in Sections 6.1 and 6.2, the
breakage efficiency, Y(d), is well represented by the relation:

Y(d) ∼ exp

(
−Eσ + EDIS

EKIN

)

(39)∼ exp

(
−Bσ

Eσ

EKIN

(
1 + Bη

EDIS

Eσ

))
,

where Eσ is the surface energy, EDIS is the energy dissipated
inside the drop, and EKIN is the mean kinetic energy of the
turbulent eddies of size d . The numerical constants Bσ and Bη

account for the drop surface deformation and for the viscous
dissipation inside the breaking drops, respectively. The specific
values of Bσ and Bη , however, depend on the chosen type of
the pre-exponential term (drop deformation time or drop–eddy
collision frequency), see Table 2.
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Fig. 9. Image of a breaking drop of silicone oil with ηD = 500 mPa s, sta-
bilized by 1 wt% Brij 58. The image is taken by a high-speed video camera
(model PCO.1200hs, Samwoo Scientific Co., 700 frames/s) in a homogenizer
equipped with optical window, which allows optical observation of the drops
just after the narrow slit of the processing element.

It is worthy to emphasize two specific advantages of the
model based on the drop–eddy collision frequency, Eq. (36):
(1) The experimental results for all systems are described by a
single equation; and (2) The constant Bη entering this model
has the same meaning and value as the constant Aη = A4 ap-
pearing in Eq. (15) to describe the maximum drop size in the
emulsions, i.e., the kinetics of drop breakage and the maximum
diameter of the stable drops are described by a self-consistent
approach.

Let us note at the end of this discussion that, although
Eq. (36) describes all main characteristics of the studied emul-
sions (see also Figs. 6, 7 and S1 in Ref. [35]), its terms have
clear physical meaning, and all adjustable constants have the
right order of magnitude, one cannot prove unambiguously that
this is the only model relevant to these systems. For example,
as explained above, the same set of experimental data could
be described by a combination of two equations for oils with
high and low viscosities, respectively. Another deficiency of the
model originates from the discretization scheme used to deter-
mine kBR (Section 3). Due to the discrete size-domains in the
kinetic scheme, the model neglects the possibility for formation
of very big daughter drops, which would fall in the same size-
domain as the breaking drop. Such a possibility (which would
lead to underestimated values of kBR in our analysis) could not
be ruled out and could affect seriously the results, if the drop
breakage was of “erosive type,” that is, if the daughter drops
were formed predominantly through “biting” small fractions of
the breaking drop by colliding turbulent eddies. However, as ex-
plained in Ref. [35], our experimental results indicate that the
predominant mode of daughter drop formation is capillary in-
stability of long oil threads, formed after a strong deformation
of the breaking drop—see Fig. 9, where an illustrative image of
a breaking drop is shown. This mode of drop breakage strongly
reduces the probability for formation of very big daughter drops
that would fall in the same size-domain as the breaking drop.
Therefore we do not expect that our final results, and Eq. (36)
in particular, are strongly affected by the used discretization
scheme of data interpretation.

7. Comparison of our results with experimental data by
other authors

In this section we briefly compare our results for kBR with
two sets of experimental results reported by other authors
[32,38].
The effects of several factors (hydrodynamic conditions, in-
terfacial tension and oil viscosity) on kBR, for emulsions pre-
pared in stirred tanks, were studied by Sathyagal et al. [38].
The experimental results were fitted by an empirical equation,
which accounted for the effects of all these factors (Eq. (5) in
[38]). When we tried to describe our experimental results by
this equation (using the numerical constants from Ref. [38]), we
calculated significantly lower values of kBR than those found
experimentally in the current study. Our analysis showed that
this discrepancy could be related to two main reasons: (1) To
find the dependence of kBR on the hydrodynamic conditions
during emulsification, the authors of Ref. [38] used the mean
value of ε in the stirred tank. As discussed in Ref. [43], this
definition of ε leads to rather different values of the estimated
maximum drop size, dD, as compared to our experimental data
for dV95. One could expect that similar problem with the def-
inition of ε appears when trying to describe the data for kBR.
(2) The emulsification time, θ = tEM, is defined in Ref. [38]
to be equal to the residence time of the drops in the entire
stirred tank, including the zones where the rate of energy dis-
sipation is relatively low. In contrast, in our study θ is defined
as the time, during which the drops actually reside in the most
active zone of the homogenizer, where the rate of energy dis-
sipation is highest. For both types of homogenizer (narrow gap
and stirred tanks), the volume of the most active zones, VDIS, is
much smaller than the total volume of the homogenizer, which
means that the actual residence time in the active zone is much
shorter than the total emulsification time, θ � tEM. Therefore,
conceptually different definitions of θ are used in Ref. [38] and
in our study. Our preliminary numerical checks showed that
these different definitions of θ lead to significant difference in
the calculated values of kBR from the same set of experimen-
tal data (kBR ∝ 1/θ , where θ is the assumed residence time). In
conclusion, to compare properly the predictions of Eq. (5) from
Ref. [38] with our results, we should rescale both the residence
time and the rate of energy dissipation. Although this task could
be potentially useful, it is by no means trivial and falls beyond
the scope of the current study.

In Ref. [32] the probability for drop breakage of single oil
drops passing through a narrow constriction, was determined
by optical observations. The results for the drop breakage prob-
ability were represented by the following expression (Eq. (12)
in Ref. [32]):

(40)PBR(d) = a1 exp

(
−a2

σ

2ρCε2/3d5/3

)
.

From the best fit to the data, the values a1 = 2.6 and a2 = 11.2
were determined [32]. The experiments were performed with
n-heptane having a viscosity of 0.45 mPa s, hence, the vis-
cous dissipation inside the drops is expected to be negligible.
Therefore, the results from Ref. [32] should be compared to our
results with hexadecane-in-water emulsions. From the compar-
ison of Eqs. (36) and (40) one sees that B9 should be equal
to a2/2 to have an agreement between our results and those in
Ref. [32]. Indeed, we found B9 = 5.1 in our experiments, which
is very close to the value of a2/2 = 5.6 found in [32]. Thus we
can conclude that we have rather reasonable agreement between
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our results and those of Ref. [32] (the value a1 in Eq. (40) can-
not be directly compared to any of the constants determined in
our study).

8. Conclusions

Systematic set of experiments is performed to monitor the
evolution of the drop-size distribution, as a function of the
emulsification time, in turbulent flow generated in a narrow-
gap homogenizer. The effects of the viscosity of the oil phase,
ηD, interfacial tension, σ , and rate of energy dissipation in the
turbulent flow, ε, are studied. The experimental data are inter-
preted by using a kinetic scheme, which allows us to determine
the rate constant of drop breakage, kBR, as a function of drop
diameter, d , and the other factors studied.

The experimental results show that kBR rapidly decrease
with the decrease of drop diameter and the breakage process
becomes negligible, when d becomes smaller than the Davies’
diameter, dD, as estimated from Eq. (15). Also, kBR rapidly de-
creases with the increase of ηD and σ , and with the decrease
of ε. The relation between the experimentally determined max-
imum drop diameter, the kinetics of drop breakage, and the total
emulsification time is discussed.

The experimental results for kBR are compared with theo-
retical models, proposed in the literature, and with their mod-
ifications. Following the approach by Prince and Blanch [18]
we proposed a new theoretical expression, which considers kBR
as a product of the collision frequency between drops and ed-
dies with similar size, multiplied by a factor, accounting for
the breakage efficiency. The breakage efficiency includes the
contributions of the surface extension energy and the energy
dissipated inside the breaking drop. The proposed expression
for kBR, Eq. (36), describes reasonably well the experimental
data for all systems studied. Two important advantages of this
expression are that: (1) it describes data for both oils with low
and high viscosity (up to 500 mPa s), and (2) it is consistent with
the expression describing the maximum diameters of the stable
drops in the formed emulsions, Eq. (15), viz. the constants ex-
pressing the relative contribution of the energy dissipated inside
the breaking drop are equal, A4 = B10.
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Appendix A. Notation

To save space, only the notation that did not appear in the
first paper of this series, Ref. [43], is listed below.
A.1. Capital latin letters

B numerical constants in equations for kBR
B1,B2 Eq. (24)
B3,B4 Eq. (26)
B5,B6,B7 Eq. (28)
B8,B9,B10 Eq. (36)
B ′

9 Eq. (37a)
B11,B12,B13 Eq. (38)
B ′

12 Eq. (38a)
Bσ ,Bη numerical constants accounting, respectively, for the

effects of the capillary pressure and of the viscous dis-
sipation inside the breaking drop

E energy
EDIS energy dissipated inside the breaking drop due to vis-

cous stresses
EKIN mean kinetic energy of the turbulent eddies of size d

Eσ drop surface energy
NS number of drops in the interval with average diameter

dS

PBR(d) probability for drop breakage, Eq. (40)
ReDR Reynolds number of the liquid inside the drops
Sd,e cross-section area of drop–eddy collisions, defined as

Sd,e = π(d + de)
2/4

U velocity
UDIN velocity of the liquid inside the drops
Ud mean drop velocity
Ue mean velocity of turbulent eddies with size
V volume
VEM total emulsion volume
VOIL total volume of emulsified oil
We Weber number, defined as We = Pd/σ

Y (d) efficiency of drop breakage

A.2. Small latin letters

a1, a2 dimensionless numerical constants, Eq. (40)
d drop diameter
d0, d1, d2, . . . , dS, dS+1, dS+2, . . . , dN−3, dN−2, dN−1, dN ave-

rage diameters of the intervals, in which the drops are
classified; d0 is the smallest drop diameter; dN is the
largest drop diameter; dS is defined as dS = 3√

2Sd0;
S is an integer between 0 and N

dK diameter of the largest drops, which could not break
dM diameter of a “mother” drop, which breaks into

“daughter” drops with diameters in the range between
d0 and dM−1 (K < M � N)

dMAX maximum diameter of the stable drop
dRE diameter of drops with ReDR = 1
d INI

32 mean volume-surface diameter of the initial oil–water
premix, prepared by membrane emulsification

h(d) frequency of collisions between drops of diameter d

and eddies of size de
k rate constant of drop breakage
kBR, kBR(d) breakage rate constant
kM breakage rate constant for drops with diameter dM

kS, kS(dS) breakage rate constant for drops with diameter dS
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kN breakage rate constant for the largest drops (with di-
ameter dN )

kN−1, kN−2 breakage rate constants for drops with diameters
dN−1 and dN−2

n number concentration
nd number concentration of drops with diameter d

ne(κ) number concentration of turbulent eddies with wave
number κ

dne number concentration of turbulent eddies with size be-
tween de and de + δde

nM(x) number concentrations of mother (breaking) drops
with diameter dM , along the processing element

nN(x) number concentration of the largest drops with diame-
ter dN along the processing element

nS ≡ n(dS) number concentration of drops with average diam-
eter dS

nS(x,u), nS(x) number concentration of drops with average
diameter, dS , as a function of the distance from the en-
trance of the processing element, x, and of the number
of emulsion passes through the homogenizer, u

n0
N,n0

N−1, . . . , n
0
S number concentrations of drops with diam-

eters dN , dN−1, and dS in the initial emulsion, pre-
pared by membrane emulsification

p probability for daughter drop formation
pS,M,pS,M(dS, dM) average volume fraction of a mother drop

with diameter dM , which is transformed into daughter
drops with diameter dS (0 � S � M − 1; S < M � N )

(2M−SpS,M ) average number of drops with diameter dS ,
formed after breakage of a mother drop with diame-
ter dM

t time
tEM total time of emulsification; in our experiments equal

to uθ

tEXP characteristic time of the experiment (tEXP = 100θ in
our experiments)

tBR drop breakage time
tDEF drop deformation time
u number of passes of the emulsion through the homog-

enizer
vBR rate of drop breakage
v volume
v0, . . . , vS, vS+1, . . . , vN average volumes of the drops falling

in the respective intervals with diameters d0, . . . , dS,

dS+1, . . . , dN

v0 volume of the smallest drops with diameter d0
vM volume of a mother drop with diameter dM

x distance from the beginning of the processing element,
Fig. 2

yS lower boundary of the interval with average diame-
ter dS

	yS = (yS+1 − yS) width of the interval with average diame-
ter dS

A.3. Small greek letters

κ wave number of the turbulent eddies, defined as κ ∼
2/de
ν average total number of daughter drops, formed after
breakage of a mother drop

θ residence time of the drops in the processing element,
defined as θ = (L/U1)

τD viscous stress inside the breaking drop

A.4. Abbreviations

PBE population balance equation.
SPG1.1, SPG3.2, SPG10.7, SPG19.3 Shirasu Porous Glass

membranes with different mean pore size in micrometers.
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