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Abstract

In this article an attempt is made to derive a comprehensive theory of the disjoining pressure of thin liquid films, stabilized by low molecular nonionic
surfactants. We accounted for effects playing a role in the case of surfactants with spherical hydrophilic heads: (i) The thermal fluctuations of the adsorbed
surfactant molecules, due to the fact that the energy of adsorption of a –CH2– group is approximately equal to the average thermal energy kBT; (ii) The
contribution of the collisions between molecules adsorbed on different surfaces; (iii) The restriction imposed on the fluctuation of the molecules by the
presence of a second surface situated at a small distance h from the interface where the molecules are adsorbed; (iv) The volume of the hydrophilic heads,
which expels part of the water molecules from the film region; (v) The equilibrium between the molecules adsorbed at the film surfaces and at the menisci
surrounding the film. The adsorption on the film surfaces has twomain effects. First, the concentration of solute inside the film region becomes larger than in
the bulk solution and this will push the solvent toward the film thus creating an osmotic pressure (the disjoining pressure), which tends to increase the film
thickness. Second, the higher concentration inside the film and the collisions between the polar heads lead to higher chemical potential, which pushes the
surfactant toward themeniscus.We treated these effects bymodifying adequately the Hildebrand–Scatchard theory for the osmotic pressure of concentrated
solutions. The partition function of the surfactant, needed for this calculation, was found by deriving an expression for the configurational integral, based on
virial expansion. The surface equations of state of Helfand, Frisch and Lebowitz and Volmer were critically analyzed and then generalized, by using the
partition function obtained by virial expansion, to permit the derivation of partition functions of the surfactantmolecules in the film.A simple thermodynamic
approachwas developed and applied to derive expressions for the disjoining pressure,Π, and the chemical potential of the surfactantmolecules in the film,μ.
They were used to calculate numericallyΠ and μ and analyze their dependence on the film thickness h and the surface coverage θ. It turned out thatΠ has
completely different behavior above and below h=2d, where d is the diameter of the hydrophilic head. For thick films, with hN2d, the decay ofΠ is initially
exponential (due mainly to the thermal fluctuations of the adsorbed molecules), followed by a long tail, proportional to h−2, due to the contribution of the
osmotic pressure of the displaced solvent molecules. At hb2d the collisions between the molecules adsorbed at different surfaces are hindered, which leads
to a steady decrease of the contribution due the interaction between themolecules. The overall result of these effects is the appearance of amaximum ofΠ at
h=2d. It is very large (it may reach 1000 atm and evenmore) and depends strongly on the surfactant adsorption. To facilitate the application and the analysis
of the theory, we derived several simpler asymptotic expressions. One of them is virial expansion, which is valid for small surface coverage and has the
advantage of being independent of the adsorption model. The other asymptotic expression is applicable at hN2d, which is the region where the stabilization
of the film occurs.We compared our theorywith the simpler theory of Israelachvili andWennerström. It turned out that while both theories lead to decay ofΠ
vs. h, the numerical results and the shape of the curves are usually very different. The experimental data, which could be used to verify our theory, are scarce,
but we found reasonable agreement with the data of Lyle and Tiddy for bilayers of C12EO4. The data of Parsegian et al. for lipid bilayers also confirmed
qualitatively some of our theoretical conclusions.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The advent of the DLVO theory gave tremendous thrust to
Colloid Science, since it allowed quantitative interpretation of
many inexplicable before phenomena observed with charged
particles. Without exaggeration one may say that only then
Colloid Science became truly science. The other important
colloidal phenomena, stabilization of colloids by adsorption of
polymers, also received adequate theoretical treatment through
several theories, the most widely used being Alexander–de
Gennes theory [1–3]. However, the third important phenome-
non, stabilization of solid and fluid dispersions by low
molecular nonionic surfactants, is by far less understood. It is
customary to say that the nonionic surfactants provide “steric
stabilization”. From the very definition of “steric effects”
(“Steric effects are the interaction of molecules dictated by their
shape and/or spatial relationships” [Wikipedia Encyclopedia])
it follows that by “steric stabilization” one understands direct
contact and repulsion (as between hard spheres or rods) between
the hydrophilic heads of the adsorbed surfactant, i.e. it is
assumed that the surfactant creates kind of a fence around the
particles, thus preventing their coagulation or coalescence.
Whereas for ionic surfactants the DLVO theory allows the
calculation of the stabilizing repulsive force and its dependence
on the system parameters, such as surfactant adsorption, surface
potential and electrolyte concentration, until very recently there
was no theory, permitting similar calculations for the stabilizing
efficiency and its dependence on the system parameters
(including also surfactant concentration) for low molecular
nonionic surfactants. Experimentally it was shown that lipids
[4,5] and other nonionic surfactants [6] can give rise to very
strong repulsion, reaching thousand atmospheres and even
more, but it was attributed to “hydration forces”, a notion which
we find rather obscure.

Israelachvili and Wennerström [7] were the first to suggest
another possible reason for this repulsion and to do the first
attempt for a simple theory. They used the hypothesis of
Aniansson [8] that due to thermal fluctuations the surfactant
molecules can protrude, thus creating some roughness of the
interface. Israelachvili and Wennerström implicitly assumed
that the film surfaces are completely covered by surfactant
molecules, ordered in such a way that exactly opposite to each
molecule on one of the surfaces there is another molecule on the
other surface. They oscillate and when they collide this leads to
a repulsive force. The authors termed it “protrusion force”.

We agree that such force must exist but we believe that the
phenomenon is much more complicated. In order to be able to
describe the transition from coalescence to stability, one must
account also for the fact that the surfaces may not be completely
covered by surfactant. Instead, the adsorption Γ may change
with the bulk concentration. If the adsorption is low, the
repulsion should not be able to stabilize the film and it will
rupture. If the surface coverage is not complete, the oscillating
molecules can collide also with the bare opposite surface.
Besides, in this case the molecules can move along the surface.
Then the probability for collision and the contribution of a given
collision to the repulsive force will depend in a very
complicated way on the relative positions of the colliding
molecules. The theory is additionally complicated by the fact
that the hydrophobic tails and the hydrophilic heads of the
surfactant molecules displace part of the water in the surface
region – this gives rise to another contribution to the free energy
of the system and thereby – to the repulsion force.

That is why we adopted a different and more detailed
approach. We confined ourselves with bubbles or drops, which
can deform and form a planar thin film. The rest of the surface
of the bubbles or drops, encircling the film, we call meniscus.
The surfactant molecules adsorb on the surfaces of the film and
oscillate normally to them. They interact between themselves
and with the film surfaces. This interaction has two main
effects: (i) The concentration of solute inside the film region
becomes larger than in the bulk solution and the chemical
potential of the solvent (usually water) becomes lower — this
will push the solvent toward the film thus creating an osmotic
pressure, which tends to increase the film thickness; (ii) The
higher concentration inside the film and the collisions between
the hydrophilic heads lead to higher chemical potential of the
surfactant molecules in comparison with its value at the
meniscus surfaces — hence, the surfactant will be pushed
toward the meniscus (or will desorb, if it is soluble). The
competition between these two effects determines the equilib-
rium repulsive force between the film surfaces. The value of this
force per unit area was called by Derjaguin “disjoining
pressure”, Π (see e.g. [9]). It is assumed positive, when it
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leads to repulsion between the film surfaces and negative when
it leads to attraction. From hydrostatic viewpoint the disjoining
pressure of a planar film is equal to the difference of the normal
component of the pressure tensor inside the thin film and the
bulk liquid. The equilibrium disjoining pressure must be equal
to the capillary pressure of the meniscus [10].

The phenomenon, described above, looks much like the
usual osmotic pressure, although there are some differences.
The film surfaces, which adsorb the surfactant molecules, create
higher concentration in the film than in the bulk solution and in
this respect they play the role of a semi-permeable membrane.
The difference is that in the true osmotic equilibrium the
membrane is permeable only for the solvent and is totally
impermeable for the solute whereas here the solute molecules
can leave the film surface and go to the meniscus or the bulk.
The transport of solute molecules to the meniscus surfaces must
stop when the solute chemical potentials in the film and at the
meniscus become equal— hence, the membrane is in fact partly
permeable for the solute. Nevertheless, the disjoining pressure
due to the adsorbed molecules is a close analog of the osmotic
pressure. That is why we based our theory on the theory of
Hildebrand [11,12] and Scatchard [13] for the osmotic pressure
of concentrated solutions.

In this theory the direct interaction between the surfactant
molecules is accounted for by their partition function Q. It
contains the configurational integral Z, which involves very
complicated integrations over the coordinates of all interacting
molecules. One way to make the problem tractable is to use the
virial expansion of Z in series with respect of the adsorption, Γ,
and to confine oneself only with binary collisions, i.e. to
consider only the second virial coefficient. This leads to the
appearance of two interaction functions: between molecules
adsorbed on the same surface, fS, and between molecules
adsorbed on opposite surfaces, fO. The total interaction function
is f= fS+ fO. The results obtained by virial expansion will be
obviously valid only for small surface coverage. On the other
hand, as already mentioned, there are numerous data on the
interaction forces in lipid and surfactant bilayers, which
correspond to high surface coverage (see e.g. [4–6]). The
only way we found to extend our theory to large surface
coverage was to assume that the expressions for the interaction
function f, obtained from the virial expansion (i.e. for binary
collisions), remain valid also at large surface coverage, where
the collisions involve simultaneously several molecules. We are
fully aware that this is a very crude approximation, but our hope
is (and it seems confirmed by the data in Section 6) that this will
lead at least to qualitatively correct results. In this respect our
approach is analogous to the derivation of the two-dimensional
Volmer equation of state, which is performed by transforming a
partition function valid for low surface coverage in such a way,
that it behaves qualitatively correct even at high coverage (for
details see Sections 3 and 4). We did that by modifying
appropriately the partition functions of the surface equations of
state of Helfand, Frisch and Lebowitz (HFL for short) and of
Volmer (see Section 3).

At this point a discussion about the terming (the definition)
of this type of disjoining pressure seems pertinent. A general
principle, which must be followed, when defining a quantity, is
that the definition must be phenomenological, i. e. related as
little as possible with the supposed mechanism of the
phenomenon. Otherwise if later one discovers that this
mechanism is wrong, one must change the definition. This is
what happened with the so-called “hydration forces”, which
were believed to be the cause for the bilayer repulsion — as
Israelachvili and Wennerström pointed out [7], it is more likely
that the repulsion is due to what they called “protrusion forces”.
The latter term is correct for films with thickness hN2d (where
d is the diameter of the hydrophilic head), since for such films
the protrusion of the surfactant molecules is mainly responsible
for the repulsion. However, such definition rules out the
possibility for repulsion in a film with thickness hb2d, having
two adsorbed layers with incomplete coverage. In this case the
layers can interpenetrate and give rise to disjoining pressure
even if the molecules do not perform any motion normally to the
interface, i.e. do not protrude. Hence, the term “osmotic
repulsion” seems more appropriate, but the “electrostatic” and
the “macromolecular” forces have in fact also osmotic nature.
Israelachvili [14] correctly called the “protrusion forces” also
“fluctuational” but the “undulation” and the “peristaltic” forces
are also fluctuational. What differs the forces, considered here,
from the “undulation” and the “peristaltic” (which are related to
the motion of the membrane as a whole), is the fact that sepa-
rate particles (molecules) perform Brownian motion. Hence,
probably a correct term, reflecting their nature and distinguish-
ing them from the other forces would be “nonionic osmotic
Brownian forces”. However, this definition, as well as the
others, discussed above, is based on hypotheses for the
mechanism. Therefore, we suggest instead the term “disjoining
pressure of nonionic surfactants” to be used as a truly
phenomenological definition: indeed, under “surfactants” one
understands relatively small amphiphilic molecules, which
makes the difference with the macromolecular stabilization,
the “undulation” and the “peristaltic” forces, while the adjective
“nonionic” discriminates the ionic surfactants.

The paper is organized as follows. Since we expect this paper
to be read mainly by chemists, we decided to start by a Section
called “Model formulation” (Section 2), where we present in a
simplified form the main techniques, which will be used in the
core of the paper. This includes some notions about the meaning
of partition function, configurational integral and virial expan-
sion. The complete equations for these functions for a system
containing N molecules are basically simple, but have rather
complicated appearance, which may hinder their understanding.
To help the reader, we applied the general methods of the
statistical mechanics to systems containing only 2 molecules (for
adsorption) and 4 molecules (for interactions in thin films). This
allowed us not only to demonstrate on these simple systems all
physical effects and the methods to be used further, but also to
obtain simplified forms of the main equations, derived later.
Section 3 is devoted to the derivation and analysis of the
configurational integrals and the virial expansions of the surface
equations of state of HFL and Volmer, which we will need later to
generalize our theory to systems with higher surface coverage. In
Section 4.1 complete derivation of the virial expansion and the



Fig. 2. Sketch of surfactant molecules adsorbed at the film surfaces. The
molecules 1, 2, 3 and 4 can move along the interface and normally to it and
collide between themselves.
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partition function for the interacting surfactant molecules is
carried out for HFL and Volmer models. The results are
generalized for higher concentrations. The partition function for
the solvent (water) molecules is derived in Section 4.2 by means
of a generalization of the Hildebrand–Scatchard theory, whose
physical foundations and applicability is also analyzed. The
results from Sections 4.1 and 4.2 are used in Section 5 to derive
complete expressions for the disjoining pressure of the film, Π,
and the chemical potential, μ, of the adsorbed molecules. Two
particular cases, constant surface coverage, θ, and constant
chemical potential are considered.

The obtained results are applied to numerical calculations of
Π and μ and analysis of the data in Section 6. Based on the
derivation of fS and fO in the Appendix A, in Section 6.1
numerical calculation of the interaction function f are performed
for several model surfactants and some useful asymptotic
expressions are derived. In Sections 6.2 and 6.3 numerical
results for constant coverage and constant chemical potential are
obtained and analyzed. In Section 6.4 several relatively simple
explicit analytical expressions for the disjoining pressure are
derived and compared with the results of the theory of
Israelachvili and Wennerström [7]. The applicability of our
theory to experimental systems is discussed in Section 6.5.
Section 7 is devoted to concluding remarks.

2. Model formulation

There are numerous nonionic surfactants used as stabilizers:
different compounds with oxyethylene chain but different
structure such as polyoxyethylene alcohols, esters, mercaptans
etc., as well as compounds with different hydrophilic chain such
as polysaccharides [15–24]. Since the structure of the surfactant
molecule plays substantial role in our theory, we will confine
ourselves only with the simplest type of nonionic surfactants, the
polyoxyethylene alcohols. We will assume that their molecules
consist of a spherical hydrophilic head with radius R and a
hydrophobic tail, which is a cylinder with radius s and length L.

The liquid film, stabilized by a nonionic surfactant, is a three-
dimensional system. The head of the adsorbed molecules can
move in the film volume Vf =Ah, where A is the film area and h is
the film thickness. Since the surfactant molecules are adsorbed,
the film basically consists of two adsorbed monolayers, but the
molecules adsorbed on one of the surfaces can interact also with
the other surface orwith themolecules adsorbed on it. That is why
it is pertinent to begin the description of the model of such films
by a discussion of adsorbed layers.
Fig. 1. Sketch of surfactant molecules adsorbed at a surface with a radius of the
hydrophilic head R and a length of the hydrophobic tail L.
Most theories of surfactant layers assume that the centers of
the hydrophilic heads lie in a plane P (see Fig. 1) and move only
along this plane, which is assumed usually parallel to the
dividing surfaces between the two phases (to simplify the
expressions we will consider the liquid of the lower phase,
usually water, as solvent and the upper, hydrophobic phase, is
usually air or oil). The effect of the solvent is disregarded, so
that the molecules are effectively replaced by discs of zero
thickness (shown by thick line in Fig. 1). Since in this model the
collisions occur only at the equators of the hydrophilic heads,
the radius of the disc, R, is the only geometrical parameter
entering the expressions for the two-dimensional pressure, Δσ,
and for the chemical potential, μ.

The real picture of the monolayer is different in many
respects (see the upper part of Fig. 2 above the dashed–dotted
line). The adsorbed molecules are not fixed in a plane, but they
can perform thermal motion also in direction, z, which is
perpendicular to the interface. If the tails of the molecules are
perpendicular to the interface and their hydrophilic heads are at
a distance ζ from it (as shown for molecule 1 in Fig. 2), their
energy will be increased by Δu(ζ)=wlζ with respect to the
energy at ζ=0 (wl is the energy of transfer of unit length of the
hydrophobic chain, assumed linear, from the lower phase to the
upper phase). According to Boltzmann equation, the probability
to find the head of the molecule at a distance, ζ, is proportional
to exp(−ζ /δs)dζ, where T is the temperature, kB is the
Boltzmann constant. The average immersion depth δs≡kBT /
wl is of the order of 1 Å (more precisely from the data of Tanford
[25] for wl, one finds δs=0.875 Å for the interface water/oil and
δs=1.16 Å for water/air [26]). On the other hand, the molecules
1 and 2 can move along the interface and interact with lateral
energy u12, which depends on the distances ζ1, ζ2 and the radial
distance, r12, between them. Then, the probability to find a
molecule 2 at a distance r12 from molecule 1 is proportional to
exp[−u12 / (kBT)]dA1dA2, where dA1 and dA2 are the respective
area elements (A is the area of the monolayer). It is convenient
to choose the position of molecule 1 as zero of the radial
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coordinate r12, so that dA1dA2=dA1× (2πr12dr12). Then the
product

dP ¼ exp −
Duðf1Þ þ Duðf2Þ þ u12ðf1; f2; r12Þ

kBT

� �
df1df2ð2kr12dr12ÞdA1

ð2:1Þ
will be proportional to the probability to find the molecules 1
and 2 in positions ζ1 and ζ2 and at a radial distance r12 from
each other. The integral of dP over all possible values of the
variables A1, ζ1, ζ2 and r12

Z2 ¼
Z
ðAÞ

Z L

f1¼0

Z L

f2¼0

Z l

r12¼0
dP ð2:2Þ

is proportional to the sum of all such probabilities, i.e. it is
proportional to the total probability for all possible configura-
tions of the molecules 1 and 2, consistent with the restrictions of
constant temperature, T, and total number of molecules, N. In
the case under consideration here, N=2 (hence, the subscript 2
on Z) and the upper limit of ζ is set equal to the length L of the
hydrophobic tail of the molecule, because at ζNL the molecules
are no longer adsorbed. Z is called configurational integral and
is related to that part of the free energy of the system, Fint, which
accounts for the interactions in the system (for more rigorous
discussion the reader is referred to Chapter 1 of [27]):

Fint ¼ −kBT lnZ: ð2:3Þ

It is convenient to introduce in Z the so-called Mayer
function

f12uexp −
u12
kBT

� �
−1 ð2:4Þ

If one considers only repulsive energy, i.e. if only the so-called
hard-core interactions are effective, then u12→+∞ and f12=−1
when the surfactant molecules overlap and u12=0 and f12=0 if
the molecules are not overlapping. Therefore, the integral
containing f12 will be different from 0 only when the molecules
1 and 2 overlap at least in one point.

The application of this approach to the model with planar
adsorbed layer (Fig. 1) is easy, since in this case the integrals
over ζ and r12 can be taken separately. One must assume
however, that the molecules all the time remain in the same
plane, i.e. that the plane itself moves, which means that all
molecules must move in z-direction in a coordinated way. By
substituting Eqs. (2.1) and (2.4) into Eq. (2.2) and by assuming
that the maximum distance at contact is d=2R, one obtains:

Z2 ¼ A2d2s 1−4
a
A

� �
ð2:5Þ

where α=πR2. When deriving Eq. (2.5), we have neglected
with respect to unity the term proportional to exp(−L /δs),
because L /δs is large. By means of Eq. (2.5) one can calculate
the chemical potential, μ, which in turn can be used to derive
the adsorption isotherm. One finds so, that the adsorption
constant is proportional to δs. That is why δs can also be called
effective thickness of the adsorption layer [26].
In practically all papers on surfactant adsorption and surface
layers the transfer energy wl is disregarded, i.e. it is implicitly
assumed zero. If one does it, instead of Eq. (2.5), one obtains:

Z2 ¼ A2L2 1−4
a
A

� �
ð2:6Þ

This means that the effective thickness of the adsorbed layer in
this model is assumed equal to L≫δs (such assumption was
done in [28]), which leads to significantly larger value of the
adsorption constant for a given value of the adsorption energy.
On the contrary, if the adsorption energy is calculated from the
measured adsorption constant, the result obtained from this
model will be lower than the true value by kBTln(L /δs). For a
typical surfactant with 10–12 carbon atoms this gives 2 to 3 kBT
units, which is roughly equal to the transfer energy of 2 to 3 –
CH2– groups.

In the general case, after substitution of Eqs. (2.1) and (2.4)
into Eq. (2.2) and performing the integration over ζ in the first
integral and over A1, one obtains:

Z2 ¼ A2d2s þ 2kA
Z
Xc

exp −
f1 þ f2

ds

� �
f12r12df1df2dr12 ð2:7Þ

where Ωc is the contact region of integration, inside which f12=
−1. The integral in Eq. (2.7) will lead again to some collision area,
αc, but it will not be exactly equal toα. Indeed, the collision region
of the integration, Ωc, in Fig. 2 depends obviously on the
geometry of the surfactant molecule, so that the collision area, αc,
will depend not only on R, but also (as a result of the integration)
on the length, L, and the energy, wl (see Section 6.1).

The situation with the film is similar, but now we must account
also for the possibility of collision of the molecules 1 and 2 with
molecules on the other surface. To illustrate themain steps involved
in deriving the general equations for a film with N molecules at
each interface (see Section 4) it is enough to consider in addition to
the molecules 1 and 2, two more molecules, 3 and 4, at the lower
interface, as in Fig. 2. All four molecules can collide by moving
both in z and r directions as it is obvious from Fig. 2. The
integration over ζmust be carried out only in the film region, i.e. the
upper limit of ζ in the integral, Eq. (2.2), must be changed to h−2R
to account for the fact that the hydrophilic heads cannot penetrate
into the opposite interface. In the configurational integral there will
be four energies Δu(ζ) and two energies of lateral interaction
between the molecules on the same surfaces, u12 and u34. Besides,
there will be four more energies of interaction between molecules
on the opposite surfaces: u13, u14, u23 and u24. Upon integration,
the collisions between the molecules adsorbed on the same surface
lead to two identical integrals. Similarly, the collisions between
molecules adsorbed on the opposite surfaces lead to four other
identical integrals. Therefore, for the purpose of illustration less
cumbersome equations will be obtained if one considers only one
energy of a given type, say u12 and u13. Then, there will be two
Mayer functions, f12 and f13, so that

exp −
u12 þ u13

kBT

� �
¼ ð1þ f12Þð1þ f13Þ

¼ 1þ f12 þ f13 þ f12f13 ð2:8Þ
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The product f12f13, corresponding to simultaneous collision of the
three molecules, dramatically complicates the integration. Hence, it
is usually neglected, i.e. only binary collisions are accounted for.
This restricts the result to low surface concentrations. As a result of
the substitution of Eq. (2.8) into Eq. (2.2), two types of integrals,
similar to the one in Eq. (2.7), will appear in the expression for Z4:
the ones containing f12 correspond to lateral collisions between
molecules, adsorbed at the same surface, and the other ones con-
taining f13 account for collisions between the molecules, adsorbed
on the opposite surfaces. The integration over all coordinates then
leads to:

Z4 ¼ A4d4f ð1þ SS þ SOÞ; df ¼ ds 1−exp
d−h
ds

� �� �
ð2:9Þ

where SS and SO denote respectively the contribution of the
collisions between the molecules at the same surface and at the
opposite surfaces and δf plays the role of counterpart of δs for a
film. In Section 3 the procedures, described above, are generalized
for an interfacewithN adsorbedmolecules and in Section 4— for a
film with total number of 2N molecules (N on each interface).

The second important shortcoming of the model of planar
monolayer of discs, as in Fig. 1, is that it disregards the fact that the
surfactant molecules are material objects: their hydrophilic heads
are not discs with zero volume and the hydrophobic tails are not
threads of zero diameters. They displace part of thewatermolecules
from the surface region, thus altering the free energy of the water,
FW. The total free energy of themonolayer,Ftot, will also depend on
this effect and must be represented as sum of the contributions of
the water, FW, and the surfactant molecules, F. The latter is
calculated from the configurational integral,Z, whosemeaningwas
illustrated above and the exact derivation is given in Section 4.

For the free energy of the water we used a simple expression
(see Section 4), proposed by Hildebrand and Scatchard [11–13],
which apparently is the same as for an ideal gas. In fact there are
two important differences: (i) in the case of an ideal gas no
intermolecular interaction is accounted for, whereas the partition
function per water molecule, qW, in the films or the adsorbed
layers and the adsorbed layers contains the full configurational
integral for condensed water; (ii) for an ideal gas the volume, V, is
an external parameter, which can take any value, whereas the
volume of the film, Vf, must be equal to the sum of the volumes,
occupied by the water and the solute molecules in the film. For
more details see Section 4.
3. Partition functions of adsorbed monolayers

The exact calculation of the partition function of thin films is a
very complicated task. For this reason we will start with the
calculation of the partition function of a single adsorbed
monolayer.

The general formula for the partition function, Q, of a three
dimensional system of interacting undistinguishable molecules
is [27]:

Q ¼ 1
N !

q0
K3

� �N

Zc
q0e

K3N

� �N

Z ð3:1Þ
where N is the number of molecules, q0 is the partition function
for a single molecule, Λ is the de Broglie thermal wave length,
Z is the configurational integral and e is the Neper number. Note
that in Eq. (3.1) we replaced N! by the approximation N!≈ (N /
e)N. If U is the total interaction energy of the system, then

Z ¼
Z

N
Z

exp −
U
kBT

� �
dV1 N dVN ð3:2Þ

where dVk=dzkdAk is the volume element of the k-th molecule
(k=1, 2, …, N) with a vertical coordinate zk and area element
dAk.

If the energy, U, is pair-wise additive, there are two main
components in the interaction energy of the adsorbed molecules:
(i) the energy, uij, due to interaction between two molecules i and
j; (ii) the interaction energy u of a single molecule with the two
phases, forming the interface.

Since the adsorbed molecules can perform thermal motion
normal to the interface, u depends on the degree of immersion
of the molecule in the water phase (see Section 2). Assuming for
simplicity that the tail of the molecule is always perpendicular
to the interface, the immersion can be characterized only by the
distance ζ (Fig. 2). Then one can write [26]:

uðfÞ ¼ −Eads þ wlf ð3:3Þ

where wl is the energy of transfer per unit length of the
hydrophobic chain (assumed linear) from the water to the upper
phase, Eads is the adsorption energy, i.e. the transfer energy of
the whole hydrophobic chain from the water phase to the upper
phase. Based on the sketch of a paraffinic chain, done by
Tanford [25], one can represent the transfer energy of the
paraffinic chain as sum of the transfer energy of one –CH2–
group, wc, times the number of these groups, nc, plus the
transfer energy of the cap (assumed planar with area Ac), due to
the terminal –CH3– group. One must add to this the surface free
energy, due to the disappearance, during the adsorption, of a
portion of the interface with area, Ac, equal to the cross-
sectional area of the chain. Thus, Eads=wcnc+ (ws+σHW)Ac,
where ws is the energy of transfer per unit area and σHW is the
interfacial tension between the water and the hydrophobic phase
[26].

Upon inserting Eq. (3.3) into Eq. (3.2), a factor, exp[NEads /
(kBT)], will appear. To simplify the terminology we will use in
Eq. (3.1) instead of q0 a new partition function per molecule:

quq0exp
Eads

kBT

� �
ð3:4Þ

In this way we formally change the configurational integral, Z,
which will depend now on all interaction energies besides the
adsorption energy, Eads.

It is customary to assume that the surfactant molecules are
situated in the same plane and when their hydrophilic head come
at a distance equal to their diameter d=2R, they repeal each other
as hard discs. Then, one represents the interaction energy, uij, as
sum of two components, which are functions of the radial
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distance, rij, between the molecules: short-range strong repulsion
and long-range weak interaction with energy |uij

int|bkBT:

juijjNNkBT at rijVd and uij ¼ uintij at rijNd ð3:5Þ

With some additional assumptions (analogous to those used to
derive van der Waals equation of state, see e.g. Ref. [29]) one
obtains the familiar equation of state [30]:

Dr
kBT

¼ C
1−2aC

−
ba
2
C2 ð3:6Þ

where Δσ is the two-dimensional pressure, Γ=N /A is the
adsorption, α=πR2 is the true area occupied by a molecule. The
repulsive term in Eq. (3.6) (the first of the right hand side) was
proposed on qualitative considerations by Volmer [31]. Since the
addition of the interaction term with β makes the equation an
exact two-dimensional analog of the famous equation of van der
Waals, it is often called also van der Waals equation of state.
Depending on whether or not we are using the term with β, we
will call it either Volmer or van der Waals equation.

The factor βα / 2 is equal to the integral of −uijint / (kBT) from
the contact distance rij=d to infinity. This follows from the two
terms virial expansion of the equation of state [27], which
accounts only for binary collisions:

Dr
kBT

cCþ B2C
2 and

B2 ¼ k
Z l

0
1−exp −

uij
kBT

� �� �
rijdrij

ð3:7Þ

With the potential given by Eq. (3.5), for small absolute values
of uij

int / (kBT), it yields:

B2 ¼ 2aþ 4a
kBT

Z l

1
uijxdx and x ¼ rij=d: ð3:8Þ

The integral (3.8) depends on the parameters of the
interaction energy, uij

int, which in principle includes the
interaction between the surfactant molecules as a whole, i.e.
this involves both the hydrophobic tails and the hydrophilic
heads. For the most common case, attractive London interaction
with an absolute value of the attraction energy of two molecules
at contact, u0, and uij

int =−u0 /x6, simple calculations lead to:

B2 ¼ 2a−a
u0
kBT

ð3:9Þ

Comparing Eq. (3.7) with this value of B2 with the analogous
expansion of Eq. (3.6) in terms of αΓ, one finds that β is simply
2u0 /kBT.

Helfand, Frisch and Lebowitz (abbreviated henceforth to
HFL) derived a different surface equation of state, accounting
almost exactly for the hard-core repulsion [32]. By adding to
their hard-core result a long-range term βαΓ 2 /2 [26], one
obtains:

Dr
kBT

¼ C

ð1−aCÞ2 −
ba
2
C2 ð3:10Þ
The configurational integrals, corresponding to the equations of
state, Eqs. (3.6) and (3.10), can be derived by using the funda-
mental equation of an adsorbed layer with a single surfactant at
constant T:

dF ¼ −DrdAþ ldN ð3:11Þ
where A is the interfacial area, μ is the surface chemical
potential of the surfactant and F is the free energy. Since only Z
in Eq. (3.1) depends on the area A, it can be calculated by
integrating the equation:

AlnZ
AA

� �
N

¼ Dr
kBT

ð3:12Þ

For Δσ given by Eq. (3.10) the exact result is:

ZHFL ¼ ðA−aNÞexp −
aN

A−aN
þ b

2
aN
A

� �� �N
: ð3:13Þ

For small adsorptions, Γ=N /A, and β=0 this yields

lnZHFL ¼ N lnðA−aNÞ− aN2

A−aN
cN lnA−

aN 2

A
−
aN2

A
ð3:14Þ

The first two terms in the last equation stem from the logarithmic
term in Eq. (3.14). This fact suggests that if one takes the sum of
the second and the third terms in the right (which gives 2αN2 /A),
one could introduce another approximate form of the configura-
tional integral, Z, by writing (with β=0):

lnZcln½ðA−2aNÞN �cN lnA−2
aN2

A
ð3:15Þ

By substitution of this expression in Eq. (3.12), one obtains
exactly the first, repulsive term in Eq. (3.6). Therefore, one can
conclude that the configurational integral, corresponding to Eq.
(3.6), must have the form:

ZV ¼ ðA−2aNÞexp b
2
aN
A

� �� �N
ð3:16Þ

From the way we derived the configurational integral (3.16)
it should be obvious that the respective Eq. (3.6), just as its
three-dimensional analog, is not much more than a useful
interpolation formula, rather than an exact equation. In fact the
repulsive part of Eq. (3.6) can be derived by means of rigorous
statistical thermodynamics for adsorption on a line — then it is
exact, but only for adsorption on a line, rather than on an
interface [32–34].

The expressions (3.13) and (3.16) were derived under the
assumption that the molecules in the adsorbed layer are
infinitely thin discs, moving only in two dimensions, parallel
to the interface. In reality, the molecules can fluctuate normally
to the interface. As it was demonstrated in Section 2, then the
configurational integral involves also integration over the
normal coordinate, z, and this will lead to the appearance in
the expressions for Z of a factor, containing the effective
thickness of the adsorbed layer, δs. For systems, containing N
molecules, the respective factor will be δs

N [26]. Besides, if the
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molecules are not discs, but three-dimensional objects, the
lateral collisions between them will lead to an expression for α
different from πR2 (see Section 6.1).

4. Partition functions of the film

The film contains two substances: water (subscript “W”) and
surfactant (no subscript). We will consider now separately the
partition functions of each of them and in the next section will
see how to use them in order to calculate the free energy and the
other thermodynamic functions of the film.

While an adsorbed layer in principle can be considered as a
layer of discs of zero thickness, so that the presence of the
solvent can be ignored (as demonstrated in Section 2), a thin
liquid film is always a bulk system and the solvent (water), in
which the surfactant is dissolved, must be accounted for in the
thermodynamic equations. The simplest assumption, which can
be made, is that the total free energy of the film, Ftot, is a sum of
the contributions of the water, FW, and the surfactant, F:

Ftot ¼ FW þ F ¼ −kBT lnQtot ð4:1Þ
According to Eq. (4.1), this means that the total partition
function, Qtot, must be a product of the respective partition
functions:

Qtot ¼ QWQ ð4:2Þ
which can be calculated separately.

4.1. Partition function for the surfactant

The partition function for the surfactant, Q, is defined by
equations, analogous to Eqs. (3.1) and (3.2), with the following
differences: it must be written for 2N molecules (numbered 1 to
N for one of the surfaces and N+1 to 2N for the other) and the
integrations must be carried out over the film volume, Vf. That
is why we will denote it by Z2N.

We will make two important approximations:

(i) We will assume that the total energy is pair-wise additive
and the intermolecular potential, uij, depends on zi, zj and
the radial distance rij:

U ¼
X

1VkV2N

uðzkÞ þ
X

1VibjV2N

uijðzi; zj; rijÞ ð4:3Þ

(ii) Just as in the derivation in Section 2 we will account
initially only for binary collisions, i.e. we will assume that
the degree of surface coverage, αN /A, is small (on a later
stage we will generalize the results for higher degree of
coverage). In addition, in the beginning we will neglect
the long-range interaction energy, uij

int, but will account
for it in the final results. Then Eqs. (4.2) and (4.3) lead to
the analog of Eq. (3.1) for a film:

Q ¼ qe

K3N

� �2N

Z2N ð4:4Þ
Note that instead of (2N)! we used (N!)2≈ (N /e)2N, since
the molecules at the two surfaces are distinguishable.
Besides, when integrating over z one must account for the
fact that the hydrophilic head cannot penetrate beyond the
film surface, which means that the center of the
hydrophilic head, z, can be situated only in the range
R≤ z≤h−R.

We will use the following notations

uðfÞuexp −
f
ds

� �
; fijðzi;zj; rijÞuexp −

uij
kBT

� �
−1 ð4:5Þ

where the function φ stems from Eq. (3.3) and the Mayer
functions, fij, depend on the distance between the surfactant
molecules. As explained in Section 2 for hard-core interactions:
fij=−1 if the respective molecules are overlapping; fij=0 if they
are not overlapping. With the notations (4.5) the configurational
integral becomes

Z2N ¼
Z

N
Z

j
1VkV2N

uðfkÞ j
1VibjV2N

ð1þ fijÞdV f
1 N dV f

2N :

ð4:6Þ
Assumption (ii) for binary collisions means that no products

of two or more Mayer functions must be kept. Thus:

j
1VibjV2N

ð1þ fijÞc1þ
X

1VibjVN

fij þ
X

Nþ1VibjV2N

fij

þ
X

1ViVN

X
Nþ1VjV2N

fij ð4:7Þ

The total number of terms in the first two sums is N(N−1) /
2≈N2 /2 and in the last sum it is N2. Then, upon substitution of
Eq. (4.7) into Eq. (4.6), the respective Mayer functions will lead
to the following three typical integrals:

ZZ ¼ j
1VkV2N

Z
V f

uðfkÞdzkdAk ð4:8Þ

ZS ¼ j
3VkV2N

Z
V f

uðfkÞdzkdAk

Z
V f

Z
V f

uðf1Þuðf2Þf12dz1dz2dA1dA2

ð4:9Þ
ZO ¼ ½ j

2VkVN

Z
V f

uðfkÞdzkdAk �2

�
Z
V f

Z
V f

uðf1ÞuðfNþ1Þf1Nþ1dz1dzNþ1dA1dANþ1

ð4:10Þ
The subscript “S” stands for “same surface” and “O” — for
“opposite surface”. Since the molecules and the surfaces are
identical, each of the Mayer functions in the first and in the
second sum in Eq. (4.7) will lead to the integral ZS, and in the
third sum all Mayer functions will lead to ZO. Having in mind
the number of terms in each sum (see above), we thus obtain:

Z2N ¼ ZZ þ ðZS þ ZOÞN2: ð4:11Þ

With the exception of the last integrals in Eqs. (4.9) and
(4.10) (the ones over dz1dz2dA1dA2 in ZS and over dz1dzN
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+1dA1dAN+1 in ZO) it is easy to perform the integrations over the
other variables to obtain:

ZZ ¼ ðAdf Þ2N ; ZS ¼ ðAdf Þ2N IS;
ZO ¼ ðAdf Þ2N IO

ð4:12Þ

where

df ðhÞ ¼ dsWðhÞ; WðhÞu1−exp
d−h
ds

� �
ð4:13Þ

and

IS ¼ 1

d2fA

Z h−R

R
uðf1Þ½

Z
V f

uðf2Þf12dA2dz2�df1 ð4:14aÞ

IO ¼ 1

d2fA

Z h−R

R
uðf1Þ½

Z
V f

uðfNþ1Þf1Nþ1dANþ1dzNþ1�df1
ð4:14bÞ

Eqs. (4.14a) and (4.14b) can be presented as

IS ¼ −4
a
A
fSðhÞ and IO ¼ −4

a
A
fOðhÞ ð4:15Þ

where fS and fO are complicated dimensionless functions of the
film thickness, h. Therefore,

Z2N ¼ ðAdf Þ2N 1−4af
N 2

A

� �
and

f ðhÞufSðhÞ þ fOðhÞ
ð4:16Þ

The logarithm of the first equation in Eq. (4.16), divided by 2
(for each surface) for small values of αN /A is

1
2
lnZ2NcN lndf þ N lnA−2af

N2

A
: ð4:17Þ

Eq. (4.17), which is a virial expansion, must be compared
with Eq. (3.14), but one must add to the latter a term Nlnδs to
account for the vertical fluctuations of the molecules (see the
comments at the end of Section 3). The two expressions differ
only by the terms containing the functions f(h) and ln(δf /δs).
Therefore, if one replaces α by αf(h) and looks at the latter as
some modified area of the molecule, it seems reasonable to
assume that, depending on the adsorption model, Eqs. (3.13)
and (3.16) (with 2N instead of N and with factor δf) can be used
as configurational integrals:

ZHFL
2N ¼ dfA 1−

afN
A

� �
exp −

afN
A−afN

þ bf
2
aN
A

� �� �2N
ð4:18Þ

ZV
2N ¼ dfA 1−

aVfN
A

� �
exp

bf
2
aVN
A

� �� �2N
ð4:19Þ

This procedure is based on the assumption that the expressions for
f(h), derived in Section 6.1 for binary collisions, remains valid for
multiple collisions, which quantitatively is certainly not true, but
there is hope that qualitatively it will lead to reasonable results. In
this respect the present procedure is analogous to the procedure
used in Section 3, where the expression (3.16) for the configu-
rational integral for the equation of van der Waals was derived by
generalizing the result, valid for low surface coverage (with only
binary collisions), to systems with higher surface coverage. The
quantity αV=2α, having the meaning of excluded area, is
analogous to the excluded volume in the three-dimensional equa-
tion of van derWaals. As Landau and Lifshitz [29] recommended,
at large densities it must be determined from the fit of the
experimental data and should not be considered as a true value of
the volume (or area, in the case of adsorption) of the molecule.

The calculation of the interaction term due to the energy uij
int

for a film is very complicated. The result depends on the geometry
of the surfactant molecules, on the parameters of the London
interactions head–head, tail–tail and head–tail in the water and
oil, respectively. These calculations will lead to an explicit
dependence of the long-range interaction parameter on the film
thickness, h. Therefore, in principle β for a monolayer is different
from βf for a thin film and βf=βf(h). In the case of surfactant
molecules with large hydrophilic heads one can assume that
βf≈β. We believe that such assumption is permissible, since for
the models of non-localized adsorption, such as HFL and Volmer
models, there are no rigorous arguments that the interaction term
must be βαΓ2 /2 [26]. That is why usually β is considered as an
empirical constant, which we will also assume.

4.2. Partition function for the water molecules

In their theory of solutions of molecules of finite size
Hildebrand [11,12] and Scatchard [13] (see also Ref. [35])
suggested expressions for the partition functions for the water,
QW, and for the solute,Q, which correspond to that for ideal two-
component gas:

QW ¼ qWeV

K3NW

� �NW

and Q ¼ qeV

K3N

� �N

ð4:20Þ

where V is the volume of the solution, NWand N are the numbers
of the respective molecules and qW and q are considered as
molecular partition functions, which do not depend on V, NWand
N. In this section N denotes the total number of solute molecules
in a volume V, whereas until now we used this notation for the
number of molecules adsorbed on a single interface. There should
be no confusion of these notations, since the film is also a bulk
system (of volume Vf) in which the number of molecules 2N (N
form each interface) is exact analog of the number of moleculesN
in the system considered in the present section.

The main difference between gases and liquid solutions is
their compressibility. In the case of gases the volume, V, is a free
external parameter, which can be changed arbitrarily. In the case
of liquid solutions (incompressible fluids) V is subjected to the
following restriction:

V ¼ mWNW þ mN ð4:21Þ
where νW and ν are the volumes of the respective molecules.
Although this is beyond the scope of the present article, we will
give a modified and very simple derivation of the equation of
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Hildebrand–Scatchard for the osmotic pressure of the solution,
Πosm, since this will show the validity of their result. This is
important also for our further derivation. For simplicity we will
neglect as usual the long-range interactions.

Imagine that the solution is contained in a cylinder, one end of
which is closed by a piston and the other end — by a porous
membrane, fully permeable for the water molecules and
impermeable for the solute. The cylinder is immersed in a
reservoir with pure water and constant temperature, T. If the
pressure inside and outside the cylinder is the same, the chemical
potential of the water inside the cylinder will be lower. Then the
water will start moving into the cylinder through the membrane.
This can be prevented by applying on the piston a suitably chosen
pressure p. By changing the pressure p (at constant particle
number N) one can vary the volume Vof the solution. Therefore,
the fundamental equation of the system will be (at constant T):

dFtot ¼ −pdV þ lWdNW þ ldN ð4:22Þ
where μ is the chemical potential of the solute. The chemical
potential of the water, μW, is constant and equal to that in the
reservoir. At constant N the last term in the right hand side of Eq.
(4.22) is zero and the second term therein can be eliminated by
means of Eq. (4.21) to obtain (at constant temperature T):

dFtot ¼ lW
mW

−p
� �

dV : ð4:23Þ

By using Eqs. (4.1) and (4.20) one can obtain a statistical
expression for Ftot as a function of V, NW and N. However,
because of the restriction (4.21)NWis not an independent variable
andmust be expressed throughVandN in the obtained expression
for Ftot. The latter is then differentiated with respect to V to yield
the derivative (∂Ftot /∂V)N, which must be set equal to the
thermodynamic expression for the same derivative following
from Eq. (4.23). The result reads:

1
kBT

p−
lW
mW

� �
¼ 1

mW
ln

qWmWe

K3

� �
−

1
mW

lnð1−UÞ− U
mW

þ U
m

ð4:24Þ

where the volume fraction of the solute molecules is defined as
Φ≡νN /V. If the cylinder were filledwith pure solvent, its pressure
at equilibrium would have been equal to the pressure in the
reservoir, p0, and the chemical potential of the water molecules,
μW,must be the same (as in the solution) at equilibrium.Hence, by
setting Φ=0 Eq. (4.24) is reduced to:

1
kBT

p0−
lW
mW

� �
¼ 1

mW
ln

qWmWe

K3

� �
ð4:25Þ

By subtracting Eq. (4.25) from Eq. (4.24) one arrives at the
equation of Hildebrand–Scatchard [11–13]:

Posm

kBT
¼ −

1

mW
lnð1−UÞ− U

mW
þ U

m
ð4:26Þ

where the osmotic pressureΠosm≡p−p0 is defined as the excess
pressure to be exerted on the piston to maintain the equilibrium.
The result in Eq. (4.26) is identical with the respective expression
of Flory–Huggins for polymer solutions (see Eqs. (21–16) and
(21–18) in [27] with χ=0 and M=ν /νW) derived by means of
rather complicated statistical mechanics. This confirms the
correctness of the approach of Hildebrand and Scatchard. One
of the reasons why this simple approachworks sowell is thatwhat
we are looking for is not the free energy of the water per se, but
only its change in the solution in comparison to its value in the
pure bulk water.

One question that can come to mind is: since the molecules
(particles) are usually much larger than the water molecules, is it
permissible to look at the solvent as a continuous, structureless
medium and to neglect it altogether. In this case the variables of
the thermodynamic system will be only V and N. By means of
Eqs. (4.1), (4.20) and (4.23) it can be shown that such assumption
leads to:

Posm

kBT
¼ U

m
¼ N

V
ð4:27Þ

which is the van't Hoff equation. It is valid only for ideal solutions,
i.e. for point size molecules. Another possible assumption is to use
as volume V for the water molecules in the expression forQW, see
Eq. (4.20), the so-called “free volume”, which is defined as the
volume non-occupied by the solute. According to Eq. (4.21) this
free volume is VW=νWNW, which reduces QW to

QW ¼ qWmWe

K3

� �NW

ð4:28Þ

Eq. (4.28) must be used together with the restriction (4.21).
Calculations, similar to the ones above for the general case, lead
again to Eq. (4.27), i.e. with this assumption the effect of the water
is again disregarded.

For the solute molecules Hildebrand and Scatchard used Q in
the simple form, Eq. (4.20), valid for an ideal gas. That is why it
led only to the contribution kBTΦ /ν to the osmotic pressure, see
Eqs. (4.26) and (4.27). Therefore, if one wants to use other, more
sophisticated models for the solute molecules, it is sufficient to
calculate the respective partition function,Q, and its contribution,
F, to the free energy and to add the latter to the respective
expression, related to the water, in order to obtain the total free
energy, Ftot. For example, the simplest way to account for the
finite size of the solute molecules in their partition function, Q, is
to replace in Eq. (4.20) the volume V by the free volume for the
surfactant molecules: V−νN. Simple calculations show that this
leads to following expression:

Posm

kBT
¼ −

1
mW

lnð1−UÞ− U
mW

þ U
m

1
1−U

−bosmU
2 ð4:29Þ

The term Φ / [ν(1−Φ)] is nothing else but the slightly modified
familiar term in the equation of van der Waals without attraction:
p / (kBT)=N / (V−νN). The last term, included in Eq. (4.29),
accounts for the long-range interactions. The corresponding
expression for the interaction parameter, βosm, can be found in
[35]. This suggests that more precise expressions for the osmotic
pressure can be obtained by using more realistic equations of state
for the solute molecules. A good candidate for this is the well-
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known equation of state of Carnahan–Starling [36,37] (see also
Refs. [38–41]), which will lead to:

Posm

kBT
¼ −

1
mW

lnð1−UÞ− U
mW

þ U
m
1þ Uþ U2−U3

ð1−UÞ3 −bosmU
2: ð4:30Þ

The good validity of Eq. (4.26) raises the question whether it
is the result of a “smart guess” or has deeper physical
background. We will present some qualitative considerations
indicating that the partition function, QW, can have the form
(4.20), but with special meaning of the function, qW. Let us
introduce in the exact form of the configurational integral for
the water, ZW [see Eqs. (3.1) and (3.2)], the dimensionless
variables Ṽk≡Vk /V. Then it becomes ZW=VNZ̃W, where Z̃W has
the same form as Eq. (3.2) but with the new variables, Ṽk. By
inserting this expression for ZW in Eq. (3.1) and using Eqs. (4.1)
and (4.2), one obtains for the free energy of the water:

FW

kBT
¼ −NWln

q0e

K3

� �
−NWln

V
NW

� �
−lnfZW: ð4:31Þ

The first two terms on the right hand side of Eq. (4.31) give the
expression for the free energy of an ideal gas [27,29], so that all
the interaction and structural information is contained in Z̃W. On
the other hand, since FW is an extensive function, it is always
possible to introduce a free energy per molecule, fW≡FW/NW.
The comparison of fW and Eq. (4.31) suggests, that to satisfy the
above condition Z̃W must have the power form, i.e. Z̃W= Z̃1

N,
where Z̃1 can be called configurational integral per molecule.
Then, by introducing a new partition function, qW≡q0Z̃1, from
Eq. (4.31) one recovers Eq. (4.20) for QW. Therefore, instead of
being partition function of a single molecule (as q0), qW is rather
an average partition function per molecule in a large ensemble of
interacting molecules. This means that in spite of the formal
resemblance,QW, defined by Eq. (4.20) is not a partition function
of an ideal gas, but accounts implicitly (through qW) for all
interactions in the bulkwater. This conclusionwill be valid only if
the water in the pure solvent and in the solution has the same
structure. It will fail for example if the solvation of the solute
molecules is so strong, that in the solution there is virtually no free
water— then the structure of the water in the solution and in the
pure solvent will be very different.

A different insight on the meaning of fW can be gained from
the general thermodynamic expression FW=−pVW+μWNW,
valid for a homogeneous one component phase. For the free
energy per molecule it gives: fW=FW/NW=−pνW+μW. This
shows that at constant chemical potential μW (which is assumed
throughout the present paper) the free energy per water
molecule in a condensed water phase, fW (i.e. at constant νW),
will depend only on the pressure, p (which is different in the
solution and the pure solvent). The total free energy of the
water, FW, will depend only on the pressure, p, and on the
number of molecules, NW. The overall conclusion we reach is
that the approach of Hildebrand and Scatchard correctly
accounts for the contribution of the water to the free energy
of a solution of molecules of finite size.
As shown above, the neglect of the water contribution to the
free energy is possible only for point size molecules, more
precisely for molecules with zero volume — such is the case
when the adsorbed molecules are modeled as discs with zero
thickness, but finite area. Since we are looking for a more
realistic model with adsorbed molecules of finite size, for the
purpose of our calculations in the present paper, we will be
calculating QW as described above, but for Q we will be using
Eq. (4.4) with Z2N given either by Eqs. (4.18) or (4.19)
depending on the model under consideration. In the next section
we will derive the respective thermodynamic functions of a thin
liquid film.

5. Thermodynamic functions of a thin liquid film

At constant temperature, T, the total free energy, Ftot, of a
thin liquid film with a single surfactant will depend on the film
variables (the film thickness, h, and the film area, A) and on the
total number of molecules of water and surfactant, NW and 2N,
respectively. To simplify the equations we will assume that the
area, A, is constant, which unifies the variables h and A into a
single variable — the film volume Vf =Ah. The reason for such
restriction is that the dependence of Ftot on A is necessary only
for the calculation of the film tension γf [42,43], while for us in
this work the disjoining pressure, Π(h), is of primary interest.

The major difference of the present system with a solution in
osmotic equilibrium with pure solvent, considered in Section
4.2, is that now N is not a constant, but an independent variable.
It must be determined a posteriori from the condition for
chemical equilibrium (i.e. for constant chemical potential) of the
surfactant in the film and the one adsorbed at the surfaces of the
drops or bubbles, between which the film is formed. If the
surfactant is soluble, the condition for equilibrium between the
film and the bulk solution can play the same role.

Therefore, in principle the fundamental equation of the film
must be written in terms of Vf, NW and N as independent
variables [35], similarly to Eq. (4.22). However, the number of
water molecules is again subjected to a restriction, analogous to
Eq. (4.21), which for a symmetric thin film with N adsorbed
molecules at each surface is:

V f ¼ Ah ¼ mWNW þ 2mN ð5:1Þ
By using this restriction to eliminate the variable NW, the
fundamental equation of a thin film [42,43] acquires the following
form:

dFtot ¼ lW
mW

−pf
� �

dV f þ 2 l−m
lW
mW

� �
dN ð5:2Þ

where pf is the pressure inside the film.
According to Eqs. (4.1) and (4.2), the total free energy, Ftot,

is a sum of the contributions of the water, FW, and the
surfactant, F. The later is calculated from the respective
partition function, Q, given by Eq. (4.4), where the configura-
tional integral, Z2N, is a function only of N and Vf. The concrete
form of the expressions for Z2N depends on the model adopted
for the surfactant adsorption, i.e. Eqs. (4.18) or (4.19). For FW
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and QW again Eqs. (4.20) or (4.28) are used. The statistical
calculation of the film free energy will lead to the following
general form of the fundamental equation:

dFtot ¼−
AlnQW

AV f

� �
N

þkBT
AlnQ
AV f

� �
N

� �
dV f

−
AlnQW

AN

� �
V f

þkBT
AlnQ
AN

� �
V f

� �
dN :

ð5:3Þ

By comparing this expression with Eq. (5.2), one obtains the
following important relationships between the thermodynamic
quantities, pf, μW and μ, and the partition functions of water
and surfactant:

1
kBT

lW
mW

−pf
� �

¼ −
AlnQW

AV f

� �
N

−
AlnQ
AV f

� �
N

ð5:4Þ

2
kBT

l−m
lW
mW

� �
¼ −

AlnQW

AN

� �
V f

−
AlnQ
AN

� �
V f

: ð5:5Þ

First the contributions of the water will be calculated, since
they are the same for all adsorption models. We will use QW

from Eq. (4.20), but will eliminate from it NW by means of Eq.
(5.1). Differentiating the result for FW so obtained with respect
to Vf at a fixed N, one finds:

AFW

AV f

� �
N

¼ kBT
mW

−ln
qWmWe

K3

� �
þ lnð1−UÞ þ U

� �
ð5:6Þ

where Φ is the volume fraction of the surfactant defined as:

Uu
2mN
V f

ð5:7Þ

The contribution of the water to the chemical potential, μ, is
found in a similar way:

AFW

AN

� �
V f

¼ 2kBT
m
mW

ln
qWmWe

K3

� �
−lnð1−UÞ−1

� �
: ð5:8Þ

The role of the model used on the partition function of the
solute is contained in the configurational integral, Z. Having in
mind the obtained results for Z2N, see Eqs. (4.18) and (4.19), it
is convenient to rewrite Eq. (4.4) as:

Q ¼ qedfA

K3N

� �2N

Zint and ZintuZ2N=ðdfAÞ2N ð5:9Þ

where Zint is this part of the configurational integral, which
accounts only for the interactions between the surfactant
molecules. Then, by means of Eqs. (5.1) and (5.9), one easily
finds the respective derivatives of Q:

AlnQ
AV f

� �
N

¼ 2N
A

dlndf
dh

þ 1
A

AlnZint
Ah

� �
N

ð5:10Þ

AlnQ
AN

� �
V f

¼ 2ln
qdfA

K3N

� �
þ AlnZint

AN

� �
h

: ð5:11Þ
The disjoining pressure, Π, is defined as excess pressure in
the film with respect to the pressure in the continuous bulk
phase p0 [42,43], i.e.

Pupf−p0 ð5:12Þ

An expression for pf can be obtained from Eqs. (5.4), (5.6) and
(5.10):

1
kBT

pf −
lW
mW

� �
¼ 1

mW
ln

qWmWe

K3

� �
−lnð1−UÞ−U

� �

þ 2N
A

dlndf
dh

þ 1
A

AlnZint
Ah

� �
N

ð5:13Þ

In the bulk phase the pressure is p0, so that by setting in Eq.
(5.13) N=0 (at that Zint =1) one obtains:

1
kBT

p0−
lW
mW

� �
¼ 1

mW
ln

qWmWe

K3

� �
ð5:14Þ

The chemical potentials of water, μW, appearing in Eqs. (5.13)
and (5.14), are the same. By subtracting Eq. (5.14) from Eq.
(5.13) and using the definitions (4.13) and (5.12) one finds the
final expression for the disjoining pressure, Π:

P
kBT

¼ 1
mW

½lnð1−UÞ þ U�þ 2N
A

dlnW
dh

þ 1
AðAlnZint

Ah Þ
N

ð5:15Þ

The first two terms on the right hand side of Eq. (5.15) are the
water contribution.

This procedure is not entirely general, since for a soluble
surfactants in the bulk of the solution N is not zero, but has
some finite, although small value, Nb. We neglected this effect
in order to obtain simpler and more transparent equations. If we
had accounted for it, our equations would contain terms,
stemming from the bulk osmotic pressure, which is usually
negligible, compared to the disjoining pressure, Π.

The expression for the chemical potential of the surfactant,
μ, is derived by using the relationships (5.4), (5.8) and (5.11).
The final result can be presented in the following form:

l
kBT

¼ lf0
kBT

þ ln
aN
A

� �
−

m
mW

lnð1−UÞ− 1
2

AlnZint
AN

� �
h

ð5:16Þ

where μ0
f , defined as [cf. also Eq. (4.13)]

lf0
kBT

¼ m
mW

lW
kBT

þ ln
qWmW
K3

� �� �
−ln

qdfa

K3

� �
¼ ls0−lnW ð5:17Þ

has the meaning of standard chemical potential of the surfactant
in the film and μ0

s is the standard chemical potential in a single
adsorbed layer.

The final form of the expressions for the disjoining pressure,
Π, and the chemical potential, μ, can be obtained by
substituting in Eqs. (5.15)–(5.17) the respective expressions
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for Zint for the HFL model and the van der Waals model, Eqs.
(4.18) and (4.19).

For HFL model this yields:

PHFL

kBT
¼ 2h

a
dlnW
dh

−
1
mW

½lnð1−UÞ þ U�

þ h2

a
dbf
dh

−
2h2

a
2−f h

ð1−f hÞ2
df
dh

ð5:18Þ

lHFL

kBT
¼ lf0

kBT
þ lnh−

m
mW

lnð1−UÞ−lnð1−f hÞ

þ f h
3−2f h
ð1−f hÞ2 −hbf ð5:19Þ

where the degree of surface coverage, θ, is defined as θ≡αN /A.
We presented the osmotic term in Π through the volume
fraction Φ as it is customary. Since the other terms are presented
through the surface coverage, θ, sometimes it may be pertinent
to express Φ through θ. If only the surfactant hydrophilic head
is accounted for in Φ, from Eq. (5.7) one finds:

U ¼ 4
3
d
h
h ð5:20Þ

The term with dlnΨ / dh in Eq. (5.18) accounts only for the
interaction of the surfactant molecules with the bare film
surfaces, i.e. it refers to ideal layers. If one ignores the possible
dependence of βf on h (which we will do in Section 6) one
comes to the conclusion that the interaction between the two
adsorbed layers is accounted only by the last term in Eq. (5.19).

When the thickness of the film becomes equal to hs =2(L+
d) there is no more interaction between the film surfaces and
the film is transformed into two independent adsorbed layers.
Hence, the corresponding chemical potential, μs, can be found
by setting in Eq. (5.19) h=hs. From the condition for chemical
equilibrium μ(N,h) =μs(Ns) one can find then the relation
between N and the number of molecules at a single interface
Ns:

m
mW

ln
1−U
1−Us

� �
þ ln

Whsð1−f hÞ
hð1−hsÞ

� �
þ hbf−hsbs

¼ f h
3−2f h
ð1−f hÞ2 −hs

3−2hs
ð1−hsÞ2

ð5:21Þ

where Φs, θs and βs are again volume fraction, surface
coverage and interaction constant but for a single monolayer
of thickness hs / 2. Here we have disregarded small terms of the
order of exp(−L / δs) and have used f(hs) =1. The set of Eqs.
(5.18) and (5.21) defines completely the disjoining pressure,
Π(h,Ns). In the case of soluble surfactants, instead of μs(Ns)
one can use the bulk chemical potential

lb ¼ l0bðTÞ þ kBT lncb ð5:22Þ

where cb is the bulk solute concentration and μb
0 — the

respective standard chemical potential.
Similar procedure, applied to the model of van der Waals,
leads to [cf. Eqs. (4.19), (5.15)–(5.17)]:

PV

kBT
¼ 2h

aV

dlnW
dh

−
1
mW

½lnð1−UÞ þ U�

þ h2

aV

dbf
dh

−
2h2

aV

1
1−f h

df
dh

ð5:23Þ

lV

kBT
¼ lf0

kBT
þ lnh−

m
mW

lnð1−UÞ−lnð1−f hÞ

þ f h
1−f h

−hbf ð5:24Þ

with condition for equilibrium

m
mW

ln
1−U
1−Us

� �
þ ln

Whsð1−f hÞ
Wshð1−hsÞ

� �
þ hbf−hsbs

¼ f h
1−f h

−
hs

1−hs
ð5:25Þ

In this case the degree of surface coverage is defined with
respect to the area, αV, i.e. θ≡αVN /A.

In the next section we will perform numerical calculations of
Π for typical values of the system parameters and will obtain
some simpler asymptotic expressions for Π(h,Ns).

6. Numerical calculation and analysis of the interaction
functions and the disjoining pressure

In Section 6.1 the exact expressions for the interaction
functions, fS(h) and fO(h), derived in the Appendix A, are
analyzed and simplified assuming an adequate model for the
geometry of the surfactant molecule. The role of the interaction
functions on the disjoining pressure, Π, is discussed. The
disjoining pressure at constant surface coverage and constant
chemical potential is calculated numerically and analyzed in
Sections 6.2 and 6.3. Some simple analytical expressions for the
disjoining pressure are derived in Section 6.4. Comparison of
the theoretical results with some experimental data is carried out
in Section 6.5.

6.1. Role of the interaction functions, fS(h) and fO(h)

The interaction between the surfactant molecules is
accounted for through the interaction functions, fS and fO [for
definitions see Eq. (4.15)]. The function fS accounts for the
interaction between molecules adsorbed at the same surface and
the function fO refers to collisions between molecules adsorbed
on opposite surfaces. They depend on the film thickness, h, on
the nature of the hydrophobic phase (through the parameter δs)
and on the molecular geometry (through the length of the
hydrophobic tail, L, and the diameters of the tail and the head,
2s and d, respectively). We have selected three examples of
surfactants for our numerical calculations: one with small polar
head (with d≈2s), say dodecanol, and two polyoxyethylene n-
dodecanols: B, with 12 EO-groups and C, with 20 EO-groups.
The parameters of these systems are given in Table 1. For air



Table 1
Typical parameters for nonionic surfactant systems used in calculations

Diameter
(Å)

Dimensionless diameter, d /δs

δs=0.875 Å
(oil)

δs=1.16 Å
(air)

δs=2.4 Å
(hyp.)

Tail 5.4 6.18 4.66 2.24
A Dodecanol 5.4 6.18 4.66 2.24
B 12−groups 10.46 11.96 9.02 4.36
C 20−groups 11.94 13.64 10.30 4.98
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and oil the values of δs are different [26]. The diameters of the
polar heads of the polyoxyethylene n-dodecanols are calculated
using the formula α=25n1 / 2, which gives rather well the area
occupied by the polar groups of polyoxyethylene n-dodecanols
[44]. For the chosen surfactants the values of δs are of the order
of 1 Å, so that always δs /d≪1. Since δs is inversely
proportional to the transfer energy wl, one can expect larger
values for δs for surfactants having near the polar group double
bonds or aromatic rings, which can decrease the transfer energy
from water to oil or air almost twice [25] and increase
accordingly δs. We could not find examples of such surfactants,
but nevertheless, in order to illustrate the effect of the ratio δs /d
on the interaction function fS, we considered also the
hypothetical situation, when the surfactant A, B and C have
δs=2.4 Å.

The calculations of fS and fO can be performed without any
additional approximations at the expense of lengthy and tedious
calculations. Since only the final results, which are exact, are of
physical interest, all the calculations are presented in Appendix
A. The analytical expressions may depend on the value of the
ratio h/d. That is why we will sometimes distinguish between
three cases: thick films, intermediate films and very thin films.

We will begin the discussion by the function fS. As one can
see from Eq. (4.14a), this function accounts for a possible
change of the area per molecule, α, due to the fact that the
molecules oscillate, so that the lateral collisions between them
can occur not only when the centers of the hydrophilic heads lie
in the same plane. We obtained two asymptotic results for fS.
For large film thickness, more precisely, for (h−d) /δs≫1, we
found [see Eq. (A.12)]:

fs ¼ 1−2
d2s
d2

þ 2
dsðbþ dsÞ

d2
exp −

b
ds

� �
ð6:1Þ

where b2≡d2− (R+ s)2. For very thin films (h→d) the result is
[see Eq. (A.19)]:

fs ¼ 1−
ðh−dÞ2
6d2

ð6:2Þ

For the surfactant A, the dimensions R and s are equal, b=0 and
Eq. (6.1) leads to fS=1. For the surfactants B and C, b≤d, and
since δs /d≪1 again fS=1. For all surfactants Eq. (6.2) yields
fS=1 for h→d. Therefore, the conclusion is that the oscillations
do not affect the collisions between the molecules in the same
adsorbed layer, so that with good precision α=πR2. The reason
is that the average immersion depth of the molecules, δs, is very
small, so that the collisions occur always very close to the
equator of the polar head. Hence, we will use in the future for fS
the value 1, so that the total interaction function f(h) will be:

f ¼ fs þ fO ¼ 1þ fO: ð6:3Þ
The situation can be different for the hypothetical surfactant

with larger δs (see Fig. 3). For the molecule A, the function, fS,
is again unity but for B and C at larger thickness it is slightly
lower. The reason is obviously that due to the larger immersion
depth at higher thicknesses the deviations from equatorial
collisions are more frequent. In this case the area per molecule
will be no longer constant, but one must use instead α=πR2fS
(h). This result will be valid also for a single adsorption layer.

The interaction function, f, enters the expressions for the
disjoining pressure, Eqs. (5.18) and (5.23), in twoways: (i) as two
additive terms fθ and (ii) as a derivative df / dh, multiplying the
whole interaction term. The first contribution is important only at
large surface coverage, since the terms fθ appear both in the
nominator and denominator of the interaction term in Eqs. (5.18)
and (5.23). The derivative df /dh is much more important and
plays a decisive role for the interaction between themolecules.We
have derived in Appendix A analytical expressions for f(h), but
since they are rather cumbersome, we will quote here only
simplified asymptotic expressions, which are however sufficient
to describe correctly the physical effects. They are valid under the
following very reasonable conditions:δs /d≪1 and (h−d) /
δs≫1. The first condition is always valid (see Table 1). The
situation with the second one is more complicated— it is in fact a
condition, whichmust be fulfilled in order to avoid a non-physical
divergence of some of our results at h=d (for discussion see
Section 6.2). We neglected the radius of the hydrophobic tail, s,
since we proved numerically that it does not play a considerable
role for the value of fO. We neglected also the terms, proportional
to exp(−d /δs), which are very small.

The asymptotic result for fO has different forms depending
on the film thickness:

(i) For large film thickness Eq. (A.28) leads to:

fO ¼ 2
d2

½ðh−2d

þ 2dsÞðd−dsÞ−d2s �exp
2d−h
ds

� �
at hz2d

ð6:4aÞ
(ii) In the case h≤2d Eq. (A.37) gives:

fO ¼ 1−2
ds
d

� �2

−
h−d−2ds

d

� �2

at hV2d ð6:4bÞ

The respective derivatives are:

dfO
dh

¼ −
2

d2ds
½ðh−d

þ 2dsÞðd−dsÞ−d2�exp 2d−h
ds

� �
at hz2d

ð6:5aÞ

dfO
dh

¼ −2
h−d−2ds

d2
at hV2d ð6:5bÞ



Fig. 4. Interaction function, 1+ fO, vs. dimensionless film thickness, h /δs, for
emulsion films (a) and foam films (b). The dashed lines represent the values of
the interaction function calculated using the asymptotic expression (6.4).
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Both functions (6.4a) and (6.4b) and their first derivatives
at h=2d are continuous. That is why Eqs. (6.4a), (6.4b)
and (6.5a), (6.5b) lead to identical results at h=2d:

fO ¼ 4ds
d

1−
3ds
2d

� �
and

dfO
dh

¼ −
2
d

1−
2ds
d

� �
at h ¼ 2d:

ð6:6Þ

The exact numerical results for f(h)=1+ fO(h) for the systems
A, B and C from Table 1 are plotted in Fig. 4. Since the
minimum value of the film thickness is assumed to be h=d and
the three molecules have different diameters, the curves start
from different points, indicated on the figure. At h /δs≫1 the
function f is unity, which means no interaction. It is still larger
than unity at film thicknesses well above 2d, because due to the
oscillation the molecules can collide even when the two
adsorbed layers are not yet in direct contact. No qualitative
difference between emulsion (Fig. 4a) and foam (Fig. 4b) films
is observed. The dashed lines in Fig. 4a are calculated using the
asymptotic expression (6.4a), (6.4b). The excellent validity of
the simple asymptotic form for fO(h) is obvious — only some
small deviations for very thin films, at h≈d, are visible. The
behavior of the curves for the interaction function, f, calculated
from the asymptotic expression (6.4a), (6.4b) for foam films is
not shown in Fig. 4b, because it is very similar to that for
emulsion films (see Fig. 4a).

To demonstrate the role of the interaction function, fO, on the
disjoining pressure, Π, we calculated numerically the deriva-
tives, dfO /dh, appearing in Eqs. (5.18) and (5.23). Fig. 5 shows
the dependence of the dimensionless functions, δsdfO /dh, on
the dimensionless film thickness, h /δs, for typical emulsion and
foam systems (Table 1). The interaction function has a
minimum at a film thickness very close to h=2d. The depth
of the minimum is different for different types of hydrophilic
heads (see Fig. 5), which follows also from Eqs. (6.5a), (6.5b).
The dashed lines in Fig. 5a are calculated using the asymptotic
expression (6.5a), (6.5b), which has again good validity. The
Fig. 3. Interaction function, fS, vs. dimensionless film thickness, h /δs, for a
hypothetical surfactant with δs=2.4 Å. The parameters of the systems A, B and
C are given in Table 1.
two branches of the curves for df / dh have different physical
meaning, which is discussed in Section 6.2.

6.2. Disjoining pressure and chemical potential at fixed values
of the surface coverage

Although the surfactant molecules in the film are always in
equilibrium with those on the surfaces of the meniscus
encircling the film (and with the bulk solution in the case of
soluble surfactant), it is instructive to analyze briefly the case
when the film is assumed “closed”, i.e. the adsorption, Γ, and
respectively the surface coverage are assumed constant. The
dimensionless disjoining pressure, νWΠ /kBT, and the chemical
potential, μ, in this case are described by Eqs. (5.18) and (5.19)
for the HFL model and by Eqs. (5.23) and (5.24) for the van der
Waals model. For simplicity we will be assuming here that
βf =0.

The expressions for Π and μ contain three types of terms
with clear physical origin. The first term in Π and the first two
terms in μ do not involve interaction between the molecules, i.e.
they correspond to ideal adsorbed layers and we will call them



Fig. 6. Fixed surface coverage: (1) ideal term; (2) water contribution; (3)
interaction term; (4) total disjoining pressure. The plotted disjoining pressure
components are dimensionless, νWΠ / (kBT).
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for short “ideal terms”. The next terms, containing the volume
fraction Φ, stem from the fact that part of the water molecules in
the adsorbed layers are displaced by the surfactant molecules
[see Eq. (4.21) and Section 4.2] — hence, we call them “water
terms”. The remaining terms, containing the interaction function
f are the result of direct interaction between the surfactant
molecules — hence, they are called “interaction terms”.

Since the qualitative behavior is the same for all systems and
models, we will analyze now only the HFL model for a film
water in oil for the surfactant C (see Table 1) and with θ=0.1.
The respective contributions to the disjoining pressure, Π, are
shown in Fig. 6. The ideal term (curve 1) is due only to collision
of the oscillating molecules with the opposite bare film surface.
That is why it starts playing a role at very small thickness. Its
very high values at h→d are not realistic and are due to a
drawback of our model, namely to the assumption that the
hydrophilic heads cannot penetrate beyond the planar film
surfaces, i.e. that the surfaces are assumed non-deformable. In
reality when h→d the film surfaces in proximity to the
hydrophilic heads most probably deform and form menisci
around them as suggested in [45]. This gives rise to a local
Fig. 5. Dependence of δsdfO /dh on the film thickness for typical emulsion films
(a) and foam films (b). The parameters of the surfactants A, B and C are given in
Table 1. The dashed lines represent the values of δsdfO/dh calculated using the
asymptotic expressions (6.5a), (6.5b).
capillary pressure, which then becomes probably the most
important stabilizing factor. Since this is a completely different
model we will not try to develop it and will avoid the problems
stemming from the failure of our model at h→d by simply
stopping the calculations at h=d+δs. Another effect, which was
disregarded, because of the assumption for non-deformability of
the film interfaces, is the possibility for formation of menisci
around the hydrophobic tails due to their wetting by the solvent.

The water contribution (curve 2) smoothly decreases as h
increases and it is very long range. With the exception of the
region around h=2d (where it is comparable with the interaction
term) it is the major contribution to the disjoining pressure.

The interaction contribution (curve 3) reaches a maximum at
h=2d and steeply decreases at larger values of h. This decrease
is due to the fact that the penetration depth δs is small, so that the
thickness increase above 2d makes the collision between
molecules adsorbed at opposite layers less and less probable. At
thickness smaller than 2d the interaction contribution almost
linearly decreases to zero at h=d. To show the reason for this
rather surprising and counterintuitive behavior of the interaction
term, we will present a simplified derivation of fO(h) for hb2d,
by assuming δs=0.

In Fig. 7 two colliding molecules are depicted at hb2d. The
horizontal distance between their centers, dex, is in fact the
radius of the excluded area for collision in horizontal direction.
The excluded area, αex, where the molecule 3 cannot penetrate,
is:

aex ¼ kd2fOðhÞ; fOðhÞ ¼ h
d

2−
h
d

� �
ð6:7aÞ

dfO
dh

¼ −
2ðh−dÞ
d2

ð6:7bÞ

The expressions for fO(h) and dfO /dh exactly coincide with Eqs.
(6.4b) and (6.5b) if one sets in the latter δs=0. Therefore, the
molecule 3 can perform vertical collisions with the molecule 1



Fig. 8. Dependence of the dimensionless disjoining pressure on the film
thickness for emulsion films at fixed values of the surface coverage, θ=0.1. The
dashed lines correspond to the model without water contribution. The
parameters for the systems A and C are taken from Table 1.
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only if the radial distance between them, r13, is in the range
dexb r13bd, i.e. if the center of the molecule 3 is in the
“collision area” αcoll =πd

2−αex. Since fO(d) =1, αcoll =0 at
h=d. Indeed, at this thickness the centers of all molecules lie in
the same plane and no vertical collisions are possible. In the
other extreme case, h=2d, the collision area has its maximum,
αcoll =πd

2 since fO(2d)=0. Then the number of vertical col-
lisions is the largest, which explains the maximum of curve 3 at
h=2d. The derivative, dfO/dh, is negative for dbhb2d, which
explains the positive contribution of the interaction term to the
disjoining pressure, see Eqs. (5.18) and (5.23). Since the terms
fθ in Eqs. (5.18) and (5.23) are small when θ=0.1, the inter-
action term is dominated by dfO /dh, which is linear function of
h. That is why curve 3 in Fig. 6 is almost linear at dbhb2d.

The total disjoining pressure (with and without water
contribution) for the surfactants A and C is shown in Fig. 8.
The shape of the disjoining pressure isotherm for the molecule
with the smaller hydrophilic head A (see Table 1) is similar to
that for the surfactant C, but because of the smaller volume ν of
the head the water contribution is very small and as a result the
disjoining pressure is dominated by the interaction term and has
much shorter range.

The highest possible value of θ for the HFL model is θ=0.5
since the expressions for Π and μ, Eqs. (5.18) and (5.19),
contain both terms 1− fθ, which leads to singularities at h=d
where f(h)=2. So, we chose as example of high degree of
surface coverage, θ=0.4 (see Fig. 9). Then the behavior of Π
vs. h is similar but since in Eq. (5.18) the factors fθ are larger,
they also affect the interaction contribution and its shape is
slightly different from that for θ=0.1 (see Fig. 8). The value of
Π for given h is of course larger for θ=0.4 than it is for θ=0.1.

The chemical potential, Δμ=μ−μ0s, where μ0s is the value of
the standard chemical potential at a single interface, also increases
with θ for a given value of the film thickness. In Fig. 10 Δμ is
plotted as a function of θ for h=2d. The curves correspond to the
HFLmodel, see Eq. (5.19), and emulsion film. The dependence of
Δμ on the degree of surface coverage for the van der Waals
model, see Eq. (5.24), is similar. It is important to note that for a
given film thickness Δμ is a monotonous function of θ, which
Fig. 7. Sketch of two colliding molecules belonging to the opposite film surfaces
at hb2d.
means that the condition for equilibrium with the meniscus, μ(h,
θ)=μs(θs) [see Eqs. (5.21) and (5.25)], will lead to a single value
θ=θ(h,θs) (see Section 6.3).

6.3. Disjoining pressure and surface coverage at fixed values
of the chemical potential

When the film thickness h is larger than hs=2(L+d), where L is
the length of the hydrophobic tails, there is no interaction between
the adsorbed layers. At smaller thicknesses the two adsorbed layers
can interpenetrate and their molecules start colliding with the
molecules adsorbed on the opposite film surface and with the
surface itself. This leads to increased chemical potential of the
adsorbed molecules. The system can counteract this either by
introducing more solvent molecules inside the film region or by
pushing some of the adsorbedmolecules outside of the film toward
the meniscus encircling the film (or toward the bulk solution if the
surfactant is soluble). The second process is controlled by the
requirement for equilibrium of the adsorbed layers on the film
surfaces and on the meniscus, i.e. the surfactant chemical potential
in the film, μ, must be equal to that at the meniscus surfaces, μs. If
the film thins at constant surfactant concentration, both the bulk,
μb, and the surface, μs, chemical potentials will remain constant.
That is why the decrease of the film thickness always leads to
smaller surface coverage in the film, θ, in comparison with its
value at the meniscus surface, θs.

The dependence θ=θ(θs,h) is described by Eqs. (5.21) and
(5.25) for the HFL model and the van der Waals model,
respectively. We will again present mainly the results for the
system oil/water, since the case air/water differs only quanti-
tatively. The results for the molecules A and C at θs=0.1 for the
HFL model are presented in Fig. 11. For the larger molecule C
the decrease of θ without the water contribution (the dashed line
in Fig. 11a) is considerable, but starts at thickness close to 2d.
The overall decrease of θ (the full line), which includes also the
water contribution, starts at much larger thickness and the
decrease of the surface coverage θ is also larger. In both cases,



Fig. 9. Dependence of the dimensionless disjoining pressure on the film
thickness for emulsion films (surfactants A and C from Table 1) at fixed values
of the surface coverage, θ=0.4. The dashed lines correspond to the model
without the water contribution.

Fig. 11. Dependence of the surface coverage (a) and the disjoining pressure (b)
on the film thickness for the HFL model of adsorption and θs=0.1. The curves
represent the numerical solution of Eqs. (5.18) and (5.21). The dashed lines
correspond to the model, in which the water contribution is neglected.
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with and without the water contribution, θ steeply goes toward
zero at h=d. The disjoining pressure,Π, exhibits a maximum at
h=2d, which is due to the interaction contribution (see Fig.
11b). It has also a very long tail at hN2d, which is obviously
due to the water contribution. Similar effects, but much less
pronounced, are observed for the smaller molecule A.

It is not surprising that the disjoining pressure, Π, is much
smaller for constant chemical potential (about an order of
magnitude) than it is for the “closed” system (Section 6.2).
Indeed, although the initial coverage in both cases is the same,
0.1, in the open system it drastically decreases with h (see Fig.
11a). Otherwise the relative contribution of the ideal, water and
interaction terms is qualitatively the same (compare Figs. 6 and
12), with the exception of the smaller variation with h of the water
contribution.

The results for large adsorption, θs=0.8, are presented in Fig.
13. In this case the interaction term is much larger, than it is at
smaller θs, so that the relative value of the water contribution is
Fig. 10. Dependence of the chemical potential on the degree of surface coverage
at a fixed film thickness, h=2d, for emulsion films (surfactants A and C from
Table 1). The dashed lines correspond to the model without water contribution.
smaller. This is obvious from the fact that the full line in Fig. 13a,
presenting the overall effect, is only slightly shiftedwith respect to
the dashed line, corresponding to the case without water
Fig. 12. Disjoining pressure components at fixed chemical potential and θs=0.1: (1)
ideal term; (2) water contribution; (3) interaction term; (4) total disjoining pressure.
The plotted disjoining pressure components are dimensionless, νWΠ / (kBT).



Fig. 13. Dependence of the surface coverage (a) and the disjoining pressure (b)
on the film thickness for the HFL model of adsorption and θs=0.8. The curves
represent the numerical solution of Eqs. (5.18) and (5.21). The dashed lines
correspond to the model, in which the water contribution is neglected.

Fig. 14. Comparison of the disjoining pressure calculated at fixed surface
coverage, θ=0.1, and at fixed chemical potential for θs=0.1 using the HFL
model.
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contribution. Both curves again lead to θ→0 at h→d. It is also
visible that unlike the case of small θs (Fig. 11), the significant
decrease of θ starts at thicknesses only slightly larger than 2d. The
disjoining pressure (see Fig. 13b) is of course much larger than it
is at θs=0.1 (see Fig. 11b) and the maximum is much more
pronounced. Due to the water contribution the disjoining pressure
again exhibits a long tail at large thickness. Thewater contribution
is almost negligible for the smaller molecule A.

The two cases, (i) fixed surface coverage, θ=θs, and (ii)
fixed chemical potential, μ=μs, are compared in Fig. 14. The
curves have similar trend, but the “open” film (with constant
chemical potential) has much smaller disjoining pressure. The
reason is that the open film can fight back the increased
chemical potential due to the decreased thickness, by decreasing
the surfactant adsorption.

6.4. Simple analytical expressions for the disjoining pressure
and the surface coverage

The expressions for the disjoining pressure, Π, and the
surface coverage, θ, obtained in Section 5 are analytical, but
transcendental, which makes the numerical calculations a
difficult task. It is possible to simplify them by using some
reasonable assumptions. The best assumption is that the
degree of surface coverage is smaller than 0.2, which allows
using the virial expansion of the obtained equations. One
advantage of such an approach is that it avoids the
assumption that the interaction function f(h), derived only
for binary collisions (see Section 4), is valid also for high
degrees of surface coverage. Another advantage is that the
virial expansions are not based on any specific adsorption
model, say the HFL or the van der Waals models. Finally, as
we will demonstrate in Section 6.5, such small degrees of
surface coverage are most likely to be of importance for real
foams and emulsions.

The desired virial expansions of the disjoining pressure, Π,
for small degrees of surface coverage, θ≪1, can be obtained
by expanding the Eqs. (5.18) or (5.23) in series with respect to θ
by keeping the terms up to θ2. The result is:

P
kBT

¼ 2
N
A
dlnW
dh

þ U2

2mW
−4

aN 2

A2

df
dh

þ aN 2

A2

dbf
dh

ð6:8Þ

The main problem, which we face now, is how to expand
in series the expressions for the chemical potential, see Eqs.
(5.19) and (5.24), and the conditions for equilibrium, see Eqs.
(5.21) and (5.25), so that the obtained result be consistent with
the virial expansion of the disjoining pressure. The answer
follows from the fundamental Eq. (5.2) of the system [42,43].
The respective Euler equation, which follows from Eq. (5.2), is
A(∂∏ /∂N)h=2(∂μ /∂h)N. It suggests that because of the dif-
ferentiation of Π on N, the virial expansion of μ, consistent
with the expansion ofΠ up to θ2, must contain terms only up to
N (or θ). This conclusion is valid of course also for Eqs. (5.21)
and (5.25). We confirmed the validity of such procedure by
analyzing the original virial expansion of the configurational
integral (4.16) and the exact expression for the water
contribution, FW, to the free energy.



Fig. 15. Comparison between numerical solution (solid lines) and analytical
expressions (6.11) and (6.12) (dashed lines) for emulsion films at small degree
of surface coverage, θs=0.1: a) surface coverage; b) disjoining pressure. The
parameters of the surfactants A and C are taken from Table 1.
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Then the respective asymptotic form of the transcendental
Eqs. (5.21) and (5.25) is:

ln
N

NsW

� �
¼ bs

a
A
ðN−NsÞ−4 aA ðfN−NsÞ− m

mW
ðU−UsÞ ð6:9Þ

For simplicity in Eq. (6.9) we assumed that the interaction
parameter βf is a constant, βs, neglected all small terms
proportional to exp(−L /δs) and since hs is always larger than
h we used f(hs)=1. The last expression gives the explicit
dependence θ=θ(θs,h), which must be substituted in Eq. (6.8)
to obtain the explicit function Π(h,θs). The result can be further
simplified by writing Eq. (6.9) in exponential form and keeping
again only the linear terms. Then one obtains:

N
NsW

¼ 1þ bs
a
A
ðN−NsÞ−4 aA ðfN−NsÞ− m

mW
ðU−UsÞ ð6:10Þ

In terms of degree of surface coverage, θ=αN /A, and volume
fraction, Φ, given by Eq. (5.20), Eq. (6.10) can be rewritten as:

h 1þ 4f −bs þ
4dm
3hmW

� �
hsW

� �

¼ hsW 1þ 4−bs þ
4dm
3hsmW

� �
hs

� �
ð6:11Þ

which represents the final solution for the degree of surface
coverage.

If one expresses Φ through θ by means of Eq. (5.20) and if
one assumes that the interaction parameter βf does not depend
on h, Eq. (6.8) becomes:

P
kBT

¼ 2
aW

dW
dh

hþ 8d2

9h2mW
h2−

4
a
df
dh

h2 ð6:12Þ

Eqs. (6.11) and (6.12) give explicit simple expressions for the
calculation of the degree of surface coverage and the disjoining
pressure. One can use here also the asymptotic expressions
(6.4a), (6.4b) and (6.5a), (6.5b) for fO(h) and df / dh, respec-
tively. When the film thickness is large, i.e. when h≫2d, we
have θ≈θs and dΨ / dh=df / dh=0, so that at long distance Π
decays as h−2. This is the reason for the tails of Π at large
thicknesses due to the water contribution.

For many purposes the whole isotherm Π(h) is not needed
and only the barrier against coalescence, i.e. the maximum at
h=2d is of interest. The respective degree of surface coverage
can be found from Eq. (6.11) by simply setting in it h=2d. The
disjoining pressure is calculated from Eq. (6.12) by substituting
in it Ψ from Eq. (4.13) and df / dh from Eq. (6.6):

Pmax

kBT
¼ 2h

ads
exp −

d
ds

� �

þ 2h2

9mW
þ 1−2

ds
d

� �
8h2

ad
at h ¼ 2d: ð6:13Þ

Even simpler equations are obtained if the water contribution
[given by the terms proportional to 1 /νW in Eqs. (6.11)–(6.13)]
is disregarded. Neglecting them, the following simple solutions
for θ and Π are obtained:

h ¼ hsW
1þ ð4−bsÞhs

1þ ð4f −bsÞhsW
and

P
kBT

¼ 2
aW

dW
dh

h−
4
a
df
dh

h2
ð6:14Þ

The respective value of the disjoining pressure in the maximum,
at h=2d, is:

Pmax

kBT
¼ 2h

ads
exp −

d
ds

� �
þ 1−2

ds
d

� �
8h2

ad

at h ¼ 2d

ð6:15Þ

If the case of constant surface coverage is considered, θ in Eqs.
(6.13) and (6.15) must be replaced by θs.

The good precision of the asymptotic Eqs. (6.11) and (6.12)
is visible from Fig. 15 for emulsion films and θs=0.1. The
deviations of the asymptotic expressions (dashed lines) from the
exact numerical calculations (solid lines) are smaller for the
surfactant A than for the surfactant C because of the smaller role
of the water contribution [recall that when simplifying Eq. (6.9)



Fig. 16. Comparison between numerical solution (solid lines) and analytical
expressions (6.16) and (6.17) (dashed lines) for emulsion films at large degree of
surface coverage, θs=0.8. The parameters of the surfactants A and C are taken
from Table 1.
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in order to derive Eq. (6.10) we assumed that ν(Φ−Φs) /νW is
small]. Indeed, for the substance A the ratio ν/νW is 2.75 but for
the substance C it is 29.7, which is much larger (see Table 1).
One may expect good validity of asymptotic expressions (6.11)
and (6.12) up to θs= 0.2 and better validity for systems in which
the ratio ν/νW is smaller.

Some experimental systems, such as lipid bilayers [4,5],
revealed a very strong repulsion between the film surfaces at
large degree of surface coverage and relatively large
distances. Therefore, it is interesting to find asymptotic
form of the Eq. (5.18) for the disjoining pressure for film
thickness, h, larger than 2d. The following reasonable
approximations can be made in Eq. (5.18) at large h even
when θ is close to unity. According to Eq. (5.20) the volume
fraction Φ will be always smaller than 2/3, so that ln(1−Φ)
can be expanded in series by keeping only the square term.
For large film thickness df / dh can be calculated from Eq.
(6.5a) by neglecting of term of the order of (δs /d)

2 and Ψ can
be replaced by unity. Finally, for simplicity we will assume
that βf can be replaced by the interaction parameter βs at a
single interface. In this way Eq. (5.18) is reduced to:

PHFL

kBT
¼ 2h

ads
exp

d−h
ds

� �
þ 8d2h2

9mWh2

þ 4h2

ads

2−f h
ð1−f hÞ2

h−2d þ ds
d

exp
2d−h
ds

� �
ð6:16Þ

where f=1+ fO and fO(h) is calculated from Eq. (6.4a).
This is the equation for Π at fixed surface coverage for the

HFL model. However, for constant chemical potential the value
of θ in Eq. (6.16) must be calculated from the condition (5.21).
The same approximations can be used again. In addition, since
at hN2d and at large θ the difference (θ−θs) /θs is small (see
Fig. 13a) we will use also expansion in series with respect to this
difference (note that at hN2d, according to Fig. 4 fO≪1). Then
Eq. (5.21) for hN2d and δs≪d simplifies to:

4md
3mWh

−bs þ
1þ hs

hsð1−hsÞ3
" #

ðhs−hÞ

¼ 4mdðhs−hÞ
3mWhsh

hs þþ 1þ hs
ð1−hsÞ3

−1

" #
fO þ exp

d−h
ds

� �
ð6:17Þ

which shows again that θs−θN0. The solution of Eq. (6.17) has
to be substituted in Eq. (6.16) to calculate the disjoining
pressure for fixed chemical potential.

Similar calculations for the van der Waals model, see Eq.
(5.23), lead to:

PV

kBT
¼ 2h

aVds
exp

d−h
ds

� �
þ 8h2a2d2

9mWa2Vh
2

þ 4h2

aVds

1
1−f h

h−2d þ ds
d

exp
2d−h
ds

� �
ð6:18Þ

where the degree of surface coverage is defined with respect to
the area αV, i.e. θ≡αVN /A. The asymptotic form of the
condition for fixed value of the chemical potential, see Eq.
(5.25), gives for hN2d and δs≪d:

4mad
3mWaVh

þ 1

hsð1−hsÞ2
−bs

" #
ðhs−hÞ

¼ 4mahsdðhs−hÞ
3mWaVhsh

þþ hsð2−hsÞ
ð1−hsÞ2

fO þ exp
d−h
ds

� �
: ð6:19Þ

The validity of the asymptotic expressions (6.16)–(6.19) is
illustrated in Fig. 16 for an emulsion film with θs=0.8 for the
HFL model. They describe very well the exact solution at
hN2d. The advantages of Eqs. (6.16)–(6.19) with respect to
Eqs. (6.11) and (6.12) are that at hN2d and δs≪d they are valid
for all values of θ. For the surfactant A the ratio d/δs is
considerably smaller than the respective ratio for the surfactant
C (see Table 1) — for that reason the deviations between the
asymptotic and numerical solutions are more pronounced for
the substance A at h≈2d (see Fig. 16).

Another analytical expression for the disjoining pressure of
nonionic surfactants was derived by Israelashvili and Wenner-
ström [7]. The model they used can be summarized as follows
[see Fig. 17, case (1)]: (i) The surfactant molecules are
considered as infinitely thin rods, oscillating normally to the
interface; (ii) The energy of a molecule depends on the depth ζ
of its immersion, more precisely u(ζ) / (kBT)=ζ /δs; (iii) The
molecules form couples so that always a molecule on one of the
surfaces faces another molecule on the other surface; (iv) Only
the molecules in a couple interact with each other with infinite
repulsive potential when they collide. By assuming that the
motion of the molecules in every couple is correlated, the
authors derived a configurational integral, which corresponds to
the following partition sum Q:

Q ¼ qeAds
K3N

� �2N

1− 1þ h
ds

� �
exp −

h
ds

� �� �N
: ð6:20Þ

In order to compare more easily this theory with ours, we
will present a slightly different derivation of Eq. (6.20) based on



Fig. 17. Model (1) corresponds to adsorbed molecules colliding only with the
molecules on the opposite surface but not with the bare surface Ref. [7]; model (2)
corresponds to an ideal layer without hydrophilic heads; model (2I) to an ideal
layer as in case (2) but the hydrophilic heads prevent the hydrophobic tails from
reaching the opposite interface; case (3) is the model used throughout this paper.
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the concepts used in the present paper. When calculating the
configurational integral (3.2) we will assume that the energy U
in Eq. (3.2) does not depend on the radial coordinate, since the
molecules of different couples do not interact, i. e. in Eq. (4.3)
we will assume that uij=uij(zi,zj) for all molecules. Since the
interactions is by couples, only the energies uij between the
molecules facing each other will remain in U, say u1,N+1, u2,N+2
etc. Then the integration over the area can be performed and
leads to a factor A2N. The configurational integral becomes:

Z2N ¼ A2N
Z h

0

Z h

0
exp −

f1 þ fNþ1

ds

� �
exp −

u1;Nþ1

kBT

� �
dfNþ1df1

� �N
ð6:21Þ

Because of the infinite energy of repulsion, u1,N+1, between the
overlapping molecules in a couple, the molecule N+1, facing the
molecule 1, which is in position ζ1, can move only from ζN+1=0
to ζN+1=h−ζ1. Therefore the configurational integral can be
written as:

Z2N ¼ A2N
Z h

0
exp −

f1
ds

� �Z h−f1

0
exp −

fNþ1

ds

� �
dfNþ1df1

� �N
ð6:22Þ

Upon performing the integration in Eq. (6.22) and by using Eq.
(4.4) one obtains the expression for the disjoining pressure:

P
kBT

¼ N
Ads

h
ds
exp −

h
ds

� �
1− 1þ h

ds

� �
exp −

h
ds

� �� �−1
ð6:23Þ

The asymptotic form of Eq. (6.23) for h /δs→0 and constant
value of the number of molecules, Ns, is:

P ¼ 2kBT
Ah

Ns ð6:24Þ

Eqs. (6.23) and (6.24) are identical to Eqs. (16) and (17) from Ref.
[7].

The authors of Ref. [7] considered only a “closed” film, i.e.
they did not account for the equilibrium between the film and
the meniscus. We will extend their theory by releasing this
limitation. The expression for the chemical potential μ can be
easily derived from Eq. (6.20):
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exp −
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ð6:25Þ

By setting in Eq. (6.25) h equal to infinity one obtains the
chemical potential μs of the surfactant on the meniscus surfaces.
The condition for equilibrium between the film and the
meniscus, μ=μs, yields the connection between the number
of molecules at a single interface, Ns, and the number of
molecules at one surface of the film, N:

N2 ¼ N2
s 1− 1þ h

ds

� �
exp −

h
ds
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ð6:26Þ

Substituting N from Eq. (6.26) into Eq. (6.23) one obtains the
expression for disjoining pressure under constant chemical
potential for this model:

P
kBT

¼ Ns

Ads

h
ds
exp −

h
ds

� �
1− 1þ h

ds

� �
exp −

h
ds

� �� �−1=2
ð6:27Þ

The asymptotic form of Eq. (6.27) for small film thickness is:

P ¼ 21=2
kBT
Ads

Ns 1−
2h
3ds

þ N
� �

ð6:28Þ

In this case the disjoining pressure, Π, has a finite value at
h→0, see Eq. (6.28), and the surface coverage decreases to
zero at h→0, see Eq. (6.26).

Since the main goal of the authors of Ref. [7] was to
emphasize the role of the “protrusion forces”, they did not dwell
much on the details of their model. This makes the comparison
with our model difficult, since the two models differ in several
respects, although they share also some similarities. On the one
side the authors of Ref. [7] considered the surface layers as
ideal, since they did not account for the lateral interactions. In
this respect the model is akin to our ideal case when the water
and the interaction contribution are neglected. On the other side,
the fact that all adsorbed molecules have molecules facing them
suggests that one assumes that the surface is completely
covered, which is not the ideal model, of course. If it is so, by
thickness of the film one must consider the gap between the
adsorbed layers, i.e. in Eqs. (6.20)–(6.28) hmust be replaced by
h−2d. If the molecular packing is square (as the authors hinted)
complete coverage in our notation corresponds to θ=π /4. The
two models differ even in the ideal case. In the model of Ref. [7]
the molecules cannot collide with the opposite surface, whereas
in our model it is exactly the opposite — these are the only
possible collisions in the ideal case (compare models 1 and 2 in
Fig. 17). Besides, in our model the molecules have hydrophilic
heads of diameter d, so that the tails of the molecules cannot
approach the opposite interface at a distance smaller than d (this
is model 2I in Fig. 17).



Fig. 19. Components of the disjoining pressure for emulsion film with constant
chemical potential and θs=0.1 calculated for models 1, 2 and 2I sketched in Fig.
17.
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We will try to compare also numerically the theory of
Israelachvili and Wennerström with ours in the two extreme
cases discussed above — ideal surface layers and complete
coverage. For the “ideal model” one must set in Eq. (4.28)
Zint =1 and neglect the contribution of the water molecules.
Then, by using also Eqs. (4.13) and (5.15) one finds for our
model 2I:

P
kBT

¼ 2N
Ads

exp
d−h
ds

� �
1−exp

d−h
ds

� �� �−1
ð6:29Þ

For our model 2 one must set d=0 in Eq. (6.29). Eq. (6.29)
predicts infinite value of the disjoining pressure when the
number of surfactant molecules, N, is fixed and h→d. If the
chemical potential for a dilute layer is constant, see Eqs. (5.16)
and (5.17), then ΨNs=N, where Ns is the number of molecules
in a single monolayer. Therefore, the disjoining pressure from
Eq. (6.29) for constant chemical potential is in fact:

P
kBT

¼ 2Ns

Ads
exp

d−h
ds

� �
ð6:30Þ

Eq. (6.30) shows that for this system the disjoining pressure has
finite value for h→d.

The result of the comparison of models 1 and 2 is shown in
Fig. 18 for constant surface coverage. At h→0 both models
diverge [see Eqs. (6.24) and (6.29), in which d must be
disregarded]. As h increases both curves decrease exponentially,
but the difference between them increases. We compared also
the ideal approximation of our theory for constant chemical
potential with our extension of the theory of Israelachvili and
Wennerström for such system [see Eqs. (6.30) and (6.27) and
Fig. 19]. For models 1 and 2, where the hydrophilic heads are
disregarded, the curves forΠ(h) are rather close. The difference
between them is however enormous if the hydrophilic heads are
taken into account (curve 2I in Fig. 19; note that the abscissa
axis has been interrupted).

The results for the other extreme case, complete coverage at
hN2d, are shown in Fig. 20 for θs=0.7. The lines for fixed
coverage θ=θs=0.7 and fixed chemical potential for model 1
Fig. 18. Comparison of models (1) and (2) from Fig. 17 at fixed values of the
surface coverage.
are calculated again from Eqs. (6.23) and (6.27), respectively,
but now with h replaced by h−2d. As one might expect Π
decreases exponentially with slope close to unity, i.e. the decay
length is δs (note that the horizontal coordinate is h /δs).

The numerical results from our theory for the HFL model in
Fig. 20 also exhibit a portion with exponential decay, which
starts almost at h=2d. However, its slope δs /λ=0.279 is much
smaller than unity. The reason may become clear by inspection
of the approximate Eqs. (6.16) and (6.17). One sees that the
exponential functions in them are multiplied by polynomials of
h, which lead to the change of the slope (the deviation from the
straight line at large h /δs is due to the water effect). Since the
theory, accounting only for the protrusion effects, Eqs. (6.23)
and (6.27), leads to slope equal or very close to unity, the
observed larger slope is obviously due to the additional effects
(besides the protrusion of the molecules), accounted by us. This
finding leads us to the following important conclusions: (i) The
exponential dependence ofΠ on h is by no means an indication
Fig. 20. Dependence of the disjoining pressure, Π, on the film thickness, h, at
θs=0.7 for different models: fixed surface coverage, Eq. (6.23); fixed chemical
potential, Eq. (6.27); the HFL model.



Fig. 21. Disjoining pressure, Π in 10−1 Nm−2, of C12EO4/water Lα phase at
25 °C [6].

208 K.D. Danov et al. / Advances in Colloid and Interface Science 128–130 (2006) 185–215
that only protrusions are important; (ii) The contribution of all
effects, playing a role, leads to a decay length λ, which is
several times larger than the “theoretical” decay length δs (in the
case under consideration λ=3.59δs), stemming only from the
energy, wl, related to the molecular protrusion [see Eq. (3.3)].
We will return to this problem in Section 6.5.

6.5. Comparison with experimental data

There are only a few experimental data, which can be used to
check our theory. Unfortunately, in most cases only some of the
needed experimental parameters are known. This forced us to
use data from different sources and to make sometimes
speculations, but we tried, whenever possible to give arguments
in their support.

The systems, closest to our model are the bilayers. The
structure and the interaction force between the monolayers have
been studied by several methods [4–6]. However, in most cases
bilayers of lipids were investigated, which are not suitable for
our purposes, since they have two tails. Nevertheless, a few
results are in qualitative agreement with our theory. One of them
is the fact that the decay length is much larger (2–3 Å) than what
it should be, having in mind that because of the two tails the
lipids must have theoretical decay length two times smaller than
the surfactants with one chain (i.e. it must be of the order of
0.5 Å). As explained in Section 6.4 (see also Fig. 20), the large
decay length is due to the fact that the true dependence Π(h) is
not described by a simple exponential function. A second effect
which is consonant with our theory is that for most lipid bilayers
the disjoining pressure suddenly drops at constant thickness
equal to the double thickness of the extended molecules —
according to our model at such thickness (which we denoted by
hs in Section 5) the interaction between the two layers ceases.

The only data about bilayers, which we were able to treat in
more details, were those of Lyle and Tiddy [6] with Brij 30
(C12EO4). The points in Fig. 21 are their experimental data for
the disjoining pressure, Π, vs. h (the spacing between the
hydrophobic parts of the layers) in 10−1 N.m−2, for C12EO4/
water Lα phase at 25 °C. The dashed line is the exponential fit,
used by the authors Π=1.64×1010exp(−h / 4.2). The solid line
is the fit of the same experimental data with our theory, based on
the HFL model with fixed chemical potential. We obtained very
good fit by using only two adjustable parameters — the
hydrophilic head radius, R, and the effective thickness of the
adsorption layer, δs. From the fit we found R=2.66 Å and
δs=2.5 Å These results call for discussion.

We already explained that δs can be calculated from the
transfer energy per unit length, wl, of the hydrophobic tail from
the water phase to a hydrocarbon phase or to air, see Eq. (3.3)
— the respective values we found are 0.875 Å and 1.16 Å.
However, the environment of the tail in a monolayer can be
rather different from that in oil. Hall and Pethica [46] argued
that in micelles it is closer to air, rather than to oil. On the other
hand, Aniansson [8] suggested that the free ends of the
hydrophobic tails in micelles can be rather disordered, which
gives rise to additional entropy and can increase twice δs with
respect to its value calculated from the transfer energy. Both
arguments are most probably valid also for bilayers. Finally,
there might be one more reason for the increase of δs. It is well
known that the oxygen atoms in the EO-groups are hydrated,
but the hydration decreases as the hydrophobic tail is
approached [47]. Moreover, there are claims that the EO
group linked to the hydrophobic tail is totally dehydrated and is
not immersed in the water. This means that this EO group will
dominate the transfer energy and since the oxygen is more
hydrophilic than the –CH2–, the transfer energy will be lower
and δs larger. All these arguments make a value of δs more than
twice larger than it is for air not unrealistic. However, the even
larger value of the decay length found by the authors of [6],
λ=4.2 Å, is actually due to the complicated dependence of Π
on h, which is close to exponential only in a narrow thickness
interval, but with effective slope larger than δs — see Section
6.4 and Fig. 20. There are also arguments that the value of the
radius, R, is reasonable. It corresponds to area per molecule
α=πR2 =22.23 Å2. Rösch [48] reported for the cross-sectional
area in the meander configuration (which is probable for short
EO chains) 28 Å2. Schick [49] published experimental data for
the equilibrium surface tension of C12EO4 solution from which
we found that the area of the adsorbed molecule close to the
critical micelle concentration (CMC) is αCMC=30.5 Å2. Both
quoted values of α are not so different from the value 22.23 Å2,
which we found. The molecular diameter d=2R=5.32 Å, found
by us, also conforms with the length 1.8 Å of one EO group
normally to the interface [48]. Indeed, if one assumes that only
three of the EO groups are immersed in the water, this gives
3×1.8=5.4 for d. Lyle and Tiddy [6] reported that the area per
chain in the bilayer is 42.6 Å2. With α=22.23 Å2 this gives for
the degree of surface coverage, θs=0.52. They also found 16 Å
for the thickness of the hydrocarbon part of the bilayer, which is
approximately the length of a single chain. Hence, the tails of
the two layers most probably interpenetrate. Since the radius of



Fig. 22. Total disjoining pressure for foam films and for the surfactant C. The
Hamaker constant is AH=4×10

−20 J.

Fig. 23. Pressure difference, Π−Pc, as a function of the film thickness, h, for
Brij 58 emulsion films. The drop diameters are 5, 10 and 20 μm.
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the hydrophobic chain, 2.7 Å, is almost equal to the value of R
found by us, this is possible only if θs is around 0.5.

For bubbles and drops stabilized by low molecular nonionic
surfactants one must account also for the van der Waals
disjoining pressure, which is caused by the molecular attraction:
ΠvdW=−AH / (6πh

3), where AH is the Hamaker constant [14].
Fig. 22 shows the total disjoining pressure as a function of the
film thickness for different degrees of surface coverage and
fixed chemical potential. For small degrees of surface coverage
the curveΠ(h) has no maximum because the attraction prevails.
Starting from degree of surface coverage above 0.075 a
maximum of the disjoining pressure appears whose height
increases with the increase of the degree of surface coverage. At
θs of the order of 0.1 the film must be almost infinitely stable,
since the typical bubbles in foam have size of the order of
millimeter. Their capillary pressure is only 200–300 Pa, which
is much smaller than the disjoining pressure at θs=0.1 and the
barrier cannot be overcome. A legitimate question then is “why
foams stabilized by nonionic surfactants are not always stable?”
There are many factors determining foam destabilization (see
e.g. [50,51]) but we are now interested only in the role of the
disjoining pressure. Therefore, it is interesting to find out under
what conditions the surface coverage will be very small for
nonionic surfactants. For the lack of appropriate experimental
data we will propose some speculative considerations. As
example we will take Brij 58, which has critical micelle
concentration CMC=0.008 mM, ΓCMC=3.4 μmol/m2 and
diffusion coefficient D=3×10−10 m2/s [52,53]. If the time
elapsed between the bubble formation and subsequent collision
with another bubble is tA=1 s, then the adsorption rate will
obey the short time asymptotic [54], so that:

C ¼ cbðDtAÞ1=2 ð6:31Þ

where the bulk concentration, cb, in this case is equal to the
CMC. Substituting here the respective values, quoted above,
one finds that Γ /ΓCMC=0.04. Therefore, even at the CMC the
surface coverage will be very low and the bubble will break (see
Fig. 22). That is why in order to make the foam stable one must
use concentrations well above the CMC when the diffusivity D
and the adsorption rate are larger [55,56]. This situation is
typical for nonionic surfactants, which have very law values of
the CMC.

Another indirect confirmation can be obtained by the
results for emulsification of soybean oil in water with
surfactant Brij 58 (with d=12 Å). It was found [57] that the
average drop diameter decreases with increasing surfactant
concentration (see Fig. 2 in Ref. [57]). This variation of the
drop diameter was attributed to coalescence of some drops.
The drop diameter stops changing, when the surfactant
concentration is 0.1 wt.%, and at higher concentrations
remains constant, 5 μm. Since diameter of 5 μm for the
specific experimental conditions corresponds to the minimum
radius, which can be achieved according to the Kolmogoroff
theory [58] the authors concluded that at 0.1 wt.%
concentration the coalescence ceases.

According to the thermodynamic theory of thin films [10] the
thin film between the drops will stop thinning and will reach
equilibrium when the capillary pressure, Pc, of the drops with
interfacial tension σ and diameter dd, Pc=4σ /dd, becomes
equal to the disjoining pressure. If the difference Π−Pc is
negative, the film cannot reach equilibrium and the drops will
coalesce. The authors of Ref. [57] calculated the adsorption
time, tA, which depends on the drop diameter. For concentration
0.1 wt.% they found tA equal to 10 μs, 5 μs and 2.5 μs for
diameters 5 μm, 10 μm and 20 μm, respectively. For such short
times Eq. (6.31) probably gives a fair estimate of the adsorption
and the surface coverage, which was found to be 0.039, 0.028
and 0.02 for the respective times quoted above. The respective
dependences Π(h) for fixed chemical potential were calculated
from Eqs. (5.18) and (5.21). The capillary pressure was
calculated for the quoted diameters by using the value
σ=30 mN/m, determined in [57]. The results, plotted in Fig.
23, show that for the drops with diameter 5 μm the difference
Π−Pc is positive, which means that these drops will be stable,
whereas the others with larger diameters will be unstable. This
is in agreement with the experimental observation.



210 K.D. Danov et al. / Advances in Colloid and Interface Science 128–130 (2006) 185–215
7. Concluding remarks

We have tried to develop a theory for the stabilizing effect of
nonionic surfactants on interacting fluid surfaces. We assumed
that at each interface there is a layer of adsorbed surfactant,
whose molecules were modeled as having spherical hydrophilic
heads of diameter d attached to linear hydrophobic tails of
diameter 2s and length L. The adsorption is assumed non-
localized, i. e. the surfactant molecules move freely along the
surfaces. They can perform however also thermal fluctuations
normally to the interface with average immersion depth δs,
which depends on the transfer energy per unit length from the
water to the hydrophobic phase. These fluctuations lead to
collisions with the opposite film surface and with the molecules
adsorbed on it. The adsorption leads to increase of the solute
concentration in the film with respect to the concentration in the
continuous bulk phase and this gives rise to a repulsive
disjoining pressure. There is also a purely osmotic contribution
to the disjoining pressure, due to the water molecules expelled
from the film region by the adsorbed molecules. The collisions
lead to increase of the chemical potential of the surfactant,
which is pushed out by this effect toward the bilk phase or
toward the interfaces encircling the film.

In summary, we accounted for the main effects playing a role
in this process for the chosen type of surfactants: (i) The thermal
fluctuations of the adsorbed surfactant molecules, due to the fact
that the energy of adsorption of a –CH2– group is approxi-
mately equal to the average thermal energy kBT; (ii) The
contribution of the collisions between molecules adsorbed on
different surfaces; (iii) The restriction imposed on the
fluctuation of the molecules by the presence of a second surface
situated at a small distance h from the interface where the
molecules are adsorbed; (iv) The volume of the hydrophilic
heads, which expel part of the water molecules from the film
region; (v) The equilibrium between the molecules adsorbed at
the film surfaces and the menisci surrounding the film.

In the framework of the formulated model and geometry of
the surfactant molecules we derived practically exact equations
for the case of low surface coverage, up to 20%. We achieved
that by assuming that only binary collisions play a role, an
assumption corresponding to the use of a virial expansion of the
configurational integral with second virial coefficient only. The
most important effect, the collisions between the surfactant
molecules, is accounted for by the interaction function f, which
was calculated also exactly (see the Appendix A). The
contribution of the expelled water to the disjoining pressure
and the chemical potential was calculated by a modification of
the theory of Hildebrand and Scatchard [11–13] for the osmotic
pressure of concentrated solutions. We used a substantial
approximation to generalize the theory for higher surface
coverage, by assuming that the expressions of the interaction
functions, derived for binary collisions remain valid even when
collisions between 2, 3, … molecules play a role. We achieved
that by using the partition functions for the adsorption models of
Helfand, Frisch and Lebowitz [32,33] and of Volmer [31], in
which we introduced an effective molecular area, accounting for
the intermolecular collisions. This assumption is akin to the
assumption used to derive the van der Waals surface equation of
state and most probably has similar validity— it is certainly not
correct quantitatively, but there is hope that it describes
correctly the behavior of the system at high concentrations.

The derived equations and the numerical calculations, based
on them, revealed that there are three main effects, each of them
with different range of validity: the collisions of the surfactant
molecules with the bare film surface are important only at small
thickness, the collisions between the molecules play substantial
role at thickness close to 2d, where it causes the appearance of a
repulsive maximum, and the water contribution to the disjoining
pressure depends much more weakly on the thickness and is
more uniformly distributed. As expected, it turned out that the
condition from constant chemical potential leads to a strong
decrease of the surface coverage in the film and to much smaller
disjoining pressure. An interesting finding was that the
maximum of the disjoining pressure, Π, is followed by a
portion, where the decay is almost exponential as a function of
the thickness h, but the decay length is several times larger than
the immersion depth δs.

To make the use of the theory easier we derived simplified
asymptotic equations for two cases: (i) low surface coverage for
any film thickness; (ii) large surface coverage for thickness
hN2d. It turned out that both approximations work very well.
We tried also to compare our theory with the theory of the
protrusion forces of Israelachvili and Wennerström [7]. The two
theories are based on rather different models, so that the results
are also very different, although the general trend of the
disjoining pressure is similar and under certain conditions the
quantitative differences are not too large.

The experimental data, which could be used to verify our
theory, are scarce, but we found reasonable agreement with the
data of Lyle and Tiddy [6] for bilayers of C12EO4. The data of
Parsegian et al. [4,5] for lipid bilayers also confirmed
qualitatively some of our theoretical conclusions.
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Appendix A. Calculation of the interaction function, fS(h)
and fO(h)

To calculate the interaction functions, fS(h) and fO(h), the
following simplified geometry of the surfactant molecule is
formulated (see Fig. A.1a). The hydrophilic head of the
molecule is a sphere with radius, R. The hydrophobic tail of
the molecule is a cylinder with radius s and length L. The
length of the surfactant molecule, L, is assumed to be very
large more precisely one assumes L / δs≫1. Whenever
necessary we will discuss the role of the finite value of L.
The calculation of fS(h) (molecules at the same surface) is
considerably different from that of fO(h) (molecules at opposite
surfaces) because the orientation of the tail of the molecule N+
1 is opposite to that of molecule 2, which modifies strongly the
hard-core trajectory of molecule 2 (compare Fig. A.1a and b).



Fig. A.1. Sketch of the possible trajectories of hard-core interactions between
two surfactant molecules— molecule 1 stays at a given position. a) Molecule 2
slides along the head or the tail of molecule 1 — the solid line represent the
possible position of the center of the head of molecule 2, which give contribution
in the calculation of fS. b) Molecule N+1 has an opposite orientation than
molecule 2 — the trajectory, for which the hard-core interactions take place, is
different.

Fig. A.2. Possible trajectories of molecule 2 sliding along molecule 1, which
stays at a fixed position z1, for large film thickness, h: a) molecule 1 is close to
the upper film surface; b) molecule 1 is not close to the film surfaces; c)
molecule 1 is close to the lower film surface. The solid lines represent
boundaries of integration for the calculation of fS (these are the contact
trajectories of molecule 2).
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From physical viewpoint it is obvious that fS must depend
weakly on h, while fO must decrease strongly when the film
thickness, h, increases. Both interaction functions are universal
in the sense that they do not depend on the mechanism of
adsorption — they depend only on the geometry of the
surfactant molecules and of the energy of interaction of the
hydrophobic tail, wl (trough δs).

Calculation of fS(h) (molecules in the same adsorption
layer). Substituting the definition (4.15) into Eq. (4.14a) the
following expression for the interaction function, fS(h), is
obtained:

fs ¼ k
4d2f a

Z h−R

R
uðf1Þ½

Z
V12

uðf2Þdr212dz2�dz1 ðA:1Þ

where V12(z1) is the contact volume of the molecule 1 and 2, i.e.
the volume in which molecule 2 overlap at least in one point the
molecule 1, which is supposed to be fixed at position z1 (see
Fig. A.2). Note that the distances from the upper surface are
ζ1= z1−R and ζ2= z2−R, respectively. The volume V12 is
bounded in radial direction by a given value of r12 denoted by
ρ12. Different values of ρ12 correspond to different vertical
positions of the molecules and therefore, generally speaking
ρ12=ρ12(z1,z2). Taking into account the definition (4.5) the
integral in Eq. (A.1) is transformed to:

fs ¼ 1

d2f d
2

Z h−R

R

Z
V12

exp
R−z1
ds

� �
exp

R−z2
ds

� �
q212ðz1; z2Þdz2dz1:

ðA:2Þ
To obtain an explicit mathematical definition of the volume
V12 we will use the geometry of the surfactant molecule (see
Fig. A.1a). When the hydrophilic heads of the two molecules
are in contact, the maximum possible vertical displacement
between their centers is b, where

b2 ¼ d2−ðRþ sÞ2 ðA:3Þ

Depending on the film thickness, h, there are three cases and
in each case the integration is carried out differently: (a) h≥d+
2b (thick film); (b) d+b≤h≤d+2b (intermediate film); (c)
d≤h≤d+b (very thin film).

a) Thick film (h≥d+2b). In this case depending on the
position of molecule 1 we have three possibilities (see Fig. A.2a):

a.1) Molecule 1 is close to the upper film surface, i.e.
R≤ z1≤R+b. The possible trajectory of molecule 2 is shown in
Fig. A.2a (solid line). In this case ρ12 is

q212 ¼ d2−ðz2−z1Þ2 for RVz2Vz1 þ b ðA:4aÞ

q212 ¼ d2−b2 for z1 þ bVz2Vh−R ðA:4bÞ

Therefore, the corresponding part of the integral in Eq. (A.2)
becomes

J1 ¼
Z Rþb

R
exp

R−z1
ds

� �
f
Z z1þb

R
exp

R−z2
ds

� �
½d2−ðz2−z1Þ2�dz2 þ

þ
Z h−R

z1þb
exp

R−z2
ds

� �
ðd2−b2Þdz2g

dz1 ðA:5Þ

a.2) Molecule 1 is not close to the upper and lower film
surfaces, i.e. R+b≤ z1≤h− (R+b). The respective trajectory of
molecule 2 is illustrated in Fig. A.2b (solid line). There are two
regions in which the hydrophilic head of molecule 2 is sliding
along the tail of molecule 1 and an arc trajectory of the sliding of
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the head of molecule 2 along the head of molecule 1. In this case
ρ12 is defined as

q212 ¼ d2−ðz2−z1Þ2 for z1−bVz2Vz1 þ b ðA:6aÞ
q212 ¼ d2−b2 for RVz2Vz1−b and z1

þ bVz2Vh−R ðA:6bÞ
The corresponding part of the integral appearing in Eq. (A.2) is
reduced to:

J2 ¼
Z h−ðRþbÞ

Rþb
exp

R−z1
ds

� �
f
Z z1þb

z1−b
exp

R−z2
ds

� �

�½d2−ðz2−z1Þ2�dz2 þþ
Z z1−b

R
exp

R−z2
ds

� �
ðd2−b2Þdz2

þ
Z h−R

z1þb
exp

R−z2
ds

� �
ðd2−b2Þdz2gdz1:

ðA:7Þ

a.3) Molecule 1 is close to the lower film surface, i.e. h−(R+
b)≤z1≤h−R. The solid line in Fig. A.2c illustrates the trajectory
of the molecule 2 at a fixed position of molecule 1. This case is
opposite to a.1 and ρ12 becomes

q212 ¼ d2−b2 for RVz2Vz1−b ðA:8aÞ

q212 ¼ d2−ðz2−z1Þ2 for z1−bVz2Vh−R ðA:8bÞ
The last part of the integral in Eq. (A.2) is transformed into:

J3 ¼
Z h−R

h−ðRþbÞ
exp

R−z1
ds

� �
f
Z h−R

z1−b
exp

R−z2
ds

� �
½d2−ðz2−z1Þ2�dz2

þþ
Z z1−b

R
exp

R−z2
ds

� �
ðd2−b2Þdz2gdz1: ðA:9Þ

The integrals, J1, J2 and J3, are calculated exactly and the
obtained results are added in order to obtain the following
relationship:

J1 þ J2 þ J3 ¼ 2d2sfð2R2−d2s Þ 1þ exp
4R−2h
ds

� �� �

−ðd2−b2Þexp 2R−h
ds

� �
þþdsðbþ dsÞexp −

b
ds

� �

−dsðb−dsÞexp 4Rþ b−2h
ds

� �
g

ðA:10Þ

By substituting Eq. (A.10) into Eq. (A.2) the expression for fS is
obtained:

fs ¼ 1

W2 f 1−2
d2s
d2

� �
1þ exp −

2
f
h
ds
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−2 1−

b2

d2
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f
h
ds
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þþ 2
dsðbþ dsÞ

d2
exp −

b
ds

� �
−2

dsðb−dsÞ
d2

exp
b−2fh
ds

� �
g

ðA:11Þ
where the reduced film thickness, h̃, is defined as h̃≡h−d.

It is important to note that in the special case of surfactant
molecules, for which the radius of the tail, s, is equal to the
radius of the head, R, Eq. (A.3) yields b=0 and from Eq. (A.11)
it follows that fS=1. Indeed, the overlapping area of two
cylinders is exactly 4α.

At large values of the film thickness, i.e. with h̃ /δs≫1, fS
becomes:

fSl ¼ 1−2
d2s
d2

þ 2
dsðbþ dsÞ

d2
exp −

b
ds

� �
ðA:12Þ

Since however δs /d≪1, the deviations of fS∞ from unity will
be small.

b) Intermediate film (d+b≤h≤d+2b). In this case the
trajectories of molecule 2 are similar to those in Fig. A.2. We
have three possibilities depending on the position of molecule 1:

b.1) Molecule 1 is close to the upper film surface, i.e.
R≤ z1≤h− (R+b). In this case ρ12 is defined by Eqs. (A.4a)
and (A.4b). Therefore, the corresponding part of the integral in
Eq. (A.2) becomes

J1 ¼
Z h−ðRþbÞ

R
exp

R−z1
ds

� �
f
Z z1þb

R
exp

R−z2
ds

� �
½d2−ðz2−z1Þ2�dz2

þþ
Z h−R

z1þb
exp

R−z2
ds

� �
ðd2−b2Þdz2gdz1: ðA:13Þ

b.2) Molecule 1 is not close to the lower and upper film
surfaces, i.e. h− (R+b)≤ z1≤R+b. In this case the regions a.1
and a.2 are overlapping and ρ12 is defined as:

q212 ¼ d2−ðz2−z1Þ2 for RVz2Vh−R ðA:14Þ

The integral in Eq. (A.2) is simplified to:

J2 ¼
Z Rþb

h−ðRþbÞ
exp

R−z1
ds

� �Z h−R

R
exp

R−z2
ds

� �
½d2−ðz2−z1Þ2�dz2dz1:

ðA:15Þ

b.3) Molecule 1 is close to the lower film surfaces, i.e. R
+b≤ z1≤h−R. This case is opposite to b.1 and for ρ12 Eqs.
(A.8a) and (A.8b) are used. Therefore, the integral in Eq. (A.2)
is transformed to:

J3 ¼
Z h−R

Rþb
exp

R−z1
ds

� �
f
Z h−R

z1−b
exp

R−z2
ds

� �
½d2−ðz2−z1Þ2�dz2

þþ
Z z1−b

R
exp

R−z2
ds

� �
ðd2−b2Þdz2gdz1: ðA:16Þ

The sum of integrals, given by Eqs. (A.13), (A.15) and
(A.16), is substituted into Eq. (A.2) to obtain again exactly the
expression (A.11).

c) Very thin film (d≤h≤d+b). In this case both coordinates,
z1 and z2, change from R to h−R and b12

2 =d2− (z2− z1)2. The
film is so thin that the regions illustrated in Fig. A.2a and c
overlap. Therefore, Eq. (A.2) is presented in the following form:

fs ¼ 1

d2f d
2

Z h−R

R

Z h−R

R
exp

R−z1
ds

� �
exp

R−z2
ds

� �
½d2−ðz1−z2Þ2�dz2dz1

ðA:17Þ



Fig. A.3. Contact trajectories of molecule N+1 sliding along molecule 1, which is
fixed at a position z1, for large film thickness, h: a) molecule 1 is close to the upper
film surface; b) molecule 1 is not close to the film surfaces; c)molecule 1 is close to
the lower film surface. The solid lines represent boundaries of integration for the
calculation of fO. Because of the different orientation of the tails only part of the
contact trajectories of molecule N+1 must be accounted for in the integrals.
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Simple calculations give the final result:

fs ¼ 1−2
d2s
d2

þ 2
f
h
2

d2W2 exp −
f
h
ds

� �
ðA:18Þ

From Eq. (A.18) it is not obvious what will be the value of fS at
h→d because Eq. (A.18) contains Ψ(h) in the denumerator and
Ψ(d)=0, see the definition (4.13). The serial expansion of Eq.
(A.18) at (h−d) /d≪1 leads to

fsc1−
f
h
2

6d2
þ N ðA:19Þ

and therefore, fS has a limiting value of 1, which could be
expected.

Calculation of fO(h). This function accounts for the collision
of molecules adsorbed on different (opposite) film surfaces.
According to Eq. (5.19) and (5.24) it effectively increases the
degree of surface coverage, θ. Besides, its derivative with
respect to h is a factor, which significantly enhances the role of
the interaction terms in Eqs. (5.18) and (5.23).

From the definition (4.15) and Eq. (4.14b) the following
expression for the interaction function, fO(h), is obtained:

fO ¼ k
4d2f a

Z h−R

R
uðf1Þ½

Z
V1Nþ1

uðfNþ1Þdr21Nþ1dzNþ1�dz1 ðA:20Þ

where V1N+1(z1) is the contact volume of molecule 1 and N+1,
i.e. the volume in which molecule N+1 overlaps at least in one
point with the molecule 1, which is supposed fixed at the
position z1 (see Fig. A.1b). The distance from the lower surface
is ζN+1=h− (zN+1+R). The volume V1N+1 is bounded in radial
direction by a given value of r1N+1 denoted as ρ1N+1, where
generally ρ1N+1=ρ1N+1(z1,zN+1). Taking into account the
definition (4.5), the integral in Eq. (A.20) is reduced to:

fO ¼ 1

d2f d
2

Z h−R

R

Z
V1Nþ1

exp
R−z1
ds

� �
exp

R−hþ zNþ1

ds

� �

� q21Nþ1ðz1; zNþ1ÞdzNþ1dz1:

ðA:21Þ

The regions of integration, defined by V1N+1, are: (a) h≥2d
(thick film); (b) d+b≤h≤2d (intermediate film); (c) d≤h≤d
+b (very thin film).

a) Thick film (h≥2d). In this case we have two different sub-
cases, which finally lead to the same mathematical expression
for fO.

The first sub-case is h≥2d+b. Depending on the position of
molecule 1 we have three possibilities (see Fig. A.3a):

a.1) Molecule 1 is close to the upper film surface, i.e.
R≤ z1≤R+b. Molecule N+1 will interact with molecule 1 only
for R≤ zN+1≤ z1+d — for other values of zN+1 molecule N+1
is below molecule 1 and there is no possibility for overlapping.
The possible trajectory of molecule N+1 is illustrated in Fig.
A.3a. Therefore, ρ1N+1 is

q21Nþ1 ¼ d2−ðzNþ1−z1Þ2 for RVzNþ1Vz1 þ d ðA:22Þ
The corresponding part of the integral in Eq. (A.21) becomes

J1 ¼
Z Rþb

R
exp

R−z1
ds

� �Z z1þd

R
exp

R−hþ zNþ1

ds

� �
� ½d2−ðzNþ1−z1Þ2�dzNþ1dz1:

ðA:23Þ

a.2) Molecule 1 is not close to the upper or the lower film
surfaces, i.e. R+b≤ z1≤h−3R. Molecule N+1 will interact
with molecule 1 only when R≤ zN+1≤ z1−b and when z1−
b≤ zN+1≤ z1+d — for other values of zN+1 the molecule N+
1 is below the molecule 1 and there is no possibility for
overlapping. The boundaries of integration are illustrated in
Fig. A.3b (solid line). The expression for ρ1N+1 is

q21Nþ1 ¼ d2−ðzNþ1−z1Þ2 for z1−bVzNþ1Vz1 þ d ðA:24aÞ

q21Nþ1 ¼ d2−b2 for RVzNþ1Vz1−b ðA:24bÞ

The corresponding part of the integral appearing in Eq.
(A.21) is reduced to:

J2 ¼
Z h−3R

Rþb
exp

R−z1
ds

� �
f
Z z1þd

z1−b
exp

R−hþ zNþ1

ds

� �

�½d2−ðzNþ1−z1Þ2�dzNþ1 þ þ
Z z1−b

R
exp

R−hþ zNþ1

ds

� �

�ðd2−b2ÞdzNþ1Þgdz1:

ðA:25Þ

a.3) Molecule 1 is close to the lower film surface, i.e. h−
3R≤ z1≤h−R. Molecule N+1 will interact with molecule 1 for
R≤ zN+1≤ z1−b and for z1−b≤ zN+1≤h−R. The trajectory of
molecule N+1 at a fixed position of molecule 1 is plotted in
Fig. A.3c. In this case ρ1N+1 is defined as

q21Nþ1 ¼ d2−ðzNþ1−z1Þ2 for z1−bVzNþ1Vh−R ðA:26aÞ

q21Nþ1 ¼ d2−b2 for RV zNþ1V z1−b ðA:26bÞ
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Substituting Eqs. (A.26a) and (A.26b) into Eq. (A.21) leads to
the following integral:

J3 ¼
Z h−R

h−3R
exp

R−z1
ds

� �
f
Z h−R

z1−b
exp

R−hþ zNþ1

ds

� �

�½d2−ðzNþ1−z1Þ2�dzNþ1 þþ
Z z1−b

R
exp

R−hþ zNþ1

ds

� �

�ðd2−b2ÞdzNþ1gdz1:

ðA:27Þ

The integrals (A.23), (A.25) and (A.27) are calculated
exactly, the obtained results are added and substituted into
Eq. (A.21) to derive the expression for the interaction function,
fO(h):

fO ¼ 1

W2 ½ 1−
b2

d2

� �
exp −

2
f
h
ds

� �
þ 2

ðfh−3dsÞðbþ dsÞ−b2
d2

�exp −
bþ f

h
ds

� �
þþ2

ðfh−d þ 2dsÞðd−dsÞ−d2s
d2

�exp −
f
h−d
ds

� �
−2 1−6

d2s
d2

� �
exp −

f
h
ds

� �
�

ðA:28Þ

It is important to note that at large film thickness, h, the
interaction function, fO(h), exponentially decays.

The second sub-case is 2d≤h≤2d+b. Depending on the
position of molecule 1 we have three possibilities slightly
different from above (see Fig. A.3):

a.1) Molecule 1 is close to the upper film surface, i.e.
R≤ z1≤h−R. The molecule N+1 will interact with the
molecule 1 for R≤ zN+1≤ z1+d and the expression for ρ1N+1
is Eq. (A.22). The analogous integral to Eq. (A.23) is:

J1 ¼
Z h−3R

R
exp

R−z1
ds

� �Z z1þd

R
exp

R−hþ zNþ1

ds

� �

�½d2−ðzNþ1−z1Þ2�dzNþ1dz1:

ðA:29Þ

a.2) Molecule 1 is not so close to the upper film surface, i.e.
h−3R≤ z1≤R+b. Molecule N+1 will interact with molecule 1
for R≤ zN+1≤h−R and ρ1N+1 is defined as:

q21Nþ1 ¼ d2−ðzNþ1−z1Þ2 for RVzNþ1Vh−R ðA:30Þ
The respective integral appearing in Eq. (A.21) is reduced to:

J2 ¼
Z Rþb

h−3R
exp

R−z1
ds

� �Z h−R

R
exp

R−hþ zNþ1

ds

� �

�½d2−ðzNþ1−z1Þ2�dzNþ1dz1:

ðA:31Þ

a.3) Molecule 1 is close to the lower film surface, i.e. R+
b≤ z1≤h−R. Molecule N+1 will interact with molecule 1 for
R≤ zN+1≤ z1−b and for z1−b≤ zN+1≤h−R and ρ1N+1 is given
by Eqs. (A.26a) and (A.26b). It leads to:

J3 ¼
Z h−R

Rþb
exp

R−z1
ds

� �
f
Z h−R

z1−b
exp

R−hþ zNþ1

ds

� �

�½d2−ðzNþ1−z1Þ2�dzNþ1 þþ
Z z1−b

R
exp

R−hþ zNþ1

ds

� �

�ðd2−b2ÞdzNþ1gdz1:

ðA:32Þ
The integrals (A.29), (A.31) and (A.32) are calculated
exactly, the obtained results are added and substituted into Eq.
(A.21). The final expression for fO(h), which is obtained is
exactly Eq. (A.28). For that reason we will not distinguish
between these sub-cases in the future.

b) Intermediate film (d+b≤h≤2d). In this case we have two
possibilities depending on the position of the molecule 1 — a
case like a.2 (Fig. A.3b) does not exist. There is a partial
overlapping of the regions in Fig. A.3a and c.

b.1) Molecule 1 is close to the upper film surface, i.e.
R≤ z1≤R+b. Molecule N+1 will interact with molecule 1 in
the whole interval R≤ zN+1≤h−R. Therefore, ρ1N+1 is

q21Nþ1 ¼ d2−ðzNþ1−z1Þ2 for RVzNþ1Vh−R ðA:33Þ

and the contribution to fO is given by:

J1 ¼
Z Rþb

R
exp

R−z1
ds

� �Z h−R

R
exp

R−hþ zNþ1

ds

� �

�½d2−ðzNþ1−z1Þ2�dzNþ1dz1:

ðA:34Þ

b.3) Molecule 1 is close to the lower film surface, i.e. R+
b≤ z1≤h−R. Molecule N+1 will interact with the molecule 1
for R≤ zN+1≤ z1−b and for z1−b≤ zN+1≤h−R and ρ1N+1 is
given by Eqs. (A.26a) and (A.26b). The resulting integral is
that, given by Eq. (A.32).

Adding the results of the calculations for Eqs. (A.32) and
(A.34) and substituting into Eq. (A.21) we arrive to:

fO ¼ 1

W2 ½ 1−
b2

d2

� �
exp −

2
f
h
ds

� �
þ 2

ðfh−3dsÞðbþ dsÞ−b2
d2

�exp −
bþ f

h
ds

� �
þþ1−2

d2s
d2

−
f
h−2ds
d

� �2

−2 1−6
d2s
d2

� �
exp −

f
h
ds

� �
�:

ðA:35Þ

c)Very thin film (d≤h≤d+b). In this case both coordinates, z1
and zN+1, change from R to h−R and ρ1N+1

2 =d2− (zN+1−z1)2.
Full overlapping of the regions, shown in Fig. A.3a and c, occurs.
Eq. (A.21) is presented as:

fO ¼ 1

d2f d
2

Z h−R

R

Z h−R

R
exp

R−z1
ds

� �
exp

R−hþ zNþ1

ds

� �

�½d2−ðz1−zNþ1Þ2�dzNþ1dz1

ðA:36Þ

Simple calculations give the final result:

fO ¼ 1

W2 f1−2
d2s
d2

−
f
h−2ds
d

� �2

−2 1−6
d2s
d2

� �
exp −

f
h
ds

� �
þ

þ 1−2
d2s
d2

−
f
h þ 2ds

d

� �2
" #

exp −
2
f
h
ds

� �
�g

:

ðA:37Þ

It is interesting to note that at h→d the limiting value of fO,
predicted from Eq. (A.37), is fO=1, which could be expected.
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