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     Abstract. We investigate theoretically and experimentally the production of 
monodisperse emulsions by means of microporous membranes. To understand the 
mechanism of drop detachment from a pore, theoretical calculations for the case without 
cross flow have been performed. The driving force of the drop detachment turns out to 
be the viscous stress due to the flow of the liquid, supplied by the pore, which feeds the 
growing drop. For drop detachment, it is not necessary the viscous stress to cause a 
violation of the force balance in the system. Instead, it is sufficient the viscous stress to 
produce a deformation in the drop shape, which leads to the appearance of a necking 
instability, in analogy with the case of a pendant drop. This instability brings about the 
drop detachment, which corresponds to a transition from stable to unstable equilibrium. 
The drag coefficients of the driving force, due to the liquid flow inside the growing 
drop, fa, and of the resistance force, due to the outer fluid, fb, are computed. The regimes 
of fixed transmembrane pressure and fixed flow rate are investigated. The theoretical 
predictions about the dependence of the emulsion drop size on various factors 
(interfacial tension, pore size, applied pressure, viscosities of the two liquid phases) are 
compared with experimental results for emulsions produced by means of Shirasu porous 
glass membranes. 
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1. Introduction 

The method of membrane emulsification (see Fig. 1) has found a considerable 
development and many applications during the last decade. This method has been 
applied in many fields, in which monodisperse emulsions are needed. An example is the 
application in food industry for production of oil-in-water (O/W) emulsions: dressings, 
artificial milk, cream liqueurs, as well as for preparation of some water-in-oil (W/O) 
emulsions: margarine and low-fat spreads. Another application of this method is for 
fabrication of monodisperse colloidal particles: silica-hydrogel and polymer 
microspheres; porous and cross-linked polymer particles; microspheres containing 
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carbon black for toners, etc. A third field of utilization is for obtaining multiple 
emulsions and microcapsules, which have found applications in pharmacy and 
chemotherapy. Closely related to the membrane emulsification is the method employing 
capillary tubes and micro-channels to produce monodisperse emulsions (1-4).  

     A key problem of membrane emulsification is to explain and predict the dependence 
of the drop diameter, 2Rd, on the experimental parameters: pore diameter, 2Rp, applied 
cross flow in the continuous phase, flux of the disperse phase along the pores, viscosity 
of the oil and water phases, interfacial tension, kinetics of surfactant adsorption, etc. 
The values of the ratio Rd/Rp, reported in different experimental works, vary in the range 
from 2 to 10; the reasons for this variation have not yet been well understood. 

 

Oil phase

Water phase

SPG membrane

Pressure difference

Formed emulsion
droplets  

 

Fig. 1. Sketch of the used membrane emulsification method: the oil phase is supplied 
under pressure in a tubular microporous glass membrane; the emulsion drops appear at 
the outer surface of the membrane, which is immersed in the water phase. 

     Our study is aimed at revealing the hydrodynamic factors that govern the drop 
detachment from the orifice of a pore. As a first step, here we address the simpler case 
of drop formation in the absence of external cross-flow. Experiments with Shirasu 
porous glass (SPG) membranes have been carried out. Further, we solved the 
hydrodynamic problem in the three spatial regions: (i) inside the pore; (ii) inside the 
growing drop; and (iii) in the outer liquid phase. The driving force, due to the liquid 
flow inside the growing drop, and the resistance force, due to the outer fluid, are 
quantified. Our working hypothesis is that these forces cause deformation of the drop 
surface that leads to a necking instability and drop detachment, analogous to the 
instability that causes the breakage of pendant drops.  
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2. Experimental results 

The experimental method and procedures are described in Ref. (3). Fig. 2 shows a 
typical experimental drop size distribution, which can be described by a Gaussian bell-
like curve. In Fig. 2, one sees that Rd/Rp ≈ 3.1. We obtain similar values in most of our 
experiments. For example, we varied the interfacial tension σ by one order of 
magnitude (0.4 < σ < 4, mN/m) by addition of NaCl to a solution of 5 mM AOT 
(sodium bis(2-ethylhexyl) sulfosuccinate, Sigma). For the produced drops, we obtained 
Rd/Rp ≈ 3 irrespective of the value of σ. In another series of experiments, σ was fixed, 
but Rp was varied by using different membranes; again Rd/Rp ≈ 3 was obtained. 
Moreover, the same result is obtained when the viscosity of the drop (oil) phase was 
increased from 2 to 50 mPa.s at fixed viscosity of the outer aqueous phase. Thus, the 
main question, which the theory should answer, is why Rd/Rp ≈ 3 – 3.5 irrespective of 
the interfacial tension, pore size and the viscosity of the drop phase.  
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Fig. 2. Size distribution of hexadecane drops formed by membrane emulsification in 35 
mM aqueous solution of cocoamidopropyl betaine (CAPB) + 100 mM NaCl. SPG 
membrane of pore diameter 2Rp = 5.1 μm is used. The curve is a Gaussian fit. 

 

3. Theoretical modeling of the drop detachment from a pore 

Our working hypothesis is as follows. For drop detachment, it is sufficient the viscous 
stress to produce a deformation in the drop shape, which leads to the appearance of a 
necking instability, in analogy with the case of a pendant drop. The instability brings 
about the drop detachment, which corresponds to a transition from stable to unstable 
equilibrium.  
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     Both the theoretical analysis and the experiment indicate that a pendant drop is stable 
up to the point of the volume maximum, Vm, and becomes unstable at this point (5,6). 
Harkins and Brown (7) expressed the maximum gravitational force (weight) for a 
pendant drop as follows: 

HBpm
(g) 2 fRgVF σπρ =Δ≡                                                                               [1] 

Δρ is the density difference between the two liquids; g is the gravity acceleration, and 
Rp is the pore radius. The Harkins-Brown factor, fHB, is related to the instability of the 
drop profile and is independent of g. One can calculate fHB from the equation: 

3/2
maxHB )]([

2
1 λ
πλ

Vf =                                                                                       [2] 

where Vmax is the dimensionless Vm. In Ref. (8), Vmax is tabulated as a function of the 
dimensionless parameter λ = Rp/(Vm)1/3.  

 

Fig. 3. Drop from the liquid phase ‘a’ growing at the orifice of a membrane pore. Phase 
‘b’ is the outer liquid medium. Rp and Rs are the radii of the cylindrical pore and 
spherical drop surface. For a given Rp, the angle α characterizes the drop size. 

     In the case of membrane emulsification, the emulsion drops are so small that the 
gravitational deformation of their surfaces is completely negligible. However, the 
emulsion drops, growing at the opening of a membrane pore, can be deformed by the 
hydrodynamic flow of the inner phase. Then, an elongated profile, similar to that of the 
pendant drop, will be formed. Such elongated drop has a limit of its stability (maximum 
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volume, Vm) after which it becomes unstable and detaches from the pore. In analogy 
with Eq. [1], we make the model assumption that at the moment of detachment, the 
hydrodynamic force, Fh, acting on the drop is equal to the effective body force that 
would cause shape instability and detachment: 

HBph 2 fRF σπ=                                                                                               [3] 
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Fig. 4. Plot of the computed dimensionless drag-force coefficients fa(α) and fb(α) related 
to the hydrodynamic flow in the inner phase ‘a’ and outer phase ‘b’ (Fig. 3). 

The hydrodynamic force acting on the forming emulsion drop, can be expressed in the 
form Fh = fhηaRpvm, where ηa is the viscosity of the inner fluid, vm is the mean velocity 
of this fluid along the channels of the membrane and fh is a hydrodynamic drag-force 
coefficient, which can be presented in the form: 

)()( b
a

b
ah α

η
η

α fff +≡                                                                                   [4] 

where fa(α) and fb(α) are plotted in Fig. 4; ηb is the viscosity of the outer fluid; α is an 
angle that characterizes the size of the growing drop (Fig. 3); fa(α) and fb(α) are 
contributions to fh due to the inner and outer fluid, respectively. We solved the 
respective hydrodynamic problem assuming that the oil-water interface is spherical (of 
radius Rs) during the process of drop growth at the tip of the capillary (Fig. 3). As a 
result, we computed fa(α) and fb(α), which are dimensionless functions of α; see Fig. 4. 
Note that fa and fb depend only on α, but are independent of the other geometrical and 
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material parameters. Substituting Fh = fhηaRpvm in Eq. [3] and using Eq. [2], we obtain 
the condition for drop detachment in the form: 

3/2
maxmah )]([ λ

λ
ση Vvf =                                                                                 [5] 

where Vmax(λ) is a universal function given by Eq. [4] in Ref. (8). Because Vm = 
(4/3)πRd

3 and λ = Rp/(Vm)1/3, we have: 
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In addition, one could express the drop volume Vm in terms of Rp and α (Fig. 3), and 
using again the definition λ = Rp/(Vm)1/3 we obtain: 

α
α
απλ sin
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=−                                                                               [7] 

 

4. Drop formation in regime of constant transmembrane pressure 

This regime is realized by applying a constant pressure difference, ΔP, across the 
emulsification membrane. In our experiments, the pressure was supplied by a gas bottle. 
For a Poiseuille flow along a channel of length L, the mean velocity of the fluid, vm, is 
proportional to the applied pressure difference (9): 

⎟⎟
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                                                                                      [8] 

The driving pressure of the flow is smaller than the total transmembrane pressure, ΔP, 
because of the pressure difference, 2σ/Rs, across the spherical drop surface (Fig. 3). 
Substituting Eq. [8] into Eq. [5], we derive the following expression for ΔP: 

}sin)]([/)]([4{2
h

3/2
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p
ααλλσ

+=Δ flV
R

P                                                    [9] 

Here, l = L/Rp, and we have used the fact that Rs = Rp/sinα (Fig. 3). We recall that 
Vmax(λ) is a universal function given by Eq. [4] in Ref. (8). In Fig. 5, we have plotted 
ΔP versus Rd/Rp for two values of the viscosity ratio ηb/ηa. We used the following 
procedure of calculations. First, for a given value of α, from Eqs. [4] and [7] we 
determine fh and λ. Second, from Eq. [6] we calculate Rd/Rp. Finally, from Eq. [9] we 
find ΔP. Because the emulsification membranes are composed of cavities connected by 
channels, L is typically of the order of Rp. For this reason, when calculating ΔP (Fig. 5), 
we substituted l ≈ 1 in Eq. [9]. 
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     The curves in Fig. 5 exhibit minima at Rd/Rp = 3.45 and 3.60, respectively, for ηb/ηa 
= 0.5 and 1.0. The latter two values of Rd/Rp correspond to α = 163.1° and 163.9°. The 
value ΔP = ΔPcr at the minimum represents the critical transmembrane pressure for drop 
formation. When the applied pressure is gradually increased, the production of drops 
begins suddenly, at ΔP = ΔPcr. If ΔP is kept slightly above ΔPcr, but close to ΔPcr, which 
is the situation in many experiments (including ours), one would obtain drops of Rd/Rp 
slightly below the value of Rd/Rp at the minimum (i.e. close to 3), which is 
experimentally observed. As illustrated in Fig. 5 (see the horizontal line with ΔP > 
ΔPcr), the model predicts that at greater values of ΔP one produces smaller drops. In the 
limiting case of very high ΔP, the ratio Rd/Rp approaches 1, as observed in another 
series of our experiments. 
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Fig. 5. The transmembrane pressure, ΔP, scaled with the capillary pressure, 2σ/Rp, as a 
function of Rd/Rp for two values of the viscosity ratio, ηb/ηa. The minimum represents 
the critical pressure for drop detachment, ΔPcr. For a given ΔP > ΔPcr, the intersection 
point of the respective horizontal line with the left branch of the calculated curve 
determines the dimensionless radius, Rd/Rp, of the formed drops. 

     The viscosity of the drop phase, ηa, cancels when we combine Eqs. [5] and [8] to 
derive Eq. [9]. Consequently, in the considered regime (of constant transmembrane 
pressure) the effect of viscosity comes only through the ratio ηb/ηa in Eq. [4]. For ηb/ηa 
< 1, the respective term in Eq. [4] becomes negligible, and the value of Rd/Rp at the 
minimum approaches 3.25 for ηb/ηa = 0. In contrast, for ηb/ηa > 1, the respective term 
in Eq. [4] becomes considerable, which leads to the detachment of larger drops at higher 
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viscosities of the outer phase. This is what we observe experimentally when we dissolve 
greater amounts of glycerol to increase the viscosity of the outer (aqueous) phase. 

 

5. Drop formation in regime of constant flow rate 

Experimentally, this regime could be realized when the disperse phase is supplied with a 
constant speed by a pump. Then, the mean velocity of the liquid in the capillary channel 
is: 
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where td is the period of drop formation and we have used the definition λ = Rp/(Vm)1/3. 
Substituting Eq. [10] into Eq. [5], we derive: 
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where τ is the dimensionless period of drop formation; Vmax(λ) is a universal function 
given by Eq. [4] in Ref. (8). Thus, one could determine the dependence of the relative 
size of the detached drops, Rd/Rp, on the period of drop formation, td, in regime of 
constant flow rate. The computational procedure is the following. First, for a given 
value of α, and for a fixed ratio ηb/ηa, from Eqs. [4] and [7] we determine fh and λ. 
Second, from Eq. [6] we calculate and Rd/Rp. Finally, from Eq. [11] we find td. The 
obtained results indicate that the relative drop size, Rd/Rp, decreases with the increase of 
the frequency of drop release, 1/td. In this regime, the effect of the viscosity of the inner 
fluid, ηa, is considerable because of the multiplier ηa in Eq. [11]. 

 

6. Conclusions 

To understand the mechanism of drop detachment from a pore, theoretical calculations 
have been performed, which gave the dependence of the hydrodynamic drag-force 
coefficient, fh, on the drop size; see Eq. [4] and Fig. 4. Assuming that the viscous 
stresses produce a deformation in the drop shape, which leads to the appearance of a 
necking instability and drop breakage, we derived a condition for drop detachment, Eq. 
[5]. In regime of emulsification under constant transmembrane pressure, we derived a 
relation between Rd/Rp and the applied pressure, ΔP; see Eq. [9]. It predicts that the plot 
of ΔP vs. Rd/Rp exhibits a minimum at Rd/Rp ≈ 3.5 (Fig. 5), which corresponds to the 
critical pressure for drop detachment, ΔP = ΔPcr. In the experiment one often works at 



 9

ΔP slightly above ΔPcr, but close to ΔPcr, which corresponds to Rd/Rp ≈ 3. The theory 
predicts that value of Rd/Rp at the minimum is insensitive to the interfacial tension, σ, 
pore radius, Rp, and on the viscosity ratio, ηb/ηa (if ηb/ηa < 1). For ηb/ηa > 1, the 
increase of ηb/ηa leads to the formation of bigger drops (greater Rd/Rp). These 
theoretical predictions are in agreement with our experimental observations (Section 2). 
Similar analysis can be applied to the case of emulsification under constant flow rate 
(Section 5). Additional work is necessary to complete the comparison of theory and 
experiment with respect to the influence of the various factors. 
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