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Shape of the Capillary Meniscus around an Electrically Charged
Particle at a Fluid Interface: Comparison of Theory and Experiment
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Here, we consider in detail the problem of the shape of the capillary meniscus around a charged colloidal particle,
which is attached to a fluid interface: oil/water or air/water. The meniscus profile is influenced by the electric field
created by charges at the particle/nonpolar fluid boundary. We digitized the coordinates of points from the meniscus
around silanized glass spheres (2@D0xm in radius) attached to the tetradecane/water interface. The theoretical
meniscus shape is computed in three different ways that give numerically coincident results. It is proven that for
sufficiently small particles the meniscus profile can be expressed as a superposition of pure electric and gravitational
deformations. Special attention is paid to the comparison of theory and experiment. A procedure for data processing
is developed that allows one to obtain accurate values of the contact angle and surface charge density from the fit
of the experimental meniscus profile. For all investigated particles, excellent agreement between theory and experiment
is achieved. The results indicate that the electric field gives rise to an interfacial deformation of medium range and
considerable amplitude.

packed colloidal structures (mesostructufds}? In particular,

an indication of the action of a long-range attractive force has

been found for particles at the surface of an emulsion &top.
When therepulsive forces are significant, the particles form

hexagonal arrays of intersite distance considerably greater than

the particle diametet20-28 The analysis of the experimental

Jesults shows that these repulsive forces have an electrostatic

particles interact via repulsive and attractive forces, whose range®"i9in- In some cases, the addition of electrolyte to the aqueous

and magnitude are often much greater than for the DLVO surface Phase suppresses the repulsibff,whereas in other cases the
forces?-20 When theattractive forces prevail, one observes electrolyte does not affect the long-range repulsion, even at high

particle aggregation and the formation of large-scale densely ionic strength§.1*2~f‘The latter finding has been explained by the
presence of electric charges at the particléfoif-27and particle/

air?8 interfaces. Because the electric field is not screened in the
nonpolar phase (oil, air), the adsorbed particles experience a
long-range Coulombic repulsion. Itis interesting that this repulsive
force depends on the particle protrusion in the nonpolar phase
(i.e., on the contact angle). Horozov e2af5-28 experimentally
established that very hydrophobic particles with large contact
angles form well-ordered monolayers at interparticle distances
larger than 3 particle diameters. In contrast, the monolayers of
less hydrophobic particles (with contact angles smaller thaf) 115
were disordered and aggregated. The diserdeder transition
in the monolayer structure occurred in the interval of contact
angles between 115 and T29Here and hereafter, we follow
the standard convention that the contact angle is measured across
the water phase.)

One of the possible explanations of the observed interparticle
attraction is the action of lateral capillary forces, which are due

1. Introduction

Monolayers of colloidal particles at a fluid interface (oil/water
or air/water) are widely studied in relation to the properties of
Pickering emulsion$?2 the formation of particle arrays and
colloidosomes at the surface of emulsion drépsand the
attainment of colloidal structures with various applicatiéns.
The experiments with such systems indicate that the adsorbe
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water phase

Figure 1. Sketch of a particle at the interface between water and
a nonpolar fluid (oil, air)y is the interfacial tensiorRR andr. are

the radii of the particle and the three-phase contact tirendé are

the central angle and contact angle;is the meniscus slope angle
at the contact line; an# is a normal force acting on the particle,
which can be of electric and/or gravitational origin.

to the overlap of the menisci around the separate parfi@rSs32
The meniscus shape= ¢(r), around an isolated particle on a
horizontal fluid interface (Figure 1) represents a solution of the
Laplace equation of capillarity, which can be linearized for the
case of small slope, {ddr)? < 1:2931.32

e

rarldr]

dFc=0 (1.1)
whereg? = Apgly; Apis the difference between the mass densities
of the lower and upper fluid phasesis the interfacial tension,

andg is the acceleration due to gravity. The normal forege,

acting on the particle must be counterbalanced by the vertical
resultant of the interfacial-tension force acting at the contact line

on the particle surface

F = 2ar_ysiny, (1.2)
wherey is the meniscus slope angle at the contact line, which
is a circumference of radius (Figure 1). For small meniscus
slope, we have sip; ~ tany, = %/4 atr =r., and then eq 1.2
gives

F

dg,  _
271 gy

dr

(1.3)

.

The solution of eq 1.1, along with the boundary condition of eq
1.3, read¥31.32

__FKdam F n(L)

2myariKy(ar) 2y \rg
wherergis a constant anidp andK; are modified Bessel functions
of zeroth and first ordet®=3% In the last step, we have used the
asymptotic expansions do andK; for gr < 1 (for particle
radius much smaller than the capillary lenggh})33-35

Ko(X) ~ _In(y_;x)

&(r) (1.4)

Kl(x)%)—l( forsd<1  (L5)
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Note, that despite the logarithmic behaviorky(qr) at short
distances (eq 1.5) this function and the meniscus prdfite
decay exponentially at long distances.

Nikolaides et aP° noted that the electric field generated by
the particles creates an electrostatic contribution to the pressure,
pei, Which vanishes as 1. Megens and Aizenbet§jincluded
the effect ofpe in the Laplace equation:

SR

rdr\ dr (1.6)

qZC = %pel(r)

See eq 1.1 above. Then, if we (approximately) substjites
Alrfinto eq 1.6 A = const.) and neglect the gravitational term,

g%, the result read$
=0l
8ay\r,

where the boundary condition, eq 1.3, has been used to determine
A. For experimental parameter values, eq 1.7 predicts a faster
decay of the meniscus than eq 1.4.

In a recent study’ we carried out experiments with larger
particles (of radius 206300xm), which form microscopically
visible menisci (dimples) at the oil/water and air/water interfaces.
The side-view photographs showed that the experimental slope
angley. (Figure 1) is much greater (about 15 times) than the
“gravitational” value of iy, which is the theoretical value
calculated under the assumption that only the particle weight
and buoyancy force are acting on the particle. The difference
between the experimental and gravitatiopalvas attributed to
the action of a normal electric (electrodipping) forE&). Thus,
the total force exerted at the particle is

&(r) = (1.7)

F=F® L O (1.8)
whereF @ is the gravitational force. Moreover, the experiments
showed thaE®) is independent of the electrolyte concentration
in the aqueous phase, which means that in our €&%kis
dominated by electric charges at the particle/nonpolar fluid
boundary rather than at the particle/water boundaFrom the
experimentally determingé®), we calculated the surface charge
density at the particle/nonpolar fluid boundamy,, which
compares well with results obtained by other autiéf8:28 In
general, the electrodipping force is a sum of contributions from
electric charges at the particle/nonpolar fluid and particle/water
interfaces:
F& = F® 4 W (1.9)

F™ andFW pointin the same direction: both of them are pushing
the particle into the water phase. Theoretical expressions for
calculating=™ andF™ have been derivedl.They are based on
modeling the particles as spheres of given surface charge densities
instead of point dipoles, as in previous work. An exact numerical
solution of the electrostatic boundary problem (in toroidal
coordinates) was obtained, which also produces numerical data
for the electrostatic pressungy(r). Finally, we substituted the
calculatede(r) into the Laplace equation, eq 1.6, and computed
a meniscus profil&(r), which was found to agree well with the
experimental profilé?

In addition to the correct results reported in our previous
article’ it contains two mistakes that we want to announce and

(36) Megens, M.; Aizenberg, Nature2003 424, 1014.
(37) Danov, K. D.; Kralchevsky, P. A.; Boneva, M. Pangmuir2004 20,
6139-6151.
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clarify here. First, there is a misprint (noticed by Oettel e¥pl.

in the form of eq 6.2 in ref 37, which is the Laplace equation
in toroidal coordinates. The correct form of the latter equation
is

3
X d
c

d 2. 1
ld_fl) —q¢= SPe
Equation 1.10 can be obtained by substitutirg r/x; into eq
1.6. Equation 6.2 in our artictéwas given only for completeness;

it was not used in our calculations, and it had not affected the
correctness of the results reported therein. Second, the analysi
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-

Figure 2. Side-view photograph of a silanized glass patrticle at the

water-tetradecane interface. The coordinates of selected points
denoted in the figure) on the left- and right-hand-side meniscus
rofiles have been digitized and compared with the theoretical profile

of eq 1.6 implies that its solution has the following asymptotic (Figure 3 and section 7.4).

behavior at long distances from the particle:

(=) r -
&)= gyln(a) forr,<r<q (1.12)

See ref 39 and section 4.2 below. Note that the logarithmic
prefactorin eq 1.11 contains orfi{®) and contains no contribution

by charges located at the boundary of the particle with the nonpolar
fluid (oil, air). This case corresponds to a situation that has been
observed in many experimerfs23.26-28.37|n other words, we
presume that

F > FW andF© ~ O (1.12)

fromF©). As a consequence, our matched asymptotic expansions

for the meniscus profil€(r) and interaction energy(r), eqs
3.25 and 3.26 in ref 37, which are based on eq 1.11 With
AF@)instead ofF @, turn out to be incorrect far'r, > 4. In fact,
theshortrange asymptotics @f(r) really contains a logarithmic
term with a prefactor proportional 6 — AF®), but this term
cannot be matched with the outer asymptdiikg(qr) and cannot

be used to determine the multiplicative const@nThe reason

is that the physical problem is characterized by two different

The article is organized as follows. In section 2, we describe
the experiment and the procedure for data acquisition. In section
3, we consider three different methods for calculating the
theoretical meniscus profile. Section 4 is devoted to the range
of the electric-field-induced interfacial deformation and to the
asymptotics of the meniscus profile at long distances from the
particle. In section 5, we prove that for sufficiently small particles
the interfacial shape can be expressed as a superposition of electric

length scales (related to the gravity and electric force, scaled byand gravitational deformations. The magnitudes of the latter two

the capillary force); therefore, the conventional matching
procedure of Prandfl is inapplicable. The incorrect matching
affects only the validity of the results in section 3.7 in ref 37.
The rest of ref 37, including the experiment, the theoretical
expressions for the electrodipping foré&" andF™), and the
numerical solutions, is correct.

The problem of quantifying the meniscus profir) for r¢
<r < oo, inthe case of an electrically charged particle is the main

subject of the present article. Our goal here is to develop a

procedure for processing experimental datd oy, which would
allow one to determine the surface charge density, at the
particle—nonpolar fluid boundary and to obtain a more accurate
value of the contact anglé, in comparison with that obtained
from the simple goniometric method. This problem is nontrivial

because the meniscus shape is affected by the electric field

engendered by the particle. In other words, to calcujé&tewe
need to knowpe(r); see eq 1.6. We restrict our analysis to the
case of asingle particle. Such a study is a prerequisite for a
guantitative and reliable analysis of the more complex problem
of two attached particles and the electric-field-induced capillary

types of deformations are compared in section 6 for different

particle radii and contact angles, and the total depth of the

concavity is quantified. In section 7, we consider the comparison

of theory and experiment; a relatively simple procedure for data

processing is developed. It is based on the use of tabulated
theoretical dependencies, which are given in the Supporting
Information for this article.

2. Experiment

The experiments were analogous to those described inref 37. The
water phase was pure deionized water or an aqueous solution of
NaCl. The oil phase was tetradecane, with density 0.763 g/cr,
dielectric constant, = 2.04, and interfacial tension against water
y =52.2mN/m. The experiments were carried out at@3As solid
particles, we used silanized glass spheres of depsity2.62 g/cni
and dielectric constart, = 3.97. The procedure of the silanization
of the particles is described in ref 37.

The experimental cell is a rectangular glass box of sides from
optical plane-parallel plates. The height of the cell is 55 mm. The
horizontal cross section of the cell has dimensions of 80 xngb
mm, with both of them being markedly greater than the characteristic

interaction between them. The latter problem has been the subjectapillary length,g™* = (Apgly)~*2 the latter is 4.7 mm for the

of controversy in the literatur&:39.41:42
In the following, we will assume that the particle is spherical

tetradecane/water interface. The inner walls of the cell are moderately
hydrophobized (contact angte 80° across water). Thus, a slightly

and the fluid interface is planar before particle attachment. Another oncave tetradecane/water or air/water meniscus is formed, which

assumption, which is fulfilled for most systems of experimental
interest, is that the particles are sufficiently smai )@ < 1,
and that the slope of the interfacial deformation produced by
them is also small, @dr)2 < 1. In addition, we will restrict our

| decays exponentially, at a relatively short distance from the walls.

Thus, the meniscus around the central part of the cell is horizontal.

The observations were carried out by means of a horizontal
microscope equipped with a long-focus objective and connected to
amonitor and video-recording system. In the absence of the particle,

considerations to the case when the electric effects are dominate@ horizontal interface was seen. After inserting the particle, we

(38) Oettel, M.; Dorfmguez, A.; Dietrich, S. Private communication.
(39) Oettel, M.; Donmguez, A.; Dietrich, SPhys. Re. E 2005 71, 051401.
(40) Nayfeh, A. H.Perturbation MethodsWiley: New York, 1973.

(41) Foret, L.; Wuger, A. Phys. Re. Lett. 2004 92, 058302.

(42) Wirger, A.; Foret, LJ. Phys. Chem. R005 109, 16435-16438.

observed deformations of the interface (deviations from planarity),
as in the photograph in Figure 2.

We digitized the X, 2) coordinates of a series of points located
on the left- and right-hand-side meniscus profiles of a given video
frame (Figure 2). To remove the undesired influence of an occasional
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3. Theoretical Calculation of the Meniscus Profile
25 | levelof the horizontalinterface, z=h, - T One can calculate the meniscus profil¢;), by using three
A different approaches. (i) One could solve the partial differential
3 20 1 + equations of the electrostatic problemmerically as in ref 37.
N1 gravitational brofile .= (ii) One could solve the electrostatic boundary probkmalyti-
§ 5L e T L cally, with the help of the MehlerFock integral transformation,
2 as described in ref 43. (iii) One could describe the meniscus
5 101 theoretical o i profile with simpleinterpolation formulawhose parameters are
3 profile A 33mM tabulated; see eq 3.8 and Tables-I& in the Supporting
'g R=240.6 pm v 9.9mM Information for this article. In subsections 3.1, 3.2, and 3.3, we
> 57 ro=236.1 pm o ;:; :m T consider these three different approaches separately.
6" = 113.7° o 41.5mM 3.1. Numerical Solution of the Electrostatic Boundary
0+ + Problem. This approach is described in section 5 of ref 37.
300 400 500 700 1000 Initially, we used a second-order difference scheme with a grid

of 101 x 101 subdomains. The numerical results are coincident
Radial distance, r (um) (but the computations are longer) if a grid with 261201
Figure 3. Meniscus shape(r), around a silanized glass particle  subdomains is used. Furthermore, we solved the same problem
at the water-tetradecane interfac® andr. are the particle and by means of the alternating direction implicit (ADI) metiéd
contact-line radiig®is the goniometrically measured contact angle. using the general three-level scheme with 20012001
The symbols are digitized points on the meniscus profile taken from g, 4omains. The latter numerical method is different from that
photographs of the same particle at various NaCl concentratlons.used in ref 37, but the results fae(r) obtained by the two

The solid line is the theoretical profile (section 3). The dashed A .
dotted line is the gravitational profile, calculated from egs 2.1 and Procedures coincide, as should be expected. The numerical

5.3, which shows the hypothetic shape of the meniscus if electrostaticProcedures yield the electric field, and the electric presgdre,
effects are missing. The dashed line is the level of the horizontal exerted at the oftwater interface
nondisturbed oit water interface far from the particle. The difference

between the theoretical and _gravitationall profiles represents the €, zjwan

electric deformation of the fluid interfac&®(r). Pei(Xy) = — %Ez =0 =~ e G(xy, 0, 6pn) (3.1)

small tilt of thex axis on the photograph with respect to the actual

horizontal direction, we slightly rotated the axes of the)coordinate where

system until achieving the best agreement of the left- and right-

hand-side profiles for the same photograph. In most of our previous re €

experiments; only the anglep. was measured from the video frames. X, = T andepn T (3.2)
n

For the needs of the present article, we also digitized the meniscus
profiles in these video frames. For all digitized profilegersusr . . .
(see, for example, Figure 3), we applied the procedure described inAS Usual# is the contact angle (Figure B is thezcomponent
section 7 to obtaimw,, and 6. of the electric-field intensity; and the dimensionless function

As in ref 37, we did not observe any effect of the NaCl G(xi, 0, €pn) is determined by numerical solution of the
concentration in water. The latter was varied by injecting known electrostatic boundary problem. Note tl@ais independent of
portions of concentrated NaCl solution into the aqueous phase. Anr. and op,. From the values o6, we can calculat@e(r) with
example is shown in Figure 3, where the symbols denote digitized the help of eqs 3.1 and 3.2 for each set of specific valueg, of
points from the left and right profiles of six photographs of the same O 0, €, anden. Finally, having determinegs, we compute
particle at six different NaCl concentrations denoted in the Figure. e meniscus profile(r), either by numerical solution of eq 1.6
The dasheddotted line in Figure 3 represents the gravitational or by means of eq 5.21 below.

meniscus profile (i.e., the hypothetical meniscus profile if electric - . - .
effects were absent). The latter profile was computed with the help . The advantage _Of this method is that itis based on a_relf_;ltlvely
simple mathematical apparatus at the cost of application of

ofeq 1.4: complex numerical methods, which need longer computational
FOK (qr) F© time, or the use of a fast computer.
Oy = - 0 ~ — —K,(qr) (2.1) 3.2. Use of the MehlerFock Integral Transform. As
2ryareKy(ary) 2y demonstrated in ref 43, the application of the MehlEock

integral transform reduces the partial differential equations of
the electrostatic boundary problem to ordinary differential
r — oo. The difference between the gravitational profile and the gquatlons, which can be easily solved. The gxecutlon of t.he
experimental points demonstrates the effect of the electric field on INVerse integral transform leads to a Fredholm integral equation
the meniscus shape. Because the variation of the NaCl concentratiorPf the second kind. The mathematical analysis in ref 43 yields
produces no effect, we can conclude that the electric charges arethe following expression fope

located at the partictetetradecane boundary and that the electrostatic

In Figure 3, the curvé©)(r) is shifted along the vertical axis such
as to coincide with the horizontal interface far from the particle for

interaction between the particle and the-ailater interface occurs 2n0pn2 XlG 5
across the oily phase. From the best fit of the experimental data by Pei(X) = — T 19(Xs, 0, €,0)]” (3.3)
the exact numerical solution for the meniscus profile (see the € (1-x)
continuous curve in Figure 3 and section 7), we determined the
surface charge density at the partietal interface,op, = 67.9uC/ wherelis a dimensionless function amds the smallest positive
m2, root of the equatiof?
The data processing procedure and additional experimental data
are given in section 7. The theoretical description of the meniscus sin[(2r — O)v] = f5 sin(@v) (3.4)

profile and a more detailed discussion of Figure 3 can be found in
section 3. wheref = (epn — 1)/(epn + 1). Note that the smallest positive
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root of eq 3.4 is always between 0.5 and 1.0. For this reason, Supporting Information for this article. For all® x; < 1 and

per has an integrable divergence at the contact liae<(1). At
long distances from the particle;(— 0), the electric pressure
vanishespe 0 x:5. J(X4, 6, €pn) is a function of bounded variation,
which can be calculated from the expreséfon

2%2 w  TP7)
J(xy, 6, = -
(Xl Gpn) (1 + X1)3/2(l _ X1)1/2+V ./; S|nh[(.7'[ — 9)1—] X
P_1/5 4 ir(coshy) dz (3.5)
where
2x,”
coshyp =1+ 5 (3.6)

P_1»+i: is the Legendre function of the first kind; is an
integration variable;i is the imaginary unit; and¥«(7) is
the Mehler-Fock image of the dimensionless surface poten-
tial at the particle-oil interface. W¢(z) is calculated to high
precision as a solution of the integral equation of Fredholm,
which is solved by iterations; for details, see section 5.1 in ref
43. Having determinege from egs 3.3-3.6, we can compute
the meniscus profile(r), by a numerical solution of eq 1.6.
Alternatively, one could comput&r) with the help of egs 2.1,
3.7, and 5.22.

The advantage of the latter method for calculafi(ig is that

0.125= ¢pn < 8, the relative error of this interpolation formula

is smaller than 0.68% for°’5< 6 < 30°, smaller than 0.5% for

30° < § < 150, and smaller than 1.0% for 156< § < 165°.
Equation 3.8b was specially designed to provide the best accuracy
close to the contact line (— r¢; x; — 1), where the meniscus
slope angley., and the contact anglé, are defined.

Thus, for given6 and ey, values, one first determines
coefficientsa, b, ¢, and ng') from Tables A-D (Supporting
Information); the four-point interpolation formula, eq 7.16, is
convenient for application. Then, for a given valueogf one
can calculates(r) with the help of eqs 3.7 and 3.8.

Alternatively, if experimental points for the meniscus profile
are available, such as those in Figure 3, then one can fit the data
with the help of eq 3.8, as explained in section 7.2.

At the contact linex; = 1, we haveZ®) = 0, and eq 3.8a
indicates tha is the dimensionless electrostatic contribution
to the depth of the concavity formed by the particle; see also eq
6.3. In the other limitx, — 0, eq 3.8 gives®) 0 —x,%a; see
also eq 5.24.

3.4. DiscussionThe continuous line in Figure 3 represents
the theoretical meniscus profile, which could be drawn by either
of the procedures described in section 3.1, 3.2, or 3.3. The three
different procedures give practically coinciding results. The depth
of the concavity created by the particle is

h.=—2(ro) (3.9)

the computations are much faster than those described in section

3.1. As demonstrated in ref 43 (Figures 5 and 12 therein), the ) ]
two methods give numerically coinciding results. Most of the e iS the distance between the planes of the contact line and the

numerical results reported in the present article are obtained bynorizontal fluid interface far from the particle (Figure 3). The

means of the method based on eqs-33.
3.3. Interpolation Formula for the Meniscus Profile. The
procedures for calculating(r) described in sections 3.1 and 3.2

most important conclusions from Figure 3 are (i) that the electric
forces create a concavity (dimple) of significant depth in the
fluid interface around the particle and (ii) that the effect of the

use complex numerical methods and mathematical apparatus&l€ctric forces od(r) disappears far > 3rc. At greater distances
For the needs of fast estimates and experimental data processing! > 3'c), the meniscus shape is governed by the gravitational

we obtained a simpler interpolation formula, eq 3.8. As
demonstrated in sections 5.3 and 6.1, for small partictgg)?(

deformation(@, alone. In other words, the electric field produces
a deformation of medium range: it is neither long-ranged

< 1, the meniscus profile can be expressed as a superpositior(Signiﬂcam forr >r¢, as the gravity-induced capillary force) nor

of electric and gravitational profiles

&) =&+ ¢9m

where®@ is given by eq 2.1 ang©) can be calculated from the
expression

(3.7)

20, r 2,
{0 =—2—Ex) —HE)  (3.89)
€nY
7

(el 14 cx,?

c 8 2 6 4 2 1
—C Jal — x4 bx A1 — x9)] — %41 — x)——=
a-+ bx? ' ' ' ! "a+ bx?
(3.8b)

where, as usuak; = r /r; the coordinate origin is fixed such that
(r — o) = 0. Equation 3.8 represents a four-parameter
interpolation formula. Coefficients, b, c, andH(Ce') have been
determined by fitting the numerical data f&) obtained by

short-ranged (significant only far — r. < r, as the van der
Waals attraction). (Note that the range of the electric-field-induced
deformation depends on the contact angle; the range is longer
for greater contact angles; see section 6.1.)

As mentioned above, the lateral capillary force between two
attached particles is due to the overlap of the dimples formed
around then??-32 Correspondingly, the range of this capillary
force is determined by the range of the interfacial deformations.
Thus, we could expect that the capillary interaction engendered
by the electrodipping forc&®, is of medium range. The profile
in Figure 3 indicates that the capillary interaction between two
floating particles (the electric-field-induced capillary attracifpn
could be very strong for < 3r.. (For contact angle-150°, the
respective range is < 5r¢; see section 6.1.)

Indications of the action of an attractive force of (at least)
medium range were recently observed by Horozov et al. for
silica particles at oitwate?®27and air-water®interfaces. The
charged particles aggregate despite the presence of a strong
electrostatic (Coulombic and dipolar) repulsion between them.
This shows the presence of an attractive force, which is able to

means of the procedure in section 3.2. These coefficients areovercome the electrostatic repulsion and to produce particle

tabulated for variou# ande,, values; see Tables-AD in the

(43) Danov, K. D.; Kralchevsky, P. Al. Colloid Interface Scjin press, 2006.

(44) Fletcher C. A. JComputational Techniques for Fluid Dynamics 1.
Fundamental and General Techniquésd ed.; Springer-Verlag: Berlin, 1991;
pp 251-271.

aggregation. It is important to note that the aggregated particles
are not in close contact but stay well separated at equilibrium
distances beyond the range of the van der Waals attra@'tiss.
suggested by Horozov et al.28a possible origin of the observed
attraction can be the capillary force due to the undulated contact



2658 Langmuir, Vol. 22, No. 6, 2006 Danov et al.

line 1845-47 |n refs 27 and 28, the particteil (air) interface has retical curve (representing the best fit){(dr )., (section 7.3).
been electrically charged; therefore, another possible explanationThe respective three values of the contact angle are deiéted
of the observed aggregation could be the action of electric-field- 6®), and @, the latter being the most reliable; see section 7.
induced capillary attraction related to electric deformations of

the fluid interface (e.g., Figure 3). 4. Range of the Meniscus Electric Deformation
In Figure 3, the gravitational deformatiof?), described by 4.1. Estimate of the Range ope. According to eq 6.6 in ref
eq 2.1 dominates the meniscus profile for 3rc. Forre = 37, the electric force exerted on the partié€), must be equal

200-3004m, as in our present experiment$? gives rise to  to the integral ofpe over the oit-water (air-water) interface:
a long-range gravity-induced capillary attraction between two

floating particles. In contrast, for smaller particles,< 5—10 e — _2ﬂf°° dr r p,(r) (4.1)
um, the effect ofz@®@ becomes negligiblé? e ¢
A second point that should be discussed is the expression forLet us check how far from the particle we have to integrate in

pe(r). In our previous articlé’ the numerical data fqu(r) have . : .y
been fitted by means of a semiempirical formula, eq 3.7, therein, o'rder o satisfy eq 4.1 with a sufficiently small error, equal to

which could be obtained from eq 3.3 if we formally substitute

JEe, =27 [ dr 1 p(r) B

P nzTanz = const (3.10) e =€ (ex1) (4.2)
¢ Ypn

whered = (3+ u)(2 + u)(1 + u)ul24 andu = 2v — 1. However To estimate the integral in eq 4.2, we substitute the asymptotic
the general theory in ref 43 shows tllalepends om;. Despite expression fopy, eq 3.9 in ref 3.7:

the fact that the latter dependence is not strong, it should be taken TR =G
into account when calculating the meniscus profile) by P((r) ~ _—c ro 1 (4.3)
integrating eq 1.6. For this reason, it is not recommended to use ¢ ar® le

the semiempirical formula, eq 3.7 in ref 37, for the computation

of &(r). From egs 4.2 and 4.3, we get
Another point that deserves discussion and is related to the r \La

comparison of theory and experiment is the following. When — = (—) (4.4)

calculating the electrostatic field in refs 37 and 43, as a zeroth- r €

order approximation it is assumed that the watsonpolar fluid

boundary is planar. Then, the electric-field intensity apdre

calculated. Finally, the calculateglis substituted into the Laplace r

equation, eq 1.6, and the interfacial deformation (deviation from €=0.01 forr— =26 (4.5)

planarity),;(r), is determined (e.g., ref 37). In other words, when ¢

solving the electrostatic boundary problem, it was assumed (in

C

With 1 = 0.482 (see ref 37), eq 4.4 yields

r
the zeroth-order approximation) that= o (Figure 1) and then €=10.001 forr— =47 (4.6)
&(r) was determined as a first-order correction for the sagme ¢
For a deformed interface, we hage= o + vy, and we can If eq 4.2 is used as a measure of the range of the electric force,

determine each of the latter three angles from photographs (suchnen eqgs 4.5 and 4.6 indicate that the effect of the electric field
as Figure 2) by goniometric measurements. When comparinggp, &(r) practically disappears atr. > 4. This conclusion is in
the experimental meniscus profil&(r), with theory and agreement with the results shown in Figure 3.

determining the anglg as an adjustable parameter (section7),0ne 4. 2. Long-Range Asymptotics of the Meniscus Profile.et
obtains a value that is very close to the experimental afigle s encircle the floating particle with an imaginary cylinder (Figure

rather than tax; compare angle§® and¢® in section 7. This 4 which has a sufficiently large diameter, so that the relation
result is related to the fact that the meniscus deformation is very

sensitive to the angle of the wedge-shaped domain near the contact _ 1 ~ @)

line, which is filled with the nonpolar fluid (Figure 1). The main 27[*/; arrpe(n ~F (“.7)
electric interaction between the particle and the—wikter
interface occurs across this wedge-shaped domain. The angle o
the wedge — 6, Figure 1) is determined by, and because of
that, the comparison of theory and experiment gi@dsather

}s fulfilled with good accuracy; see eqs 4.5 and 4.6. Because the
effect of pe is negligible forr > ry, eq 1.6 reduces to eq 1.1,
which has the following solution:

thana) when the angle is obtained as an adjustable parameter. -F, F, o [yar
For this reason, in egs 3.1 and 335 the angle is denote &)= WKO(qr) N In( > ) (r=r) (4.8)
instead ofa despite the fact that the underlying electrostatic yar;Ky(ary) 4

theory assumes (as an approximation) évato.. In fact, the con-
tact angled can be determined in three different ways: (i) gonio-
metrically, from a photograph such as that in Figure 2 (section

Here, for @r)2 < 1, we have used the asymptotics given by eq
1.5 and the boundary condition at the cylinder surface (Figure

» . . 4):
7.1); (ii) as an adjustable parameter from fits of data for the me- )
niscus profile (section 7.2); and (iii) from the slope of the theo- F
d¢ !
d_lrzr1 - 2‘7_[ (49)
(45) Kralchevsky, P. A.; Denkov, N. D.; Danov, K. Dangmuir2001, 17, r p4RT
7694-7705. _
| t(4f6) Da;f_l;b *é- D2-:8 *;rilg;\f\glzy, P. A Naydenov, B. N.; Brenn,J&Colloid F1is the force acting on the selected cylinder of radiugn view
n ‘f;;"ffoug'et, Jscl; Alsayed. A, M.: Zhang, J.: Yodh, A. Bhys. Re. Lett of eq 4.7, the electric field is “closed” inside this cylinder (i.e.,

2005 94, 018301. its flux across the cylinder’s walls is (approximately) equal to
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cross section of cylinder eq 4.8 (describing the meniscus shape in the “outer region”,

t > r1) cannot be greater tha&it®, and it certainly does not contain

nogp_glar » a contribution fromF©, In fact, the prefactor is very close to
ui b

F© because the term with, in eq 4.13 is comparatively small.
Thus, setting=; ~ F©@ into eq 4.8, we obtain

£(r) ~ '2:% |n(ye2qr) r=r) (4.16)

In other words, for > r; the logarithmic prefactor is determined
solely by F@), in agreement with our results in Figure 3. Note
that the linear portion on the right-hand side of the plotin Figure
3, where the solid and dashedotted curves coincide, corre-
Figure 4. Sketch of a particle at the watenonpolar fluid boundary. sponds to the logarithmic dependence ineq 4.16. The coincidence
Because of forcé = F© + F€) acting on the particle, the fluid  ofthe latter two curves is also indirect proof that in the considered
inte(face is_ deformed: The particle is encirc_led by an imaginary caseVy, < V,and that the difference betweEpandF@ is small
vertical cylinder of radius,. The total force acting on this cylinder (eq 4.15).

is denoted by; v is interfacial tensiony. andy; are, respectively, . . .
the meniscus slope angles at the contact line and at the cylinder wall; 1€ fact that the long-range asymptotics () is dominated

h. characterizes the depth of the concavity (dimple). The magnitude by F@ (eq 4.16) is in agreement with the conclusion of Oettel
of the meniscus deformation is exaggerated. et al3® and with part of the conclusions of Megens and

. ; . Aizenberg?® The latter authors wrote that if there is any effect
zero). Then, the magnitude & will be determined by the it s too short-ranged “so overall, there is no attraction at3ll.”
gravitational force acting on this cylinder. In such a case, an |n fact, this could happen if surface charges are present only at
expression fofF; can be deduced by buoyancy-force consid-  the particle-water boundary and if the concentration of electrolyte
erations. The same result can be obtained more easily from thein the aqueous phase is sufficiently high. However, this is certainly
Laplace equation of capillarity not the case when surface charges of sufficiently high density,

y d opn, @re present at the partiet@onpolar fluid boundary. In the
. E(r siny) = (p,, — PRI + Pe(r) (4.10) latter case, the interfacial deformation is of medium range (Figure
3 and section 7.4).

wherep,, andp, are the mass densities of the water and nonpolar
fluid andy is the slope angle of the meniscus profile (tar=
9/4). Equation 1.6 is a special case (linearized form) of eq 4.10

5. Superposition of the Electric and Gravitational
Deformations

for small meniscus slope (i.e., for fap < 1). The force balances Here, our aim is to prove that for small particlegR{® < 1)
at the particle and at the cylinder (Figure 4) yield for which the meniscus slope is small and the Laplace equation
of capillarity can be linearized the meniscus profile can be
2myr siny, = F9 + FC 2myr,siny, =F, (4.11) presented as a superposition of the electric and gravitational

deformations{(r) = £©)(r) + ¢O(r); see eq 3.7. First, we will
wherey; = y(r1) and e = y(ro). (The same follows from  consider the expressions fg#)(r) and {©)(r) separately.

boundary conditions given by egs 1.3 and 4.9 forgir: tan 5.1. Gravitational Deformation. In the considered case of

Y = %/y4). By integrating eq 4.10, we obtain small meniscus slope, the gravitational deformation caused by
a floating particle (Figure 1) is described by eq 2.1. Close to the

2my(rysiny, —resiny) = contact line, whereqgf)? < 1, the asymptotic expression fi,

eq 1.5, can be used, and eq 2.1 acquires a simpler form:
27(py, — Pr)9 j;f drr &(r) + 27 Jf drrpy(r) (4.12) q q q p

(9 r
Next, we substitute egs 4.7 and 4.11 into eq 4.12; the result reads £9(r) ~ ;— |n(q ZVe) at@r?<1 (5.1)
v

F,=F9— (0, — paV., 4.13
! (P = PGV (4.13) Because of the logarithmic dependence in eq 89(r) looks

whereVy, denotes the volume confined between the meniscus like a straight line whem is plotted on a log scale; see Figure

and the horizontal plane= 0 (Figure 4): 3. The gra}vitational forde(g), acting on the particle, is equal_
to the particle weight minus the buoyancy force due to the fluid
Vv, = —27rﬁr1 drr Z(r) (4.14) displaced by the particle and the encircling menisés:

. . © — _ _ —(y — 2
Note thatVy, > 0 because for the present choice of the coordinate F° = 9l(Pp = Pu)Va, + (0p = PV = (o — po)irhd - (5.2)
system we havé < 0. In view of eq 4.13, we have
Here,V,, andV, are the portions of the particle volume, which

F, < F9butF, ~ F9 becausd/,, < V, (4.15) are immersed, respectively, in the water and in the nonpolar
fluid. For the considered small particles, the term vigts much
whereV, is the particle volume an&© 0 V, (see below). smaller than the other two terms on the right-hand side of eq 5.2,

Equations 4.13 and 4.15 show that the logarithmic prefactor in and it can be neglected:

(48) Princen, H. M. The Equilibrium Shape of Interfaces, Drops, and Bubbles. (49) Nutt, C. W.Chem. Eng. Scil96Q 12, 133-141.
In Surface and Colloid Sciengklatijevig, E., Ed.; Wiley: New York, 1969; Vol. (50) Ivanov, I. B.; Kralchevsky, P. A.; Nikolov, A. 0. Colloid Interface Sci.
2,pl. 1986 112 97—-107.
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FO ~ al(py — Pu)Ve + (05 — PV (5.3) is aninhomogeneous modified Bessel equation that has a standard

P P solution®t
Furthermore, expressing, and V, in terms of R and cosa 1
(Figure 1) and using the relationsHi®) = 2arcy sin 9 we —&(r) = _|O(qr)£°° df 7 pg(F) Ko(af) +
obtain from eq 5.% 4 L

GR? SKAaNTA+ [ d o) D] (5:10)
i ©9) I,
siny @~ g (4D, — 2 — 3 cosa + cosa) (5.4)

See also ref 39. Hergijs integration variableAis an integration
Here,D, = (op — pn)/(ow — pn), andip; @ js the gravitational constant, andg and Ko are the modified Bessel functions of
meniscus slope angle at the contact line. Equation 5.4 enablezeroth orde?3-3*Equation 5.10 satisfies the boundary condition
one to estimate whether the condition for a small meniscus slope,é — 0 for r — . From the second boundary condition, eq 1.3,
(sin 1/1(09))2 < 1, is satisfied for giverR, o, and mass densities W€ determineA in eq 5.10

Ppy Pw; and pp. F

5.2. Electric Deformation. For small spherical particlesg( —+ql,(qr “drr p.(r) Kq(r)
< 5um), such as those used in many experiments, the gravitational A= 27, ' C)‘/:C B ° 511
force, F©, and the gravitational deformation of the meniscus, - aKy(ar.) (5.11)

£©), are negligible’2 In other words, if there were no electric
effects, then the meniscus around the floating sphere would be, e ), andk, are modified Bessel functions of first order and
planar,Z ~ 0. (Here, we assume that undulations of the contact = _ ) 1 pe) For submillimeter particles, we havarg)? <

line due to surface roughness or inhomogeneity are missing. )l il ~ard? K ~1 Th
Then, the deformation of the watenonpolar fluid interface, 5.1Cf r;?ri?)lljifeigs):g(qrc) ard2 andKa(qre) ~ 1/(arc). Then, eq

&e(r), is due only to the electric forces. The latter deformation
is described by eq 1.6 with a neglected gravitational tefdy, - -
Ax o+ 5(ar)” [ drrpg(n) Kean  (5.12)

1d(de®
r dl’ dl’ = _pel( ) (55) ) . . -
For (gro)? < 1, the integral term in eq 5.12 is negligible, and eq

As demonstrated below, eq 5.5 and its solution, eq 5.9, also>-10 acquires the form

describe the electric interfacial deformation for larger patrticles,

for which £(@ is not zero. We seek a solution of eq 5.5, which  ¢(r) = — —| O(qr)f df 7 pgi(F) Ko(aP) —
satisfies the boundary conditions E 1
r ina A ~
e Koz + 3 e € o) 1) (5.13)
lim{r e 0 (5.6)
' In principle, eq 5.13 solves the problem. Its application to the
dé(el) [=C) calculation of the meniscus profile is described in section 5.4.
ar e = 291 (5.7) For the small particles considered in the present study, eq 5.13
=1, .

could be further simplified. To describe the meniscus shape near

i 2 ~
Integrating eq 5.5, along with eq 5.6, we obtain the contact line,dr)? < 1, we can selp(qr) ~ 1. Then eq 5.13

reduces to
C(GD R
=t A LGN
One can check that if we set=r¢ in eq 5.8 and substitute the Ko(qr)[i + lfr a7 pel(f)] (5.14)
integral from eq 4.1 we get exactly the boundary condition, eq 2wy yJre

5.7. In other words, the boundary condition, eq 5.7, is automati- )
cally satisfied by the firstintegral, eq 5.8. A subsequent integration In view of eq 4.1, we have
of eq 5.8 yields the meniscus profile:

Co =C) o
ey _Lpodfpo o L fcdrrpe,(r)z———f df f py(f)  (5.15)
ey =[S A @ = [ p@) nfl) (5.9) r 2n e
_ Ele) = i
Here, in the last step we have applied integration by parts and Because™ — F() = F), from egs 5.14 and 5.15 we obtain
have used the boundary conditi)(e0) = 0. Becausee(r) O
1/r8forr — oo, the integrals in eq 5.9 are convergent, dneinds 1 A 1 ® dF 7 p(DIKA(aF) — K (ar K r
to zero ar — «; see eq 5.24. Keeping in mind thag < 0, eq ¢ yj; Pe(P)IKo(An) = Ko(an)] = 2.7t Oég 16)
5.9 implies thatz®) is negative. '
In summary, eq 5.9 is the physical solution of eq 5.5, which
tends toward a planar interface at long distances (no electric
deformation) and satisfies the force balance at the contact line
eq 5.7.
5.3. Combined Gravitational and Electric Deformation.
This case corresponds to our experimental situation; see, for (51) Kamke, E.Differential Equations. Solution Methods and Solutions
example, Figure 3. The equation for the meniscus profile, eq 1.6, Teubner: Stuttgart, Germany, 1983.

Becausee(r) O 1/r8 for r — oo, only the behavior oK, at short
distances gives an essential contribution to the integral in eq
'5.16. Thus, by substitutingo(qr) ~ —In(yeqr/2) into eq 5.16
one obtains
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C(Q)

1w . . f F(g) @)
&(r)~— . df F py(f) In[~) — 5—Kq(ar) = & +
2 | (r) 2y (5.17)

where in the last step we used egs 2.1 and 5.9. In section 5.4,

we demonstrate that for the considered small partictgg)2(<

1, thef(r) dependence calculated from the approximated eq 5.17
agrees excellently witli(r) calculated from the exact eq 5.13.

In other words, for small particles, the meniscus shape can be
expressed as a sum of pure electric and gravitational deformations
C=1CE+ £, as predicted by eq 5.17. The same is true for the
depth of the concavity formed by the particle:

he ~ h® + h® (5.18)

h(cel) —_ _ C(e')(f )=- % f" df 7 py(P) In(?) (5.19)

HO — _ gy y = F9
o = ) = 5 Kolarg) (5.20)

See also egs 3.9 and 5.17.

5.4. Comparison of the Exact and Approximated Equations
for £©). Equation 5.13 can be also presented in the fgrm
g€ + @) wherel® is defined by eq 2.1, and

—£®(r) = %I(xqr) Ko(ar) x

o, . Kodf) ro
I rm.(r)% o + [ Tpy(f)

g
- r
ZJT)/ 0 q

(5.21)

l(af)
—_— d"
lo@n

Equation 5.21 expresse¥e) for the combined electric and
gravitational deformation, and at first glance, it is very different
from eq 5.9, which expresses a pure electric deformation. Our
goal here is to demonstrate that for small particlgs){ < 1,
egs 5.9 and 5.21 give numerically identical results.
Equation 5.21 is presented in a form convenient to numerical
calculations. Indeed, the ratid&(qt)/Ko(qr) and lo(qf)/1o(qr)
are smaller that 1. In addition, for— c we havelo(qr) Ko(qr)
~ 1/(2gr) — 0. Hence, the divergence bfqr) for larger does
not cause computational problems when eq 5.21 is applied.
To calculateZ(©) from egs 5.9 and 5.21, we substituieg(r)
from eq 3.3 and carried out the computations with the help of
egs 3.4-3.6. In particular, the combination of eqs 3.3 and 5.9
yields

2.2
Opnc X1

X
ey U0 (L-%)

o3
Xy

£ = -
~ 2 (Xl) ~

[ 6, €] In| =] d% (5.22)

1,

The integral in eq 5.22 is convergent. We have @ — 2y <
1, and the singularity at; — 1 is integrable; see eq 3.4 for the
definition of v. The situation in which eq 3.3 is substituted into
eq 5.21 is analogous.

It should also be noted that the dimensionless funciiam
eq 5.22 is finite over the whole region9x; < 1. Its limiting
values

D(0, €)= fim, 3(x,, 0, €50
C(0, ) = lim 30, 0, €5) (5.23)
Xp—
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Figure 5. Dimensionless meniscus profile calculated from eq
5.25, in combination with eq 5.9 or 5.21, for arelatively large particle,
gr. = 0.25, at three values of the contact angldNote that eq 5.9
describes a purely electric deformation, whereas eq 5.21 accounts
for the influence of gravity on the electric deformation. IBor 50

and 90, the curves computed by means of eqs 5.9 and 5.21 practically
coincide.

are calculated from the analytical solution and tabulated in ref
43, Tables 1 and 2 therein. From egs 5.22 and 5.23, one can
determine the asymptotic behaviordgf) for larger (smallxy):

2.2
() = — 219 s’ D2 4

164 forr>r,

(5.24)

Note that eq 3.8 gives an asymptotic equivalent to eq 5.24, with
D? = 16/a. It is more accurate to determifzfrom Table 1 in
ref 43 than to use from Table A in the Supporting Information
for this article, although the latter Table also provides a very
good estimate obD.

In our computations, we also obtained the dimensionless
meniscus profileZ®), which in view of eq 5.22 is defined as
follows:

re

€ny T
2 Xl_ r

— 5507
27 pn c2

Z®(x,) = (5.25)

We computed©)(x;) from egs 5.9 and 5.21, whepg(r) was
substituted from eq 3.3. The numerical resultsZ8l(x;) obtained
from eqgs 5.9 and 5.21 practically coincide for submillimeter
particles, whendr,)? < 1. As illustrated in Figure 5, a noticeable
difference between the two equations appears for relatively large
particlesgr. = 0.25, and for the larger contact angl@s; 130°.

For the water/tetradecane interface, we hgive= 4.7 mm, and
thengr. = 0.25 corresponds tg= 1.18 mm, which is arelatively
large particle. Even for such particle, eqs 5.9 and 5.21 give
practically coincident profiles wheth= 50 and 90 (Figure 5).

Our computations lead to the conclusion that for submillimeter
particles the approximate eq 5.9 gives the same numerical results
for ZE&)(x;) as the exact eq 5.21. This result confirms that for
submillimeter particles the meniscus profile can be presented as
a simple superposition of the pure electric and gravitational
deformations, in accordance with eq 5.17. Hereafter, all of our
calculations will be based on eq 5.17.

6. Numerical Results and Discussion

6.1. Comparison of the Gravitational and Electric Defor-
mations. To illustrate the relative effect of gravitational and
electric forces on the meniscus shape, we calculétd) and
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ZEN(r) for typical parameter values corresponding to the -3
experimental values in section 2:

p,=0.763g/ci  p,=2.62g/cni  y=52.2mN/m
€, =204 =397 0, =70uCint (6.1)

Thus, we havesp, = eplen = 1.946. In our experiments, the
greater particle radius wd= 265 um, which corresponds to

gR = 0.0564 1 = 4.7 mm). For such small particles, the
meniscus shape can be expressed as a superposition of gravi-
tational and electric deformation; see eq 53%(r) andZ©)(r)

were calculated by means of egs 2.1 and 5.22, respectively. To )
simplify the calculations, in eq 5.22 we have 8et o (Figure f t = f = f
1). 150 200 250 300 350 400 450 500

Figure 6 compares the calculated, purely gravitational de- (a) Radial coordinate, r (um)
formation, £@), with the total deformation;(@ + &@©9, for two
angleso. = 50 and 90 and for three particle radiR = 200, 100,
and 5Qum. The boundary conditiof(c) = 0 has been used. One
sees that fora. = 50° (hydrophilic particle) the electric
deformation,;©, is relatively small, in comparison witf©,
and is located in close proximity to the contact line. &er 90°,
the electric deformation{(®), is considerable and becomes
comparable to and even greater th&® (Figure 6c). The
magnitude of the total deformatioff) + £(¢), and the magnitude
of @ markedly decrease with decreasing particle radrys,
compare parts-ac of Figure 6.

Figure 7 compares the gravitational deformati@, with the
total deformationZ(©@ + ¢©, for hydrophobic particles at two £9) 4 g
anglesa. = 120 and 150 and for three particle radR = 200, -1.50 * ]
100, and 5Qum. In this case, the electric deformatidi), is = = = = =
considerably greater than the gravitational afi®, This is due 100 150 200 250 300
to the greater total surface electric charge (greater area of the(b) Radial coordinate, r (um)
particle—oil interface) and to the specific interfacial configuration
in the three-phase contact regidf® is relatively small and is f = = f =
practically the same foo. = 120 and 150

It is important to note that the range of the electric interfacial
deformation markedly depends on the contact angle. Thus, for
o = 50, 90, and 159 &€ becomes negligibleZ(¢V/¢©@ < 2%
and¢ ~ £O) forr > 1.50, 2.5, and 5., respectively (Figures
6 and 7).

6.2. Depth of the Concavity Produced by the ParticleThe
depth of the concavity (dimple) produced by the partiblejs
a physically important parameter that is used in the procedure.
for determining the surface charge density, from the
experimental meniscus profir) (section 7). To calculath,
we used egs 5.185.20. In particular, the substitution of eq 3.3

into eq 5.19 yields -0.30 : : : } ;
50 75 100 125 150

N\
49) . e

Meniscus profile, {(n) (um)

gl 4(9) " del) R=200 pm 1

050 T t f f t =
-0.75 T
-1.00 +

-1.25 T

Meniscus profile, {(r) (um)

-0.10 +

-0.15 -

-0.20 -

-0.25 +

Meniscus profile, {(r) (pm)

A\ 49) 1 fel)

R=50 um

(c) Radial coordinate, r (um)

he) = [3(%,, 6, In[2) ax
fO 2 2l (%, Ep”)] Xt Figure 6. Comparison of the purely gravitational deformatigf,
(6.2) with the total deformation;@ + ¢, for two angles = 50 and
90° and for three particle radii (& = 200, (b) 100, and (c) 50m.

In view of eq 5.25, the dimensionless depth of the electric- £@(r) and £@©)(r) are calculated by means of egs 2.1 and 5.22,

field-induced concavity is respectively.
(el el (el mental data (section 7), it is tabulated; see Table D in the
He (0, ep) = —Z27(1) = Zn—“hc (6.3) Supporting Information for this article.
Tpn Te Equation 5.24 indicates th§fe) 0 x,* at long distances. For

this reason, itis convenient to pige) versusq* when processing
experimental data (section 7). A useful parameter is the area
below the curve.(e)(x;%)

See also eq 3.8. Figure 8 shows plotsid’ versuss for various
values ofep,. One sees thatl® depends very strongly of:
it varies by 5 orders of magnitude fof 5 6 < 175°. However,
the dependence ¢1 on ¢y, is relatively weak. Because the

- _ (el)
dependenceél (Ce')(ﬁ, €pn) iS used to determinep, from experi- S = /; &) dy (6.4)
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Figure 7. Comparison of the purely gravitational deformatiof,
with the total deformation;@ + ¢, for two anglesu = 120 and
15 and for three particle radii (& = 200, (b) 100, and (c) 50
um. £OX(r) andg@(r) are calculated by means of egs 2.1 and 5.22.

The ¢O@(r) curves for the twax’'s practically coincide.

wherey = x% To eliminate the surface charge density, the

following dimensionless ratics, is defined:

hgel) _ngl)

S _—
1
S [P Z%y) dy

In general,s = S(0, €pn). For practical applications, it is more
convenient to invert the latter dependende= 6(s, €p); see
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Figure 8. Dimensionless depth of the electric-field-induced
concavity,H®, plotted vs the contact angfefor various values of
eon H® is calculated by means of egs 6.2 and 6.3.
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Figure 9. Plotof the contact anglvs the dimensionless parameter
s (eq 6.5) for two values ofp, = €p/en. The circles are computed
values, whereas the lines are calculated by means of eq 6.6 and
Table 1. From the experimental data, one obtai(sq 7.13), and
then from the present plot, one determines the respeétive

-
© <4

Figure 9. For a given value sfFigure 9 enables one to determine
the corresponding value of the contact an@lesor this reason,

it is important that the dependenéés) is single-valued (Figure
9). The value ofj corresponding to a givesican be determined
more accurately from the equation

6 =B,+ B,;s+ B,$ + B,s® (6.6)

where the coefficient8y, B;, By, andBs are given in Table 1
for various values okp, For intermediate values @i, the
coefficientsBy, ...,Bz could be determined by linear interpolation.
The accuracy of the computation @by eq 6.6 and Table 1 is
better than 1%.

7. Comparison of Theory and Experiment

The comparison of theory and experiment allows one to
determine the parameters of the system and further to quantify
the electric field distribution and the interactions between adsorbed
particles. It is important to determine in situ the electric charge
density at the particlenonpolar fluid boundaryg,,. However,
both experiment and theory have limitations that could be
overcome by iteration steps, as described below. The goniometric
measurements of the contact andle (section 7.1) give
systematically smaller values ¢f (denotedd®) because the
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Table 1. CoefficientsBo—B3; in Equation 6.6 for Various €,, Values

€pn = €plén
Bk 0.125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00
Bo 277.68 275.19 271.45 268.16 265.25 260.42 256.65 248.14 245.75
B —113.05 —109.22 —103.36 —98.079 —93.334 —85.228 —78.636 —62.061 —51.319
B, 21.679 20.290 18.234 16.314 14.545 11.439 8.8385 1.9609 —3.2356
Bs —2.7119 —2.5627 —2.3531 —2.1491 —1.9558 —1.6066 —1.3064 —0.48139 0.19163
Table 2. Data for Silanized Glass Spheres at the near the contact line, which is characterized by the contact angle
Tetradecane-Water Interface® 0; see section 3.4. One could accurately calculéeeyn) by
R re =) o 6V g0 gD g, ® Opr® means of the relation
(um) (um) (uN) (deg) (deg) (deg) (deg) (uC/n?) (uCin¥)
240.6 236.1 1.014 101.2 113.7 117.3 120.0 55.82 67.94 f(9 € n): fR(G’ Epn) (7 3b)
210.2 199.8 0.6836 108.1 120.8 1253 128.7 56.57 70.48 TPV 1 — cosé '

214.4 203.1 0.7265 108.7 1225 128.2 131.5 58.22 70.22
231.0 223.3 0.9024 104.8 117.9 122.8 1249 5570  68.32 \here the functiorfr(6, €pn) is tabulated in Table 3 of ref 43.
%gg'g %géi’ 2'2(3)20 i(l)gg %ggé g’gg’ ig’i'g gg'gg ?Z'g% (The procedure for calculatin@d, ¢pn) based on Table 4 in ref
' - ’ ' ’ ’ ’ ' 37 is not very accurate, so it is preferable to use Table 3 in ref
2 Note that9™ andof}) are determined goniometrically (section 7.1),  43.)

whereag)® andaffn) are obtained by processing data for the meniscus ~ Becausé=©) + F©@ = 27ry siny,, from eq 7.3a we derive
profile (section 7.3).
2

curvature of the oitwater interface increases in close proximity r.z2_-_-m_
to the contactline, which is not accessible to optical observations o €  4ne’RY(1— cosa) (6, €pn)
(section 7.3). A more accurate value {denotedd®@) could

be obtained if data for the meniscus profile, such as those in To obtain the surface charge density, in cm™2, one has to
Figure 3, are processed by means of the theory of the electricsubstitutee=4.803x 10-19(CGS units) into the right-hand side
field distribution (sections 7:27.4). of eq 7.4.

7.1. Processing Data of Goniometric Measurementgrom Valuesg® anda'gh) in Table 2 are calculated from egs 7.2 and
the side-view photographs, such as Figure 2, one can determiney 4, respectively, where the goniometrically determined value of
the radii of the particle and the contact lifreandr., and then 1. is substituted, along with the value affrom eq 7.1. Thus,
(Figure 1) for the particle in Figure 3 (the first row of Table 2) we have

. 0W = 113.7 andf(6®, €x) = 1.323, which gives;) = 55.82
o= arcsir(R)

o (2nr y siny, — F9)e,

(7.4)

c (7.1) uC/m?. This is the simplest way to determine the contact angle
and the surface charge densify-However,0® and aéln) could
Supposedly, the particle is spherical. (When applying eq 7.1, be afzected by an inaccuracy_in the goniometric measurement
one should take into account whether the anglis acute or pf D, see section 7.3. Forthls_reason, amore accurate meth_od
obtuse.) Furthermoré® can be measured goniometrically from 1S presentgd be'low. Tvyo alternatlvg proceduresfqr data processing
the photograph as the angle subtended at the contact line betweeA"® described in section 7.2 and in the Supporting Information.
the particle-water and waternonpolar fluid interfaces. Next, . /-2- Procedurefor Processing Meniscus-Profile Datadere,
one calculatesy® = 60 — q. it is convenient to f|>§ the zero of thpams at the level of the
Alternatively,i»<® can be measured goniometrically from the contact line, as in Figure 3..For this choice of the coordinate
photograph as the angle subtended at the contact line betwee?"9iN: the meniscus profile is
the water-nonpolar fluid interface and the horizontal plane. In
our experiments (ref 37))Y was measured from the left- and
right-hand-side profiles (Figure 2), and then the mean arithmetic
y was calculated. Thus, an error from the inaccurate
determination of the position of the horizontal plane is avoided.
Next, one calculates

Ar) =h+Z(r) (7.5)

where{(r) is the theoretical profile that satisfies the boundary
conditionsZ(«) = 0 and{(rc) = —h.. As established in section
5, for small particles @r.)? < 1), the meniscus profile can be
expressed as a sum of purely electric and gravitational deforma-
00 = o + D 2
— el
In general, the anglg.is related to the total normal force exerted 2Ar) = z )(r) + z(g)(r) (7.6)
on the particleF = F€) + F@, by means of eq 1.2. The
gravitational forceF©@ can be calculated by means of eq 5.3
(Table 2), whereas the electrodipping forE€), is determined
by the following expressiof*43

Here, we presume that experimental data pom {or a profile,
such as those in Figure 3, are available. The procedure for data
acquisition is described in section 2. The other input parameters
arere, y, €n, €pn, andF @, the latter determined from eq 5.3. We
. will use the data in Figure 3 as a worked example. The procedure
F ==, 2R(1 — cosa) (0, €, (7.3a) s as follows:

€n (1) For each experimental point,,(z), we calculatez9(r;)

Here, the multiplier 2R2(1 — cosa) represents the area of the from the equation

particle-nonpolar fluid boundary, whereas the dimensionless F@ |[r
force coefficient, which is independent d® andoyy, is related 29r) = > In(r—') (7.7)
14

to the electrostatic interactions across the wedge-shaped region ¢
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Figure 10. Plot of the electric interfacial deformatiaff) vsy =
(rd/r)* for the data in Figure 3. The solid line is a fit via cubic

parabola. The dashed line is a fit via linear regression of the data

for 0 <y < 0.75; the equation of the regression is shown.

which follows from eq 5.1 and the boundary conditiz{n,) =

0. For the investigated particles, the value$6t are given in
Table 2. Furthermore, in view of eq 7.6 we determine the electric
contribution to the experimental meniscus profile:

2% =2-2()

Next, we plotZ® versus (J/r)% see Figure 10.
(2) The data fo® versusy = (rJ/r)* are interpolated by a
cubic parabola. In Figure 10, the best fit (the solid line) is

(7.8)

Z%) = 14.532— 16.14y + 9.6287 — 8.01%° (7.9)
(3) The aread, below the curve#®)(y) is calculated:

1
A= [ Z%y) dy (7.10)
For the curve in Figure 10, from eq 7.9 we obtain
A,=14.532— 16'149+ 9.628 8011_ 7.644 (7.11)
2 3 4
Next, we calculate the dimensionless ratio,
Uy=0)_14532
u= A, =T ead 1.901 (7.12)
The parametes (section 6.2) is
s=—"1_=2110 (7.13)
=11 . .

(4) We determine the paramet@gepn), Bi(epn), Ba(€pn), and
Bs(epn) from Table 1 by linear interpolation:

100 = o) + 02 I((Xl)(x -
2 1

X (7.14)

x)

For the data in Figure 3, we havg, = 1.946, and then with the
help of eq 7.14 from Table 1 we find

B,=257.06 B,=-79.348 B,=9.1194
B, = —1.3388 (7.15)

Substitutings from eq 7.13 andBy — Bz from eq 7.15 into eq
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6.6, we calculate the contact angle= 0© = 117.3. This
procedure is applicable for evefye (0°, 18C°). The value of

0 determined here is denoté®to distinguish it from the values

6 and 6@ obtained in sections 7.1 and 7.3; see Table 2 and
the discussion in section 7.3. For contact angfes B < 120,

one can use a simpler procedure, which is described at the end
of the Supporting Information.

7.3. Determination of the Surface Charge DensityHaving
obtainedd = 6® (section 7.2) and knowing,,, we determine
H®)(6@), ;) from Table D in the Supporting Information. For
this purpose, one can use the four-point interpolation formula

fx y) = X=X)(Y — V) 0 y) + ((X —X)(Y — Yy

(X, = X)(Y1 — ¥2) X1 = X%)(Y2 — Y1) *

fx, y,) + (X = %)Y — ¥2) (X=x)(y = y1) y

P (% — )1 — Ya) (2 = x)(Y2— Y0
f(x,, y,) (7.16)

Thus, for@ = 117.3 andep, = 1.946, we obtain

f(%,, y1) +

InH® = -2.1864 anH® = 0.11233  (7.17)

Next, we calculate the theoretical meniscus profile with the help
of egs 3.8, 6.3, and 7-57.7

F(g) | r
2y n(f_c)

where the zero on theaxis is chosen such thzt ) = 0. Keeping

in mind thath® = Z#) (y = 0), we determine the scaling factor
he/H®in eq 7.18. For the data in Figure 3, we héffd = Z

(y = 0) = 14.532um (eq 7.9), and theh®/H® = 129.37um
(eq7.17). Furthermore, using Tables A, B, and C in the Supporting
Information, with the help of eq 7.16 we determined coefficients
a, b, andc in eq 3.8b:

a=9.012 b=-7.207

(eh

z2r) = + hLZ“-")(xl) (7.18)
Hf:el) '

c=0.08252 (7.19)

Now all parameters in egs 3.8b and 7.18 are known, and we can
calculate the theoretical meniscus profile; see the solid line in
Figure 3. This profile can be considered to be the best fit of the
experimental data. (The procedure in section 7.2 includes a fit
by cubic parabola.) As seen in Figure 3 and in section 7.4, the
theoretical profile is in excellent agreement with the experimental
data.

Next, by differentiation of eq 7.18 along with eq 3.8b, we
obtain the meniscus slope angle at the contact line:

FO  gteh
tan 1/)0(2) = ZJI—}/I’ + dr |r:rC (7.20)
Cc
e 2he

ar e = O H Slda+ 3)HE —1—¢] (7.21)
c 'Cc

For the considered illustrative example (the first row of Table
2), we compute (@eV/dr)|,—,, = 0.3271, which, after substitution
into eq 7.20, givey® = 18.8. The corresponding value of the
contact angle i@ = a + @ = 120.0.

Finally, after substituting = 6® andy. = y? into eq 7.4,
we calculate the surface charge density. For the considered
example, we havf(6®), €,r) = 1.360, which gives?) = 67.9
uC/ln?,
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Figure 11. Data from Figure 3 on an enlarged scale. The solid line Figure 12. Meniscus shapeg(r), around five different silanized

is the theoretical profile. The three tangents correspond to three glass particles at the watetetradecane interface. The symbols are
values of the contact angle: the goniometric vafi#¢ measured  digitized points on the meniscus profile taken from photomicrographs
from the photograph, the effective valé&) obtained from the fit  such asin Figure 2. The solid lines are the best fits via the theoretical
of the data in section 7.2, a® = o + @ calculated from the profile.

theoretical slope at the contact ling? (eqs 7.26-7.21).

However, the values aféln) in Table 2 are obtained from the
goniometricy{Y but using the accurate valuesféd, epn) from
eq 7.3b. Note that in the considered range of angles wef@ve
€pn) ~ (o, €pn) (i.€., T is insensitive to the value of the angle).

or this reason, the systematic difference betweagrando()
in Table 2 is entirely due to the fact that® < ?; see eq

In Table 2, the values df® = o + @ are systematically
greater than those af® (the latter have been determined as
described in section 7.2). In Figure 11, the data from Figure 3
are presented on an enlarged scale. One sees that the slope
the theoretical curve increases in a narrow zone (of wie2Po
of r¢) near the contact line; this zone is not seen well in the

: P : 7.4.
photomicrographs, such as in Figure 2. Correspondingly, the .
actual slope angle at the contact ling(, is greater than the In genezral, the proce.dure for obtamlng thg surface charge
goniometrically determineg (). Because the solid line in Figure denS|ty,a§,n), developed in the present article is more reliable
11 represents the best theoretical fit of the experimental data, wethan that in ref 37 because the used tabulated functions (see the
should expect that this curve adequately describes the meniscusupporting Information) are obtained with the help of the exact

shape near the contact line. Correspondingf$),andy @ are analytical asymptotics of the electric fieldrat> r¢, derived in

more reliable values of the contact and slope angles, in comparisori€f 43. In addition, here the meniscus slope angle?), is

with 6@ and D, determined from the theoretical fit of experimental data for the
The origin of the difference betwe@® and6®@ is related to interfacial profile (Figure 11) rather than by goniometry of video

the simplifying assumption that ~ o when solving the  frames (Figure 2).

electrostatic boundary problefh?3As discussed in section 3.4, 7.4. Comparison of Theory and Experiment for Various

0®), which is determined by a comparison of theory and Particles. To illustrate the procedure for data processing, in
experiment (section 7.2), characterizes the effective angte ( sections 7.27.3 we considered the experimental results for a
0®) of the wedge-shaped region filled by the nonpolar fluid near single particle (Figure 3), as a worked example. Experimental
the contact line (Figure 1). We could consi@étto be an auxiliary results for five other particles are shown in Figure 12, and the
parameter, which allows one to compute the theoretical profile determined parameter values are listed in Table 2. As in Figure
zZ(r) (that agrees very well with the experimental points, see Figures 3, photographs of the same particle, taken at different NaCl
3,11, and 12), and to estimate the real slapé?, at the contact concentrations, have been processed. Because there is no effect
line. After substitutingd = 6© andy. = 2 into eq 7.4, we of the NaCl on the meniscus shape (which provides evidence for
obtain a value of the surface charge densj&, that is more predominant electrostatic interactions across ribaaqueous

accurate than the valu#}n) determined from the goniometric p_hases), the f_uII set of data for a given particle is fitted with a
data (section 7.1). single theoretical curve.

The values OfO,(DZn) obtained for different particles here and The theoretical curves are drawn with the help of the procedure

listed in Table 2 are close to the valuesagf, reported in our described in sections 7.2 and 7.3. As seen in Figure 12, there is
previous articlé? all of them about 7Q:C/n®. In ref 37, the excellentagreement between theory and experiment. The obtained

goniometric method was used to determjngwhereas numerical ~ Values of the determined parametef, 6@, andoyy) are listed
integration with a finite step was applied to calculate the force in Table 2. One sees that? slightly varies from particle to
coefficientf(6, epn). It turns out that the applied experimental particle, whereas the surface charge densﬁ}, is almost the

and numerical methods giwg; andf values that smaller than  same. Its average valueciézn) = 70.24 1.0uC/m?. A similar

their real values; for more information abdigee the discussion  value, 80uC/m?, was obtaine® from the data of Philipse and
after eq 5.21 in ref 43. Becauge andf enter the numerator and  Vrij 52 for zeta potentials of silanized silica particles in toluene
denominator of eq 7.4, respectively, it happens that the errorsethanol mixtures. Note that §0C/n¥ is a rather low surface

in the latter two parameters affect the calculadggin opposite charge density: it is equivalent to 2000 #rper charge.
directions and cancel each other. This explains the similar valuesNevertheless, our computations show that even such small surface
of opn Obtained in ref 37 and in the present article (Table
2). (52) Philipse, A. P.; Vrij, AJ. Colloid Interface Sci1989 128 121-136.
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charge is able to cause the observed interfacial deformationsthe calculations. The comparison of the gravitational and electric
owing to the low dielectric constant of the nonpolar fluid; see deformations (Figures 6 and 7) indicates that the range of the

also ref 22. Even lower surface charge;2D uC/n?, was electric deformation markedly depends on the contact angle:
estimateé® from the data of Labib and William% for glass thus, for angles of 50 and 15€he range is, respectively, about
particles in several pure organic solvents. 1.5and 5 contact-line radii (section 6.1). Theoretical expressions

The experimental data in Figures 3 and 12 and their theoreticaland numerical results are also obtained for the depth of the
fits show that for all investigated particles the electric field creates concavity,hc, produced by the particle, which strongly depends
a strong deformation of the eilwater interface in the region  on the contact angle (section 6.2 and Figure 8).
fromr =rctor = 3—4(r¢). In comparison with théong-range Special attention is paid to the comparison of theory and
deformation created by the gravitational force, the electric field experiment, which is considered in section 7. On the basis of the
creates a deformation ehediumrange. For the investigated obtained theoretical expressions and numerical results, arelatively
particles, the amplitude of the electric deformation is much greater simple procedure for processing experimental data is developed,

than the amplitude of the gravitational one. which is reduced to fitting the data for the meniscus profile via
. cubic parabola (section 7.2) or linear regression (Supporting
8. Summary and Conclusions Information). Next, the theoretical interfacial profile is reproduced

The present article is a continuation of our previous sfiidy, Py €d7.18, and the meniscus slope atthe contact line is accurately
where the main attention has been focused on the electrodippingdetefm'ned via dlﬁgrentlatlon of the theoretical profile. This
force acting on a charged dielectric particle, which is attached allows one to obtain values of the contact angle and surface
to the waternonpolar fluid (air, oil) boundary; see Figure 1. In  charge density#® and o (section 7.3), which are more
a subsequent studywe obtained analytical solution describing accurate than those determined by the goniometric method
the electric field created by the particle. As a next step, here we (section 7.1). For all investigated particles, excellent agreement
consider in more detail the problem of the calculation of the between theory and experiment is achieved (Figures 3 and 12).
shape of the fluid interface around the particle. The electric field ~ The theoretical analysis (sections 4 and 6) and the experimental
created by charges at the partielgonpolar fluid boundary could  results (Figures 3 and 12) lead to the conclusion that the electric-
give rise to a considerable deformation of the surrounding fluid field-induced deformation of the fluid interface has a medium
interface. range, from 1.5 to 5 contact-line radii, depending on the contact

We digitized the coordinates of points from the meniscus profile angle. Atlarger distances, the meniscus profile is governed solely
around silanized glass particles attached to the wagtradecane by the gravitational force. However, for< 5r the electric field
interface (section 2; Figures 3 and 12). The experimental shapecreates a concavity (dimple) of significant depth in the fluid
of the oil-water interface is independent of the concentration interface around the particle. For the experimentally investigated
of NaCl in the aqueous phase, which confirms that the electric particles, the electric interfacial deformation has shorter range
field in the nonagueous phases dominates the electrostatidout greater amplitude than the gravitational deformation. The
interactions in the investigated system. The theoretical meniscusresults could be useful for a better understanding of the lateral
profile, £(r), can be computed in three different ways, which capillary forces between particles at emulsion interfaces, which
give numerically coincident results. Fir§(r) can be calculated  leadto packing of the particle adsorption layer and the stabilization
by the numerical solution of the electrostatic boundary problem  of Pickering emulsions.

(section 3.1). Second(r) can be computed from the analytical

solution of the problem, based on the Mehi€ock integral Acknowledgment. This work was supported by the program

transfornt3 (section 3.2). Thirdi(r) can be calculated by means “Cooperation and Networking for Excellence” (CONEX),
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Furthermore, in section 5 it is proven that for sufficiently
small particles ()% < 1) the meniscus profile can be expressed

o ) o , Q) ;
as a superposition of pure electric and gravitational deformations, €»n); ¢(0: €pn), In(H ¢ (0, €pn), and INQ(O, €xn) for various values of

— (el () : : oo andepn. Second procedure for processing meniscus-profile data. This
&(r) = £€r) + £19(r). The latter fact considerably simplifies material is available free of charge via the Internet at http://pubs.acs.org.
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The dimensionless meniscus profile is described by the equation:

H éel)

- 1+cx?
Z® (%) = > !
a+bx?

la@ - x8) +bx2 @ - x8)]- x4 (1 - x2)

a+bx?
see eq 3.8 in the main paper. Here a, b, ¢, and H " are parameters (independent of x; = r./r),

which depend on the particle contact angle, 6, and on the dielectric constant ratio, gy = &/é&n.
These dependencies are tabulated in Tables A, B, C and D, which are to be used along with
the four-point interpolation formula, eq 7.16.

Table A. Function In[a(é,&n)] for various dand &p.

gpn = 8p/8n

0 0.125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00
5 6.058 6.260 6.611 6.909 7.169 7.605 7.963 8.970 10.14
10 5.992 6.185 6.522 6.811 7.064 7.489 7.840 8.833 9.990
15 | 5.916 6.101 6.426 6.705 6.950 7.365 7.708 8.687 9.833
20 5.832 6.008 6.320 6.590 6.827 7.232 7.568 8.531 9.667
25 | 5.738 5.906 6.206 6.466 6.696 7.090 7.418 8.366 9.490
30 | 5.635 5.795 6.082 6.333 6.555 6.938 7.259 8.190 9.303
35 5.521 5.674 5.948 6.190 6.405 6.777 7.090 8.005 9.105
40 | 5.397 5.542 5.805 6.037 6.245 6.605 6.911 7.808 8.896
45 5.262 5.400 5.651 5.874 6.074 6.423 6.721 7.600 8.674
50 | 5.115 5.247 5.486 5.700 5.893 6.230 6.519 7.380 8.440
55 4.957 5.081 5.309 5.514 5.699 6.026 6.306 7.147 8.193
60 4.785 4.903 5.120 5.316 5.494 5.809 6.080 6.902 7.931
65 4.600 4.712 4,918 5.105 5.275 5.578 5.841 6.642 7.655
70 4.401 4.506 4.702 4.880 5.043 5.334 5.588 6.367 7.363
75 4.186 4.286 4471 4.640 4.796 5.075 5.319 6.077 7.054
80 3.955 4.048 4.223 4.384 4532 4.799 5.035 5.769 6.727
85 3.705 3.793 3.958 4.110 4.251 4.506 4732 5.443 6.380
90 3.436 3.519 3.674 3.818 3.951 4.194 4.411 5.097 6.012
95 3.146 3.223 3.369 3.504 3.631 3.862 4.068 4.729 5.620
100 | 2.831 2.903 3.040 3.167 3.287 3.506 3.702 4.337 5.203
105 | 2491 2.558 2.686 2.805 2.918 3.124 3.311 3.918 4.758
110 | 2.120 2.183 2.302 2.414 2.520 2.714 2.891 3.470 4.282
115 | 1.717 1.775 1.886 1.991 2.089 2.272 2.439 2.989 3.771
120 | 1.274 1.329 1.432 1.530 1.622 1.794 1.950 2.471 3.221
125 | 0.7868 0.8373  0.9337 1.025 1.111 1.272 1.418 1.910 2.625
130 | 0.2465 0.2934 0.3829 0.4674 0.5475 0.6972 0.8344 1.297 1.976
135| -0.3569 -0.3135 -0.2307 -0.1525 -0.0782 0.0605 0.1881 0.6198 1.262
140 | -1.038 -0.9978 -0.9212 -0.8489 -0.7802 -0.6520 -0.5339 -0.1324 0.4688
145 | -1.818 -1.781 -1.709 -1.642 -1579 -1.461 -1.352 -0.9810 -0.4224
150 | -2.730 -2.695 -2.627 2564 -2505 2395 2295 -1.954 —1.440
155 | -3.832 -3.797 -3.730 -3.669 -3.612 3507 -3.413 -3.099 -2.627
160 | -5.254 5211 5135 -5.066 -5.005 -4.896 -4.801 -4.498 —4.065
165 | —7528 7426 -7.261 -7.130 -7.023 —6.852 6719 —6.356 —5.913




Table B. Function b(6,&n) for various &and .

&n = &la

0 0.125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00

5 -385.5 4717 -670.1 9034 -1171 -1812 —2591 —-7099 22789
10 | -359.3 4359 -611.3 -816.2 -1051 -1608 -2284 6170 -19617
15 | -331.9 -399.3 -552.7 -731.0 -9342 1415 -1996 5313 -16723
20 | -303.6 —-362.3 4953 —648.9 -823.3 1234 1728 4531 14114
25 | -275.1 -325.7 -439.7 -570.7 -7189 -1066  -1482 -3827 11790
30 | —246.7 -289.8 -386.6 —497.2 -621.8 9124 -1259 -3198 -9743
35 | -2188 -2553 -336.5 4289 5324 7729 -1058 -2645 7962
40 | -192.0 -222.4 -289.8 -366.0 -451.2 6479 -880.2 -2163 -6431
45 | -166.5 -191.6 -246.8 -309.0 -378.2 5372 7241 1749 5132
50 | -142.7 -163.0 -207.8 -2579 3134 4404 -588.8 1397 4044
55 | -120.6 -137.0 -1728 -212.6 -256.6 -356.7 -473.1 1102 -3144
60 | -100.6 -113.6 -141.8 -173.1 2074 -285.2 3752 -857.7 -2411
65 | -82.72 -92.87 -1148 -139.0 -1654 -225.0 -293.7 -6584 1822
70 | -66.94 -7476 -9159 -1100 -130.1 1751 -226.6 —498.0 —1355
75 | -53.27 -59.21 -7192 -8576 -100.7 -1342 1722 -3709 -992.1
80 | -41.63 -46.08 -5554 -65.77 -76.78 -101.2 -128.8 -271.7 7137
85 | -31.92 -3521 4214 4957 5753 -7506 -94.77 -1957 -504.1
90 | -2397 -26.36 -31.37 -36.68 4233 -54.69 -68.48 -138.3 -349.0
95 | -17.61 -19.33 -22.89 -26.62 -30.56 -39.08 4853 -95.79 -236.5
100 | -12.63 -13.85 -16.34 -1891 -2159 -27.34 -3366 -6485 -156.3
105| -8.799 -9.664 -11.37 -13.09 1487 -18.64 2275 4274 -100.4
110 | -5.852 -6.461 -7.607 -8.735 -9.880 -12.28 -14.86 -27.22 —62.29
115 | -3.388 -3.869 -4.680 -5422 -6.150 -7.635 -9.200 -16.54 -36.92
120 | -0.8982 -1.472 -2.190 -2.753 -3.253 -4.194 -5.133 -9.308 -20.50
125 | 0.6153 03173 -0.1610 -0.6174 -0.9753 -1.603 -2.179 4474 -10.16
130 | 0.8858 0.8218 0.6765 0.5233 0.3710 0.04676 -0.2459 -1.369 -3.912
135 | 0.7451 0.7582 0.7666 0.7575 0.7365 0.6728 0.5957 0.2587 —0.5593
140 | 0.5562 0.5769 0.6129 0.6411 0.6630 0.6925 0.7087 0.7189 0.7158
145 | 0.3860 0.4007 0.4277 0.4520 0.4748 05148 0.5491 0.6548 0.8563
150 | 0.2477 0.2554 0.2703 0.2845 0.2981 0.3237 0.3483 0.4354 0.6027
155 | 0.1443 0.1474 0.1537 0.1599 0.1662 0.1784 0.1904 0.2364 0.3256
160 | 0.07404 0.07487 0.07666 0.07858 0.08058 0.08474 0.08901 0.1063 0.1415
165 | 0.03170 0.03172 0.03184 0.03205 0.03234 0.03305 0.03391 0.03795 0.04693




Table C. Function c(6,&n) for various dand gn.

&n = &la

0 0.125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00

5 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021
10 | 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013
15 | 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.003 1.003
20 | 0.9937 0.9937 0.9935 0.9935 0.9934 0.9933 0.9933 0.9931 0.9931
25 | 0.9829 0.9827 0.9825 0.9824 0.9825 0.9824 0.9823 0.9821  0.9820
30 | 09713 09710 0.9707 0.9705 0.9703 0.9701 0.9699 0.9696 0.9694
35 | 09583 09580 0.9575 0.9571 0.9569 0.9565 0.9563 0.9558  0.9555
40 | 0.9440 09435 0.9428 0.9423 0.9420 0.9414 0.9411 0.9404  0.9400
45 | 0.9283 0.9276 0.9266 0.9259 0.9254 0.9247 0.9242 0.9233 0.9227
50 | 0.9108 0.9099 0.9085 0.9076 0.9068 0.9059 0.9052 0.9040 0.9031
55 | 0.8913 0.8901 0.8883 0.8870 0.8860 0.8847 0.8838 0.8821  0.8810
60 | 0.8695 0.8678 0.8654 0.8637 0.8624 0.8606 0.8595 0.8572  0.8562
65 | 0.8449 0.8428 0.8396 0.8373 0.8356 0.8333 0.8318 0.8289 0.8271
70 | 0.8169 0.8141 0.8099 0.8069 0.8047 0.8017 0.7998 0.7960 0.7937
75 | 0.7848 0.7811 0.7756 0.7717 0.7689 0.7650 0.7625 0.7578 0.7549
80 | 0.7476 0.7428 0.7356 0.7307 0.7270 0.7221 0.7189 0.7130 0.7094
85 | 0.7041 0.6978 0.6886 0.6822 0.6776 0.6714 0.6675 0.6603  0.6560
90 | 0.6526 0.6444 0.6325 0.6245 0.6187 0.6110 0.6063 0.5977 0.5929
95 | 0.5909 05802 05651 05551 0.5480 0.5389 0.5333 0.5237 0.5186
100 | 0.5164 0.5026 0.4838 0.4717 0.4634 0.4530 0.4468 0.4366 0.4317
105 | 0.4277 0.4100 0.3871 0.3730 0.3637 0.3524 0.3460 0.3361 0.3320
110 | 0.3320 0.3083 0.2796 0.2631 0.2526  0.2402 0.2335 0.2240 0.2211
115 | 0.2793 0.2359 0.1881 0.1627 0.1470 0.1293 0.1200 0.1075 0.1041
120 | 0.4516 0.3222 0.2010 0.1374 0.09915 0.05658 0.0342 0.0027 —0.0086
125 | 0.7385 0.6074 0.4266 0.2888 0.2042 0.09913 0.0390 -0.0547 -0.0953
130 | 0.8261 0.7600 0.6351 0.5266 0.4355 0.2852 0.1856 —0.0084 -0.1169
135 | 0.7638 0.7496 0.7064 0.6526 0.5955 0.4855 0.3907 0.1528 —0.0379
140 | 0.6573 0.6669 0.6735 0.6653 0.6473 05953 0.5352 0.3248 0.1155
145 | 0.5404 05613 0.5911 0.6079 0.6169 0.6144 05949 0.4672 0.2812
150 | 0.4222 0.4461 0.4859 0.5164 05391 0.5660 0.5786 0.5438 0.4139
155 | 0.3057 0.3282 0.3686 0.4031 0.4324 0.4775 05080 0.5485 0.4910
160 | 0.1931 0.2115 0.2463 0.2781 0.3072 0.3571 0.3972 0.4870 0.5151
165 | 0.08604 0.09911 0.1247 0.1495 0.1732 0.2171 0.2563 0.3692  0.4605




Table D. Function In[H & (8, £,,)] for various @and &.

&n = gla

¢ | 0125 0250 0500  0.750 1.00 1.50 2.00 4.00 8.00

S | 4235 4437 4787 5086 5345 5781 -6.138 —7.146 -8.312
10 | -4.209 -4.402 -4738 5027 -5279 5703 -6.054 -7.046 —8.202
15 | -4176 4360 -4683 4961 5206 -5.619 5962 —6.939 -8.085
20 | 4136 -4311 -4621 -4889 -5126 5529 5864 -6.826 —7.960
25 | -4.089 4256 4553 4811 -5.040 -5432 5760 —6.704 -7.827
30 | —4.035 4193 4477 4726 4947 5328 5647 -6.575 -7.686
35 | 3973 4124 4395 4634 4848 5217 5528 -6.439 -7.537
40 | -3.904 -4.047 -4306 -4535 -4741 -5098 5401 -6.294 -7.378
45 | -3.828 -3.963 4210 4429 4627 -4973 5267 -6.141 -7.211
50 | -3.743 -3872 -4.106 -4316 -4506 —4.839 5125 5979 -7.035
55 | -3.651 -3.772 -3.994 -4195 4377 -4698 4975 -5.808 -6.848
60 | -3550 -3.664 -3.875 -4.065 —4.240 -4548 -4816 -5.628 -6.651
65 | -3.441 3548 -3.747 -3.928 -4.094 4390 -4648 54383 -6.443
70 | -3.322 3423 3610 -3.782 -3.940 4223 4471 5238 —6.224
75| -3194 3288 3464 3626 -3.776 -4.046 4284 5027 -5.993
80 | -3.056 -3.144 -3.308 -3.461 -3.602 -3.859 -4.087 -4.804 -5.749
85 | —2.908 -2.989 3142 -3.285 3418 -3.661 -3.878 4569 5491
90 | -2.748 -2.823 -2.965 -3.098 -3.223 3452 3658 —4.321 -5.218
9% | -2576 -2.645 -2.776 -2.899 -3.016 -3.231 -3.426 —4.059 -4.929
100 | -2.391 -2.454 -2574 -2.687 -2.795 -2.996 -3.179 -3.782 -4.623
105 | -2.192 2249 -2.358 -2.462 -2561 -2.747 2918 -3.488 -4.298
110 | -1.977 -2.028 -2.126 -2.221 -2.311 -2.482 -2.641 -3.177 -3.952
115 | -1.745 -1.790 -1.878 -1.962 -2.044 -2200 -2.345 -2.845 -3.584
120 | -1.494 -1533 -1.610 -1.685 -1.758 -1.898 -2.030 -2.491 -3.189
125 | -1.221 -1.255 -1.320 -1.385 -1.449 -1573 -1.691 -2.112 -2.766
130 | -0.9232 -0.9508 -1.006 -1.061 -1.116 -1.223 -1.327 -1.705 -2.310
135 | -0.5959 -0.6178 -0.6623 -0.7074 -0.7527 -0.8429 -0.9318 -1.264 -1.815
140 | -0.2335 -0.2497 -0.2835 -0.3185 -0.3543 -0.4271 -0.5004 -0.7840 -1.276
145 | 0.1719 0.1613 0.1383 0.1135 0.0875 0.0326 -0.0245 -0.2560 -0.6813
150 | 0.6319 0.6269 0.6148 0.6004 0.5842 0.5478 0.5078 0.3319 -0.0191
155 | 1.164 1.165 1.164 1.160 1.154 1.137 1.115 09985 0.7312
160 | 1.799 1.805 1.815 1.822 1.827 1.829 1.826 1.775 1.602
165 | 2.590 2.602 2624  2.642 2.658 2.681 2.698 2717 2.654
170 | 3.661  3.680  3.713 3.743  3.770 3.816 3.854 3.953 4.017
175 | 5399 5424 5470 5513 5553 5.624 5.687 5.877 6.099




Table E. Function In[Q(68,&:n)] for various &and &pn; see eq S4 below.

&n = &la

0 0.125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00

5 1.816 1.816 1.817 1.817 1.817 1.817 1.818 1.818 1.818
10 | 1.776 1.776 1.777 1.778 1.779 1.779 1.780 1.781 1.781
15 | 1.734 1.735 1.736 1.737 1.737 1.739 1.740 1.741 1.742
20 | 1.690 1.691 1.693 1.694 1.695 1.697 1.697 1.699 1.701
25 | 1.643 1.645 1.646 1.648 1.649 1.651 1.653 1.655 1.657
30 | 1.594 1.596 1.599 1.600 1.602 1.604 1.605 1.609 1.611
35 | 1.542 1.544 1.548 1.549 1.552 1.554 1.557 1.560 1.562
40 1.487 1.489 1.493 1.497 1.498 1.501 1.503 1.508 1511
45 | 1.429 1.432 1.436 1.439 1.442 1.445 1.448 1.453 1.457
50 | 1.367 1.370 1.375 1.379 1.381 1.385 1.388 1.395 1.400
55 | 1.301 1.305 1.310 1.314 1.318 1.323 1.326 1.334 1.339
60 | 1.231 1.234 1.241 1.245 1.250 1.255 1.260 1.269 1.275
65 | 1.155 1.160 1.167 1.172 1.177 1.183 1.188 1.198 1.206
70 | 1.075 1.080 1.088 1.094 1.099 1.107 1.112 1.124 1.134
75 | 0.9882 0.9939 1.003 1.010 1.016 1.024 1.031 1.045 1.056
80 | 0.8952 0.9015 0.9115 0.9194 0.9260 0.9360 0.9436 0.9598 0.9734
85 | 0.7948 0.8016 0.8127 0.8220 0.8295 0.8411 0.8499 0.8693 0.8844
90 | 0.6860 0.6936 0.7062 0.7168 0.7251 0.7385 0.7485 0.7713 0.7888
95 | 0.5676 05761 0.5905 0.6023 0.6121 0.6274 0.6391 0.6654 0.6870
100 | 0.4386 0.4482 0.4644 0.4779 0.4890 0.5067 0.5199 0.5510 0.5757
105 | 0.2976 0.3081 0.3269 0.3415 0.3543 0.3747 0.3900 0.4264 0.4561
110 | 0.1425 0.1534 0.1747 0.1924 0.2064 0.2294 0.2476 0.2902 0.3253
115 | -0.0293 -0.0167 0.0069 0.0263 0.0428 0.0699 0.0913 0.1405 0.1821
120 | -0.2207 -0.2060 -0.1791 -0.1576 -0.1382 -0.1082 -0.0839 -0.0258 0.0245
125 | -0.4352 -0.4181 -0.3884 -0.3638 -0.3416 -0.3061 -0.2788 -0.2098 -0.1512
130 | -0.6766 -0.6578 -0.6243 -0.5960 -0.5715 -0.5309 -0.4988 -0.4180 -0.3470
135| -0.9526 -0.9313 -0.8939 -0.8613 -0.8335 -0.7866 -0.7497 -0.6551 -0.5691
140 | -1.271 -1.247 -1.205 -1.168 -1.136 -1.083 -1.039 -0.9277 -0.8244
145 | -1.644 -1617 -1570 -1528 -1.491 1430 -1379 -1.247 -1.122
150 | -2.089 -2.059 -2.006 -1.959 -1916 -1.845 -1.787 -1.630 -1.478
155 | -2.633 -2.600 -2539 -2.486 2438 -2.356 -2.289 -2.102 -1.914
160 | -3.324 -3.287 -3.219 -3.158 -3.103 -3.008 -2.929 -2.706 -2.472
165 | -4.249 -4207 -4.130 -4.061 -3.998 -3.888 -3.795 -3.526 -3.231
170 | -5.602 -5555 -5469 5390 -5318 -5190 -5.080 -4.753 —4.373
175 | -8.016 -7.963 -7.864 -7.774 -7.691 7541 -7.408 -7.002 —6.498

Second Procedure for Processing Meniscus-Profile Data
For contact angles 5° < #< 120°, one can use a procedure, which is simpler than that
the procedure described in section 7.2 of the main paper. Step (1) is the same as in section 7.2.
In Figure 10 of the main paper, one sees that the data for zi(e') vs. y = (rdri)* comply with a

straight line, except the points for the greatest y. This linear fraction of the plot corresponds to

the long-distance asymptotics, described by eq 5.24. The respective data points (for not too



large y) can be fitted by a linear regression (the dashed line in Figure 10), whose slope and
intercept can be accurately determined. For the considered illustrative example (Figure 10),

we have
z®) =14.532 -13.596y (S1)
On the other hand, because z® = h®) + ¢, with the help of eq 5.24 we obtain

ol r? p?
z®(r)=h® - ——° %y (S2)

n

Thus, the ratio of the intercept and the slope is:

8s,y hc(e')

2 22
7ot D

Q (S3)

In view of eq S1, the ratio of the intercept and the slope is Q = 1.069 for the data in Figure 10.
On the other hand, the substitution of h®” from eq 6.3 into eq S3 yields:

16H (0, ¢,,)

- s4
[D@, &pn)]* &9

The dependence H® (9, ¢,,) is given in Table D, while the dependence D(8,&p) is tabulated

in ref 43. Combining the two tabulated dependencies, in Table E we have given the
dependence Q(6,&). From this table, with &, = 1.946 and Q = 1.069 we determine #= ¢ =
116.8° by linear interpolation. The latter value is close to 6 = 117.3° determined in section
7.2.

For 8> 120°, the error of the intercept of the linear regression (see eq S1) becomes too
large, and its slope does not correspond to the asymptotic slope at y—0 (eq S2). For this
reason, the procedure described in the present section is applicable only for 6 < 120°. If the
latter relation is not satisfied, one could use the procedure in section 7.2, which is applicable

for every 6.



