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Here, we consider in detail the problem of the shape of the capillary meniscus around a charged colloidal particle,
which is attached to a fluid interface: oil/water or air/water. The meniscus profile is influenced by the electric field
created by charges at the particle/nonpolar fluid boundary. We digitized the coordinates of points from the meniscus
around silanized glass spheres (200-300 µm in radius) attached to the tetradecane/water interface. The theoretical
meniscus shape is computed in three different ways that give numerically coincident results. It is proven that for
sufficiently small particles the meniscus profile can be expressed as a superposition of pure electric and gravitational
deformations. Special attention is paid to the comparison of theory and experiment. A procedure for data processing
is developed that allows one to obtain accurate values of the contact angle and surface charge density from the fit
of the experimental meniscus profile. For all investigated particles, excellent agreement between theory and experiment
is achieved. The results indicate that the electric field gives rise to an interfacial deformation of medium range and
considerable amplitude.

1. Introduction

Monolayers of colloidal particles at a fluid interface (oil/water
or air/water) are widely studied in relation to the properties of
Pickering emulsions,1,2 the formation of particle arrays and
colloidosomes at the surface of emulsion drops,3,4 and the
attainment of colloidal structures with various applications.5-8

The experiments with such systems indicate that the adsorbed
particles interact via repulsive and attractive forces, whose range
and magnitude are often much greater than for the DLVO surface
forces.9-20 When theattractiVe forces prevail, one observes
particle aggregation and the formation of large-scale densely

packed colloidal structures (mesostructures).11-19 In particular,
an indication of the action of a long-range attractive force has
been found for particles at the surface of an emulsion drop.20

When therepulsiVe forces are significant, the particles form
hexagonal arrays of intersite distance considerably greater than
the particle diameter.9,20-28 The analysis of the experimental
results shows that these repulsive forces have an electrostatic
origin. In some cases, the addition of electrolyte to the aqueous
phase suppresses the repulsion,14,20 whereas in other cases the
electrolyte does not affect the long-range repulsion, even at high
ionic strengths.21-23The latter finding has been explained by the
presence of electric charges at the particle/oil21-23,27and particle/
air28 interfaces. Because the electric field is not screened in the
nonpolar phase (oil, air), the adsorbed particles experience a
long-range Coulombic repulsion. It is interesting that this repulsive
force depends on the particle protrusion in the nonpolar phase
(i.e., on the contact angle). Horozov et al.23,26-28 experimentally
established that very hydrophobic particles with large contact
angles form well-ordered monolayers at interparticle distances
larger than 3 particle diameters. In contrast, the monolayers of
less hydrophobic particles (with contact angles smaller than 115°)
were disordered and aggregated. The disorder-order transition
in the monolayer structure occurred in the interval of contact
angles between 115 and 129°. (Here and hereafter, we follow
the standard convention that the contact angle is measured across
the water phase.)

One of the possible explanations of the observed interparticle
attraction is the action of lateral capillary forces, which are due
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to the overlap of the menisci around the separate particles.20,29-32

The meniscus shape,z ) ú(r), around an isolated particle on a
horizontal fluid interface (Figure 1) represents a solution of the
Laplace equation of capillarity, which can be linearized for the
case of small slope, (dú/dr)2 , 1:29,31,32

whereq2) ∆Fg/γ; ∆F is the difference between the mass densities
of the lower and upper fluid phases,γ is the interfacial tension,
andg is the acceleration due to gravity. The normal force,F,
acting on the particle must be counterbalanced by the vertical
resultant of the interfacial-tension force acting at the contact line
on the particle surface

whereψc is the meniscus slope angle at the contact line, which
is a circumference of radiusrc (Figure 1). For small meniscus
slope, we have sinψc ≈ tanψc ) dú/dr at r ) rc, and then eq 1.2
gives

The solution of eq 1.1, along with the boundary condition of eq
1.3, reads20,31,32

wherer0 is a constant andK0andK1are modified Bessel functions
of zeroth and first order.33-35 In the last step, we have used the
asymptotic expansions ofK0 and K1 for qr , 1 (for particle
radius much smaller than the capillary length,q-1)33-35

whereγeis the Euler-Masceroni constant (γe) 1.781072418...).

Note, that despite the logarithmic behavior ofK0(qr) at short
distances (eq 1.5) this function and the meniscus profileú(r)
decay exponentially at long distances.

Nikolaides et al.20 noted that the electric field generated by
the particles creates an electrostatic contribution to the pressure,
pel, which vanishes as 1/r6. Megens and Aizenberg36 included
the effect ofpel in the Laplace equation:

See eq 1.1 above. Then, if we (approximately) substitutepel )
A/r6 into eq 1.6 (A ) const.) and neglect the gravitational term,
q2ú, the result reads36

where the boundary condition, eq 1.3, has been used to determine
A. For experimental parameter values, eq 1.7 predicts a faster
decay of the meniscus than eq 1.4.

In a recent study,37 we carried out experiments with larger
particles (of radius 200-300µm), which form microscopically
visible menisci (dimples) at the oil/water and air/water interfaces.
The side-view photographs showed that the experimental slope
angleψc (Figure 1) is much greater (about 15 times) than the
“gravitational” value of ψc, which is the theoretical value
calculated under the assumption that only the particle weight
and buoyancy force are acting on the particle. The difference
between the experimental and gravitationalψc was attributed to
the action of a normal electric (electrodipping) force,F(el). Thus,
the total force exerted at the particle is

whereF(g) is the gravitational force. Moreover, the experiments
showed thatF(el) is independent of the electrolyte concentration
in the aqueous phase, which means that in our caseF(el) is
dominated by electric charges at the particle/nonpolar fluid
boundary rather than at the particle/water boundary.37 From the
experimentally determinedF(el), we calculated the surface charge
density at the particle/nonpolar fluid boundary,σpn, which
compares well with results obtained by other authors.23,26-28 In
general, the electrodipping force is a sum of contributions from
electric charges at the particle/nonpolar fluid and particle/water
interfaces:

F(n) andF(w) point in the same direction: both of them are pushing
the particle into the water phase. Theoretical expressions for
calculatingF(n) andF(w) have been derived.37 They are based on
modeling the particles as spheres of given surface charge densities
instead of point dipoles, as in previous work. An exact numerical
solution of the electrostatic boundary problem (in toroidal
coordinates) was obtained, which also produces numerical data
for the electrostatic pressure,pel(r). Finally, we substituted the
calculatedpel(r) into the Laplace equation, eq 1.6, and computed
a meniscus profileú(r), which was found to agree well with the
experimental profile.37

In addition to the correct results reported in our previous
article,37 it contains two mistakes that we want to announce and
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Figure 1. Sketch of a particle at the interface between water and
a nonpolar fluid (oil, air).γ is the interfacial tension;R andrc are
the radii of the particle and the three-phase contact line;R andθ are
the central angle and contact angle;ψc is the meniscus slope angle
at the contact line; andF is a normal force acting on the particle,
which can be of electric and/or gravitational origin.
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clarify here. First, there is a misprint (noticed by Oettel et al.38)
in the form of eq 6.2 in ref 37, which is the Laplace equation
in toroidal coordinates. The correct form of the latter equation
is

Equation 1.10 can be obtained by substitutingr ) rc/x1 into eq
1.6. Equation 6.2 in our article37was given only for completeness;
it was not used in our calculations, and it had not affected the
correctness of the results reported therein. Second, the analysis
of eq 1.6 implies that its solution has the following asymptotic
behavior at long distances from the particle:

See ref 39 and section 4.2 below. Note that the logarithmic
prefactor in eq 1.11 contains onlyF(g)and contains no contribution
fromF(el). As a consequence, our matched asymptotic expansions
for the meniscus profileú(r) and interaction energyU(r), eqs
3.25 and 3.26 in ref 37, which are based on eq 1.11 withF -
λF(el) instead ofF(g), turn out to be incorrect forr/rc g 4. In fact,
theshort-range asymptotics ofú(r) really contains a logarithmic
term with a prefactor proportional toF - λF(el), but this term
cannot be matched with the outer asymptoticsBK0(qr) and cannot
be used to determine the multiplicative constantB. The reason
is that the physical problem is characterized by two different
length scales (related to the gravity and electric force, scaled by
the capillary force); therefore, the conventional matching
procedure of Prandtl40 is inapplicable. The incorrect matching
affects only the validity of the results in section 3.7 in ref 37.
The rest of ref 37, including the experiment, the theoretical
expressions for the electrodipping force (F(w) andF(n)), and the
numerical solutions, is correct.

The problem of quantifying the meniscus profile,ú(r) for rc

e r < ∞, in the case of an electrically charged particle is the main
subject of the present article. Our goal here is to develop a
procedure for processing experimental data forú(r), which would
allow one to determine the surface charge density,σpn, at the
particle-nonpolar fluid boundary and to obtain a more accurate
value of the contact angle,θ, in comparison with that obtained
from the simple goniometric method. This problem is nontrivial
because the meniscus shape is affected by the electric field
engendered by the particle. In other words, to calculateú(r) we
need to knowpel(r); see eq 1.6. We restrict our analysis to the
case of asingle particle. Such a study is a prerequisite for a
quantitative and reliable analysis of the more complex problem
of two attached particles and the electric-field-induced capillary
interaction between them. The latter problem has been the subject
of controversy in the literature.36,39,41,42

In the following, we will assume that the particle is spherical
and the fluid interface is planar before particle attachment. Another
assumption, which is fulfilled for most systems of experimental
interest, is that the particles are sufficiently small, (qrc)2 , 1,
and that the slope of the interfacial deformation produced by
them is also small, (dú/dr)2 , 1. In addition, we will restrict our
considerations to the case when the electric effects are dominated

by charges located at the boundary of the particle with the nonpolar
fluid (oil, air). This case corresponds to a situation that has been
observed in many experiments.21-23,26-28,37 In other words, we
presume that

The article is organized as follows. In section 2, we describe
the experiment and the procedure for data acquisition. In section
3, we consider three different methods for calculating the
theoretical meniscus profile. Section 4 is devoted to the range
of the electric-field-induced interfacial deformation and to the
asymptotics of the meniscus profile at long distances from the
particle. In section 5, we prove that for sufficiently small particles
the interfacial shape can be expressed as a superposition of electric
and gravitational deformations. The magnitudes of the latter two
types of deformations are compared in section 6 for different
particle radii and contact angles, and the total depth of the
concavity is quantified. In section 7, we consider the comparison
of theory and experiment; a relatively simple procedure for data
processing is developed. It is based on the use of tabulated
theoretical dependencies, which are given in the Supporting
Information for this article.

2. Experiment

The experiments were analogous to those described in ref 37. The
water phase was pure deionized water or an aqueous solution of
NaCl. The oil phase was tetradecane, with densityFn ) 0.763 g/cm3,
dielectric constantεn ) 2.04, and interfacial tension against water
γ ) 52.2 mN/m. The experiments were carried out at 23°C. As solid
particles, we used silanized glass spheres of densityFp ) 2.62 g/cm3

and dielectric constantεp ) 3.97. The procedure of the silanization
of the particles is described in ref 37.

The experimental cell is a rectangular glass box of sides from
optical plane-parallel plates. The height of the cell is 55 mm. The
horizontal cross section of the cell has dimensions of 80 mm× 25
mm, with both of them being markedly greater than the characteristic
capillary length,q-1 ) (∆Fg/γ)-1/2; the latter is 4.7 mm for the
tetradecane/water interface. The inner walls of the cell are moderately
hydrophobized (contact angle≈ 80° across water). Thus, a slightly
concave tetradecane/water or air/water meniscus is formed, which
decays exponentially, at a relatively short distance from the walls.
Thus, the meniscus around the central part of the cell is horizontal.

The observations were carried out by means of a horizontal
microscope equipped with a long-focus objective and connected to
a monitor and video-recording system. In the absence of the particle,
a horizontal interface was seen. After inserting the particle, we
observed deformations of the interface (deviations from planarity),
as in the photograph in Figure 2.

We digitized the (x, z) coordinates of a series of points located
on the left- and right-hand-side meniscus profiles of a given video
frame (Figure 2). To remove the undesired influence of an occasional
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(42) Würger, A.; Foret, L.J. Phys. Chem. B2005, 109, 16435-16438.
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Figure 2. Side-view photograph of a silanized glass particle at the
water-tetradecane interface. The coordinates of selected points
(denoted in the figure) on the left- and right-hand-side meniscus
profiles have been digitized and compared with the theoretical profile
(Figure 3 and section 7.4).

F(n) . F(w) andF(el) ≈ F(n) (1.12)
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small tilt of thex axis on the photograph with respect to the actual
horizontal direction, we slightly rotated the axes of the (x,z) coordinate
system until achieving the best agreement of the left- and right-
hand-side profiles for the same photograph. In most of our previous
experiments,37only the angleψcwas measured from the video frames.
For the needs of the present article, we also digitized the meniscus
profiles in these video frames. For all digitized profilesz versusr
(see, for example, Figure 3), we applied the procedure described in
section 7 to obtainσpn andθ.

As in ref 37, we did not observe any effect of the NaCl
concentration in water. The latter was varied by injecting known
portions of concentrated NaCl solution into the aqueous phase. An
example is shown in Figure 3, where the symbols denote digitized
points from the left and right profiles of six photographs of the same
particle at six different NaCl concentrations denoted in the Figure.
The dashed-dotted line in Figure 3 represents the gravitational
meniscus profile (i.e., the hypothetical meniscus profile if electric
effects were absent). The latter profile was computed with the help
of eq 1.4:

In Figure 3, the curveú(g)(r) is shifted along the vertical axis such
as to coincide with the horizontal interface far from the particle for
r f ∞. The difference between the gravitational profile and the
experimental points demonstrates the effect of the electric field on
the meniscus shape. Because the variation of the NaCl concentration
produces no effect, we can conclude that the electric charges are
located at the particle-tetradecane boundary and that the electrostatic
interaction between the particle and the oil-water interface occurs
across the oily phase. From the best fit of the experimental data by
the exact numerical solution for the meniscus profile (see the
continuous curve in Figure 3 and section 7), we determined the
surface charge density at the particle-oil interface,σpn ) 67.9µC/
m2.

The data processing procedure and additional experimental data
are given in section 7. The theoretical description of the meniscus
profile and a more detailed discussion of Figure 3 can be found in
section 3.

3. Theoretical Calculation of the Meniscus Profile

One can calculate the meniscus profile,ú(r), by using three
different approaches. (i) One could solve the partial differential
equations of the electrostatic problemnumerically, as in ref 37.
(ii) One could solve the electrostatic boundary problemanalyti-
cally, with the help of the Mehler-Fock integral transformation,
as described in ref 43. (iii) One could describe the meniscus
profile with simpleinterpolation formula, whose parameters are
tabulated; see eq 3.8 and Tables A-D in the Supporting
Information for this article. In subsections 3.1, 3.2, and 3.3, we
consider these three different approaches separately.

3.1. Numerical Solution of the Electrostatic Boundary
Problem. This approach is described in section 5 of ref 37.
Initially, we used a second-order difference scheme with a grid
of 101× 101 subdomains. The numerical results are coincident
(but the computations are longer) if a grid with 201× 201
subdomains is used. Furthermore, we solved the same problem
by means of the alternating direction implicit (ADI) method44

using the general three-level scheme with 2001× 2001
subdomains. The latter numerical method is different from that
used in ref 37, but the results forpel(r) obtained by the two
procedures coincide, as should be expected. The numerical
procedures yield the electric field, and the electric pressure,pel,
exerted at the oil-water interface

where

As usual,θ is the contact angle (Figure 1);Ez is thezcomponent
of the electric-field intensity; and the dimensionless function
G(x1, θ, εpn) is determined by numerical solution of the
electrostatic boundary problem. Note thatG is independent of
rc andσpn. From the values ofG, we can calculatepel(r) with
the help of eqs 3.1 and 3.2 for each set of specific values ofrc,
σpn, θ, εp, andεn. Finally, having determinedpel, we compute
the meniscus profile,ú(r), either by numerical solution of eq 1.6
or by means of eq 5.21 below.

The advantage of this method is that it is based on a relatively
simple mathematical apparatus at the cost of application of
complex numerical methods, which need longer computational
time, or the use of a fast computer.

3.2. Use of the Mehler-Fock Integral Transform. As
demonstrated in ref 43, the application of the Mehler-Fock
integral transform reduces the partial differential equations of
the electrostatic boundary problem to ordinary differential
equations, which can be easily solved. The execution of the
inverse integral transform leads to a Fredholm integral equation
of the second kind. The mathematical analysis in ref 43 yields
the following expression forpel

whereJ is a dimensionless function andν is the smallest positive
root of the equation43

whereâ ) (εpn - 1)/(εpn + 1). Note that the smallest positive

Figure 3. Meniscus shape,z(r), around a silanized glass particle
at the water-tetradecane interface.R and rc are the particle and
contact-line radii;θ(1) is the goniometrically measured contact angle.
The symbols are digitized points on the meniscus profile taken from
photographs of the same particle at various NaCl concentrations.
The solid line is the theoretical profile (section 3). The dashed-
dotted line is the gravitational profile, calculated from eqs 2.1 and
5.3, which shows the hypothetic shape of the meniscus if electrostatic
effects are missing. The dashed line is the level of the horizontal
nondisturbed oil-water interface far from the particle. The difference
between the theoretical and gravitational profiles represents the
electric deformation of the fluid interface,ú(el)(r).
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2πγqrcK1(qrc)
≈ - F(g)

2πγ
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8π
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2|z)0 ) -
2πσpn

2
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root of eq 3.4 is always between 0.5 and 1.0. For this reason,
pel has an integrable divergence at the contact line (x1 ) 1). At
long distances from the particle (x1 f 0), the electric pressure
vanishes,pel ∝ x1

6.J(x1, θ, εpn) is a function of bounded variation,
which can be calculated from the expression43

where

P-1/2 + iτ is the Legendre function of the first kind;τ is an
integration variable;i is the imaginary unit; andΨs(τ) is
the Mehler-Fock image of the dimensionless surface poten-
tial at the particle-oil interface.Ψs(τ) is calculated to high
precision as a solution of the integral equation of Fredholm,
which is solved by iterations; for details, see section 5.1 in ref
43. Having determinedpel from eqs 3.3-3.6, we can compute
the meniscus profile,ú(r), by a numerical solution of eq 1.6.
Alternatively, one could computeú(r) with the help of eqs 2.1,
3.7, and 5.22.

The advantage of the latter method for calculatingú(r) is that
the computations are much faster than those described in section
3.1. As demonstrated in ref 43 (Figures 5 and 12 therein), the
two methods give numerically coinciding results. Most of the
numerical results reported in the present article are obtained by
means of the method based on eqs 3.3-3.6.

3.3. Interpolation Formula for the Meniscus Profile. The
procedures for calculatingú(r) described in sections 3.1 and 3.2
use complex numerical methods and mathematical apparatus.
For the needs of fast estimates and experimental data processing,
we obtained a simpler interpolation formula, eq 3.8. As
demonstrated in sections 5.3 and 6.1, for small particles, (qrc)2

, 1, the meniscus profile can be expressed as a superposition
of electric and gravitational profiles

whereú(g) is given by eq 2.1 andú(el) can be calculated from the
expression

where, as usual,x1 ) rc/r; the coordinate origin is fixed such that
ú(r f ∞) ) 0. Equation 3.8 represents a four-parameter
interpolation formula. Coefficientsa, b, c, andHc

(el) have been
determined by fitting the numerical data forú(el) obtained by
means of the procedure in section 3.2. These coefficients are
tabulated for variousθ andεpn values; see Tables A-D in the

Supporting Information for this article. For all 0e x1 e 1 and
0.125e εpn e 8, the relative error of this interpolation formula
is smaller than 0.68% for 5° < θ < 30°, smaller than 0.5% for
30° < θ < 150°, and smaller than 1.0% for 150° < θ < 165°.
Equation 3.8b was specially designed to provide the best accuracy
close to the contact line (r f rc; x1 f 1), where the meniscus
slope angle,ψc, and the contact angle,θ, are defined.

Thus, for given θ and εpn values, one first determines
coefficientsa, b, c, and H c

(el) from Tables A-D (Supporting
Information); the four-point interpolation formula, eq 7.16, is
convenient for application. Then, for a given value ofσpn one
can calculateú(r) with the help of eqs 3.7 and 3.8.

Alternatively, if experimental points for the meniscus profile
are available, such as those in Figure 3, then one can fit the data
with the help of eq 3.8, as explained in section 7.2.

At the contact line,x1 ) 1, we haveẐ(el) ) 0, and eq 3.8a
indicates thatH c

(el) is the dimensionless electrostatic contribution
to the depth of the concavity formed by the particle; see also eq
6.3. In the other limit,x1 f 0, eq 3.8 givesú(el) ∝ -x1

4/a; see
also eq 5.24.

3.4. Discussion.The continuous line in Figure 3 represents
the theoretical meniscus profile, which could be drawn by either
of the procedures described in section 3.1, 3.2, or 3.3. The three
different procedures give practically coinciding results. The depth
of the concavity created by the particle is

hc is the distance between the planes of the contact line and the
horizontal fluid interface far from the particle (Figure 3). The
most important conclusions from Figure 3 are (i) that the electric
forces create a concavity (dimple) of significant depth in the
fluid interface around the particle and (ii) that the effect of the
electric forces onú(r) disappears forr > 3rc. At greater distances
(r > 3rc), the meniscus shape is governed by the gravitational
deformation,ú(g), alone. In other words, the electric field produces
a deformation of medium range: it is neither long-ranged
(significant forr . rc, as the gravity-induced capillary force) nor
short-ranged (significant only forr - rc , rc, as the van der
Waals attraction). (Note that the range of the electric-field-induced
deformation depends on the contact angle; the range is longer
for greater contact angles; see section 6.1.)

As mentioned above, the lateral capillary force between two
attached particles is due to the overlap of the dimples formed
around them.29-32 Correspondingly, the range of this capillary
force is determined by the range of the interfacial deformations.
Thus, we could expect that the capillary interaction engendered
by the electrodipping force,F(el), is of medium range. The profile
in Figure 3 indicates that the capillary interaction between two
floating particles (the electric-field-induced capillary attraction20)
could be very strong forr < 3rc. (For contact angle∼150°, the
respective range isr < 5rc; see section 6.1.)

Indications of the action of an attractive force of (at least)
medium range were recently observed by Horozov et al. for
silica particles at oil-water23,27and air-water28 interfaces. The
charged particles aggregate despite the presence of a strong
electrostatic (Coulombic and dipolar) repulsion between them.
This shows the presence of an attractive force, which is able to
overcome the electrostatic repulsion and to produce particle
aggregation. It is important to note that the aggregated particles
are not in close contact but stay well separated at equilibrium
distances beyond the range of the van der Waals attraction.27 As
suggested by Horozov et al.,27,28a possible origin of the observed
attraction can be the capillary force due to the undulated contact

(43) Danov, K. D.; Kralchevsky, P. A.J. Colloid Interface Sci., in press, 2006.
(44) Fletcher C. A. J.Computational Techniques for Fluid Dynamics 1.

Fundamental and General Techniques, 2nd ed.; Springer-Verlag: Berlin, 1991;
pp 251-271.

J(x1, θ, εpn) ) 23/2

(1 + x1)
3/2(1 - x1)

1/2+ν ∫0

∞ τΨs(τ)

sinh[(π - θ)τ]
×

P-1/2 + iτ(coshη) dτ (3.5)

coshη ) 1 +
2x1

2

1 - x1
2

(3.6)

ú(r) ) ú(el)(r) + ú(g)(r) (3.7)

ú(el)(r) )
2πσpn

2rc
2

εnγ
(Ẑ(el)(x1) - Hc

(el)) (3.8a)

Ẑ(el) ≡
Hc

(el)

a + bx1
2
[a(1 - x1

8) + bx1
2(1 - x1

6)] - x1
4(1 - x1

2)
1 + cx1

2

a + bx1
2

(3.8b)

hc ≡ -ú(rc) (3.9)
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line.18,45-47 In refs 27 and 28, the particle-oil (air) interface has
been electrically charged; therefore, another possible explanation
of the observed aggregation could be the action of electric-field-
induced capillary attraction related to electric deformations of
the fluid interface (e.g., Figure 3).

In Figure 3, the gravitational deformation,ú(g), described by
eq 2.1 dominates the meniscus profile forr > 3rc. For rc )
200-300 µm, as in our present experiments,ú(g) gives rise to
a long-range gravity-induced capillary attraction between two
floating particles. In contrast, for smaller particles,rc < 5-10
µm, the effect ofú(g) becomes negligible.32

A second point that should be discussed is the expression for
pel(r). In our previous article,37 the numerical data forpel(r) have
been fitted by means of a semiempirical formula, eq 3.7, therein,
which could be obtained from eq 3.3 if we formally substitute

whereλ ) (3+ µ)(2+ µ)(1+ µ)µ/24 andµ ) 2ν - 1. However,
the general theory in ref 43 shows thatJ depends onx1. Despite
the fact that the latter dependence is not strong, it should be taken
into account when calculating the meniscus profileú(r) by
integrating eq 1.6. For this reason, it is not recommended to use
the semiempirical formula, eq 3.7 in ref 37, for the computation
of ú(r).

Another point that deserves discussion and is related to the
comparison of theory and experiment is the following. When
calculating the electrostatic field in refs 37 and 43, as a zeroth-
order approximation it is assumed that the water-nonpolar fluid
boundary is planar. Then, the electric-field intensity andpel are
calculated. Finally, the calculatedpel is substituted into the Laplace
equation, eq 1.6, and the interfacial deformation (deviation from
planarity),ú(r), is determined (e.g., ref 37). In other words, when
solving the electrostatic boundary problem, it was assumed (in
the zeroth-order approximation) thatθ ) R (Figure 1) and then
ú(r) was determined as a first-order correction for the samerc.
For a deformed interface, we haveθ ) R + ψc, and we can
determine each of the latter three angles from photographs (such
as Figure 2) by goniometric measurements. When comparing
the experimental meniscus profile,ú(r), with theory and
determining the angle as an adjustable parameter (section 7), one
obtains a value that is very close to the experimental angleθ
rather than toR; compare anglesθ(1) andθ(e) in section 7. This
result is related to the fact that the meniscus deformation is very
sensitive to the angle of the wedge-shaped domain near the contact
line, which is filled with the nonpolar fluid (Figure 1). The main
electric interaction between the particle and the oil-water
interface occurs across this wedge-shaped domain. The angle of
the wedge (π - θ, Figure 1) is determined byθ, and because of
that, the comparison of theory and experiment givesθ (rather
thanR) when the angle is obtained as an adjustable parameter.
For this reason, in eqs 3.1 and 3.3-3.5 the angle is denotedθ
instead ofR despite the fact that the underlying electrostatic
theory assumes (as an approximation) thatθ ) R. In fact, the con-
tact angleθ can be determined in three different ways: (i) gonio-
metrically, from a photograph such as that in Figure 2 (section
7.1); (ii) as an adjustable parameter from fits of data for the me-
niscus profile (section 7.2); and (iii) from the slope of the theo-

retical curve (representing the best fit), (dú/dr)r)rc (section 7.3).
The respective three values of the contact angle are denotedθ(1),
θ(e), andθ(2), the latter being the most reliable; see section 7.

4. Range of the Meniscus Electric Deformation

4.1. Estimate of the Range ofpel. According to eq 6.6 in ref
37, the electric force exerted on the particle,F(el), must be equal
to the integral ofpel over the oil-water (air-water) interface:

Let us check how far from the particle we have to integrate in
order to satisfy eq 4.1 with a sufficiently small error, equal to
ε:

To estimate the integral in eq 4.2, we substitute the asymptotic
expression forpel, eq 3.9 in ref 3.7:

From eqs 4.2 and 4.3, we get

With λ ) 0.482 (see ref 37), eq 4.4 yields

If eq 4.2 is used as a measure of the range of the electric force,
then eqs 4.5 and 4.6 indicate that the effect of the electric field
on ú(r) practically disappears atr/rc > 4. This conclusion is in
agreement with the results shown in Figure 3.

4.2. Long-Range Asymptotics of the Meniscus Profile.Let
us encircle the floating particle with an imaginary cylinder (Figure
4), which has a sufficiently large diameter,r1, so that the relation

is fulfilled with good accuracy; see eqs 4.5 and 4.6. Because the
effect of pel is negligible forr > r1, eq 1.6 reduces to eq 1.1,
which has the following solution:

Here, for (qr)2 , 1, we have used the asymptotics given by eq
1.5 and the boundary condition at the cylinder surface (Figure
4):

F1 is the force acting on the selected cylinder of radiusr1. In view
of eq 4.7, the electric field is “closed” inside this cylinder (i.e.,
its flux across the cylinder’s walls is (approximately) equal to

(45) Kralchevsky, P. A.; Denkov, N. D.; Danov, K. D.Langmuir2001, 17,
7694-7705.

(46) Danov, K. D.; Kralchevsky, P. A.; Naydenov, B. N.; Brenn, G.J. Colloid
Interface Sci.2005, 287, 121-134.

(47) Loudet, J. C.; Alsayed, A. M.; Zhang, J.; Yodh, A. G.Phys. ReV. Lett.
2005, 94, 018301.

J2 ≈ λF(el)
εn

π2rc
2σpn

2
) const (3.10)

F(el) ) -2π∫rc

∞
dr r pel(r) (4.1)

-2π∫r

∞
dr r pel(r)

F(el)
) ε (ε , 1) (4.2)

pel(r) ≈ -
2λrc

4F(el)

πr6 ( r
rc

. 1) (4.3)

r
rc

) (λε)1/4
(4.4)

ε ) 0.01 for
r
rc

) 2.6 (4.5)

ε ) 0.001 for
r
rc

) 4.7 (4.6)

-2π∫rc

r1 dr r pel(r) ≈ F(el) (4.7)

ú(r) )
-F1

2πγqr1K1(qr1)
K0(qr) ≈ F1

2πγ
ln(γeqr

2 ) (r gr1) (4.8)

dú
dr

|r)r1
)

F1

2πγr1
(4.9)
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zero). Then, the magnitude ofF1 will be determined by the
gravitational force acting on this cylinder. In such a case, an
expression forF1 can be deduced by buoyancy-force consid-
erations. The same result can be obtained more easily from the
Laplace equation of capillarity48

whereFw andFn are the mass densities of the water and nonpolar
fluid andψ is the slope angle of the meniscus profile (tanψ )
dú/dr). Equation 1.6 is a special case (linearized form) of eq 4.10
for small meniscus slope (i.e., for tan2 ψ , 1). The force balances
at the particle and at the cylinder (Figure 4) yield

whereψ1 ) ψ(r1) and ψc ) ψ(rc). (The same follows from
boundary conditions given by eqs 1.3 and 4.9 for sinψ ≈ tan
ψ ) dú/dr). By integrating eq 4.10, we obtain

Next, we substitute eqs 4.7 and 4.11 into eq 4.12; the result reads

whereVm denotes the volume confined between the meniscus
and the horizontal planez ) 0 (Figure 4):

Note thatVm > 0 because for the present choice of the coordinate
system we haveú e 0. In view of eq 4.13, we have

where Vp is the particle volume andF(g) ∝ Vp (see below).
Equations 4.13 and 4.15 show that the logarithmic prefactor in

eq 4.8 (describing the meniscus shape in the “outer region”,r
> r1) cannot be greater thanF(g), and it certainly does not contain
a contribution fromF(el). In fact, the prefactor is very close to
F(g) because the term withVm in eq 4.13 is comparatively small.
Thus, settingF1 ≈ F(g) into eq 4.8, we obtain

In other words, forr g r1 the logarithmic prefactor is determined
solely byF(g), in agreement with our results in Figure 3. Note
that the linear portion on the right-hand side of the plot in Figure
3, where the solid and dashed-dotted curves coincide, corre-
sponds to the logarithmic dependence in eq 4.16. The coincidence
of the latter two curves is also indirect proof that in the considered
caseVm , Vp and that the difference betweenF1 andF(g) is small
(eq 4.15).

The fact that the long-range asymptotics ofú(r) is dominated
by F(g) (eq 4.16) is in agreement with the conclusion of Oettel
et al.39 and with part of the conclusions of Megens and
Aizenberg.36 The latter authors wrote that if there is any effect
it is too short-ranged “so overall, there is no attraction at all.”36

In fact, this could happen if surface charges are present only at
the particle-water boundary and if the concentration of electrolyte
in the aqueous phase is sufficiently high. However, this is certainly
not the case when surface charges of sufficiently high density,
σpn, are present at the particle-nonpolar fluid boundary. In the
latter case, the interfacial deformation is of medium range (Figure
3 and section 7.4).

5. Superposition of the Electric and Gravitational
Deformations

Here, our aim is to prove that for small particles ((qR)2 , 1)
for which the meniscus slope is small and the Laplace equation
of capillarity can be linearized the meniscus profile can be
presented as a superposition of the electric and gravitational
deformations,ú(r) ) ú(el)(r) + ú(g)(r); see eq 3.7. First, we will
consider the expressions forú(g)(r) andú(el)(r) separately.

5.1. Gravitational Deformation. In the considered case of
small meniscus slope, the gravitational deformation caused by
a floating particle (Figure 1) is described by eq 2.1. Close to the
contact line, where (qr)2 , 1, the asymptotic expression forK0,
eq 1.5, can be used, and eq 2.1 acquires a simpler form:

Because of the logarithmic dependence in eq 5.1,ú(g)(r) looks
like a straight line whenr is plotted on a log scale; see Figure
3. The gravitational force,F(g), acting on the particle, is equal
to the particle weight minus the buoyancy force due to the fluid
displaced by the particle and the encircling meniscus:49,50

Here,Vw andVn are the portions of the particle volume, which
are immersed, respectively, in the water and in the nonpolar
fluid. For the considered small particles, the term withhc is much
smaller than the other two terms on the right-hand side of eq 5.2,
and it can be neglected:

(48) Princen, H. M. The Equilibrium Shape of Interfaces, Drops, and Bubbles.
In Surface and Colloid Science; Matijeviè, E., Ed.; Wiley: New York, 1969; Vol.
2, p 1.

(49) Nutt, C. W.Chem. Eng. Sci. 1960, 12, 133-141.
(50) Ivanov, I. B.; Kralchevsky, P. A.; Nikolov, A. D.J. Colloid Interface Sci.

1986, 112, 97-107.

Figure 4. Sketch of a particle at the water-nonpolar fluid boundary.
Because of forceF ) F(g) + F(el) acting on the particle, the fluid
interface is deformed. The particle is encircled by an imaginary
vertical cylinder of radiusr1. The total force acting on this cylinder
is denoted byF1; γ is interfacial tension;ψc andψ1 are, respectively,
the meniscus slope angles at the contact line and at the cylinder wall;
hc characterizes the depth of the concavity (dimple). The magnitude
of the meniscus deformation is exaggerated.

γ
r

d
dr

(r sin ψ) ) (Fw - Fn)gú + pel(r) (4.10)

2πγrc sin ψc ) F(g) + F(el) 2πγr1 sin ψ1 ) F1 (4.11)

2πγ(r1 sin ψ1 - rc sin ψc) )

2π(Fw - Fn)g∫rc

r1 dr r ú(r) + 2π∫rc

r1 dr r pel(r) (4.12)

F1 ) F(g) - (Fw - Fn)gVm (4.13)

Vm ) -2π∫rc

r1 dr r ú(r) (4.14)

F1 < F(g) butF1 ≈ F(g) becauseVm , Vp (4.15)

ú(r) ≈ F(g)

2πγ
ln(γeqr

2 ) (r g r1) (4.16)

ú(g)(r) ≈ F(g)

2πγ
ln(qrγe

2 ) at (qr)2 , 1 (5.1)

F(g) ) g[(Fp - Fw)Vw + (Fp - Fn)Vn - (Fw - Fn)πrc
2hc] (5.2)
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Furthermore, expressingVw and Vn in terms ofR and cosR
(Figure 1) and using the relationshipF(g) ) 2πrcγ sin ψc

(g) we
obtain from eq 5.345

Here,DF ) (Fp - Fn)/(Fw - Fn), andψc
(g) is the gravitational

meniscus slope angle at the contact line. Equation 5.4 enables
one to estimate whether the condition for a small meniscus slope,
(sin ψc

(g))2 , 1, is satisfied for givenR, R, and mass densities
Fp, Fw, andFn.

5.2. Electric Deformation. For small spherical particles (R
e 5µm), such as those used in many experiments, the gravitational
force,F(g), and the gravitational deformation of the meniscus,
ú(g), are negligible.32 In other words, if there were no electric
effects, then the meniscus around the floating sphere would be
planar,ú ≈ 0. (Here, we assume that undulations of the contact
line due to surface roughness or inhomogeneity are missing.)
Then, the deformation of the water-nonpolar fluid interface,
ú(el)(r), is due only to the electric forces. The latter deformation
is described by eq 1.6 with a neglected gravitational term,q2ú:

As demonstrated below, eq 5.5 and its solution, eq 5.9, also
describe the electric interfacial deformation for larger particles,
for which ú(g) is not zero. We seek a solution of eq 5.5, which
satisfies the boundary conditions

Integrating eq 5.5, along with eq 5.6, we obtain

One can check that if we setr ) rc in eq 5.8 and substitute the
integral from eq 4.1 we get exactly the boundary condition, eq
5.7. In other words, the boundary condition, eq 5.7, is automati-
cally satisfied by the first integral, eq 5.8. A subsequent integration
of eq 5.8 yields the meniscus profile:

Here, in the last step we have applied integration by parts and
have used the boundary conditionú(el)(∞) ) 0. Becausepel(r) ∝
1/r6 for r f ∞, the integrals in eq 5.9 are convergent, andú tends
to zero atr f ∞; see eq 5.24. Keeping in mind thatpel < 0, eq
5.9 implies thatú(el) is negative.

In summary, eq 5.9 is the physical solution of eq 5.5, which
tends toward a planar interface at long distances (no electric
deformation) and satisfies the force balance at the contact line,
eq 5.7.

5.3. Combined Gravitational and Electric Deformation.
This case corresponds to our experimental situation; see, for
example, Figure 3. The equation for the meniscus profile, eq 1.6,

is an inhomogeneous modified Bessel equation that has a standard
solution:51

See also ref 39. Here,r̂ is integration variable;A is an integration
constant, andI0 and K0 are the modified Bessel functions of
zeroth order.33-35Equation 5.10 satisfies the boundary condition
ú f 0 for r f ∞. From the second boundary condition, eq 1.3,
we determineA in eq 5.10

whereI1 andK1 are modified Bessel functions of first order and
F ) F(g) + F(el). For submillimeter particles, we have (qrc)2 ,
1; consequently,I1(qrc) ≈ qrc/2 andK1(qrc) ≈ 1/(qrc). Then, eq
5.11 simplifies to

For (qrc)2 , 1, the integral term in eq 5.12 is negligible, and eq
5.10 acquires the form

In principle, eq 5.13 solves the problem. Its application to the
calculation of the meniscus profile is described in section 5.4.

For the small particles considered in the present study, eq 5.13
could be further simplified. To describe the meniscus shape near
the contact line, (qr)2 , 1, we can setI0(qr) ≈ 1. Then eq 5.13
reduces to

In view of eq 4.1, we have

BecauseF - F(el) ) F(g), from eqs 5.14 and 5.15 we obtain

Becausepel(r) ∝ 1/r6 for r f ∞, only the behavior ofK0 at short
distances gives an essential contribution to the integral in eq
5.16. Thus, by substitutingK0(qr) ≈ -ln(γeqr/2) into eq 5.16
one obtains

(51) Kamke, E.Differential Equations. Solution Methods and Solutions;
Teubner: Stuttgart, Germany, 1983.

F(g) ≈ g[(Fp - Fw)Vw + (Fp - Fn)Vn] (5.3)

sin ψc
(g) ≈ (qR)2

6 sinR
(4DF - 2 - 3 cosR + cos3 R) (5.4)

1
r

d
dr(rdú(el)

dr ) ) 1
γ

pel(r) (5.5)

lim
rf∞(rdú(el)

dr ) ) 0 (5.6)

(dú(el)

dr )
r)rc

) F(el)

2πγrc
(5.7)

-r
dú(el)

dr
) 1

γ∫r

∞
dr̂ r̂ pel(r̂) (5.8)

ú(el)(r) ) 1
γ∫r

∞ dr̃
r̃ ∫r̃

∞
dr̂ r̂ pel(r̂) ) 1

γ∫r

∞
dr̂ r̂ pel(r̂) ln(r̂r) (5.9)

-ú(r) ) 1
γ

I0(qr)∫r

∞
dr̂ r̂ pel(r̂) K0(qr̂) +

1
γ

K0(qr)[A + ∫rc

r
dr̂ r̂ pel(r̂) I0(qr̂)] (5.10)

A )

F
2πrc

+ qI1(qrc)∫rc

∞
dr r pel(r) K0(qr)

qK1(qrc)
(5.11)

A ≈ F
2π

+ 1
2
(qrc)

2∫rc

∞
dr r pel(r) K0(qr) (5.12)

ú(r) ) - 1
γ

I0(qr)∫r

∞
dr̂ r̂ pel(r̂) K0(qr̂) -

K0(qr)[ F
2πγ

+ 1
γ∫rc

r
dr̂ r̂ pel(r̂) I0(qr̂)] (5.13)

ú(r) ≈ - 1
γ∫r

∞
dr̂ r̂ pel(r̂) K0(qr̂) -

K0(qr)[ F
2πγ

+ 1
γ∫rc

r
dr̂ r̂ pel(r̂)] (5.14)

∫rc

r
dr̂ r̂ pel(r̂) ) - F(el)

2π
- ∫r

∞
dr̂ r̂ pel(r̂) (5.15)

ú(r) ≈ - 1
γ∫r

∞
dr̂ r̂ pel(r̂)[K0(qr̂) - K0(qr)] - F(g)

2πγ
K0(qr)

(5.16)
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where in the last step we used eqs 2.1 and 5.9. In section 5.4,
we demonstrate that for the considered small particles, (qrc)2 ,
1, theú(r) dependence calculated from the approximated eq 5.17
agrees excellently withú(r) calculated from the exact eq 5.13.
In other words, for small particles, the meniscus shape can be
expressed as a sum of pure electric and gravitational deformations,
ú ) ú(el) + ú(g), as predicted by eq 5.17. The same is true for the
depth of the concavity formed by the particle:

See also eqs 3.9 and 5.17.
5.4. Comparison of the Exact and Approximated Equations

for ú(el). Equation 5.13 can be also presented in the formú )
ú(el) + ú(g), whereú(g) is defined by eq 2.1, and

Equation 5.21 expressesú(el) for the combined electric and
gravitational deformation, and at first glance, it is very different
from eq 5.9, which expresses a pure electric deformation. Our
goal here is to demonstrate that for small particles, (qrc)2 , 1,
eqs 5.9 and 5.21 give numerically identical results.

Equation 5.21 is presented in a form convenient to numerical
calculations. Indeed, the ratiosK0(qr̂)/K0(qr) and I0(qr̂)/I0(qr)
are smaller that 1. In addition, forr f ∞ we haveI0(qr) K0(qr)
≈ 1/(2qr) f 0. Hence, the divergence ofI0(qr) for larger does
not cause computational problems when eq 5.21 is applied.

To calculateú(el) from eqs 5.9 and 5.21, we substitutedpel(r)
from eq 3.3 and carried out the computations with the help of
eqs 3.4-3.6. In particular, the combination of eqs 3.3 and 5.9
yields

The integral in eq 5.22 is convergent. We have 0< 2 - 2ν <
1, and the singularity atx1 f 1 is integrable; see eq 3.4 for the
definition of ν. The situation in which eq 3.3 is substituted into
eq 5.21 is analogous.

It should also be noted that the dimensionless functionJ in
eq 5.22 is finite over the whole region 0e x1 e 1. Its limiting
values

are calculated from the analytical solution and tabulated in ref
43, Tables 1 and 2 therein. From eqs 5.22 and 5.23, one can
determine the asymptotic behavior ofú(r) for larger (smallx1):

Note that eq 3.8 gives an asymptotic equivalent to eq 5.24, with
D2 ) 16/a. It is more accurate to determineD from Table 1 in
ref 43 than to usea from Table A in the Supporting Information
for this article, although the latter Table also provides a very
good estimate ofD.

In our computations, we also obtained the dimensionless
meniscus profile,Z(el), which in view of eq 5.22 is defined as
follows:

We computedZ(el)(x1) from eqs 5.9 and 5.21, wherepel(r) was
substituted from eq 3.3. The numerical results forZ(el)(x1) obtained
from eqs 5.9 and 5.21 practically coincide for submillimeter
particles, when (qrc)2 , 1. As illustrated in Figure 5, a noticeable
difference between the two equations appears for relatively large
particles,qrc ) 0.25, and for the larger contact angles,θ ) 130°.
For the water/tetradecane interface, we haveq-1 ) 4.7 mm, and
thenqrc ) 0.25 corresponds torc ) 1.18 mm, which is a relatively
large particle. Even for such particle, eqs 5.9 and 5.21 give
practically coincident profiles whenθ ) 50 and 90° (Figure 5).

Our computations lead to the conclusion that for submillimeter
particles the approximate eq 5.9 gives the same numerical results
for Z(el)(x1) as the exact eq 5.21. This result confirms that for
submillimeter particles the meniscus profile can be presented as
a simple superposition of the pure electric and gravitational
deformations, in accordance with eq 5.17. Hereafter, all of our
calculations will be based on eq 5.17.

6. Numerical Results and Discussion

6.1. Comparison of the Gravitational and Electric Defor-
mations. To illustrate the relative effect of gravitational and
electric forces on the meniscus shape, we calculatedú(g)(r) and

Figure 5. Dimensionless meniscus profile calculated from eq
5.25, in combination with eq 5.9 or 5.21, for a relatively large particle,
qrc ) 0.25, at three values of the contact angleθ. Note that eq 5.9
describes a purely electric deformation, whereas eq 5.21 accounts
for the influence of gravity on the electric deformation. Forθ ) 50
and 90°, the curves computed by means of eqs 5.9 and 5.21 practically
coincide.

ú(el)(r) ) -
2πσpn

2rc
2

εnγ
D2

16
x1

4 for r . rc (5.24)

Z(el)(x1) ≡ εnγ

2πσpn
2rc

2
ú(el)(r) x1 )

rc

r
(5.25)

ú(r) ≈ 1
γ∫r

∞
dr̂ r̂ pel(r̂) ln(r̂r) - F(g)

2πγ
K0(qr) ) ú(el) + ú(g)

(5.17)

hc ≈ hc
(el) + hc

(g) (5.18)

hc
(el) ) -ú(el)(rc) ) - 1

γ∫rc

∞
dr̂ r̂ pel(r̂) ln(r̂r) (5.19)

hc
(g) ) -ú(g)(rc) ) F(g)

2πγ
K0(qrc) (5.20)

-ú(el)(r) ) 1
γ

I0(qr) K0(qr) ×

[∫r

∞
r̂pel(r̂)

K0(qr̂)

K0(qr)
dr̂ + ∫rc

r
r̂pel(r̂)

I0(qr̂)

I0(qr)
dr̂] + F(el)

2πγ
K0(qr)

(5.21)

ú(el)(r) ) -
2πσpn

2rc
2

εnγ
∫0

x1
x̂1

3

(1 - x̂1)
2 - 2ν

×

[J(x̂1, θ, εpn)]
2 ln(x1

x̂1
) dx̂1 (5.22)

D(θ, εpn) ) lim
x1f0

J(x1, θ, εpn)

C(θ, εpn) ) lim
x1f1

J(x1, θ, εpn) (5.23)
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ú(el)(r) for typical parameter values corresponding to the
experimental values in section 2:

Thus, we haveεpn ) εp/εn ) 1.946. In our experiments, the
greater particle radius wasR ) 265µm, which corresponds to
qR ) 0.0564 (q-1 ) 4.7 mm). For such small particles, the
meniscus shape can be expressed as a superposition of gravi-
tational and electric deformation; see eq 5.17.ú(g)(r) andú(el)(r)
were calculated by means of eqs 2.1 and 5.22, respectively. To
simplify the calculations, in eq 5.22 we have setθ ) R (Figure
1).

Figure 6 compares the calculated, purely gravitational de-
formation,ú(g), with the total deformation,ú(g) + ú(el), for two
anglesR ) 50 and 90° and for three particle radiiR) 200, 100,
and 50µm. The boundary conditionú(∞) ) 0 has been used. One
sees that forR ) 50° (hydrophilic particle) the electric
deformation,ú(el), is relatively small, in comparison withú(g),
and is located in close proximity to the contact line. ForR ) 90°,
the electric deformation,ú(el), is considerable and becomes
comparable to and even greater thanú(g) (Figure 6c). The
magnitude of the total deformation,ú(g) + ú(el), and the magnitude
of ú(g) markedly decrease with decreasing particle radius,R;
compare parts a-c of Figure 6.

Figure 7 compares the gravitational deformation,ú(g), with the
total deformation,ú(g) + ú(el), for hydrophobic particles at two
anglesR ) 120 and 150° and for three particle radiiR ) 200,
100, and 50µm. In this case, the electric deformation,ú(el), is
considerably greater than the gravitational one,ú(g). This is due
to the greater total surface electric charge (greater area of the
particle-oil interface) and to the specific interfacial configuration
in the three-phase contact region.ú(g) is relatively small and is
practically the same forR ) 120 and 150°.

It is important to note that the range of the electric interfacial
deformation markedly depends on the contact angle. Thus, for
R ) 50, 90, and 150°, ú(el) becomes negligible (ú(el)/ú(g) e 2%
andú ≈ ú(g)) for r g 1.5rc, 2.5rc, and 5rc, respectively (Figures
6 and 7).

6.2. Depth of the Concavity Produced by the Particle.The
depth of the concavity (dimple) produced by the particle,hc, is
a physically important parameter that is used in the procedure
for determining the surface charge density,σpn, from the
experimental meniscus profileú(r) (section 7). To calculatehc,
we used eqs 5.18-5.20. In particular, the substitution of eq 3.3
into eq 5.19 yields

In view of eq 5.25, the dimensionless depth of the electric-
field-induced concavity is

See also eq 3.8. Figure 8 shows plots ofH c
(el) versusθ for various

values ofεpn. One sees thatH c
(el) depends very strongly onθ:

it varies by 5 orders of magnitude for 5° e θ e 175°. However,
the dependence ofH c

(el) on εpn is relatively weak. Because the
dependenceH c

(el)(θ, εpn) is used to determineσpn from experi-

mental data (section 7), it is tabulated; see Table D in the
Supporting Information for this article.

Equation 5.24 indicates thatú(el) ∝ x1
4 at long distances. For

this reason, it is convenient to plotú(el) versusx1
4 when processing

experimental data (section 7). A useful parameter is the area
below the curveú(el)(x1

4)

Fn ) 0.763 g/cm3 Fp ) 2.62 g/cm3 γ ) 52.2 mN/m

εn ) 2.04 εp ) 3.97 σpn ) 70 µC/m2 (6.1)

hc
(el) )

2πσpn
2rc

2

εnγ
∫0

1 x1
3

(1 - x1)
2 - 2ν

[J(x1, θ, εpn)]
2 ln(1

x1
) dx1

(6.2)

Hc
(el)(θ, εpn) ≡ -Z(el)(1) )

εnγ

2πσpn
2rc

2
hc

(el) (6.3)

Figure 6. Comparison of the purely gravitational deformation,ú(g),
with the total deformation,ú(g) + ú(el), for two anglesR ) 50 and
90° and for three particle radii (a)R) 200, (b) 100, and (c) 50µm.
ú(g)(r) and ú(el)(r) are calculated by means of eqs 2.1 and 5.22,
respectively.

S4 ) - ∫0

1
ú(el)(y) dy (6.4)
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wherey ≡ x1
4. To eliminate the surface charge density, the

following dimensionless ratio,s, is defined:

In general,s ) s(θ, εpn). For practical applications, it is more
convenient to invert the latter dependence:θ ) θ(s, εpn); see

Figure 9. For a given value ofs, Figure 9 enables one to determine
the corresponding value of the contact angle,θ. For this reason,
it is important that the dependenceθ(s) is single-valued (Figure
9). The value ofθ corresponding to a givenscan be determined
more accurately from the equation

where the coefficientsB0, B1, B2, andB3 are given in Table 1
for various values ofεpn. For intermediate values ofεpn, the
coefficientsB0, ...,B3 could be determined by linear interpolation.
The accuracy of the computation ofθ by eq 6.6 and Table 1 is
better than 1%.

7. Comparison of Theory and Experiment

The comparison of theory and experiment allows one to
determine the parameters of the system and further to quantify
the electric field distribution and the interactions between adsorbed
particles. It is important to determine in situ the electric charge
density at the particle-nonpolar fluid boundary,σpn. However,
both experiment and theory have limitations that could be
overcome by iteration steps, as described below. The goniometric
measurements of the contact angleθ (section 7.1) give
systematically smaller values ofθ (denotedθ(1)) because the

Figure 7. Comparison of the purely gravitational deformation,ú(g),
with the total deformation,ú(g) + ú(el), for two anglesR ) 120 and
150° and for three particle radii (a)R ) 200, (b) 100, and (c) 50
µm. ú(g)(r) andú(el)(r) are calculated by means of eqs 2.1 and 5.22.
The ú(g)(r) curves for the twoR’s practically coincide.

s≡ hc
(el)

S4
)

-Hc
(el)

∫0

1
Z(el)(y) dy

(6.5)

Figure 8. Dimensionless depth of the electric-field-induced
concavity,H c

(el), plotted vs the contact angleθ for various values of
εpn. H c

(el) is calculated by means of eqs 6.2 and 6.3.

Figure 9. Plot of the contact angleθ vs the dimensionless parameter
s (eq 6.5) for two values ofεpn ) εp/εn. The circles are computed
values, whereas the lines are calculated by means of eq 6.6 and
Table 1. From the experimental data, one obtainss (eq 7.13), and
then from the present plot, one determines the respectiveθ.

θ ) B0 + B1s + B2s
2 + B3s

3 (6.6)
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curvature of the oil-water interface increases in close proximity
to the contact line, which is not accessible to optical observations
(section 7.3). A more accurate value ofθ (denotedθ(2)) could
be obtained if data for the meniscus profile, such as those in
Figure 3, are processed by means of the theory of the electric
field distribution (sections 7.2-7.4).

7.1. Processing Data of Goniometric Measurements.From
the side-view photographs, such as Figure 2, one can determine
the radii of the particle and the contact line,R andrc, and then
(Figure 1)

Supposedly, the particle is spherical. (When applying eq 7.1,
one should take into account whether the angleR is acute or
obtuse.) Furthermore,θ(1) can be measured goniometrically from
the photograph as the angle subtended at the contact line between
the particle-water and water-nonpolar fluid interfaces. Next,
one calculatesψc

(1) ) θ(1) - R.
Alternatively,ψc

(1) can be measured goniometrically from the
photograph as the angle subtended at the contact line between
the water-nonpolar fluid interface and the horizontal plane. In
our experiments (ref 37),ψc

(1) was measured from the left- and
right-hand-side profiles (Figure 2), and then the mean arithmetic
ψc

(1) was calculated. Thus, an error from the inaccurate
determination of the position of the horizontal plane is avoided.
Next, one calculates

In general, the angleψc is related to the total normal force exerted
on the particle,F ) F(el) + F(g), by means of eq 1.2. The
gravitational forceF(g) can be calculated by means of eq 5.3
(Table 2), whereas the electrodipping force,F(el), is determined
by the following expression:37,43

Here, the multiplier 2πR2(1 - cosR) represents the area of the
particle-nonpolar fluid boundary, whereas the dimensionless
force coefficientf, which is independent ofRandσpn, is related
to the electrostatic interactions across the wedge-shaped region

near the contact line, which is characterized by the contact angle
θ; see section 3.4. One could accurately calculatef(θ, εpn) by
means of the relation

where the functionfR(θ, εpn) is tabulated in Table 3 of ref 43.
(The procedure for calculatingf(θ, εpn) based on Table 4 in ref
37 is not very accurate, so it is preferable to use Table 3 in ref
43.)

BecauseF(el) + F(g) ) 2πrcγ sin ψc, from eq 7.3a we derive

To obtain the surface charge densityΓpn in cm-2, one has to
substitutee) 4.803× 10-10(CGS units) into the right-hand side
of eq 7.4.

Valuesθ(1) andσpn
(1) in Table 2 are calculated from eqs 7.2 and

7.4, respectively, where the goniometrically determined value of
ψc is substituted, along with the value ofR from eq 7.1. Thus,
for the particle in Figure 3 (the first row of Table 2) we have
θ(1) ) 113.7° andf(θ(1), εpn) ) 1.323, which givesσpn

(1) ) 55.82
µC/m2. This is the simplest way to determine the contact angle
and the surface charge density.37 However,θ(1) andσpn

(1) could
be affected by an inaccuracy in the goniometric measurement
of ψc

(1); see section 7.3. For this reason, a more accurate method
is presented below. Two alternative procedures for data processing
are described in section 7.2 and in the Supporting Information.

7.2. Procedure for Processing Meniscus-Profile Data.Here,
it is convenient to fix the zero of thez axis at the level of the
contact line, as in Figure 3. For this choice of the coordinate
origin, the meniscus profile is

whereú(r) is the theoretical profile that satisfies the boundary
conditionsú(∞) ) 0 andú(rc) ) -hc. As established in section
5, for small particles ((qrc)2 , 1), the meniscus profile can be
expressed as a sum of purely electric and gravitational deforma-
tions:

Here, we presume that experimental data points (r,z) for a profile,
such as those in Figure 3, are available. The procedure for data
acquisition is described in section 2. The other input parameters
arerc, γ, εn, εpn, andF(g), the latter determined from eq 5.3. We
will use the data in Figure 3 as a worked example. The procedure
is as follows:

(1) For each experimental point (ri, zi), we calculatez(g)(ri)
from the equation

Table 1. CoefficientsB0-B3 in Equation 6.6 for Various Epn Values

εpn ) εp/εn

Bk 0.125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00

B0 277.68 275.19 271.45 268.16 265.25 260.42 256.65 248.14 245.75
B1 -113.05 -109.22 -103.36 -98.079 -93.334 -85.228 -78.636 -62.061 -51.319
B2 21.679 20.290 18.234 16.314 14.545 11.439 8.8385 1.9609 -3.2356
B3 -2.7119 -2.5627 -2.3531 -2.1491 -1.9558 -1.6066 -1.3064 -0.48139 0.19163

Table 2. Data for Silanized Glass Spheres at the
Tetradecane-Water Interfacea

R
(µm)

rc

(µm)
F(g)

(µN)
R

(deg)
θ(1)

(deg)
θ(e)

(deg)
θ(2)

(deg)
σpn

(1)

(µC/m2)
σpn

(2)

(µC/m2)

240.6 236.1 1.014 101.2 113.7 117.3 120.0 55.82 67.94
210.2 199.8 0.6836 108.1 120.8 125.3 128.7 56.57 70.48
214.4 203.1 0.7265 108.7 122.5 128.2 131.5 58.22 70.22
231.0 223.3 0.9024 104.8 117.9 122.8 124.9 55.70 68.32
200.6 181.3 0.6000 115.3 130.2 135.3 139.0 56.83 69.21
263.2 253.1 1.338 105.9 122.6 125.9 134.6 58.92 74.87

a Note thatθ(1) andσpn
(1) are determined goniometrically (section 7.1),

whereasθ(2) andσpn
(2) are obtained by processing data for the meniscus

profile (section 7.3).

R ) arcsin(rc

R) (7.1)

θ(1) ) R + ψc
(1) (7.2)

F(el) ) 4π
εn

σpn
2R2(1 - cosR) f(θ, εpn) (7.3a)

f(θ, εpn) )
fR(θ, εpn)

1 - cosθ
(7.3b)

Γpn
2 ≡ σpn

2

e2
)

(2πrcγ sin ψc - F(g))εn

4πe2R2(1 - cosR) f(θ, εpn)
(7.4)

z(r) ) hc + ú(r) (7.5)

z(r) ) z(el)(r) + z(g)(r) (7.6)

z(g)(ri) ) F(g)

2πγ
ln(ri

rc
) (7.7)
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which follows from eq 5.1 and the boundary conditionz(rc) )
0. For the investigated particles, the values ofF(g) are given in
Table 2. Furthermore, in view of eq 7.6 we determine the electric
contribution to the experimental meniscus profile:

Next, we plotzi
(el) versus (rc/ri)4; see Figure 10.

(2) The data forzi
(el) versusy ≡ (rc/ri)4 are interpolated by a

cubic parabola. In Figure 10, the best fit (the solid line) is

(3) The areaA4 below the curvez(el)(y) is calculated:

For the curve in Figure 10, from eq 7.9 we obtain

Next, we calculate the dimensionless ratio,u:

The parameters (section 6.2) is

(4) We determine the parametersB0(εpn), B1(εpn), B2(εpn), and
B3(εpn) from Table 1 by linear interpolation:

For the data in Figure 3, we haveεpn ) 1.946, and then with the
help of eq 7.14 from Table 1 we find

Substitutings from eq 7.13 andB0 - B3 from eq 7.15 into eq

6.6, we calculate the contact angleθ ≡ θ(e) ) 117.3°. This
procedure is applicable for everyθ ∈ (0°, 180°). The value of
θ determined here is denotedθ(e) to distinguish it from the values
θ(1) andθ(2) obtained in sections 7.1 and 7.3; see Table 2 and
the discussion in section 7.3. For contact angles 5° e θ e 120°,
one can use a simpler procedure, which is described at the end
of the Supporting Information.

7.3. Determination of the Surface Charge Density.Having
obtainedθ ) θ(e) (section 7.2) and knowingεpn, we determine
H c

(el)(θ(e), εpn) from Table D in the Supporting Information. For
this purpose, one can use the four-point interpolation formula

Thus, forθ ) 117.3° andεpn ) 1.946, we obtain

Next, we calculate the theoretical meniscus profile with the help
of eqs 3.8, 6.3, and 7.5-7.7

where the zero on thezaxis is chosen such thatz(rc) ) 0. Keeping
in mind thathc

(el) ) z(el) (y ) 0), we determine the scaling factor
hc

(el)/H c
(el) in eq 7.18. For the data in Figure 3, we havehc

(el) ) z(el)

(y ) 0) ) 14.532µm (eq 7.9), and thenhc
(el)/H c

(el) ) 129.37µm
(eq 7.17). Furthermore, using Tables A, B, and C in the Supporting
Information, with the help of eq 7.16 we determined coefficients
a, b, andc in eq 3.8b:

Now all parameters in eqs 3.8b and 7.18 are known, and we can
calculate the theoretical meniscus profile; see the solid line in
Figure 3. This profile can be considered to be the best fit of the
experimental data. (The procedure in section 7.2 includes a fit
by cubic parabola.) As seen in Figure 3 and in section 7.4, the
theoretical profile is in excellent agreement with the experimental
data.

Next, by differentiation of eq 7.18 along with eq 3.8b, we
obtain the meniscus slope angle at the contact line:

For the considered illustrative example (the first row of Table
2), we compute (dz(el)/dr)|r)rc ) 0.3271, which, after substitution
into eq 7.20, givesψc

(2) ) 18.8°. The corresponding value of the
contact angle isθ(2) ≡ R + ψc

(2) ) 120.0°.
Finally, after substitutingθ ) θ(e) andψc ) ψc

(2) into eq 7.4,
we calculate the surface charge density. For the considered
example, we havef(θ(e), εpn) ) 1.360, which givesσpn

(2) ) 67.9
µC/m2.

Figure 10. Plot of the electric interfacial deformationz(el) vs y )
(rc/r)4 for the data in Figure 3. The solid line is a fit via cubic
parabola. The dashed line is a fit via linear regression of the data
for 0 < y < 0.75; the equation of the regression is shown.

zi
(el) ) zi - z(g)(ri) (7.8)

z(el) ) 14.532- 16.149y + 9.628y2 - 8.011y3 (7.9)

A4 ) ∫0

1
z(el)(y) dy (7.10)

A4 ) 14.532- 16.149
2

+ 9.628
3

- 8.011
4

) 7.644 (7.11)

u ≡ z(el)(y ) 0)
A4

) 14.532
7.644

) 1.901 (7.12)

s≡ u
u - 1

) 2.110 (7.13)

f(x) ) f(x1) +
f(x2) - f(x1)

x2 - x1
(x - x1) (7.14)

B0 ) 257.06 B1 ) -79.348 B2 ) 9.1194
B3 ) -1.3388 (7.15)

f(x, y) )
(x - x2)(y - y2)

(x1 - x2)(y1 - y2)
f(x1, y1) +

(x - x2)(y - y1)

(x1 - x2)(y2 - y1)
×

f(x1, y2) +
(x - x1)(y - y2)

(x2 - x1)(y1 - y2)
f(x2, y1) +

(x - x1)(y - y1)

(x2 - x1)(y2 - y1)
×

f(x2, y2) (7.16)

ln Hc
(el) ) -2.1864 andHc

(el) ) 0.11233 (7.17)

z(r) ) F(g)

2πγ
ln( r

rc
) +

hc
(el)

Hc
(el)

Ẑ(el)(x1) (7.18)

a ) 9.012 b ) -7.207 c ) 0.08252 (7.19)

tanψc
(2) ) F(g)

2πγrc
+ dz(el)

dr
|r)rc

(7.20)

dz(el)

dr
|r)rc

)
2hc

(el)

(a + b)rcHc
(el)

[(4a + 3b)Hc
(el) - 1 - c] (7.21)
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In Table 2, the values ofθ(2) ≡ R + ψc
(2) are systematically

greater than those ofθ(e) (the latter have been determined as
described in section 7.2). In Figure 11, the data from Figure 3
are presented on an enlarged scale. One sees that the slope of
the theoretical curve increases in a narrow zone (of width∼2%
of rc) near the contact line; this zone is not seen well in the
photomicrographs, such as in Figure 2. Correspondingly, the
actual slope angle at the contact line,ψc

(2), is greater than the
goniometrically determinedψc

(1). Because the solid line in Figure
11 represents the best theoretical fit of the experimental data, we
should expect that this curve adequately describes the meniscus
shape near the contact line. Correspondingly,θ(2) andψc

(2) are
more reliable values of the contact and slope angles, in comparison
with θ(1) andψc

(1).
The origin of the difference betweenθ(e) andθ(2) is related to

the simplifying assumption thatθ ≈ R when solving the
electrostatic boundary problem.37,43As discussed in section 3.4,
θ(e), which is determined by a comparison of theory and
experiment (section 7.2), characterizes the effective angle (π -
θ(e)) of the wedge-shaped region filled by the nonpolar fluid near
the contact line (Figure 1). We could considerθ(e)to be an auxiliary
parameter, which allows one to compute the theoretical profile
z(r) (that agrees very well with the experimental points, see Figures
3, 11, and 12), and to estimate the real slope,ψc

(2), at the contact
line. After substitutingθ ) θ(e) andψc ) ψc

(2) into eq 7.4, we
obtain a value of the surface charge density,σpn

(2), that is more
accurate than the valueσpn

(1) determined from the goniometric
data (section 7.1).

The values ofσpn
(2) obtained for different particles here and

listed in Table 2 are close to the values ofσpn reported in our
previous article,37 all of them about 70µC/m2. In ref 37, the
goniometric method was used to determineψc, whereas numerical
integration with a finite step was applied to calculate the force
coefficient f(θ, εpn). It turns out that the applied experimental
and numerical methods giveψc and f values that smaller than
their real values; for more information aboutf, see the discussion
after eq 5.21 in ref 43. Becauseψc andf enter the numerator and
denominator of eq 7.4, respectively, it happens that the errors
in the latter two parameters affect the calculatedσpn in opposite
directions and cancel each other. This explains the similar values
of σpn obtained in ref 37 and in the present article (Table
2).

However, the values ofσpn
(1) in Table 2 are obtained from the

goniometricψc
(1) but using the accurate values off(θ, εpn) from

eq 7.3b. Note that in the considered range of angles we havef(θ,
εpn) ≈ f(R, εpn) (i.e., f is insensitive to the value of the angle).
For this reason, the systematic difference betweenσpn

(1) andσpn
(2)

in Table 2 is entirely due to the fact thatψc
(1) < ψc

(2); see eq
7.4.

In general, the procedure for obtaining the surface charge
density,σpn

(2), developed in the present article is more reliable
than that in ref 37 because the used tabulated functions (see the
Supporting Information) are obtained with the help of the exact
analytical asymptotics of the electric field atr f rc, derived in
ref 43. In addition, here the meniscus slope angle,ψc

(2), is
determined from the theoretical fit of experimental data for the
interfacial profile (Figure 11) rather than by goniometry of video
frames (Figure 2).

7.4. Comparison of Theory and Experiment for Various
Particles. To illustrate the procedure for data processing, in
sections 7.1-7.3 we considered the experimental results for a
single particle (Figure 3), as a worked example. Experimental
results for five other particles are shown in Figure 12, and the
determined parameter values are listed in Table 2. As in Figure
3, photographs of the same particle, taken at different NaCl
concentrations, have been processed. Because there is no effect
of the NaCl on the meniscus shape (which provides evidence for
predominant electrostatic interactions across thenonaqueous
phases), the full set of data for a given particle is fitted with a
single theoretical curve.

The theoretical curves are drawn with the help of the procedure
described in sections 7.2 and 7.3. As seen in Figure 12, there is
excellent agreement between theory and experiment. The obtained
values of the determined parametersθ(e), θ(2), andσpn

(2) are listed
in Table 2. One sees thatθ(2) slightly varies from particle to
particle, whereas the surface charge density,σpn

(2), is almost the
same. Its average value isσpn

(2) ) 70.2( 1.0 µC/m2. A similar
value, 80µC/m2, was obtained23 from the data of Philipse and
Vrij 52 for zeta potentials of silanized silica particles in toluene-
ethanol mixtures. Note that 80µC/m2 is a rather low surface
charge density: it is equivalent to 2000 nm2 per charge.
Nevertheless, our computations show that even such small surface

(52) Philipse, A. P.; Vrij, A.J. Colloid Interface Sci.1989, 128, 121-136.

Figure 11. Data from Figure 3 on an enlarged scale. The solid line
is the theoretical profile. The three tangents correspond to three
values of the contact angle: the goniometric valueθ(1) measured
from the photograph, the effective valueθ(e) obtained from the fit
of the data in section 7.2, andθ(2) ) R + ψc

(2) calculated from the
theoretical slope at the contact line,ψc

(2) (eqs 7.20-7.21).

Figure 12. Meniscus shape,z(r), around five different silanized
glass particles at the water-tetradecane interface. The symbols are
digitized points on the meniscus profile taken from photomicrographs
such as in Figure 2. The solid lines are the best fits via the theoretical
profile.
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charge is able to cause the observed interfacial deformations
owing to the low dielectric constant of the nonpolar fluid; see
also ref 22. Even lower surface charge, 1-20 µC/m2, was
estimated23 from the data of Labib and Williams53 for glass
particles in several pure organic solvents.

The experimental data in Figures 3 and 12 and their theoretical
fits show that for all investigated particles the electric field creates
a strong deformation of the oil-water interface in the region
from r ) rc to r ) 3-4(rc). In comparison with thelong-range
deformation created by the gravitational force, the electric field
creates a deformation ofmediumrange. For the investigated
particles, the amplitude of the electric deformation is much greater
than the amplitude of the gravitational one.

8. Summary and Conclusions

The present article is a continuation of our previous study,37

where the main attention has been focused on the electrodipping
force acting on a charged dielectric particle, which is attached
to the water-nonpolar fluid (air, oil) boundary; see Figure 1. In
a subsequent study,43 we obtained analytical solution describing
the electric field created by the particle. As a next step, here we
consider in more detail the problem of the calculation of the
shape of the fluid interface around the particle. The electric field
created by charges at the particle-nonpolar fluid boundary could
give rise to a considerable deformation of the surrounding fluid
interface.

We digitized the coordinates of points from the meniscus profile
around silanized glass particles attached to the water-tetradecane
interface (section 2; Figures 3 and 12). The experimental shape
of the oil-water interface is independent of the concentration
of NaCl in the aqueous phase, which confirms that the electric
field in the nonaqueous phases dominates the electrostatic
interactions in the investigated system. The theoretical meniscus
profile, ú(r), can be computed in three different ways, which
give numerically coincident results. First,ú(r) can be calculated
by the numerical solution of the electrostatic boundary problem37

(section 3.1). Second,ú(r) can be computed from the analytical
solution of the problem, based on the Mehler-Fock integral
transform43(section 3.2). Third,ú(r) can be calculated by means
of an interpolation formula, eq 3.8, whose coefficients are
determined by fits of the numerical data and are tabulated in the
Supporting Information for this article.

Furthermore, in section 5 it is proven that for sufficiently
small particles ((qrc)2 , 1) the meniscus profile can be expressed
as a superposition of pure electric and gravitational deformations,
ú(r) ) ú(el)(r) + ú(g)(r). The latter fact considerably simplifies

the calculations. The comparison of the gravitational and electric
deformations (Figures 6 and 7) indicates that the range of the
electric deformation markedly depends on the contact angle:
thus, for angles of 50 and 150° the range is, respectively, about
1.5 and 5 contact-line radii (section 6.1). Theoretical expressions
and numerical results are also obtained for the depth of the
concavity,hc, produced by the particle, which strongly depends
on the contact angle (section 6.2 and Figure 8).

Special attention is paid to the comparison of theory and
experiment, which is considered in section 7. On the basis of the
obtained theoretical expressions and numerical results, a relatively
simple procedure for processing experimental data is developed,
which is reduced to fitting the data for the meniscus profile via
cubic parabola (section 7.2) or linear regression (Supporting
Information). Next, the theoretical interfacial profile is reproduced
by eq 7.18, and the meniscus slope at the contact line is accurately
determined via differentiation of the theoretical profile. This
allows one to obtain values of the contact angle and surface
charge density,θ(2) and σpn

(2) (section 7.3), which are more
accurate than those determined by the goniometric method
(section 7.1). For all investigated particles, excellent agreement
between theory and experiment is achieved (Figures 3 and 12).

The theoretical analysis (sections 4 and 6) and the experimental
results (Figures 3 and 12) lead to the conclusion that the electric-
field-induced deformation of the fluid interface has a medium
range, from 1.5 to 5 contact-line radii, depending on the contact
angle. At larger distances, the meniscus profile is governed solely
by the gravitational force. However, forr < 5rc the electric field
creates a concavity (dimple) of significant depth in the fluid
interface around the particle. For the experimentally investigated
particles, the electric interfacial deformation has shorter range
but greater amplitude than the gravitational deformation. The
results could be useful for a better understanding of the lateral
capillary forces between particles at emulsion interfaces, which
lead to packing of the particle adsorption layer and the stabilization
of Pickering emulsions.
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The dimensionless meniscus profile is described by the equation: 
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see eq 3.8 in the main paper. Here a, b, c, and (el)
cH  are parameters (independent of x1 ≡ rc/r), 

which depend on the particle contact angle, θ, and on the dielectric constant ratio, εpn = εp/εn. 
These dependencies are tabulated in Tables A, B, C and D, which are to be used along with 
the four-point interpolation formula, eq 7.16. 
 

Table A. Function ln[a(θ,εpn)] for various θ and εpn. 
 

εpn = εp/εn 
θ 0.125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00 
5 6.058 6.260 6.611 6.909 7.169 7.605 7.963 8.970 10.14 
10 5.992 6.185 6.522 6.811 7.064 7.489 7.840 8.833 9.990 
15 5.916 6.101 6.426 6.705 6.950 7.365 7.708 8.687 9.833 
20 5.832 6.008 6.320 6.590 6.827 7.232 7.568 8.531 9.667 
25 5.738 5.906 6.206 6.466 6.696 7.090 7.418 8.366 9.490 
30 5.635 5.795 6.082 6.333 6.555 6.938 7.259 8.190 9.303 
35 5.521 5.674 5.948 6.190 6.405 6.777 7.090 8.005 9.105 
40 5.397 5.542 5.805 6.037 6.245 6.605 6.911 7.808 8.896 
45 5.262 5.400 5.651 5.874 6.074 6.423 6.721 7.600 8.674 
50 5.115 5.247 5.486 5.700 5.893 6.230 6.519 7.380 8.440 
55 4.957 5.081 5.309 5.514 5.699 6.026 6.306 7.147 8.193 
60 4.785 4.903 5.120 5.316 5.494 5.809 6.080 6.902 7.931 
65 4.600 4.712 4.918 5.105 5.275 5.578 5.841 6.642 7.655 
70 4.401 4.506 4.702 4.880 5.043 5.334 5.588 6.367 7.363 
75 4.186 4.286 4.471 4.640 4.796 5.075 5.319 6.077 7.054 
80 3.955 4.048 4.223 4.384 4.532 4.799 5.035 5.769 6.727 
85 3.705 3.793 3.958 4.110 4.251 4.506 4.732 5.443 6.380 
90 3.436 3.519 3.674 3.818 3.951 4.194 4.411 5.097 6.012 
95 3.146 3.223 3.369 3.504 3.631 3.862 4.068 4.729 5.620 
100 2.831 2.903 3.040 3.167 3.287 3.506 3.702 4.337 5.203 
105 2.491 2.558 2.686 2.805 2.918 3.124 3.311 3.918 4.758 
110 2.120 2.183 2.302 2.414 2.520 2.714 2.891 3.470 4.282 
115 1.717 1.775 1.886 1.991 2.089 2.272 2.439 2.989 3.771 
120 1.274 1.329 1.432 1.530 1.622 1.794 1.950 2.471 3.221 
125 0.7868 0.8373 0.9337 1.025 1.111 1.272 1.418 1.910 2.625 
130 0.2465 0.2934 0.3829 0.4674 0.5475 0.6972 0.8344 1.297 1.976 
135 −0.3569 −0.3135 −0.2307 −0.1525 -0.0782 0.0605 0.1881 0.6198 1.262 
140 −1.038 −0.9978 −0.9212 −0.8489 -0.7802 −0.6520 −0.5339 −0.1324 0.4688 
145 −1.818 −1.781 −1.709 −1.642 -1.579 −1.461 −1.352 −0.9810 −0.4224
150 −2.730 −2.695 −2.627 −2.564 -2.505 −2.395 −2.295 −1.954 −1.440 
155 −3.832 −3.797 −3.730 −3.669 -3.612 −3.507 −3.413 −3.099 −2.627 
160 −5.254 −5.211 −5.135 −5.066 -5.005 −4.896 −4.801 −4.498 −4.065 
165 −7.528 −7.426 −7.261 −7.130 -7.023 −6.852 −6.719 −6.356 −5.913 
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Table B. Function b(θ,εpn) for various θ and εpn. 
 

εpn = εp/εn 
θ 0.125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00 
5 −385.5 −471.7 −670.1 −903.4 −1171 −1812 −2591 −7099 −22789 
10 −359.3 −435.9 −611.3 −816.2 −1051 −1608 −2284 −6170 −19617 
15 −331.9 −399.3 −552.7 −731.0 −934.2 −1415 −1996 −5313 −16723 
20 −303.6 −362.3 −495.3 −648.9 −823.3 −1234 −1728 −4531 −14114 
25 −275.1 −325.7 −439.7 −570.7 −718.9 −1066 −1482 −3827 −11790 
30 −246.7 −289.8 −386.6 −497.2 −621.8 −912.4 −1259 −3198 −9743 
35 −218.8 −255.3 −336.5 −428.9 −532.4 −772.9 −1058 −2645 −7962 
40 −192.0 −222.4 −289.8 −366.0 −451.2 −647.9 −880.2 −2163 −6431 
45 −166.5 −191.6 −246.8 −309.0 −378.2 −537.2 −724.1 −1749 −5132 
50 −142.7 −163.0 −207.8 −257.9 −313.4 −440.4 −588.8 −1397 −4044 
55 −120.6 −137.0 −172.8 −212.6 −256.6 −356.7 −473.1 −1102 −3144 
60 −100.6 −113.6 −141.8 −173.1 −207.4 −285.2 −375.2 −857.7 −2411 
65 −82.72 −92.87 −114.8 −139.0 −165.4 −225.0 −293.7 −658.4 −1822 
70 −66.94 −74.76 −91.59 −110.0 −130.1 −175.1 −226.6 −498.0 −1355 
75 −53.27 −59.21 −71.92 −85.76 −100.7 −134.2 −172.2 −370.9 −992.1 
80 −41.63 −46.08 −55.54 −65.77 −76.78 −101.2 −128.8 −271.7 −713.7 
85 −31.92 −35.21 −42.14 −49.57 −57.53 −75.06 −94.77 −195.7 −504.1 
90 −23.97 −26.36 −31.37 −36.68 −42.33 −54.69 −68.48 −138.3 −349.0 
95 −17.61 −19.33 −22.89 −26.62 −30.56 −39.08 −48.53 −95.79 −236.5 
100 −12.63 −13.85 −16.34 −18.91 −21.59 −27.34 −33.66 −64.85 −156.3 
105 −8.799 −9.664 −11.37 −13.09 −14.87 −18.64 −22.75 −42.74 −100.4 
110 −5.852 −6.461 −7.607 −8.735 −9.880 −12.28 −14.86 −27.22 −62.29 
115 −3.388 −3.869 −4.680 −5.422 −6.150 −7.635 −9.200 −16.54 −36.92 
120 −0.8982 −1.472 −2.190 −2.753 −3.253 −4.194 −5.133 −9.308 −20.50 
125 0.6153 0.3173 −0.1610 −0.6174 −0.9753 −1.603 −2.179 −4.474 −10.16 
130 0.8858 0.8218 0.6765 0.5233 0.3710 0.04676 −0.2459 −1.369 −3.912 
135 0.7451 0.7582 0.7666 0.7575 0.7365 0.6728 0.5957 0.2587 −0.5593
140 0.5562 0.5769 0.6129 0.6411 0.6630 0.6925 0.7087 0.7189 0.7158 
145 0.3860 0.4007 0.4277 0.4520 0.4748 0.5148 0.5491 0.6548 0.8563 
150 0.2477 0.2554 0.2703 0.2845 0.2981 0.3237 0.3483 0.4354 0.6027 
155 0.1443 0.1474 0.1537 0.1599 0.1662 0.1784 0.1904 0.2364 0.3256 
160 0.07404 0.07487 0.07666 0.07858 0.08058 0.08474 0.08901 0.1063 0.1415 
165 0.03170 0.03172 0.03184 0.03205 0.03234 0.03305 0.03391 0.03795 0.04693
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Table C. Function c(θ,εpn) for various θ and εpn. 
 

εpn = εp/εn 
θ 0.125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00 
5 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 
10 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013 
15 1.004 1.004 1.004 1.004 1.004 1.004 1.004 1.003 1.003 
20 0.9937 0.9937 0.9935 0.9935 0.9934 0.9933 0.9933 0.9931 0.9931 
25 0.9829 0.9827 0.9825 0.9824 0.9825 0.9824 0.9823 0.9821 0.9820 
30 0.9713 0.9710 0.9707 0.9705 0.9703 0.9701 0.9699 0.9696 0.9694 
35 0.9583 0.9580 0.9575 0.9571 0.9569 0.9565 0.9563 0.9558 0.9555 
40 0.9440 0.9435 0.9428 0.9423 0.9420 0.9414 0.9411 0.9404 0.9400 
45 0.9283 0.9276 0.9266 0.9259 0.9254 0.9247 0.9242 0.9233 0.9227 
50 0.9108 0.9099 0.9085 0.9076 0.9068 0.9059 0.9052 0.9040 0.9031 
55 0.8913 0.8901 0.8883 0.8870 0.8860 0.8847 0.8838 0.8821 0.8810 
60 0.8695 0.8678 0.8654 0.8637 0.8624 0.8606 0.8595 0.8572 0.8562 
65 0.8449 0.8428 0.8396 0.8373 0.8356 0.8333 0.8318 0.8289 0.8271 
70 0.8169 0.8141 0.8099 0.8069 0.8047 0.8017 0.7998 0.7960 0.7937 
75 0.7848 0.7811 0.7756 0.7717 0.7689 0.7650 0.7625 0.7578 0.7549 
80 0.7476 0.7428 0.7356 0.7307 0.7270 0.7221 0.7189 0.7130 0.7094 
85 0.7041 0.6978 0.6886 0.6822 0.6776 0.6714 0.6675 0.6603 0.6560 
90 0.6526 0.6444 0.6325 0.6245 0.6187 0.6110 0.6063 0.5977 0.5929 
95 0.5909 0.5802 0.5651 0.5551 0.5480 0.5389 0.5333 0.5237 0.5186 
100 0.5164 0.5026 0.4838 0.4717 0.4634 0.4530 0.4468 0.4366 0.4317 
105 0.4277 0.4100 0.3871 0.3730 0.3637 0.3524 0.3460 0.3361 0.3320 
110 0.3320 0.3083 0.2796 0.2631 0.2526 0.2402 0.2335 0.2240 0.2211 
115 0.2793 0.2359 0.1881 0.1627 0.1470 0.1293 0.1200 0.1075 0.1041 
120 0.4516 0.3222 0.2010 0.1374 0.09915 0.05658 0.0342 0.0027 −0.0086
125 0.7385 0.6074 0.4266 0.2888 0.2042 0.09913 0.0390 −0.0547 −0.0953
130 0.8261 0.7600 0.6351 0.5266 0.4355 0.2852 0.1856 −0.0084 −0.1169
135 0.7638 0.7496 0.7064 0.6526 0.5955 0.4855 0.3907 0.1528 −0.0379
140 0.6573 0.6669 0.6735 0.6653 0.6473 0.5953 0.5352 0.3248 0.1155 
145 0.5404 0.5613 0.5911 0.6079 0.6169 0.6144 0.5949 0.4672 0.2812 
150 0.4222 0.4461 0.4859 0.5164 0.5391 0.5660 0.5786 0.5438 0.4139 
155 0.3057 0.3282 0.3686 0.4031 0.4324 0.4775 0.5080 0.5485 0.4910 
160 0.1931 0.2115 0.2463 0.2781 0.3072 0.3571 0.3972 0.4870 0.5151 
165 0.08604 0.09911 0.1247 0.1495 0.1732 0.2171 0.2563 0.3692 0.4605 
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Table D. Function )],(ln[ pn
(el)
c εθH  for various θ and εpn. 

 
εpn = εp/εn 

θ 0.125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00 
5 −4.235 −4.437 −4.787 −5.086 −5.345 −5.781 −6.138 −7.146 −8.312 
10 −4.209 −4.402 −4.738 −5.027 −5.279 −5.703 −6.054 −7.046 −8.202 
15 −4.176 −4.360 −4.683 −4.961 −5.206 −5.619 −5.962 −6.939 −8.085 
20 −4.136 −4.311 −4.621 −4.889 −5.126 −5.529 −5.864 −6.826 −7.960 
25 −4.089 −4.256 −4.553 −4.811 −5.040 −5.432 −5.760 −6.704 −7.827 
30 −4.035 −4.193 −4.477 −4.726 −4.947 −5.328 −5.647 −6.575 −7.686 
35 −3.973 −4.124 −4.395 −4.634 −4.848 −5.217 −5.528 −6.439 −7.537 
40 −3.904 −4.047 −4.306 −4.535 −4.741 −5.098 −5.401 −6.294 −7.378 
45 −3.828 −3.963 −4.210 −4.429 −4.627 −4.973 −5.267 −6.141 −7.211 
50 −3.743 −3.872 −4.106 −4.316 −4.506 −4.839 −5.125 −5.979 −7.035 
55 −3.651 −3.772 −3.994 −4.195 −4.377 −4.698 −4.975 −5.808 −6.848 
60 −3.550 −3.664 −3.875 −4.065 −4.240 −4.548 −4.816 −5.628 −6.651 
65 −3.441 −3.548 −3.747 −3.928 −4.094 −4.390 −4.648 −5.438 −6.443 
70 −3.322 −3.423 −3.610 −3.782 −3.940 −4.223 −4.471 −5.238 −6.224 
75 −3.194 −3.288 −3.464 −3.626 −3.776 −4.046 −4.284 −5.027 −5.993 
80 −3.056 −3.144 −3.308 −3.461 −3.602 −3.859 −4.087 −4.804 −5.749 
85 −2.908 −2.989 −3.142 −3.285 −3.418 −3.661 −3.878 −4.569 −5.491 
90 −2.748 −2.823 −2.965 −3.098 −3.223 −3.452 −3.658 −4.321 −5.218 
95 −2.576 −2.645 −2.776 −2.899 −3.016 −3.231 −3.426 −4.059 −4.929 

100 −2.391 −2.454 −2.574 −2.687 −2.795 −2.996 −3.179 −3.782 −4.623 
105 −2.192 −2.249 −2.358 −2.462 −2.561 −2.747 −2.918 −3.488 −4.298 
110 −1.977 −2.028 −2.126 −2.221 −2.311 −2.482 −2.641 −3.177 −3.952 
115 −1.745 −1.790 −1.878 −1.962 −2.044 −2.200 −2.345 −2.845 −3.584 
120 −1.494 −1.533 −1.610 −1.685 −1.758 −1.898 −2.030 −2.491 −3.189 
125 −1.221 −1.255 −1.320 −1.385 −1.449 −1.573 −1.691 −2.112 −2.766 
130 −0.9232 −0.9508 −1.006 −1.061 −1.116 −1.223 −1.327 −1.705 −2.310 
135 −0.5959 −0.6178 −0.6623 −0.7074 −0.7527 −0.8429 −0.9318 −1.264 −1.815 
140 −0.2335 −0.2497 −0.2835 −0.3185 −0.3543 −0.4271 −0.5004 −0.7840 −1.276 
145 0.1719 0.1613 0.1383 0.1135 0.0875 0.0326 −0.0245 −0.2560 −0.6813
150 0.6319 0.6269 0.6148 0.6004 0.5842 0.5478 0.5078 0.3319 −0.0191
155 1.164 1.165 1.164 1.160 1.154 1.137 1.115 0.9985 0.7312 
160 1.799 1.805 1.815 1.822 1.827 1.829 1.826 1.775 1.602 
165 2.590 2.602 2.624 2.642 2.658 2.681 2.698 2.717 2.654 
170 3.661 3.680 3.713 3.743 3.770 3.816 3.854 3.953 4.017 
175 5.399 5.424 5.470 5.513 5.553 5.624 5.687 5.877 6.099 
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Table E. Function ln[Q(θ,εpn)] for various θ and εpn; see eq S4 below. 
 

εpn = εp/εn 
θ 0.125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00 
5 1.816 1.816 1.817 1.817 1.817 1.817 1.818 1.818 1.818 
10 1.776 1.776 1.777 1.778 1.779 1.779 1.780 1.781 1.781 
15 1.734 1.735 1.736 1.737 1.737 1.739 1.740 1.741 1.742 
20 1.690 1.691 1.693 1.694 1.695 1.697 1.697 1.699 1.701 
25 1.643 1.645 1.646 1.648 1.649 1.651 1.653 1.655 1.657 
30 1.594 1.596 1.599 1.600 1.602 1.604 1.605 1.609 1.611 
35 1.542 1.544 1.548 1.549 1.552 1.554 1.557 1.560 1.562 
40 1.487 1.489 1.493 1.497 1.498 1.501 1.503 1.508 1.511 
45 1.429 1.432 1.436 1.439 1.442 1.445 1.448 1.453 1.457 
50 1.367 1.370 1.375 1.379 1.381 1.385 1.388 1.395 1.400 
55 1.301 1.305 1.310 1.314 1.318 1.323 1.326 1.334 1.339 
60 1.231 1.234 1.241 1.245 1.250 1.255 1.260 1.269 1.275 
65 1.155 1.160 1.167 1.172 1.177 1.183 1.188 1.198 1.206 
70 1.075 1.080 1.088 1.094 1.099 1.107 1.112 1.124 1.134 
75 0.9882 0.9939 1.003 1.010 1.016 1.024 1.031 1.045 1.056 
80 0.8952 0.9015 0.9115 0.9194 0.9260 0.9360 0.9436 0.9598 0.9734 
85 0.7948 0.8016 0.8127 0.8220 0.8295 0.8411 0.8499 0.8693 0.8844 
90 0.6860 0.6936 0.7062 0.7168 0.7251 0.7385 0.7485 0.7713 0.7888 
95 0.5676 0.5761 0.5905 0.6023 0.6121 0.6274 0.6391 0.6654 0.6870 
100 0.4386 0.4482 0.4644 0.4779 0.4890 0.5067 0.5199 0.5510 0.5757 
105 0.2976 0.3081 0.3269 0.3415 0.3543 0.3747 0.3900 0.4264 0.4561 
110 0.1425 0.1534 0.1747 0.1924 0.2064 0.2294 0.2476 0.2902 0.3253 
115 −0.0293 −0.0167 0.0069 0.0263 0.0428 0.0699 0.0913 0.1405 0.1821 
120 −0.2207 −0.2060 −0.1791 −0.1576 −0.1382 −0.1082 −0.0839 −0.0258 0.0245 
125 −0.4352 −0.4181 −0.3884 −0.3638 −0.3416 −0.3061 −0.2788 −0.2098 −0.1512
130 −0.6766 −0.6578 −0.6243 −0.5960 −0.5715 −0.5309 −0.4988 −0.4180 −0.3470
135 −0.9526 −0.9313 −0.8939 −0.8613 −0.8335 −0.7866 −0.7497 −0.6551 −0.5691
140 −1.271 −1.247 −1.205 −1.168 −1.136 −1.083 −1.039 −0.9277 −0.8244
145 −1.644 −1.617 −1.570 −1.528 −1.491 −1.430 −1.379 −1.247 −1.122 
150 −2.089 −2.059 −2.006 −1.959 −1.916 −1.845 −1.787 −1.630 −1.478 
155 −2.633 −2.600 −2.539 −2.486 −2.438 −2.356 −2.289 −2.102 −1.914 
160 −3.324 −3.287 −3.219 −3.158 −3.103 −3.008 −2.929 −2.706 −2.472 
165 −4.249 −4.207 −4.130 −4.061 −3.998 −3.888 −3.795 −3.526 −3.231 
170 −5.602 −5.555 −5.469 −5.390 −5.318 −5.190 −5.080 −4.753 −4.373 
175 −8.016 −7.963 −7.864 −7.774 −7.691 −7.541 −7.408 −7.002 −6.498 

 
 

Second Procedure for Processing Meniscus-Profile Data 

For contact angles 5° ≤ θ ≤ 120°, one can use a procedure, which is simpler than that 

the procedure described in section 7.2 of the main paper. Step (1) is the same as in section 7.2. 

In Figure 10 of the main paper, one sees that the data for (el)
iz  vs. y ≡ (rc/ri)4 comply with a 

straight line, except the points for the greatest y. This linear fraction of the plot corresponds to 

the long-distance asymptotics, described by eq 5.24. The respective data points (for not too 



 6

large y) can be fitted by a linear regression (the dashed line in Figure 10), whose slope and 

intercept can be accurately determined. For the considered illustrative example (Figure 10), 

we have  

yz 596.13532.14(el) −=           (S1) 

On the other hand, because z(el) = hc
(el) + ζ(el), with the help of eq 5.24 we obtain 

yDr
hrz
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c

2
pn(el)

c
(el)

γε
πσ

−=          (S2) 

Thus, the ratio of the intercept and the slope is: 

22
c

2
pn

(el)
cn8
Dr

h
Q

πσ
γε

≡             (S3) 

In view of eq S1, the ratio of the intercept and the slope is Q = 1.069 for the data in Figure 10. 

On the other hand, the substitution of hc
(el) from eq 6.3 into eq S3 yields: 

2
pn

pn
(el)
c

)],([

),(16

εθ

εθ

D

H
Q =            (S4) 

The dependence ),( pn
(el)
c εθH  is given in Table D, while the dependence D(θ,εpn) is tabulated 

in ref 43. Combining the two tabulated dependencies, in Table E we have given the 

dependence Q(θ,εpn). From this table, with εpn = 1.946 and Q = 1.069 we determine θ = θ(e) = 

116.8° by linear interpolation. The latter value is close to θ(e) = 117.3° determined in section 

7.2. 

 For θ > 120°, the error of the intercept of the linear regression (see eq S1) becomes too 

large, and its slope does not correspond to the asymptotic slope at y→0 (eq S2). For this 

reason, the procedure described in the present section is applicable only for θ ≤ 120°. If the 

latter relation is not satisfied, one could use the procedure in section 7.2, which is applicable 

for every θ.  

 


