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Abstract

Here, we solve the problem about the electric field of a charged dielectric particle, which is adsorbed at the water–nonpolar fluid (oil, air)
boundary. The solution of this problem is a necessary step for the theoretical prediction of the electrodipping force acting on such particle, as
well as of the electrostatic repulsion and capillary attraction between two adsorbed particles. In accordance with the experimental observations,
we consider the important case when the surface charges are located at the particle–nonpolar fluid boundary. To solve the electrostatic problem,
the Mehler–Fock integral transform is applied. In the special case when the dielectric constants of the particle and the nonpolar fluid are equal,
the solution is obtained in a closed analytical form. In the general case of different dielectric constants, the problem is reduced to the numerical
solution of an integral equation, which is carried out by iterations. The long-range asymptotics of the solution indicates that two similar particles
repel each other as dipoles, whose dipole moments are related to the particle radius, contact angle, dielectric constant and surface charge density.
The investigated short-range asymptotics ensures accurate calculation of the electrodipping force. For a fast and convenient application of the
obtained results, the derived physical dependencies are tabulated as functions of the contact angle and the dielectric constants.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The problem about the interactions of electrically charged
colloidal particles adsorbed at an oil–water interface has at-
tracted a considerable attention [1–13] in relation to the prop-
erties of particle monolayers [1,2,6,7,11–16], formation of
particle-stabilized (Pickering) emulsions [17–21], and colloi-
dosomes [3,22–24].

Especially, it was established that in some cases the adsorbed
particles experience a strong lateral repulsion that is insensitive
to the addition of electrolyte (up to 1 M NaCl) in the aque-
ous phase [1,2,6]. It was proven that this effect is due to the
presence of electric charges at the particle–oil boundary [1,2,6].
These charges induce a direct electrostatic repulsion between
two particles across the oily phase. The latter does not contain
dissolved ions, and there the electrostatic interactions are strong
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and long-range across the oil. Similar effect is observed when
the nonpolar fluid is air, instead of oil [8,13].

A charged dielectric particle (silica, glass, latex, etc.), which
is located in the oily phase near the phase boundary with water,
is attracted by the oil–water interface due to the image-force
effect [21]. For the same physical reasons, a particle that is
attached to the oil–water interface experiences a normal “elec-
trodipping” force, which pushes it into water [8]. The latter
force leads to the formation of a concavity (meniscus, dimple)
around the attached particle. The overlap of the menisci around
two such particles gives rise to a lateral capillary attraction
between them [25,26]. This interaction was termed “electric-
field-induced capillary attraction” by Nikolaides et al. [3], who
first found out experimentally that ordered particles at the sur-
face of a water drop in oil are confined into potential wells.
The presence of wells was explained by the overlap of the
capillary attraction and the electrostatic repulsion between two
particles [3].
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Fig. 1. Sketch of a particle at the interface between water and nonpolar fluid
(oil, air). γ is the interfacial tension; R and rc are the radii of the particle and
the three-phase contact line; α and θ are the central and contact angle; ψc is
the meniscus slope angle at the contact line; F is a normal force acting on the
particle, which can be of electric and/or gravitational origin.

The electrodipping force, F (el), was directly detected in ex-
periments with hydrophobized glass particles floating at the
water–tetradecane boundary [8]. The theoretical investigation
indicates that this force represents a sum of contributions due
to the presence of electric charges at the particle–water, F (w),
and particle–nonpolar fluid, F (n), boundaries [8]:

(1.1)F (el) = F (w) + F (n).

In experiments with relatively large particles, of radius R =
200–300 µm, it has been established that F (el) is insensitive to
the concentration of NaCl in the aqueous phase, which means
that for the investigated system F (w) is negligible, and F (el) ≈
F (n), i.e., the electrodipping force is induced by electric charges
at the particle–oil boundary [8].

Theoretical expression for the calculation of F (n) was de-
rived [8]:

(1.2)F (n) = 4π

εn
R2σ 2

pn(1 − cosα)f (α, εpn), εpn ≡ εp

εn
.

Here α is the central angle determined by the position of the
contact line on the particle surface (Fig. 1); εp and εn are
the dielectric constants of the particle and of the nonpolar
fluid, respectively; σpn is the surface electric charge density at
the particle–oil boundary; the dimensionless function f (α, εpn)

was computed in Ref. [8], by numerical solution of the electro-
static boundary problem, and the numerical results were tabu-
lated (see Table 4 therein).

As illustrated in Fig. 1, the normal force is counterbal-
anced by the respective projection of the interfacial tension:
F = 2πrcγ sinψc, where rc = R sinα is the contact-line ra-
dius, γ is the interfacial tension, and ψc is the meniscus slope
angle at the contact line. In cylindrical coordinates (r, z), the
meniscus profile z = ζ(r) obeys the Laplace equation of capil-
larity, which is linearized for the case of small meniscus slope
(sin2 ψc � 1),

(1.3)
1

r

d

dr

(
r

dζ

dr

)
− q2ζ = 1

γ
pel(r),

where q2 = 
ρg/γ (
ρ, difference between the mass densities
of the two phases; g, acceleration due to gravity); pel(r) is pres-
sure (Maxwell stress) exerted at the oil–water interface, which
is induced by the electric field of the charged particle. Equa-
tion (1.3) has to be solved along with the boundary conditions
∂ζ/∂r = tanψc at r = rc, and ζ = 0 at r → ∞. In Ref. [8],
we determined pel(r) from the numerical solution of the elec-
trostatic boundary problem, and then ζ(r) was computed by
solving numerically Eq. (1.3). In its own turn, the calculation
of ζ is a prerequisite for theoretical prediction of the electric-
field-induced capillary attraction between two particles. The
experiment [3,12,13,15,16,19] indicates that such attraction is
really present and plays an important role.

In summary, at present state of the theory, the quantita-
tive description of the basic physical parameters, such as F (n),
pel(r), ζ(r), etc., needs a numerical solution of the electrostatic
boundary problem, as described in Ref. [8]. There, an appro-
priate numerical method was used with a grid of 101 × 101
subdomains. To verify the latter numerical method, we solved
the same problem by using the alternating direction implicit
(ADI) method [27] using the general three-level scheme with
2001×2001 subdomains. The results obtained by the two meth-
ods were coincident. Although the use of the latter two numer-
ical methods, in principle, solves the problem, their application
is time consuming and it demands a corresponding mathemat-
ical and computational qualification of the user. It would be
much easier if some analytical expressions could be obtained.

In Ref. [8], we proposed a simple semiempirical expression
for pel(r),

(1.4)pel(r) = A1

(r − rc)1−μr5+μ
,

where A1 and μ are constants (0 < μ < 1). The parameter μ

was determined by fit of experimental data. In general, Eq. (1.4)
gives the correct functional dependence of pel(r) at r → ∞ and
r → rc, supposedly μ is accurately determined. However, the
comparison with the exact numerical solution for pel(r) shows
that Eq. (1.4) is not sufficiently accurate to allow correct com-
putation of ζ(r) by integration of Eq. (1.3). This is due to the
fact that actually A1 is not a constant, but exhibits some depen-
dence on r .

Our aim in the present paper is to analyze theoretically the
electrostatic boundary problem and to derive equations and an-
alytical expressions for the basic physical properties of the in-
vestigated system (Fig. 1). The results would allow one to carry
out easier and faster calculations of various physical charac-
teristics of the system such as the electrodipping force, F (n);
the electric field distribution; the electrostatic interaction be-
tween two floating particles; the electric pressure, pel(r), and
meniscus profile, ζ(r), and the electric-field-induced capillary
attraction. In other words, our goal in the present paper is to
find an alternative and more convenient way for quantitative
description of the investigated system, in comparison with the
purely numerical approach proposed in Ref. [8].

The paper is organized as follows. In Section 2, the basic
equations and boundary conditions are formulated in terms of
toroidal coordinates, which correspond to the symmetry of the
system. In Section 3, the Mehler–Fock integral transform is ap-
plied to solve the problem. In Section 4, a closed analytical
solution is obtained for the special case when εp = εn. In Sec-
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tion 5, the general case, εp �= εn, is considered, and the problem
is reduced to the solution of an integral equation. Analytical
expressions for the asymptotic behavior of the electric field
at short and long distances are derived. In Section 6, the ob-
tained long-range asymptotics is applied to quantify the force
and energy of interaction between two adsorbed particles at
long distances. The limits of applicability of the present theory
and possible extensions are discussed in Section 7. Appendices
A, B, and C describe fragments of the theoretical derivations
and give details about the computational procedures. The basic
physical dependences derived in this study are tabulated in Ap-
pendix D. The tables represent an important part of the paper,
because they give a possibility the results to be applied with-
out repeating the numerical computations. On the other hand,
if one decides to reproduce the developed computational pro-
cedures, the tables allow one to test the respective computer
programs.

2. Physical system and basic equations

2.1. Equations and boundary conditions

We consider a spherical dielectric particle of radius, R, and
dielectric constant, εp, attached to the interface between water
and a nonpolar fluid (oil, air, etc.); see Fig. 2. As a zero-order
approximation, we will assume that the water–nonpolar fluid
interface is planar. After determining the electrodipping force
and the electric stresses for a flat interface, at the next step
one can calculate the interfacial deformation, ζ(r); see Fig. 1
and Eq. (1.3). The position of the particle at the interface is
determined by the central angle, α, which coincides with the
three-phase contact angle if the oil–water interface is planar
(Fig. 2). In accordance with the frequently used convention,
we have α < 90◦ for hydrophilic particle, and α > 90◦ for hy-
drophobic particle.

Our aim is to determine the electric field induced by surface
charges, which are located at the particle–nonpolar fluid bound-
ary (Spn in Fig. 2) with density σpn. In the two dielectric phases,
the potential of the electric field obeys the Laplace equation,

(2.1)∇2ϕp = 0 in Ωp and ∇2ϕn = 0 in Ωn,

where ∇2 is the Laplace operator; Ωp and Ωn are the spa-
tial domains occupied by the particle and the nonpolar fluid,

Fig. 2. In zero-order approximation, the water–nonpolar fluid interface, Snw,
is planar. Spn and Spw denote the particle–nonpolar fluid and particle–water
interfaces, respectively.
respectively. The dielectric constant of water is presumed to
be much greater than those of the particle and the nonpolar
fluid: εw � εp, εn. For this reason, the electric field created by
charges, located in the nonpolar phases, practically does not
penetrate into the water phase; see, for example, the conven-
tional problem for the image force [28] and for a hydrophobic
particle near the oil–water interface [21]. Experimentally, the
nonpenetration of the field into water is manifested as inde-
pendence of the configuration of the adsorbed particles on the
electrolyte concentration in the aqueous phase [6,8]. Thus, in
first approximation, the role of the water is to keep the electric
potential constant at the boundaries Snw and Spw (Fig. 2). Be-
cause the latter constant can be set zero, we obtain the following
two boundary conditions [8]:

(2.2)ϕn = 0 at Snw and ϕp = 0 at Spw.

At the third interface, Spn, we impose the standard boundary
conditions for continuity of the electric potential and the rela-
tion between the normal electric-field components [28],

(2.3)ϕn = ϕp and n · (εp∇ϕp − εn∇ϕn) = 4πσpn at Spn,

where ∇ is the gradient operator and n is the outer unit normal
to the particle surface, Spn.

2.2. Curvilinear coordinates

In Ref. [8] the problem (2.1)–(2.3) was solved numerically
with the help of modified toroidal coordinates. Because our pur-
pose here is to obtain analytical solution, it is more convenient
to use the conventional toroidal coordinates, ξ and η, defined as
follows [29–31]:

r = rc

h
sinhη, z = rc

h
sin ξ, and

(2.4)h ≡ coshη − cos ξ.

Here h is a metric coefficient. The Lamé coefficients of the
toroidal coordinate system, hξ , hη , and hφ , are [29–31]

(2.5)hξ = hη = rc

h
, hφ = rc

h
sinhη.

The position of the contact line is determined by the pole A+
(η → +∞); see Fig. 3. The axis of revolution corresponds to
η = 0; the interfaces Snw, Spn, and Spw (Fig. 2) have equations
ξ = 0, ξ = ξc, and ξ = π + ξc, respectively (Fig. 3). Here, ξc
is simply related to the angle α: ξc = π − α. The coordinate
surfaces of constant η are toroids obtained by rotation of the
circumference [29–31]:

(2.6)(r − rc cothη)2 + z2 = r2
c

sinh2 η
.

Likewise, the coordinate surfaces of constant ξ are spheres ob-
tained by rotation of the circumference [29–31]:

(2.7)r2 + (z − rc cot ξ)2 = r2
c

sin2 ξ
.
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Fig. 3. Introduction of toroidal coordinates (ξ, η). The position of the contact
line coincides with the pole, A+; the interfaces Snw, Spn, and Spw correspond
to the coordinate surfaces ξ = 0, ξ = ξc, and ξ = π + ξc, respectively, where
ξc ≡ π − α (see Fig. 2).

It is convenient to introduce dimensionless electric potentials,
Φn and Φp:

(2.8)ϕk = 4π

εn
rcσpnΦk (k = n,p).

In view of the axial symmetry of the system, in toroidal coordi-
nates Eq. (2.1) acquires the form [29]

∂

∂ξ

(
sinhη

h

∂Φk

∂ξ

)
+ ∂

∂η

(
sinhη

h

∂Φk

∂η

)
= 0 in Ωk

(2.9)(k = n,p).

Correspondingly, the boundary conditions, Eqs. (2.2) and (2.3),
become

(2.10)Φn = 0 at ξ = 0 and Φp = 0 at ξ = π + ξc,

(2.11)Φn = Φp and
∂Φn

∂ξ
− εpn

∂Φp

∂ξ
= 1

h
at ξ = ξc.

Here, as usual, εpn = εp/εn. The electric field intensity in the
nonpolar fluid is E = −∇ϕn. From Eq. (2.10), it follows that
the tangential component of E at the flat interface, Snw, is zero,
while the normal component is

(2.12)Ez = −4π

εn
σpn(coshη − 1)

∂Φn

∂ξ
at ξ = 0,

where we have substituted ϕn from Eq. (2.8) and hξ from
Eq. (2.5). As established in Ref. [8], the electrodipping force,
F (n), exerted on the particle can be expressed as an integral
of E2

z :

F (n) ≈ 4π

εn
r2

c σ 2
pnfσσ ,

(2.13)fσσ (α, εpn) = π

∞∫
0

(
∂Φn

∂ξ

)2

ξ=0
sinhη dη
(see Eqs. (5.14), (5.18), and (5.19) in Ref. [8]); F (n) is directed
toward the water phase. The integration in Eq. (2.13) is equiv-
alent to integration of the electric pressure, pel, throughout the
oil–water interface; see Eq. (3.24).

3. Solution by integral transform

3.1. Application of the Mehler–Fock transform

To separate the variables in Eq. (2.9), we first replace Φk by
a new dependent variable, Ψk [30–32]:

(3.1)Φk ≡ h1/2Ψk (k = n,p).

Then, Eq. (2.9) acquires the form [30–32]

(3.2)L[Ψk] + ∂2Ψk

∂ξ2
= 0 in Ωk (k = n,p),

where the linear differential operator, L[Ψ ], is

(3.3)L[Ψ ] ≡ 1

sinhη

∂

∂η

(
sinhη

∂Ψ

∂η

)
+ Ψ

4
.

A substitution u = coshη transforms the operator L[Ψ ] into the
known Legendre operator:

(3.4)L[Ψ ] = ∂

∂u

[
(u2 − 1)

∂Ψ

∂u

]
+ Ψ

4
.

The form of the operator L[Ψ ] suggests that the solution of
Eq. (3.2) can be found by means of the Mehler–Fock integral
transform [32–38]:

(3.5)Ψ (u) =
∞∫

0

P−1/2+iτ (u)B(τ)dτ (1 � u � ∞),

(3.6)B(τ) = τ tanh(πτ)

∞∫
1

P−1/2+iτ (u)Ψ (u)du.

Equations (3.5) and (3.6) represent the forward and inverse
transformations. Correspondingly, Ψ (u) and B(τ) represent
the original and image functions. P−1/2+iτ (u) is the Legendre
function of the first kind [39–41]. Here, we are dealing with
Legendre function of complex index, −1/2 + iτ (τ is real; i is
the imaginary unit), that could be expressed by means of the
following real integral [32,42]:

(3.7)

P−1/2+iτ (coshη) = 21/2

π
coth(πτ)

∞∫
η

sin(τy)dy

(coshy − coshη)1/2
.

The Mehler–Fock transform [32–38], and the generalized
Mehler–Fock transform [38,43–45] have found applications for
solving various problems of similar geometry [42,46,47]. In
view of Eq. (3.5), we will seek the unknown function in the
form

(3.8)Ψk(ξ, η) =
∞∫

0

Bk(ξ, τ )K(η, τ )dτ (k = n,p),
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where

(3.9)K(η, τ) ≡ P−1/2+iτ (coshη).

The kernel of the integral transform, K(η, τ), obeys the equa-
tion

(3.10)L
[
K(η, τ)

] = −τ 2K(η, τ).

The substitution of Eq. (3.8) into Eq. (3.2) yields

(3.11)
∂2Bk

∂ξ2
= τ 2Bk in Ωk (k = n,p).

The solution of Eq. (3.11), satisfying the boundary condition,
Eq. (2.10), and Ψn = Ψp at ξ = ξc, reads

Bn(ξ, τ ) = Ψs(τ )
sinh(ξτ )

sinh(ξcτ)
,

(3.12)Bp(ξ, τ ) = Ψs(τ )
sinh[(π + ξc − ξ)τ ]

sinh(πτ)
,

where Ψs(τ ) is the image of the dimensionless electric potential
at the particle–nonpolar fluid boundary.

To determine Ψs(τ ), we first apply Eq. (3.1) to represent
Eq. (2.11) in the form

∂Ψn

∂ξ
− εpn

∂Ψp

∂ξ
+ sin ξc

2h
(Ψn − εpnΨp) = h

−3/2
c

(3.13)at ξ = ξc.

Here, we have hc ≡ coshη − cos ξc. On the other hand, the
Lebedev formula [48] yields

(3.14)

(coshη − cos ξc)
−1/2 = 21/2

∞∫
0

cosh[(π − ξc)τ ]
cosh(πτ)

K(η, τ)dτ.

The differentiation of Eq. (3.14) with respect to ξc yields

(3.15)h
−3/2
c = 23/2

sin ξc

∞∫
0

τ
sinh[(π − ξc)τ ]

cosh(πτ)
K(η, τ)dτ.

In view of Eqs. (3.8), (3.12), and (3.14), one can bring
Eq. (3.13) into the form of an integral equation for Ψs(τ ):

∞∫
0

{[
coth(ξcτ) + εpn coth(πτ)

]
Ψs(τ )

− 23/2

sin ξc

sinh[(π − ξc)τ ]
cosh(πτ)

}
τK(η, τ )dτ

(3.16)= −1

2
(1 − εpn)

sin ξc

coshη − cos ξc

∞∫
0

Ψs(τ )K(η, τ )dτ.

In Section 5.1 we will demonstrate that Eq. (3.16) can be trans-
formed into the standard form of a Fredholm integral equation
of the second kind, which has a convenient numerical solution
for Ψs(τ ). The respective numerical procedure is much faster
than the procedure for solving the partial differential equations
in Ref. [8]. In addition, Eq. (3.16) enables one to derive useful
asymptotic expressions for the behavior of the physical vari-
ables near the contact line and far from it. Finally, for εpn = 1,
Eq. (3.16) has a closed analytical solution for Ψs(τ ), which is
described in Section 4.

3.2. Expressions for the physical quantities

Having once determined Ψs(τ ), we can further determine the
electric field inside the particle and in the nonpolar fluid, by
using Eqs. (3.8) and (3.12). In particular, the electric field at the
boundary Snw (at z = 0, see Fig. 2) can be presented in the form

Ez|z=0 = −4π

εn
σpn(coshη − 1)3/2I,

(3.17)I ≡
∞∫

0

τΨs(τ )

sinh(ξcτ)
K(η, τ)dτ.

In general, I = I (η,α, εpn). Combining Eqs. (2.13) and (3.17)
we derive the following expression for the force coefficient:

(3.18)fσσ = π

2

∞∫
0

I 2 d[coshη − 1]2.

The flat interface Snw corresponds to the domain rc < r < ∞
or, respectively, ∞ > η > 0. In the calculations it is convenient
to introduce the new variable x1, which has a finite domain of
variation:

(3.19)x1 ≡ rc

r
= coshη − 1

sinhη
(0 < x1 < 1).

From the latter expression one derives

(3.20)coshη − 1 = 2x2
1

1 − x2
1

.

In terms of x1, Eq. (1.4) acquires the form

(3.21)pel(x1) = A1

r6
c

x6
1

(1 − x1)1−μ
.

Because pel ∝ E2
z |z=0, we will seek Ez|z=0, in the form

(3.22)Ez|z=0 = −4πσpn

εn

x3
1

(1 − x1)1−ν
J (x1, α, εpn),

where 2(1−ν) = 1−μ, that is, ν = (1+μ)/2; J is expected to
be a function of bounded variation (almost constant). Note that
for x1 → 1, we have J → C = constant �= 0; see Eq. (5.18).
The combination of Eqs. (3.17), (3.20), and (3.22) yields

(3.23)J (x1, α, εpn) ≡ 23/2I (η,α, εpn)

(1 + x1)3/2(1 − x1)1/2+ν
,

where I is defined by Eq. (3.17), with Ψs(τ ) being the solution
of Eq. (3.16). In terms of J , the electric pressure, pel, can be
expressed in the form

pel(x1) ≡ − εn

8π
E2

z

∣∣
z=0

(3.24)= −2πσ 2
pn x6

1
2−2ν

[
J (x1, α, εpn)

]2
.

εn (1 − x1)
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In Section 5, we consider the general solution of Eq. (3.16),
while in Section 4 we obtain and discuss the analytical solution
to the problem in the special case εp = εn. The reader, who is
interested in the predictions of the theory about the electrosta-
tic force between two adsorbed particles, could go directly to
Section 6.

4. Analytical solution to the problem for εp = εn

Examples for particle and nonpolar liquid that have equal
dielectric constants are (i) glass and isopropyl ether with εp ≈
εn ≈ 3.9 and (ii) polystyrol and hexadecane with εp ≈ εn ≈ 2.0.
Many solid plastics and organic liquids have close dielectric
constants.

4.1. Solution of the integral equation

When the particle has the same dielectric constant as the
nonpolar fluid, i.e., εpn ≡ εp/εn = 1, then Eq. (3.16) has an an-
alytical solution

(4.1)Ψs(τ ) = 23/2

sin ξc
sinh(ξcτ) tanh(πτ)

sinh[(π − ξc)τ ]
sinh[(π + ξc)τ ] .

The substitution of Eq. (4.1) into Eq. (3.17), along with the
identity ξc = π − α, leads to the following expression for the
integral I :

Ie(η,α) ≡ I (η,α,1)

(4.2)= 23/2

sinα

∞∫
0

tanh(πτ) sinh(ατ)

sinh[(2π − α)τ ] K(η, τ)τ dτ.

Here and hereafter, the subscript e means that the respective
quantity is estimated at equal εp and εn. The integral in Eq. (4.2)
has to be solved numerically. In view of Eq. (3.9), K(η, τ) is
related to the Legendre function, whose computation is time
consuming. To speed up the numerical procedure, in Eq. (4.2)
we substituted the integral expression for P−1/2+iτ , Eq. (3.7),
and carried out the integration with respect to τ . The result
reads (see Appendix B)

Ie = 23/2νe sin(2νeξc)

(π + ξc) sinα

(4.3)

×
∞∫

0

[sinh(x) sinh(x + η)]−1/2 sinh[νe(2x + η)]
{cosh[νe(2x + η)] − cos(2νeξc)}2

dx,

where

(4.4)νe ≡ π

π + ξc
= π

2π − α
.

The integral in Eq. (4.3) converges well because at x → ∞
the integrand decays exponentially, while at x → 0 it behaves
as x−1/2. A useful application of the analytical expression,
Eq. (4.3), is for testing of the complicated general numerical
procedure; see Section 5 and Appendix C.
Fig. 4. Plot of De and Ce vs α calculated by means of Eqs. (4.6) and (4.12);
εpn = 1.

4.2. Asymptotics of the electric field far from the particle

Far from the particle (r � rc), we have x1 → 0 and η → 0.
In this limit, Eq. (3.22) acquires the form

(4.5)Ez ≈ −4πσpn

εn
x3

1De(α) (z = 0, r � rc; εpn = 1).

In view of Eqs. (3.23) and (4.2), we have introduced the nota-
tion

De(α) ≡ J (0, α,1) = 23/2Ie(0, α)

(4.6)= 8

sinα

∞∫
0

tanh(πτ) sinh(ατ)

sinh[(2π − α)τ ] τ dτ.

At the last step we have used the fact that K(0, τ ) = P−1/2+iτ (1)

= 1. De(α) tends to a nonzero constant (Fig. 4), and then as-
ymptotically Ez ∝ x3

1 ; see Eq. (4.5). Because x1 = rc/r , we
have Ez ∝ r−3 for r � rc, i.e., the electric field created by the
particle at long distances behaves as the electric field of a di-
pole. The function De(α) determines the dependence of the
effective dipole moment on the angle α. We calculated De(α)

by solving numerically the integral in Eq. (4.6). The results are
tabulated (Table 1 in Appendix D, the column for εpn = 1). The
computed plot of De vs α is shown in Fig. 4. For α → 0 we
have De → 1/(3π) = 0.1061; see Eq. (A.11) in Appendix A.

We should also note that the right-hand side of Eq. (4.5) rep-
resents the leading term of a series expansion for x1 � 1. It can
be proven that the first neglected term in this expansion is pro-
portional to x5

1 .

4.3. Asymptotics of the electric field near the particle

Near the contact line on the particle surface (r → rc), we
have x1 → 1 and η → +∞. In this limit, the integral in
Eq. (4.3) has the following asymptotic form:

Ie ≈ 25/2νe

π + ξc

sin(2νeξc)

sinα
exp

[−(νe + 0.5)η
]

(4.7)×
∞∫

exp(−2νex)

[exp(2x) − 1]1/2
d(2x).
0
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The last integral can be taken analytically [49]. Thus we obtain

(4.8)Ie ≈ 25/2νe
sin(2νeξc)

π1/2 sinα

Γ (νe + 0.5)

Γ (νe)
exp

[−(νe + 0.5)η
]
,

where Γ is the known gamma function [29,39–41]. From
Eq. (3.14) we deduce

(4.9)exp(−η) = 1 − x1

1 + x1
(0 < x1 < 1).

Using Eq. (4.9), we obtain the form of Eq. (4.8) for x1 → 1:

(4.10)Ie ≈ 22−νeνe
sin(2νeξc)

π1/2 sinα

Γ (νe + 0.5)

Γ (νe)
(1 − x1)

νe+0.5.

In view of Eq. (4.10), the asymptotic form of Eqs. (3.22)
and (3.23) near the contact line is

(4.11)Ez|z=0 = −4πσpn

εn

Ce(α)

(1 − x1)1−νe
(x1 → 1),

(4.12)Ce(α) ≡ J (1, α,1) = 22−νeπ1/2

2π − α

sin(νeα)

sinα

Γ (νe + 0.5)

Γ (νe)
.

The function Ce(α) is plotted in Fig. 4 and tabulated (Table 2
in Appendix D, the column for εpn = 1). For α → 0 we have
Ce → 1/(21/2π) = 0.2251; see Eq. (A.13) in Appendix A.

Because 0 < α < π , Eq. (4.4) yields 0.5 < νe < 1. Then,
in view of Eq. (4.11), Ez|z=0 has an integrable divergence for
x1 → 1. On the other hand, the integral for the force coefficient,
fσσ , is convergent. To check that, we substitute Eq. (3.20) into
Eq. (3.18):

(4.13)fσσ = 8π

∞∫
1

I 2 x3
1 dx1

(1 − x2
1)3

.

For εpn = 1, I = Ie is to be substituted from Eq. (4.10). Then,
the integrand in Eq. (4.13) is ∝ (1−x1)

2νe−2. Because νe > 0.5,
we have 2νe −2 > −1; in other words, the integral in Eq. (4.13)
is convergent. Note that such type of integrable singularities at
edge-lines are typical for problems related to the calculation
of the electric field in wedge shaped (angular) spatial domains;
see, e.g., Ref. [28]. In our case, the wedge is formed between
the surfaces Spn and Snw, which intersect at the contact line,
r = rc (Fig. 2).

4.4. Numerical results and discussion

Equations (3.22) and (3.24) indicate that we could calculate
the electric field, Ez|z=0, and of the electric pressure, pel(x1),
if the function J (x1, α, εpn) is known. In the considered special
case, εpn = 1, Eq. (3.23) acquires the form

(4.14)Je(x1, α) ≡ J (x1, α,1) = 23/2Ie(η,α)

(1 + x1)3/2(1 − x1)1/2+νe
,

where Ie and νe are given by Eqs. (4.3) and (4.4). Equa-
tion (3.21), which is a version of a semiempirical formula pro-
posed in Ref. [8], assumes that A1 ∝ J 2 is independent of x1;
see Eq. (3.24). With the help of Eq. (4.14) we could check
whether this assumption is close to the reality.
Fig. 5. Plots of Je vs x1 for different values of α denoted in the figure. The con-
tinuous lines are calculated from Eqs. (4.3) and (4.14). The circles are computed
independently, by numerical solution of the original system partial differential
equations; see Section 5.2 in Ref. [8].

Fig. 6. Plots of Je vs x1 for smaller values of α denoted in the figure (cf. Fig. 4).
The curves for α = 5◦ and 10◦ are calculated from Eqs. (4.3) and (4.14). The
curve for α = 0 is computed by means of Eq. (A.14) in Appendix A.

In Fig. 5 we have plotted Je vs x1 for several values of α.
One sees that Je is practically independent of x1 only for
α ≈ 90◦. On the other hand, for α ≈ 150◦ Je varies by one order
of magnitude. The accurate calculation of Ez|z=0 and pel(x1)

demands Je to be accurately calculated. The continuous lines
in Fig. 5 are obtained from Eq. (4.14) by means of numerical
integration of Eq. (4.3). The points denoted by circles in Fig. 5
are calculated independently, by means of the alternative pro-
cedure for solution of partial differential equations described in
Section 5.2 of Ref. [8]. The excellent agreement between the
two independent solutions confirms the accuracy of the used
numerical procedures.

Fig. 6 shows plots of Je vs x1 again, but this time for smaller
values α, viz. α = 0◦, 5◦, and 10◦. The curve for α = 0 is drawn
by means of the analytical expression derived in Appendix A;
see Eq. (A.14) therein. One sees that the curves in Fig. 6 vary
between 0.1 and 0.215, i.e., the magnitude of Je could change
about two times.

Plot of the force coefficient fσσ vs α is shown in Fig. 7
for εpn = 1. fσσ is calculated from Eq. (4.13), where I = Ie is
obtained from Eq. (4.3). In both Eqs. (4.13) and (4.3) the inte-
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Fig. 7. Dependence of the force coefficients fσσ and fR ≡ fσσ sin2 α on α for
εpn = 1. The curves are calculated with the help of Eqs. (4.3) and (4.13).

gration is carried out numerically. As seen in Fig. 7, fσσ varies
by orders of magnitude as a function of α, and has a minimum
at α ≈ 65◦. In addition, fσσ exhibits a logarithmic divergence
at α → 0; see Appendix A. The latter facts indicate that fσσ is
not a convenient parameter, from both computational and phys-
ical viewpoint. To find a more convenient force coefficient, we
considered the following three equivalent expressions for the
electrodipping force:

F (n) = 4π

εn
σ 2

pnR
2(1 − cosα)f (α, εpn)

= 4π

εn
σ 2

pnr
2
c fσσ (α, εpn)

(4.15)= 4π

εn
σ 2

pnR
2fR(α, εpn).

The coefficient f (α, εpn) was computed and tabulated in [8],
see Eq. (1.2); the coefficient fσσ (α, εpn) was also used in the
theoretical derivations therein. The coefficient fR ≡ fσσ sin2 α

is plotted vs α in Fig. 7 for εpn = 1. One sees that fR exhibits
a simple monotonic dependence on α, and that fR is regular in
the whole interval 0 � α � π , where 0 � fR � π . The great-
est value, fR(α = π) = π , corresponds to a spherical particle
into oil, that has only a point contact with the water; the same
limiting value is obtained independently in Ref. [21].

Physically, the increase of fR with α (Fig. 7) corresponds
to the fact that for a particle of fixed radius, R, with the rise of
α, the area of the electrically charged interface Spn, increases
(Fig. 2). For greater charge at Spn, the electrodipping force,
F (n), and the respective force coefficient, fR , must be also
greater.

The transparent physical meaning of fR(α), and its regular
behavior (Fig. 7), make fR the most convenient force coef-
ficient. For this reason, in Table 3 of Appendix D we have
tabulated the dependence fR(α, εpn) for the needs of a fast
and convenient calculation of the electrodipping force F (n). For
εpn = 1, fR is computed by integration in Eqs. (4.13) and (4.3).
The columns with εpn �= 1 are computed with the help of the
general theory in Section 5.
5. Solution to the general problem for εp �= εn

In the general case when εp �= εn, we cannot find a sim-
ple analytical solution of Eq. (3.16) for Ψs(τ ), like Eq. (4.1).
Nevertheless, in this case Eq. (3.16) can be solved by using
a convenient and accurate procedure that is described in Sec-
tion 5.1.

5.1. Reduction of the problem to Fredholm equation

First, we subject Eq. (3.16) to the inverse Mehler–Fock
transform, Eq. (3.6),

Ψs(τ ) = 23/2(1 − β)

sin ξc

sinh(ατ)

sinh(πτ)
g2(τ )

(5.1)+ β sin ξcg
2(τ )

∞∫
0

Ψs(τ̃ )U(τ, τ̃ )dτ̃ ,

where

(5.2)g2(τ ) ≡ tanh(πτ) sinh(πτ) sinh(ξcτ)

sinh[(π + ξc)τ ] − β sinh(ατ)
.

Here, as usual, ξc = π − α; the definitions of the dimensionless
parameter β and the kernel U are as follows:

(5.3)β ≡ εp − εn

εp + εn
= εpn − 1

εpn + 1
,

(5.4)U(τ, τ̃ ) ≡
∞∫

0

K(η, τ)K(η, τ̃ )

coshη − cos ξc
sinhη dη.

Note that U(τ, τ̃ ) is a symmetric function of its arguments. The
procedure for calculation of K(η, τ) and U(τ, τ̃ ) is described
in Appendix C.

Next, it is convenient to introduce two new functions, G and
V , as follows:

G(τ) ≡ Ψs(τ )/g(τ ),

(5.5)V (τ, τ̃ ) ≡ β sin ξcg(τ)g(τ̃ )U(τ, τ̃ ).

Thus, Eq. (5.1) acquires the form of an integral equation of
Fredholm of the second kind [50],

(5.6)G(τ) = b(τ) +
∞∫

0

V (τ, τ̃ )G(τ̃ )dτ̃ ,

where

(5.7)b(τ) ≡ 23/2(1 − β)

sin ξc

sinh(ατ)

sinh(πτ)
g(τ ).

One could check that the functions b2 and V 2 are integrable
over the domain 0 < τ < ∞. Moreover, V (τ, τ̃ ) is a symmetric
function of its arguments. In such a case, G(τ) can be found as
a solution of Eq. (5.6), by iterations [51]. To start the iterations,
we substituted G(τ̃ ) = b(τ̃ ) on the right-hand side of Eq. (5.6).
This simple iteration procedure converges fast. In our computa-
tions, to achieve a relative error of 10−8, the maximum number
of iterations was 30 for εpn = 8.
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The calculation of the kernel, V , is much more time con-
suming than the numerical solution of the integral equation.
The computations can be accelerated in the following way. The
function, U , defined by Eq. (5.4), depends on α, but it is in-
dependent of εpn. As described in Appendix C, we calculated
U , and stored the dependence of U on α. The stored numerical
data were further used to compute the parameters in the tables
in Appendix D for various εpn.

5.2. Asymptotics of the electric field far from the particle

As mentioned in Section 4.2, far from the particle (r � rc),
we have x1 → 0 and η → 0. In this limit, with the help of
Eq. (3.20), one can bring Eq. (3.17) into the form

(5.8)Ez|z=0 ≈ −4πσpn

εn
x3

1D(α, εpn) (r � rc),

where

(5.9)D(α, εpn) ≡ 23/2

∞∫
0

τΨs(τ )

sinh(ξcτ)
dτ.

In Eq. (3.17), we have used the fact that K(0, τ ) = P−1/2+iτ (1)

= 1. Note that Eqs. (4.5), (4.6) represent a special case of
Eqs. (5.8), (5.9) for εpn = 1. Equation (5.8) expresses the lead-
ing term of a truncated series expansion, the first neglected
term being of the order of x5

1 . For x1 → 0, Eq. (5.8) predicts
Ez ∝ x3

1 ∝ r−3. In other words, as mentioned above, at long
distances the electric field created by the particle behaves as
the field of a dipole. The function D(α, εpn) is proportional
to the dipole moment; see Section 6 for details. To calculate
D(α, εpn), we first determined Ψs(τ ) as explained in Section 5.1
and Appendix C, and then we computed numerically the inte-
gral in Eq. (5.9). The dependence D(α, εpn) is tabulated (see
Table 1 in Appendix D).

Fig. 8 shows the calculated plots of D vs α for five differ-
ent values of εpn. One sees that D increases by several orders
of magnitude with the rise of α. On the other hand, D de-
creases with the increase of εpn. The physical consequences of
this behavior are discussed in Section 6, where the electrostatic
interaction between two adsorbed particles is considered.

5.3. Determination of the power ν in the short-range
asymptotics

In the special case εpn = 1, the power νe is expressed by
Eq. (4.4). In the general case εpn �= 1, such explicit expression
for ν is missing. Instead, ν can be determined as the smallest
positive root of Eq. (5.17); see below.

We recall that ν characterizes the integrable divergence of
Ez(x1) and pel(x1) for x1 → 1, i.e., at the contact line on the
particle surface; see Eqs. (3.22) and (3.24). The contact line
represents the edge-line of the wedge-shaped zone confined be-
tween the surfaces Spn and Snw near the particle. Analogous
problem has been solved in Ref. [28] for a wedge with planar
surfaces. Here, our problem is more complicated, because the
Fig. 8. Dependence of D on α for various εpn denoted in the figure. The curves
are calculated with the help of Eq. (5.9).

surface Spn is spherical and the edge-line is curved; therefore,
we have to use curvilinear coordinates.

In view of Eq. (3.3), the asymptotic form of Eq. (3.2) for
η → ∞(x1 → 1) is

(5.10)
∂2Ψk,0

∂η2
+ ∂Ψk,0

∂η
+ Ψk,0

4
+ ∂2Ψk,0

∂ξ2
= 0 (k = n,p).

Here, Ψn,0 and Ψp,0 are the leading terms in the expansions
of Ψn and Ψp for η → ∞. In the same limit, we have set
cothη ≈ 1. In the frame of the same approximation, the bound-
ary conditions, Eqs. (2.10), (2.11), and (3.13) acquire the form

(5.11)Ψn,0 = 0 at ξ = 0, Ψp,0 = 0 at ξ = π + ξc,

(5.12)Ψn,0 = Ψp,0 and εn
∂Ψn,0

∂ξ
= εp

∂Ψp,0

∂ξ
at ξ = ξc.

Equations (5.10)–(5.12) define the boundary problem in the
considered close vicinity of the contact line. The general so-
lution of Eq. (5.10), that satisfies Eq. (5.11), is

(5.13)Ψn,0 = Xn exp
[−(0.5 + ν)η

]
sin(νξ),

(5.14)Ψp,0 = Xp exp
[−(0.5 + ν)η

]
sin

[
ν(π + ξc − ξ)

]
,

where Xn and Xp are unknown coefficients. The substitution of
Eqs. (5.13) and (5.14) into the boundary conditions, Eq. (5.12)
leads to the following homogeneous system of linear equations
for Xn and Xp:

sin(νξc)Xn − sin(νπ)Xp = 0,

(5.15)cos(νξc)Xn + εpn cos(νπ)Xp = 0.

This system will have a nontrivial solution, when the determi-
nant of the system is equal to zero, i.e.,

(5.16)εpn sin(νξc) cos(νπ) + cos(νξc) sin(νπ) = 0.

Having in mind that ξc = π −α, after some transformations we
bring Eq. (5.16) into the form

(5.17)sin
[
(2π − α)ν

] = β sin(αν),

where β is defined by Eq. (5.3). Equation (5.17) has an infinite
series of positive roots ν1 < ν2 < ν3 < · · · . For −1 < β < 1,
the smallest root, ν1, is always between 0.5 and 1.0; more-
over, we always have ν2 > 1. Equation (3.22) indicates that
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Fig. 9. Dependence of ν on α for various εpn denoted in the figure; ν is calcu-
lated as the smallest positive root of Eq. (5.17).

Ez|z=0 ∝ (1 − x1)
ν−1, and consequently, only the first root, ν1,

corresponds to singularity, whereas the other roots, ν2, ν3, . . . ,
do not give contribution to the singularity of the electric field at
the contact line. In the special case εpn = 1 (β = 0), Eq. (5.17)
gives ν1 = νe, where νe is given by Eq. (4.4).

As we are interested in the leading (singular) term in the
expansion of Ez|z=0 at x1 → 1, hereafter we will set ν ≡ ν1.
The dependence ν = ν(α, εpn), calculated from Eq. (5.17), is
tabulated in Appendix D (Table 4 therein) and illustrated in
Fig. 9. As seen in this figure, the limiting values of ν are
ν(α = 0) = 0.5 and ν(α = π) = 1 (see also Table 4 in Appen-
dix D). The latter value, corresponding to point contact of the
particle with the water phase, indicated the absence of singu-
larity, as independently established in Ref. [21] for this special
case.

In general, ν increases monotonically with the rise of both α

and εpn (Fig. 9). Because Ez|z=0 ∝ (1 − x1)
ν−1, the most pro-

nounced singularity takes place at the smallest value of ν, viz.,
ν = 0.5, which corresponds to a particle (immersed in water)
that has a point contact with the nonpolar fluid (oil, air).

5.4. Asymptotics of the electric field near the particle

The limiting form of Eq. (3.22) near the contact line
(x1 → 1) is

(5.18)Ez|z=0 = −4π

εn
σpnC(1 − x1)

ν−1 (x1 → 1),

where

(5.19)C(α, εpn) ≡ lim
x1→1

J (x1, α, εpn)

and where ν is the smallest positive root of Eq. (5.17). We
determined C(α, εpn) numerically, in the framework of the cal-
culation of J (x1, α, εpn), which is considered in Section 5.5.
For x1 → 1, the computed J tends to a constant, which is
equal to C, in accordance with Eq. (5.19). Numerical results for
C(α, εpn) are tabulated in Appendix D and illustrated in Fig. 10.
One sees that for the smaller εpn, the dependence C(α) exhibits
a maximum, whereas for the greater εpn it is monotonic. For
α < 145◦, C decreases with the rise of εpn, while for α > 145◦
this tendency is inverted.
Fig. 10. Dependence of C on α for various εpn denoted in the figure. The curves
are calculated as explained in the text.

To check how important is the asymptotics of Ez at x1 → 1
for the electrodipping force, we represent Eq. (4.13) in the form

fσσ = 8π

1−δ∫
0

(
εnEz

4πσpn

)2

z=0

dx1

x3
1

(5.20)+ 8π

1∫
1−δ

(
εnEz

4πσpn

)2

z=0

dx1

x3
1

.

To obtain Eq. (5.20), we first substituted I from Eq. (3.17)
into Eq. (4.13), and then replaced coshη − 1 from Eq. (3.20);
δ is a small parameter. The second integral on the right-hand
side of Eq. (5.20) can be estimated by substituting Ez|z=0 from
Eq. (5.18):

(5.21)8π

1∫
1−δ

(
εnEz

4πσpn

)2

z=0

dx1

x3
1

= πC2 δ2ν−1

2ν − 1
.

For ν → 0.5, the right-hand side of Eq. (5.21) could become
large. For example, for δ = 0.001 and 2ν − 1 = 0.01, we have
δ2ν−1/(2ν − 1) = 93.33. This fact could lead to inaccuracies
when fσσ is calculated by numerical integration with a finite
step. For this reason, at the smaller α, the values of the force
coefficient f (α, εpn) determined from Table 4 in Ref. [8] could
differ in the frame of ±15% from the exact values of this quan-
tity calculated here on the basis of the exact analytical asymp-
totics (see the table for fR in Appendix D).

In fact, ν → 0.5 for α → 0 (see Fig. 9), which corresponds
to a particle situated in water and having only a point contact
with the nonpolar phase. In this limit, fσσ has a logarithmic
singularity (Appendix A), but the physical force coefficient,
fR ≡ fσσ sin2 α, tends to zero because of the multiplier sin2 α;
see Eq. (4.15) and Fig. 11.

5.5. Calculation of fR and J in the general case when εpn �= 1

To calculate fR(α, εpn) and J (x1, α, εpn) in the general case
εpn �= 1, we first solved Eq. (5.6) and determined Ψs(τ ), as
explained in Section 5.1 and Appendix C. Then, Ψs(τ ) was sub-
stituted in Eq. (3.17) to determine I . Next, I was substituted in
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Fig. 11. Dependence of the force coefficient fR on α for various εpn denoted
in the figure. The curves are calculated as explained in Section 5.5.

Eqs. (3.23) and (4.13) to calculate J and fσσ . Finally, we used
the relationship fR ≡ fσσ sin2 α.

The calculated fR(α, εpn) is tabulated in Appendix D and il-
lustrated in Fig. 11. As seen in the figure, fR is monotonically
increasing with the rise of α. This behavior is related to the fact
that the area of the particle–nonpolar fluid interface (and the to-
tal surface charge) is larger for greater angle α. In particular, for
α = 0 this area is zero and fR = 0. The dependence of fR on
εpn is more complicated. For α < 120◦, fR grows with the rise
of εpn, but for greater α this tendency is inverted (Fig. 11). fR

has no singular points in the whole interval 0 � α � 180◦. For
example, for εpn = 8, fR(180◦) = 11.10 (not shown in Fig. 11).
For α = 180◦ it is preferable to use the theoretical expressions
in Ref. [21], to avoid computational problems related to sin-
gularity in the coordinate transformation in Section 2.2. The
values of fR(α, εpn), tabulated in Appendix D, can be used for
calculation of the electrodipping force, F (n), with the help of
Eq. (4.15). If F (n) is experimentally measured, the tabulated
numerical data for fR(α, εpn) enable one to determine the sur-
face charge density, σpn; see Ref. [8] for details.

Figs. 12a and 12b show calculated curves J (x1) for several
values of α and two values of εpn. We recall that we need to
know J (x1, α, εpn) for calculating the electric field Ez|z=0 and
the electric pressure, pel(r), by means of Eqs. (3.22) and (3.24).
As expected, J (x1) is a function of bounded variation, which is
almost constant for α about 90◦. The strongest dependence of
J on x1 is observed for the more hydrophobic particles, see the
curve with α = 150◦ in Fig. 12. On the other hand, J exhibits
a pronounced dependence on α : J could rise by two orders of
magnitude when α increases from 30◦ to 150◦. The comparison
between Figs. 12a and 12b indicates that the increase of εpn

produces some effect on J , but this effect is much weaker than
the influence of α.

As in Fig. 5, the continuous lines in Fig. 12 are obtained
by using the equations derived in the present paper, whereas
the points denoted by circles are calculated independently, by
means of the procedure for solution of partial differential equa-
tions described in Section 5.2 of Ref. [8]. It should be noted that
the density of the integration grid used in Ref. [8] is greater than
the density of the points (the circles) shown in Figs. 5 and 12.
(a)

(b)

Fig. 12. Plots of J vs x1 for different values of α denoted in the figure.
(a) εpn = 0.5; (b) εpn = 2. The continuous lines are calculated as explained
in Section 5.5. The circles are computed independently, by numerical solution
of the original system partial differential equations; see Section 5.2 in Ref. [8].

(We had to decrease the density of the circles shown in the fig-
ures to make the continuous line visible.) In both Figs. 5 and
12, the agreement between the two independent solutions is
excellent and confirms the accuracy of the two different com-
putational procedures.

6. Asymptotic expression for the lateral electric force
between two particles

Here, we consider two particles which are attached to the
water–nonpolar fluid boundary, and which are separated at
a center-to-center distance L (Fig. 13). In accordance with
Eq. (5.8), for r � rc the electric field generated by each par-
ticle in isolation is identical to the electric field of a dipole,
whose dipole moment is perpendicular to the water–nonpolar
fluid interface,

(6.1)Ex |z=0 = 0, Ez|z=0 ≈ − pd

εnr3
(r � rc),

where the effective dipole moment is

(6.2)pd = 4πσpnr
3
c D = 4πσpnR

3D sin3 α.

D = D(α, εpn) is defined by Eq. (5.9); it is tabulated in Appen-
dix D and illustrated in Fig. 8.
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Fig. 13. Two particles attached to the water–nonpolar fluid boundary, which are
separated at a center-to-center distance L. For L � rc, the electric field of each
particle in isolation is identical to the electric field of a dipole, whose dipole
moment is given by Eq. (6.2).

The force of electrostatic interaction between two such
particles-dipoles (Fig. 13) is

(6.3)F12 = 3pd1pd2

2εnL4
(R/L � 1).

Here, pd1 and pd2 are the dipole moments defined by Eq. (6.2),
but in general, they could correspond to different particle radii,
R1 and R2, dielectric constants, εp1 and εp2, contact angles, α1
and α2, and surface charge densities, σpn1 and σpn2. The fac-
tor 2 in the denominator of Eq. (6.3) accounts for the fact that
the dipolar field occupies only the upper half-space (the nonpo-
lar fluid), see Fig. 13. Indeed, as mentioned above, the electric
field, created by charges in the nonpolar phases, practically does
not penetrate into the water phase due to its greater dielectric
constant. The presence of dissolved electrolyte in the aqueous
phase additionally suppresses the penetration of electric fields
from the oil into the water [21].

As indicated by Eq. (6.2), the dipole moment pd is propor-
tional to D sin3 α. In Fig. 14 we have plotted D sin3 α vs α for
various values of εpn. One sees that pd ∝ D sin3 α increases
monotonically with the rise of α, but decreases when εpn in-
creases. In particular, the divergence of D for α → 180◦ (Fig. 8)
is compensated by the fact that sin3 α → 0 in the same limit, so
that pd is finite for all α ∈ [0,180◦].

In general, the increase of pd ∝ D sin3 α with the rise of α

(Fig. 14) correlates with the experimental fact that the repul-
sion between adsorbed particles increases when the particles
are more hydrophobic; see Ref. [6]. In the latter study, for
α � 129◦ the repulsion between the particles was so strong that
they formed hexagonal lattices whose constant was consider-
ably greater than the particle diameter. On the other hand, for
α � 115◦ the repulsion weakened, and the particles coagulated
and formed surface aggregates [6].

In general, the interaction described by Eq. (6.3) is repulsion
when σpn1 and σpn2 have similar signs and attraction if σpn1 and
σpn2 have the opposite signs. The respective interaction energy
is

(6.4)U12 =
∞∫

F12(L̂)dL̂ = pd1pd2

2εnL3
(R/L � 1).
L

Fig. 14. Plot of D sin3 α vs α for various εpn denoted in the figure. The dipole

moment pd ∝ D sin3 α increases monotonically with the rise of α; see Eq. (6.2).
The values of D are the same as in Fig. 8.

As mentioned above, the Coulombic interaction of adsorbed
particles across the oily phase was experimentally established
in Ref. [1] and estimated by means of the following formula [1,
6,12]:

(6.5)U12 = (Apnσpn)
2

εnL

{
1 − [

1 + (3 + cosα)2R2/L2]−1/2}
.

In Eq. (6.5) the case of two identical particles is considered;
Apn = 2πR2(1 − cosα) is the area of the particle–nonpolar
fluid interface. The asymptotics of Eq. (6.5) for R2/L2 � 1
reads

(6.6)U12 ≈ [ApnσpnR(3 + cosα)]2

2εnL3
for R2/L2 � 1.

The comparison of Eqs. (6.6) and (6.4) shows that the effec-
tive dipole moment in Eq. (6.6) is p∗

d = ApnσpnR(3 + cosα)2.
The ratio of the exact dipole moment pd in Eq. (6.2) and the
estimated dipole moment, p∗

d , is

(6.7)
pd

p∗
d

= 2D(α, εpn) sin3 α

(1 − cosα)(3 + cosα)
.

In Fig. 15 we have plotted pd/p
∗
d vs α for various εpn. One sees

that pd/p
∗
d is close to 1 for the greater α and smaller εpn. In all

other cases, one should use the exact Eq. (6.2), which accounts
for the effect of εpn on pd.

7. Limits of applicability of the developed theory

The theory developed in the present paper is sufficient for
quantitative description of the electrodipping force, F (el), when
the following two relations are satisfied:

(7.1)F (el) ≡ F (w) + F (n) ≈ F (n),

(7.2)F (n) ≈ 4π

εn
σ 2

pnr
2
c fσσ (α, εpn);

see Eqs. (1.1) and (4.15). Equation (7.1) means that the contri-
bution of surface charges at the particle–water interface is much
smaller than the contribution of charges at the particle–nonpolar
fluid boundary, i.e., F (w) � F (n). Experimental indication for
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Fig. 15. Plot of pd/p∗
d vs α for various εpn. The curves are calculated by means

of Eq. (6.7) where D is the same as in Fig. 8.

the fulfillment of Eq. (7.1) is the independence of the particle
configuration on the variation of electrolyte concentration in
the aqueous phase. This was observed with particles of radius
R = 200–300 µm in Ref. [8], but it was also detected with much
smaller particles, R = 1 µm, in Ref. [6]. On the other hand, in-
dication about a possible effect of F (w) was found in [3], where
the order–disorder transition in particle monolayers was sensi-
tive to the concentration of salt in the water. In general, one
could expect that the effect of F (w) should become significant
for relatively small particles, for which the particle radius is
comparable to the thickness of the adjacent electric double layer
in the water.

Equation (7.2) is an approximated version of Eq. (5.14) in
Ref. [8], which reads

(7.3)F (n) = 4π

εn
r2

c σ 2
pnfσσ + 2rcσpn(
ϕ)fϕσ + εn

4π
(
ϕ)2fϕϕ,

where 
ϕ is the difference between the electric potentials at
the particle–water and nonpolar fluid–water boundaries; the di-
mensionless functions fϕϕ , fϕσ , and fσσ depend on α and εpn,
and all of them are of the order of 1. (Note that Eq. (2.2) is
equivalent to setting 
ϕ = 0.) For typical parameter values,
rc = 200 µm, εn = 2, σpn = 80 µC/m2 (2000 nm2 per charge),
and 
ϕ = 60 mV, the magnitude of the terms in Eq. (7.3) is [8]

F (n) = [1.45fσσ + 1.92 × 10−4fϕσ + 6.37 × 10−9fϕϕ]
(7.4)× 10−5 N.

One sees that for rc = 200 µm the terms with fϕσ and fϕϕ

are completely negligible and Eq. (7.3) reduces to Eq. (7.2).
However, for rc = 20 nm the three terms in Eq. (7.4) become
comparable. In such a case, one should calculate also the force
coefficients fϕσ and fϕϕ , defined in Ref. [8].

In summary, when the particles are large enough, then
Eqs. (7.1) and (7.2) are satisfied and the theory developed in
the present article is sufficient for a quantitative theoretical de-
scription of the electrodipping force, F (el) ≈ F (n). In contrast,
for smaller particles the deviations from Eqs. (7.1) and (7.2)
could become significant, and then one should calculate also
F (w), fϕσ , and fϕϕ to achieve an accurate quantitative descrip-
tion. Note that the formalism, developed here for calculation of
fσσ , is directly applicable for the calculation of fϕσ and fϕϕ .
8. Summary and conclusions

Our purpose here is to solve the theoretical problem about
the electric field of a charged dielectric particle, which is ad-
sorbed at the water–nonpolar fluid (oil, air) boundary; see
Figs. 1 and 2. In accordance with the experimental findings [2,
6,8,11–13], we consider the case when the surface charges are
located at the particle–nonpolar fluid boundary. The symmetry
of the system suggests the Mehler–Fock integral transform to
be used for solving the electrostatic boundary problem (Sec-
tion 3). In the special case when the dielectric constants of the
particle and the nonpolar fluid are equal, the solution is ob-
tained in a closed analytical form (Section 4). In the general
case of different dielectric constants, the problem is reduced to
the solution of a Fredholm integral equation, Eq. (5.6), which
can be carried out numerically, by iterations (Section 5.1 and
Appendix C). The latter numerical procedure turns out to be
much faster than the procedure for direct numerical integra-
tion of the original partial differential equations, which has been
previously used [8].

In addition, the derived equations enabled us to obtain an-
alytical expressions for the asymptotic behavior of the electric
field near the particle and far from it. The long-range asymp-
totics indicates that two similar particles repel each other as
dipoles, whose dipole moments are expressed through the parti-
cle radius, contact angle, dielectric constant and surface charge
density (Section 6). On the other hand, the analytical expres-
sion for the short-range asymptotics is important, because the
electric field has an integrable divergence at the particle contact
line that is described by the functions C(α, εpn) and ν(α, εpn);
see Eq. (5.18). The knowledge of the short-range asymptotics
ensures accurate calculation of the electrodipping-force coeffi-
cient, fR(α, εpn).

For a fast and convenient application of the results obtained
in the present paper, the reader could use the dependencies
D(α, εpn), C(α, εpn), fR(α, εpn), and ν(α, εpn), tabulated in
Appendix D, instead of repeating the calculations described
in Section 5.1 and Appendix C. Thus, D(α, εpn), C(α, εpn),
and ν(α, εpn) can be applied for calculation of the meniscus
shape around an adsorbed particle, see Ref. [52]. To do that,
we have taken into account the effects of both gravity and elec-
tric force on the meniscus shape [52]. fR(α, εpn) can be used
for computing the electrodipping force, and for determining the
surface charge density, σpn; see Eq. (4.15). D(α, εpn) is nec-
essary for calculation of the electrostatic interaction between
two adsorbed particles at long distances, in accordance with
Eqs. (6.2)–(6.4). After a theoretical upgrade, the results could
be also applied for prediction of the electric-field-induced cap-
illary attraction [3]. The comparison of the present theory with
the experiment can be found in Ref. [52].
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Appendix A. Analytical solution to the problem for α � 1

The considered electrostatic problem has a closed analytical
solution for α � 1. Physically, this is the case of hydrophilic
particle, whose contact angle is close to zero, see Fig. 2. In this
case, our boundary problem, Eqs. (2.1)–(2.3), reduces to

(A.1)
1

r

∂

∂r

(
r
∂ϕk

∂r

)
+ ∂2ϕk

∂z2
= 0 in Ωk (k = n,p),

(A.2)ϕn = ϕp = 0 (z = 0, r � rc),

ϕn = ϕp, εp
∂ϕp

∂z
− εn

∂ϕn

∂z
= 4πσpn

(A.3)(z = 0, 0 � r < rc).

The solution of Eq. (A.1), which is finite at infinity, and which
is continuous at the plane z = 0, can be expressed in terms of
Hankel transform [36,37,53],

ϕn = 8πσpn

εn + εp

∞∫
0

X(s) exp(−sz)J0(sr)ds,

(A.4)ϕp = 8πσpn

εn + εp

∞∫
0

X(s) exp(sz)J0(sr)ds,

where J0 is the Bessel function of zero order, and X(s) is
the Hankel image of the electric potential. The substitution of
Eq. (A.4) into the boundary conditions, Eqs. (A.2), (A.3), leads
to the following integral equations:

∞∫
0

sX(s)J0(sr)ds = 1

2
at 0 � r < rc,

(A.5)

∞∫
0

X(s)J0(sr)ds = 0 at r � rc.

The exact solution of Eq. (A.5) is reported in Ref. [53]; its ap-
plication to our specific case yields

(A.6)X(s) =
(

s

2π

)1/2
rc∫

0

r3/2J1/2(sr)dr.

Using the fact that J1/2(x) = [2/(πx)]1/2 sinx (see, e.g., Refs.
[29,40]), we take the integral in Eq. (A.6):

(A.7)X(s) = 1

πs2

[
sin(src) − (src) cos(src)

]
.

With the help of Eqs. (A.4) and (A.7), we express the electric
field, Ez|z=0 = ∂ϕn/∂z|z=0:

(A.8)Ez|z=0 = 8σpn

εn + εp

∞∫
0

(
sin s

s
− cos s

)
J0(sr/rc)ds.
The integral in Eq. (A.8) can be taken exactly [41],

(A.9)Ez|z=0 = − 8σpn

εn + εp

[
x1

(1 − x2
1)1/2

− arcsin(x1)

]
,

where, as usual, x1 = rc/r . At large distances from the particle,
x1 � 1, we have

(A.10)
x1

(1 − x2
1)1/2

− arcsin(x1) = x3
1

3
+ 3x5

1

10
+ · · · .

Then, the comparison of Eqs. (A.9) and (5.8) yields an expres-
sion for D|α=0:

(A.11)D(0, εpn) = 2

3π(1 + εpn)
.

In the opposite limit, x1 → 1, close to the contact line we have

(A.12)

x1

(1 − x2
1)1/2

− arcsin(x1) = 1

21/2(1 − x1)1/2
− π

2
+ · · · .

Then, the comparison of Eqs. (A.9) and (5.18) yields an expres-
sion for C|α=0,

(A.13)C(0, εpn) = 21/2

π(1 + εpn)
,

where at the last step we have used the fact that ν|α=0 = 0.5; see
Fig. 9. Equations (A.11) and (A.13) give the values of the para-
meters D and C for small contact angles; see also Figs. 8 and 10
and Tables 1 and 2 in Appendix D. In addition, because fσσ is
proportional to integral over E2

z |z=0, see Eq. (5.20), Eq. (A.9)
shows that fσσ has logarithmic singularity at α → 0. Finally,
comparing Eqs. (A.9) and (3.22), we obtain

(A.14)

J (x1,0, εpn) = 2(1 − x1)
1/2

π(1 + εpn)x
3
1

[
x1

(1 − x2
1)1/2

− arcsin(x1)

]
.

Appendix B. Calculation of the integral in Eq. (4.2)

To transform the integral in Eq. (4.2), we substitute K(η, τ)

from Eqs. (3.7) and (3.9):

Ie(η,α) = 4

π sinα

∞∫
η

dy

(coshy − coshη)1/2

(B.1)×
∞∫

0

sinh[(π − ξc)τ ]
sinh[(π + ξc)τ ] sin(τy)τ dτ.

The last integral in Eq. (B.1) is of Fourier type and it can be
taken exactly,

∞∫
0

sinh[(π − ξc)τ ]
sinh[(π + ξc)τ ] sin(τy)τ dτ

(B.2)= ν2
e sin(2νeξc) sinh(νey)

2[cosh(νey) − cos(2νeξc)]2
,
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Table 1
Function D(α, εpn) defined by Eq. (5.9)

α εpn = εp/εn

0.125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00

0 0.1886 0.1698 0.1415 0.1213 0.1061 0.08488 0.07074 0.04244 0.02358
5 0.1941 0.1755 0.1472 0.1268 0.1114 0.08957 0.07490 0.04525 0.02526

10 0.2006 0.1822 0.1539 0.1332 0.1174 0.09490 0.07964 0.04846 0.02718
15 0.2083 0.1900 0.1615 0.1405 0.1243 0.1010 0.08505 0.05214 0.02939
20 0.2173 0.1990 0.1702 0.1488 0.1321 0.1079 0.09123 0.05636 0.03194
25 0.2277 0.2093 0.1803 0.1583 0.1411 0.1159 0.09831 0.06122 0.03489
30 0.2398 0.2213 0.1917 0.1692 0.1513 0.1250 0.1065 0.06682 0.03831
35 0.2538 0.2351 0.2049 0.1817 0.1631 0.1355 0.1158 0.07333 0.04229
40 0.2700 0.2511 0.2202 0.1960 0.1767 0.1476 0.1267 0.08090 0.04696
45 0.2888 0.2695 0.2378 0.2127 0.1924 0.1616 0.1393 0.08976 0.05246
50 0.3107 0.2910 0.2582 0.2320 0.2107 0.1780 0.1541 0.1002 0.05897
55 0.3363 0.3160 0.2820 0.2546 0.2320 0.1971 0.1714 0.1125 0.06673
60 0.3664 0.3454 0.3099 0.2811 0.2571 0.2197 0.1918 0.1272 0.07604
65 0.4018 0.3800 0.3428 0.3123 0.2868 0.2465 0.2162 0.1449 0.08730
70 0.4438 0.4211 0.3819 0.3494 0.3221 0.2785 0.2453 0.1662 0.1010
75 0.4941 0.4701 0.4286 0.3939 0.3644 0.3170 0.2805 0.1921 0.1179
80 0.5546 0.5292 0.4850 0.4477 0.4157 0.3638 0.3234 0.2241 0.1388
85 0.6281 0.6011 0.5537 0.5132 0.4783 0.4211 0.3761 0.2637 0.1651
90 0.7184 0.6894 0.6381 0.5939 0.5556 0.4921 0.4417 0.3135 0.1985
95 0.8306 0.7992 0.7432 0.6946 0.6521 0.5811 0.5241 0.3768 0.2413

100 0.9718 0.9374 0.8757 0.8217 0.7742 0.6941 0.6292 0.4583 0.2973
105 1.152 1.114 1.045 0.9848 0.9311 0.8398 0.7651 0.5649 0.3713
110 1.386 1.344 1.266 1.197 1.136 1.031 0.9438 0.7067 0.4712
115 1.696 1.648 1.559 1.480 1.409 1.286 1.183 0.8990 0.6086
120 2.116 2.060 1.956 1.864 1.780 1.635 1.512 1.166 0.8020
125 2.700 2.633 2.510 2.400 2.299 2.123 1.974 1.545 1.082
130 3.536 3.455 3.305 3.170 3.047 2.830 2.644 2.102 1.499
135 4.781 4.679 4.491 4.320 4.165 3.889 3.652 2.950 2.145
140 6.720 6.587 6.341 6.117 5.913 5.551 5.237 4.298 3.192
145 9.916 9.733 9.395 9.088 8.808 8.309 7.875 6.566 4.986
150 15.59 15.32 14.83 14.38 13.96 13.23 12.60 10.67 8.294
155 26.71 26.28 25.48 24.76 24.10 22.94 21.93 18.85 15.01
160 51.81 51.02 49.56 48.25 47.05 44.93 43.11 37.58 30.67
165 122.2 120.4 117.1 114.2 111.5 106.8 102.8 90.72 75.84
170 410.7 404.9 394.3 384.8 376.2 361.2 348.4 310.7 265.4
175 3274 3228 3145 3071 3005 2889 2790 2505 2175
where νe is defined by Eq. (4.4). Substituting Eq. (B.2) into
Eq. (B.1), we obtain

(B.3)

Ie = 2νe sin(2νeξc)

(π + ξc) sinα

∞∫
η

(coshy − coshη)−1/2 sinh(νey)

[cosh(νey) − cos(2νeξc)]2
dy.

Finally, in Eq. (B.3) we introduce a new integration variable,
y = 2x +η, and after some transformations we derive Eq. (4.3).

Appendix C. Procedure for fast calculation of the kernels
K and U

For a fast computation of the kernel K(η, τ), defined by
Eq. (3.9), we have been using two alternative expressions, de-
pending on whether η is small or large. For small values of η, it
is convenient to use Eq. (8.11.1) in Ref. [40],

(C.1)K(η, τ) = F2,1

(
1

2
, b;1;y

)
exp(−bη),
where

(C.2)b = 0.5 + iτ, y = 1 − exp(−2η),

and F2,1(a, b; c;y) is the hypergeometric function. On the other
hand, for large values of η, it is more convenient to use Eq.
(15.3.6) in Ref. [40],

K(η, τ) = F2,1

(
1

2
, b; c;1 − y

)
Γ (−iτ ) exp(−bη)

Γ (b̄)π1/2

(C.3)+ F2,1

(
1

2
, b̄; c̄;1 − y

)
Γ (iτ ) exp(−b̄η)

Γ (b)π1/2
,

where Γ is the gamma function; b and y are given by Eq. (C.2),
and the other parameters are

(C.4)b̄ = 0.5 − iτ, c = 1 + iτ, c̄ = 1 − iτ.

In our computations, we used FORTRAN with IMSL, where
the Γ function of complex argument is a built-in function.
To calculate F2,1(a, b; c;y), we applied numerical summation
of the standard hypergeometric series of Gauss [40]. For the
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Table 2
Function C(α, εpn) defined by Eq. (5.19)

α εpn = εp/εn

0.125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00

0 0.4001 0.3601 0.3001 0.2572 0.2251 0.1801 0.1501 0.09003 0.05002
5 0.4170 0.3740 0.3101 0.2648 0.2328 0.1843 0.1532 0.09152 0.05070

10 0.4401 0.3930 0.3238 0.2755 0.2413 0.1904 0.1580 0.09400 0.05195
15 0.4669 0.4145 0.3391 0.2872 0.2507 0.1972 0.1633 0.09680 0.05340
20 0.4977 0.4390 0.3561 0.3001 0.2610 0.2047 0.1691 0.09996 0.05507
25 0.5334 0.4667 0.3749 0.3143 0.2723 0.2129 0.1756 0.1035 0.05698
30 0.5747 0.4980 0.3958 0.3299 0.2847 0.2219 0.1827 0.1075 0.05916
35 0.6224 0.5333 0.4187 0.3469 0.2982 0.2318 0.1905 0.1120 0.06166
40 0.6777 0.5732 0.4441 0.3655 0.3130 0.2426 0.1992 0.1171 0.06451
45 0.7417 0.6181 0.4719 0.3859 0.3292 0.2546 0.2088 0.1227 0.06777
50 0.8159 0.6683 0.5023 0.4081 0.3469 0.2677 0.2195 0.1292 0.07150
55 0.9017 0.7244 0.5355 0.4322 0.3662 0.2822 0.2313 0.1364 0.07577
60 1.000 0.7864 0.5715 0.4585 0.3873 0.2981 0.2445 0.1447 0.08067
65 1.113 0.8543 0.6105 0.4870 0.4104 0.3158 0.2592 0.1540 0.08632
70 1.238 0.9275 0.6522 0.5178 0.4357 0.3354 0.2756 0.1647 0.09285
75 1.374 1.005 0.6966 0.5511 0.4632 0.3571 0.2941 0.1770 0.1004
80 1.515 1.084 0.7434 0.5869 0.4934 0.3813 0.3148 0.1910 0.1093
85 1.650 1.162 0.7920 0.6254 0.5263 0.4083 0.3383 0.2073 0.1197
90 1.763 1.236 0.8420 0.6664 0.5623 0.4385 0.3649 0.2262 0.1320
95 1.840 1.300 0.8925 0.7101 0.6017 0.4724 0.3952 0.2482 0.1467

100 1.870 1.350 0.9427 0.7565 0.6447 0.5105 0.4298 0.2742 0.1643
105 1.851 1.384 0.9915 0.8053 0.6916 0.5537 0.4696 0.3050 0.1857
110 1.793 1.400 1.038 0.8564 0.7429 0.6025 0.5156 0.3418 0.2119
115 1.710 1.401 1.082 0.9098 0.7987 0.6580 0.5689 0.3862 0.2445
120 1.617 1.389 1.118 0.9562 0.8596 0.7213 0.6313 0.4403 0.2854
125 1.523 1.366 1.158 1.018 0.9257 0.7938 0.7046 0.5071 0.3378
130 1.440 1.345 1.191 1.081 0.9975 0.8771 0.7915 0.5906 0.4060
135 1.364 1.316 1.220 1.143 1.075 0.9726 0.8948 0.6964 0.4968
140 1.298 1.285 1.246 1.205 1.159 1.084 1.019 0.8332 0.6205
145 1.242 1.255 1.268 1.267 1.249 1.210 1.168 1.013 0.7941
150 1.199 1.234 1.289 1.329 1.345 1.355 1.349 1.255 1.047
155 1.163 1.219 1.313 1.391 1.446 1.530 1.575 1.591 1.433
160 1.136 1.204 1.334 1.454 1.553 1.711 1.836 2.065 2.053
165 1.116 1.197 1.357 1.516 1.664 1.936 2.167 2.767 3.134
170 1.102 1.193 1.384 1.578 1.777 2.176 2.554 3.813 5.206
175 1.099 1.190 1.413 1.640 1.890 2.412 2.967 5.322 8.384
process of computations, it is convenient to introduce the quan-
tity

(C.5)ηb ≡ 0.1371 + 0.202 exp(−0.0312τ).

To minimize the number of terms summed when calculating the
hypergeometric series, we used the following criterion: For 0 �
η � ηb, K(η, τ) is calculated by means of Eq. (C.1), whereas
for η > ηb , K(η, τ) is calculated by means of Eq. (C.3). Alter-
natively, one could use the software “Mathematica 5.0,” where
F2,1(a, b; c;y) is a built-in function.

To compute the function U(τ, τ̃ ), we carried out the inte-
gration in Eq. (5.4) numerically, by using the Simpson rule.
Equation (C.3) shows that the function K(η, τ)K(η, τ̃ ) decays
as exp(−η) at large η, and therefore the integral in Eq. (5.4)
converges very well.

Appendix D. Tabulated values of the computed basic
functions

For a fast and convenient application of the results obtained
in the present paper, the reader could use the dependencies
D(α, εpn), C(α, εpn), fR(α, εpn), and ν(α, εpn), given in Ta-
bles 1, 2, 3, and 4, instead of repeating the calculations de-
scribed in Section 5.1 and Appendix C.

Let f (α, εpn) be either of the above four tabulated functions.
We are interested to obtain its value for a given α1 < α < α2 and
ε1 < εpn < ε2, where α1, α2, ε1, and ε2 are values given in the
respective table. Then, f (α, εpn) can be calculated by means of
the following four-point interpolation formula:

f (α, εpn) = (α − α2)(εpn − ε2)

(α1 − α2)(ε1 − ε2)
f (α1, ε1)

+ (α − α2)(εpn − ε1)

(α1 − α2)(ε2 − ε1)
f (α1, ε2)

+ (α − α1)(εpn − ε2)

(α2 − α1)(ε1 − ε2)
f (α2, ε1)

(D.1)+ (α − α1)(εpn − ε1)

(α2 − α1)(ε2 − ε1)
f (α2, ε2).

Appendix E. Symbol definitions

Apn area of the particle–nonpolar fluid interface, Eq. (6.5)
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Table 3
Function fR(α, εpn) = fσσ sin2 α defined by Eq. (4.13)

α εpn = εp/εn

0.125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.1482 0.1342 0.1129 0.09740 0.08565 0.06901 0.05778 0.03500 0.01957

10 0.2878 0.2622 0.2225 0.1933 0.1708 0.1386 0.1166 0.07132 0.04014
15 0.4196 0.3843 0.3291 0.2877 0.2555 0.2088 0.1765 0.1091 0.06183
20 0.5440 0.5011 0.4327 0.3807 0.3399 0.2798 0.2377 0.1484 0.08475
25 0.6618 0.6128 0.5337 0.4726 0.4239 0.3516 0.3002 0.1895 0.1090
30 0.7734 0.7198 0.6321 0.5632 0.5078 0.4243 0.3643 0.2325 0.1349
35 0.8792 0.8224 0.7280 0.6528 0.5916 0.4980 0.4299 0.2777 0.1625
40 0.9797 0.9209 0.8217 0.7415 0.6754 0.5730 0.4974 0.3253 0.1921
45 1.075 1.016 0.9133 0.8294 0.7593 0.6493 0.5669 0.3756 0.2240
50 1.166 1.106 1.003 0.9165 0.8435 0.7271 0.6386 0.4289 0.2585
55 1.253 1.194 1.091 1.003 0.9280 0.8066 0.7128 0.4856 0.2960
60 1.335 1.278 1.177 1.089 1.013 0.8879 0.7897 0.5462 0.3370
65 1.414 1.360 1.261 1.175 1.099 0.9713 0.8696 0.6111 0.3821
70 1.489 1.438 1.344 1.260 1.185 1.057 0.9529 0.6809 0.4318
75 1.561 1.514 1.426 1.345 1.272 1.145 1.040 0.7563 0.4869
80 1.630 1.587 1.506 1.430 1.360 1.236 1.131 0.8380 0.5485
85 1.695 1.658 1.585 1.515 1.449 1.330 1.226 0.9269 0.6177
90 1.758 1.727 1.663 1.600 1.540 1.427 1.326 1.024 0.6958
95 1.818 1.793 1.740 1.685 1.631 1.527 1.431 1.130 0.7847

100 1.875 1.857 1.815 1.770 1.724 1.631 1.542 1.248 0.8864
105 1.930 1.918 1.890 1.856 1.818 1.739 1.660 1.377 1.004
110 1.982 1.978 1.963 1.941 1.914 1.852 1.784 1.521 1.140
115 2.031 2.035 2.035 2.026 2.011 1.968 1.915 1.681 1.299
120 2.078 2.091 2.106 2.112 2.110 2.090 2.054 1.859 1.488
125 2.123 2.144 2.176 2.197 2.210 2.216 2.202 2.060 1.712
130 2.165 2.194 2.244 2.282 2.311 2.346 2.359 2.285 1.980
135 2.204 2.242 2.310 2.367 2.413 2.482 2.524 2.540 2.306
140 2.240 2.288 2.375 2.450 2.516 2.622 2.700 2.828 2.705
145 2.273 2.330 2.436 2.532 2.618 2.766 2.884 3.153 3.198
150 2.303 2.369 2.495 2.611 2.719 2.912 3.076 3.521 3.811
155 2.329 2.405 2.550 2.687 2.818 3.059 3.277 3.935 4.580
160 2.352 2.436 2.599 2.758 2.911 3.204 3.477 4.394 5.548
165 2.371 2.462 2.642 2.821 2.996 3.341 3.675 4.893 6.763
170 2.385 2.482 2.677 2.873 3.069 3.462 3.856 5.410 8.252
175 2.393 2.494 2.697 2.902 3.110 3.532 3.963 5.890 9.941
180 2.397 2.500 2.710 2.923 3.142 3.592 4.062 6.130 11.10
Bn,Bp transforms of Ψn, Ψp, Eq. (3.8)
C value of J at the contact line, Eq. (5.18)
Ce the value of C at εp = εn; see Eq. (4.12)
D dipole moment coefficient, Eqs. (5.9) and (6.2)
De the value of D at εp = εn; see Eq. (4.6)
Ex,Ez components of the electric-field intensity
f (α, εpn) coefficient of the electrodipping force, Eq. (4.15)
fR(α, εpn) force coefficient, Eq. (4.15)
fσσ (α, εpn) force coefficient, Eqs. (2.13) and (4.15)
fϕσ , fϕϕ force coefficients, Eq. (7.3)
F12 interaction force between two dipoles, Eq. (6.3)
F (el) electrodipping force acting on the particle, Eq. (1.1)
F (n) contribution to F (el) due to charges at Spn, Eq. (4.15)
F (w) contribution to F (el) due to charges at Spw, Eq. (1.1)
g acceleration due to gravity
h,hξ ,hη metric coefficients, Eqs. (2.4), (2.5)
I integral defined by Eq. (3.17)
Ie the value of I at εp = εn; see Eq. (4.2)
J function of bounded variation, Eq. (3.23)
J0, J1/2 Bessel functions, Appendix A
K(η, τ) kernel of the integral transform, Eq. (3.9)
L distance between two particles, Eq. (6.3)
L[Ψ ] linear differential operator, Eq. (3.3)
pd dipole moment, Eqs. (6.1), (6.2)
pel pressure of electric origin acting at Snw

Pν(u) Legendre function of the first kind
q inverse capillary length, Eq. (1.3)
r radial cylindrical coordinate
rc radius of the contact line, Fig. 2
R particle radius, Fig. 1
Snw nonpolar fluid–water interface, Fig. 2
Spn particle–nonpolar fluid interface, Fig. 2
Spw particle–water interface, Fig. 2
u variable, u = coshη

U12 interaction energy between two dipoles, Eq. (6.4)
U(τ, τ̃ ) kernel in Eq. (5.1)
x1 dimensionless coordinate, Eq. (3.19)
z vertical cylindrical coordinate
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Table 4
Function ν(α, εpn) defined as the smallest positive root of Eq. (5.17)

α εpn = εp/εn

0.125 0.250 0.500 0.750 1.00 1.50 2.00 4.00 8.00

0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
5 0.5127 0.5114 0.5094 0.5081 0.5070 0.5056 0.5047 0.5028 0.5015

10 0.5260 0.5232 0.5192 0.5164 0.5143 0.5114 0.5094 0.5056 0.5031
15 0.5400 0.5357 0.5294 0.5250 0.5217 0.5173 0.5143 0.5085 0.5047
20 0.5547 0.5487 0.5399 0.5339 0.5294 0.5233 0.5193 0.5114 0.5063
25 0.5703 0.5623 0.5509 0.5430 0.5373 0.5295 0.5244 0.5144 0.5079
30 0.5867 0.5766 0.5623 0.5525 0.5455 0.5358 0.5296 0.5175 0.5096
35 0.6040 0.5915 0.5741 0.5623 0.5538 0.5424 0.5349 0.5206 0.5113
40 0.6222 0.6071 0.5863 0.5725 0.5625 0.5491 0.5405 0.5238 0.5131
45 0.6414 0.6235 0.5990 0.5829 0.5714 0.5560 0.5461 0.5271 0.5149
50 0.6617 0.6405 0.6122 0.5937 0.5806 0.5632 0.5520 0.5305 0.5167
55 0.6830 0.6582 0.6258 0.6049 0.5902 0.5706 0.5580 0.5340 0.5187
60 0.7052 0.6766 0.6398 0.6164 0.6000 0.5782 0.5643 0.5377 0.5207
65 0.7285 0.6956 0.6543 0.6283 0.6102 0.5861 0.5708 0.5416 0.5228
70 0.7524 0.7151 0.6692 0.6406 0.6207 0.5944 0.5776 0.5456 0.5250
75 0.7769 0.7351 0.6845 0.6533 0.6316 0.6029 0.5847 0.5498 0.5274
80 0.8015 0.7552 0.7002 0.6663 0.6429 0.6119 0.5922 0.5543 0.5299
85 0.8256 0.7753 0.7161 0.6798 0.6545 0.6212 0.6000 0.5590 0.5326
90 0.8485 0.7952 0.7323 0.6936 0.6667 0.6310 0.6082 0.5641 0.5354
95 0.8697 0.8145 0.7486 0.7078 0.6792 0.6413 0.6169 0.5695 0.5385

100 0.8886 0.8330 0.7650 0.7224 0.6923 0.6521 0.6261 0.5753 0.5419
105 0.9050 0.8505 0.7815 0.7373 0.7059 0.6635 0.6359 0.5817 0.5456
110 0.9190 0.8667 0.7978 0.7526 0.7200 0.6756 0.6465 0.5885 0.5497
115 0.9308 0.8817 0.8140 0.7682 0.7347 0.6885 0.6578 0.5961 0.5542
120 0.9407 0.8955 0.8300 0.7841 0.7500 0.7022 0.6700 0.6045 0.5593
125 0.9491 0.9080 0.8456 0.8004 0.7660 0.7169 0.6834 0.6139 0.5651
130 0.9564 0.9194 0.8609 0.8169 0.7826 0.7327 0.6980 0.6245 0.5718
135 0.9627 0.9299 0.8759 0.8337 0.8000 0.7497 0.7140 0.6366 0.5796
140 0.9682 0.9395 0.8905 0.8508 0.8182 0.7682 0.7318 0.6506 0.5889
145 0.9732 0.9484 0.9048 0.8681 0.8372 0.7884 0.7518 0.6671 0.6002
150 0.9777 0.9567 0.9187 0.8858 0.8571 0.8104 0.7742 0.6868 0.6142
155 0.9818 0.9645 0.9325 0.9037 0.8780 0.8347 0.7998 0.7109 0.6323
160 0.9858 0.9720 0.9460 0.9220 0.9000 0.8614 0.8290 0.7410 0.6566
165 0.9895 0.9792 0.9594 0.9407 0.9231 0.8910 0.8629 0.7798 0.6909
170 0.9930 0.9862 0.9728 0.9598 0.9474 0.9238 0.9021 0.8316 0.7432
175 0.9965 0.9931 0.9863 0.9796 0.9730 0.9601 0.9477 0.9027 0.8322
180 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Greek symbols

α central angle determining particle position, Fig. 2
β parameter defined by Eq. (5.3)
γ interfacial tension of Snw, Figs. 1 and 2
Γ gamma function
εn dielectric constant of the nonpolar fluid
εp dielectric constant of the particle
εpn dielectric constant ratio, εpn = εp/εn
ζ(r) meniscus profile, Eq. (1.3)
η toroidal coordinate, Eq. (2.4)
μ parameter in Eq. (1.4); μ = 1 − 2(1 − ν)

ν parameter in Eq. (3.22) defined by Eq. (5.17)
νe the value of ν at εp = εn; see Eq. (4.4)
ξ toroidal coordinate, Eq. (2.4)
ξc value of ξ at the contact line, ξc = π − α

σpn surface electric charge density at Spn
τ variable in the Mehler–Fock transform, Eq. (3.5)
ϕn electric potential in the nonpolar fluid
ϕp electric potential in the particle
Φn,Φp dimensionless potentials, Eq. (2.8)
Ψn,Ψp dimensionless potentials, Eq. (3.1)
Ψs(τ ) image of the dimensionless electric potential at Spn,

Eq. (3.12)
Ωn,Ωp spatial domains, Eq. (2.1)
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