
Reply to Comment on Electrodipping Force Acting on Solid
Particles at a Fluid Interface

In the beginning, let us specify the subject of the present
discussion. In thefirst step, in our previous paper,1 we reported
direct experimental evidence for the existence of normal electric
force (electrodipping force),F(el), acting on solid particles at the
oil-water or air-water interface. We found that this force is
independent of the electrolyte concentration in the aqueous phase,
and we concluded that it is probably due to charges at the particle-
oil (rather than at the particle-water) interface.1 Indications about
the existence of electric charges at the particle-oil interface
have been found by other authors in different experiments.2,3 In
ref 1, oursecond stepwas to develop a detailed quantitative
theory of the electrodipping force. With the help of this theory,
using the experimental value of the electrodipping force, we
determined the surface electric charge density,σpn, at the boundary
of the particle-nonpolar fluid (oil, water). Next, knowing the
value ofσpn, we numerically solved the electrostatic problem,
and computed the electric field in the particle and the nonpolar
fluid (oil or air). From the computed electric field, we obtained
numerical data for the electric pressure,pel(r), acting on the
oil-water interface (r is the radial coordinate). In thethird step,
we determined the shape of the oil-water interface around the
charged particle, numerically solving the Laplace equation of
capillarity, which was linearized for the case of a small meniscus
slope:

Here,ú(r) describes the meniscus profile, which decays at infinity,
ú(∞) ) 0; γ is the interfacial tension, andq ) (∆Fg/γ)1/2 is
the inverse capillary length. Finally, in thefourth step, in addi-
tion to the numerical solution forú(r), we derived some
approximate analytical expressions allowing easier calculations
of ú(r). In fact, only this last, fourth step is affected by the critical
comments by Oettel et al.,4 and it is the main subject of the
present discussion.

Oettel et al.4 are right that the detailed analysis of eq 1 leads
to the conclusion thatú(r) has the following asymptotic behavior:

rc is the radius of the contact line on the particle surface, and
ln(r0) is an additive constant. Note that the logarithmic prefactor
in eq 2 contains only the gravitational force,F(g), instead ofF(g)

+ (1 - λ)F(el), as incorrectly assumed in our paper. Equation 2
implies a faster decay of the meniscus deformation atr . rc

insofar asF(g) , F(el) for the investigated particles. As a
consequence,ourmatchedasymptoticexpansions for themeniscus
profile ú(r) and the interaction energyU(r), eqs 3.25 and 3.26
in ref 1, turn out to be incorrect forr/rc g 4. We have also noticed

this mistake, and we will soon publish a detailed paper focused
on the problem concerning the shape of the capillary meniscus
around a charged particle.

The procedure for the numerical integration of eq 1 using the
data forpel(r) is nontrivial because of the infinite integration
domain (rc < r < ∞) and because of an integrable divergence
of pel(r) at r f rc. In Figure 1, we present the computedú(r) for
a particle of contact-line radiusrc ) 226µm; this is the particle
shown in Figure 2 of ref 1. The experimental points forú(r) for
the same particle are also plotted in Figure 1 here. One sees that
the numerical solution agrees very well with the experimental
points. The coordinate origin on thez axis is fixed by setting
ú(rc) ) 0. The dashed-dotted line in Figure 1 presents the
meniscus profile in the case where electric effects are missing
(F(el) ) 0; pel ) 0) and the interfacial deformation is determined
solely by the gravity force,F(g).

The most important conclusions from Figure 1 are (i) that the
electric forces create a concavity (dimple) of significant depth
in the fluid interface around the particle and (ii) that the effect
of the electric forces onú(r) disappears forr > 4rc. At greater
distances, the meniscus shape is governed solely by the
gravitational deformation,ú(g). In other words, the electric field
produces a deformation ofmediumrange: it is neither long-
ranged (significant forr . rc, as the gravity-induced capillary
force) nor short-ranged (significant only forr - rc , rc, as the
van der Waals attraction).

The lateral capillary force between two attached particles is
due to the overlap of the dimples formed around the particles.
Therefore, the range of this capillary force is determined by the
range of these interfacial deformations. Hence, we could expect
that the capillary interaction engendered by the electrodipping
force,F(el), is of medium range. The profile in Figure 1 indicates
that the capillary interaction between two floating particles (the
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Figure 1. Meniscus shape,ú(r), around a glass particle (rc ) 226
µm; see Figure 2 in ref 1). The circles represent experimental points,
and the continuous curve is the numerical solution of eq 1. Here,
the coordinate origin on the vertical axis is chosen such thatú(rc)
) 0. The dashed-dotted curve,ú(g)(r), corresponds toF ) F(g) (i.e.,
F(el) ≡ 0). One sees that the electric-field-induced deformation of
the oil-water interface is significant forrc < r < 4rc, whereas for
r > 4rc the meniscus profile practically coincides with that due to
the gravity effect alone. The dashed line is calculated by means of
eq 3.15 in ref 1.
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electric-field-induced capillary attraction5) could be very strong
for r < 4rc.

What concerns the numerical solution of eq 1 is that to calculate
the meniscus profileú(r) one needs to know the dependence
pel(r). As mentioned above, we obtainpel(r) by using the numerical
procedure from section 5.2 in ref 1, along with eq 6.1 therein.
There, we have given sufficient information about the principles
of the numerical procedure, which would allow the reproduction
of our results. If numerical data forpel(r) are used to calculate
ú(r), then computational problems such as those reported in ref
4 (in relation to Figure 1 therein) do not appear. In addition, we
succeeded in obtaining an analytical solution of the electrostatic
boundary problem.6 The results from this analytical solution
agree very well with the numerical solution based on the procedure
described in section 5.2 of ref 1.

In relation to the comment by Oettel et al.4about “inconsistency
in the data presentation in ref 1”, we note that the experimental
points forú(r), like those presented in Figure 1, are obtained by
averaging the left- and right-hand-side meniscus profiles in the
respective photograph. Thus, we remove an undesired influence
of an occasional small tilt of thex axis on the photograph with
respect to the actual horizontal direction. In Figure 2 of ref 1,
for illustrative purposes, we have presented primary raw data for
the right-hand-side meniscus, which is seen in the respective
photograph. It is not surprising that from these incomplete data
the authors of ref 4 have obtained a meniscus slope different
from the correct one.

There is a misprint, noticed by the authors of ref 4, in the form
of eq 6.2 in ref 1, which is the Laplace equation in toroidal
coordinates. The correct form of the latter equation is

Equation 3 can be obtained by substitutingr ) rc/x1 in eq 1.
Equation 6.2 in ref 1 was given only for completeness; it was
not used in our calculations, and it had not affected the results
reported therein.

Oettel et al.4 write “The error in the analysis of ref 1 resides
in the evaluation ofF(men)(eq 4), with the interfacial stresspel(r)
replaced by its asymptotic behavior that is valid forr . rc (eq
3.9).” This is definitely not the case. In our paper,1 a detailed
procedure for calculating the electrodipping force,F(el) ) -F(men),
is developed: see eq 3.4 and Table 4 in ref 1. The approximate
expressions, eqs 3.25 and 3.26 in ref 1, have been obtained by

matching eq 3.15, which is valid near the contact line (Figure
1) with the outer asymptotics,AK0(qr), and the constantA has
been determined by using the conventional Prandtl procedure
for matching the outer and inner asymptotic expansions.7

However, as mentioned above, it turns out that this procedure
is inapplicable to our case because of the presence oftwo(rather
than one) characteristic scaling parameters, related to the
gravitational and electric forces, scaled by the capillary force.

The application of a correct numerical procedure gives the
meniscus shape,ú(r), accurately as a solution of the Laplace
equation (eq 1). The computedú(r) agrees very well with the
experimental data; see Figure 1. Such agreement of theory and
experiment is observed for all sets of experimental data processed
by us. Thus, our experimental results do not support the hypothesis
by Oettel et al.4,8concerning the “mechanical nonisolation of the
experimental system” (i.e., in reference to the existence of an
external force that pushes the particles into water but is different
from the gravitational and electrodipping forces considered in
ref 1). Indeed, if such an external force were present, then it
would be detected as a difference between theory and experiment.

In summary, Oettel et al.4 are right that the analysis of eq 1
leads to the conclusion that the logarithmic prefactor in thelong-
range asymptotic solution of the Laplace equation contains only
the gravitational force,F(g), and does not contain the electric
force, F(el) (eq 2). Nevertheless, the electric force creates a
significant interfacial deformation ofmediumrange (up to four-
particle radii, see Figure 1), which is expected to give rise to a
strong lateral capillary attraction of the same range. What concerns
the validity of our paper1 is the matched asymptotic expansions,
eqs 3.25 and 3.26, and that the conclusions drawn from them are
incorrect; the validity of eqs 3.15 and 3.16 is restricted to 1<
r/rc < 2. The rest of our paper1 (see steps 1-3 described in the
beginning of this reply), which is the main part of our study,
including the experiment, the theoretical expressions for the
electrodipping force (F(w) andF(n)), and the numerical solutions,
is correct. In particular, the calculated and experimental meniscus
profiles are in very good agreement (Figure 1), which confirms
the adequacy of the developed theoretical model and shows that
it is not necessary to introduce any external forces, different
from the gravitational and electrodipping force, to interpret our
experimental data.
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