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Abstract. The stability of suspensions/emulsions is under consideration. Traditionally 
consideration of colloidal systems is based on inclusion only Van-der-Waals (or 
dispersion) and electrostatic components, which is refereed to as DLVO (Derjaguin-
Landau-Verwey-Overbeek) theory. It is shown that not only DLVO components but also 
other types of the inter-particle forces may play an important role in the stability and 
colloidal systems. Those contributions are due to hydrodynamic interactions, hydration 
and hydrophobic forces, steric and depletion forced, oscillatory structural forces. The 
hydrodynamic and colloidal interactions between drops and bubbles emulsions and foams 
are even more complex (as compared to that of suspensions of solid particles) due to the 
fluidity and deformability of those colloidal objects. The latter two features and thin film 
formation between the colliding particles have a great impact on the hydrodynamic 
interactions, the magnitude of the disjoining pressure and on the dynamic and 
thermodynamic stability of such colloidal systems. 

 
1  Introduction 
 
 Colloidal systems and dispersions are of great importance in many areas of human activity 
such as oil recovery, coating, food and beverage industry, cosmetics, medicine, pharmacy, 
environmental protection etc. They represent multi-component and multiphase (heterogeneous) 
systems, in which at least one of the phases exists in the form of small (Brownian) or large 
(non-Brownian) particles (Hetsroni 1982, Russel et al. 1989, Hunter 1993). One possible 
classification of the colloids is with respect to the type of the continuous phase (dispersions 
with solid continuous phase like metal alloys, rocks, porous materials, etc. will not be 
consider). 
 Gas continuous phase. Examples for liquid-in-gas dispersions are the mist and the clouds. 
Smoke, dust and some aerosols are typical solid-in-gas dispersions (Britter and Griffiths 1982, 
Arya 1999). 
 Liquid continuous phase. Gas-in-liquid dispersions are the foams or the boiling liquids 
(Prud’homme and Khan 1996, Exerova and Kruglyakov 1998). Liquid-in-liquid dispersions are 
usually called emulsions. The emulsions exist at room temperature when one of the liquids is 
immiscible or mutually immiscible in the other, e.g. water, hydrocarbon and fluorocarbon oils 
and liquid metals (Hg and Ga). Many raw materials and products in food and petroleum 
industries exist in the form of oil-in-water or water-in-oil emulsions (Shinoda and Friberg 
1986, Sjoblom 1996, Binks 1998). The solid-in-liquid dispersions are termed suspensions or 
sols. The pastes, paints, dyes, some glues and gels are highly concentrated suspensions 
(Schramm 1996).  
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 The investigations of the stability of dispersions against flocculation and coalescence are of 
crucial importance for the development of new complex fluids. Generally, the stabilizing 
factors are the repulsive surface forces, the particle thermal motion, the hydrodynamic 
resistance of medium and the high surface elasticity of fluid particles and films. On the 
opposite, the factors destabilizing dispersions are the attractive surface forces, the low surface 
elasticity and gravity, turbulence and other external forces tending to separate the phases. The 
nonionic and ionic surfactants, polymers and protein blends are widely used in practice to 
control the surface elasticity and mobility and the magnitude of the surface forces (Adamson 
and Gast 1997). 
 The stability of suspensions containing solid particles are treated in the framework of the 
Derjaguin–Landau–Verwey–Overbeek (DLVO) theory, which accounts for the electrostatic 
and van der Waals interactions between the particles (Verwey and Overbeek 1948, Derjaguin 
1989). In the past decades it has been shown that other types of inter-particle forces may also 
play an important role in the stability of dispersions – hydrodynamic interactions, hydration 
and hydrophobic forces, steric and depletion forces, oscillatory structural forces, etc. The 
hydrodynamic and molecular interactions between surfaces of drops and bubbles in emulsion 
and foam systems (compared to that of suspensions of solid particles) are more complex due to 
the particles fluidity and deformability. These two features and the possible thin film formation 
between the colliding particles have a great impact on the hydrodynamic interactions, the 
magnitude of the disjoining pressure and on the dynamic and thermodynamic stability of such 
systems (Ivanov and Dimitrov 1988, Danov et al. 2001, Kralchevsky et al. 2002). 
 
2  Hydrodynamic modeling of surfactant solutions. Interfacial dynamics 
 
 A solid (liquid) particle, which moves in a liquid medium, induces a motion of fluid in a 
hydrodynamic layer around itself and experiences hydrodynamic friction force from the 
surrounding continuous phase. When the hydrodynamic layers of two colliding particles 
overlap each other long-range hydrodynamic interactions among them due to the viscous 
friction appear. The quantitative description of this interaction is based on the classical laws of 
mass conservation and momentum balance for the bulk phases. If t is time, ∇ is the spatial 
gradient operator, ρ is the mass density, v is the local mass average velocity, P is the 
hydrodynamic stress tensor, Pb is the body force tensor and f ≡ ∇⋅Pb is the body force vector 
per unit volume acting on the fluid, then the mass and momentum balance equations read 
(Batchelor 1967, Landau and Lifshitz 1984): 
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 .     (1) 

 
 For some special kind of magnetic-liquids and liquid crystals the symmetry of the 
hydrodynamic stress tensor, P, breaks down (Slattery 1978). In the case of classical fluids P is 
a symmetric tensor – there is not micro-moments acting on the fluid element. The stress tensor 
P becomes a superposition of two contributions – an isotropic thermodynamic pressure, p, and 
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the viscous stress tensor, T, i.e. P = −pI+T, where I is the spatial unit tensor. The viscous 
stress, T, depends on the fluid velocity gradient characterized by the dilatational, Iv)( ⋅∇ , and 
the shear rate of strain tensor, IvD ]3/)[( ⋅∇− . This dependence is a constitutive law found 
experimentally for each liquid from bulk rheology experiments. The simplest linear 
relationship between T and the rate of strain tensors is referred as the Newtonian model of 
viscosity. The coefficients of proportionality, ξ and η, are called dilatational and shear bulk 
dynamic viscosity, respectively. Therefore, the Newton law of viscosity reads (Landau and 
Lifshitz 1984): 
 

])(
3
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2
1 trvvD ∇+∇≡  ,      (2) 

 

where the superscript “tr” denotes conjugation. Pure liquids and surfactant solutions comply 
well with the Newtonian model (2). Some concentrated macromolecular solutions, foams and 
emulsions, most of the polymer solutions, colloidal dispersions, gels, etc. exhibit non-
Newtonian behavior – for these complex fluids different rheological laws are considered 
(Barnes et al. 1989). 

 Applying the constitutive law (2) for motion of homogeneous Newtonian fluids with a 
constant density, ρ, and shear viscosity, η, to the mass and momentum balance equations (1) 
one obtains the Navier-Stokes equation: 
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 .      (3) 

 
The material derivative d/dt in the left-hand side of Eq. (3) is a sum of a local time derivative, 
∂/∂t, and a convective transport derivative, (v⋅∇). The ratio between the magnitude of 
convective and viscosity terms is estimated by the Reynolds number. For low shear stresses in 
the dispersions, the characteristic velocity of the relative particle motion is small enough in 
order for the Reynolds number to be a small parameter. In this case, the inertia term td/dvρ in 
Eq. (3) can be neglected. Then, the system of equations becomes linear and the different types 
of hydrodynamic motions become additive (Happel and Brenner 1965, Russel et al. 1989, Kim 
and Karrila 1991). 
 The kinematics and dynamics boundary conditions at the interfaces close the hydrodynamic 
problem (1)-(2). On the solid-liquid boundary the non-slip boundary conditions are applied – 
the liquid velocity close to the particle boundary is equal to the velocity of particle motion. In 
the case of pure liquid phases the non-slip boundary condition is replaced by the dynamic 
boundary condition. The tangential hydrodynamic forces of the contiguous bulk phases, 
n×(P+Pb)⋅n, are equal from both sides of the interface, where n is the unit normal of the 
mathematical dividing surface. The capillary pressure compensates the difference between the 
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normal hydrodynamic forces, n⋅(P+Pb)⋅n, from both sides of the interface. In both cases the 
surface between phases is treated as mathematical dividing surface without material properties. 
In the presence of surfactants the bulk fluid motion near the interface disturbs the homogeneity 
of the surfactant adsorption distribution. The ensuing surface tension gradients act to restore 
the interfacial equilibrium. The resulting transfer of adsorbed surfactant molecules, from the 
regions of lower surface tension toward the regions of higher surface tension, constitutes the 
Marangoni effect. The analogous effect, for which the surface tension gradient is caused by a 
temperature gradient, is known as the Marangoni effect of thermocapillarity. In addition, the 
interfaces possess specific surface rheological properties (surface elasticity and dilatational and 
shear surface viscosity), which give rise to the so-called Boussinesq effect. Therefore, the 
surface between phases behaves as a two dimensional material phase with its own 
physicochemical properties (Slattery 1990, Edwards et al. 1991). 

 To take into account the 
role of surface-active species 
the transport equations in the 
bulk and at surfaces for each 
of them (i = 1,2,…,N) are 
studied (Dukhin et al. 1995, 
Danov et al. 1999). In the 
bulk the change of 
concentration, ci, is 
compensated by the bulk 
diffusion flux, ji, bulk 
convective flux, civ, and rate 
of production due to chemical 
reactions, ri (see Fig. 1). The 
bulk diffusion flux includes 
the flux driven by external 
forces (e.g. electro-diffusion), 
the molecular diffusive and 
thermodiffusion fluxes. The 
rate of production, ri, 

accounts also for surfactant micellization and micelle decay. Generally, the species can be 
classified as follows: surface-active ions, which adsorb at the interfaces; counterions, which 
can adsorb at the so-called Stern layer and coions (Kralchevsky et al. 1999). As a rule the 
coions do not adsorb (see Fig. 1). The general form of the species transport equation in the 
bulk reads: 

iii
i rc
t
c

=+⋅∇+
∂
∂ )( jv  ,   where i = 1,2,…,N.       (4) 
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Figure 1. Schematic picture of a thin liquid film
stabilized by ionic surfactant. The ion bulk and surface
diffusion fluxes are ji and ji,s, respectively. The surface
convective flux is ji,c. 
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 In the two dimensional material phase the change of adsorption, Γi, is balanced by the 
surface convective flux, ji,c = Γivs, where vs is the local material surface velocity, by the surface 
diffusion flux, ji,s, by the rate of production due to interfacial chemical reactions, ri,s, and by the 
resolved bulk diffusion flux <n⋅ji>, where <…> denotes the difference between the values of a 
given physical quantity at the two sides of the interface (see Fig. 1). The surface mass-balance 
equation for the adsorption, Γi, represents a two dimensional analogue of the bulk transport 
equation (4): 
 

>⋅<+=+Γ⋅∇+
∂
Γ∂

iiii
i r

t
jnjv s,s,ss )(  ,       (5) 

 
where ∇s is the surface gradient operator (Dukhin et al. 1995, Danov et al. 1999). If a given 
component k does not adsorb the left-hand side of Eq. (5) is replaced by zero for this species. 
The interfacial flux, ji,s, contains contributions from the interfacial molecular, electro-, and 
thermodiffusion. The rate of production, ri,s, includes also all possible conformational changes 
of adsorbed molecules, which lead to the change of the interfacial tension, σ. 
 Note that the adsorption isotherms, relating the surface concentration, Γi, with the 
subsurface value of the bulk concentration, ci, or the respective kinetic equation for adsorption 
under barrier control, should also be employed in the computations based on Eqs. (4) and (5) in 
order to obtain a complete set of equations. These relationships can be found in Dukhin et al. 
(1995), Danov et al. (1999), Kralchevsky et al. (1999) and in the chapter written by V. B. 
Fainerman and R. Miller. 
 In the particular case of molecular electro-diffusion of ionic surfactants (see Fig. 1) the 
diffusion fluxes for various species (i = 1,2,…,N), both amphiphilic and non- amphiphilic with 
valency Zi, have the following form (Valkovska and Danov 2001): 
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where Di and Di

s are the bulk and surface collective diffusion coefficients, respectively, T is the 
absolute temperature, kB is the Boltzmann constant, ψ and ψs are the bulk and surface electric 
potential, respectively, and e is the elementary electric charge. The collective diffusion 
coefficients, Di and Di

s, depend on the diffusion coefficients of the individual molecules in the 
bulk, Di,0, and at the surface, s

0,iD , on the bulk volume fraction, φi, on the bulk, µi, and surface, 

µi
s, chemical potentials and on the bulk, Kb, and surface, Ks, friction coefficients. The following 

expressions for Di and Di
s are derived in the literature (Stoyanov and Denkov 2001): 
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The dimensionless coefficient, Kb, accounts for the change in the hydrodynamic friction 
between the fluid and the particles (created by the hydrodynamic interactions between the 
particles). The dimensionless surface mobility coefficient, Ks, takes into account the variation 
of the friction of a molecule in the adsorption layer. The diffusion problem, Eqs. (4) and (5), is 
connected with the hydrodynamic problem, Eqs. (1) and (2), through the boundary conditions 
at the material interface. 
 In contrast with the mathematical dividing surface, which has an isotropic interfacial 
tension σ, the forces acting on the material interface are not isotropic. They are characterized 
by the interfacial stress tensor, σ, which is a two-dimensional counterpart of the bulk stress 
tensor, P. The two-dimensional analogue of the momentum balance equation (1) written in the 
bulk is called the interfacial momentum balance equation. Note, that the inter-phase exchanges 
momentum also with the contiguous bulk phases and the corresponding balance equation reads 
(Slattery 1990, Edwards et al. 1991): 
 

∇s⋅σ = n⋅ >+< bPP  .         (8) 
 
The dependence of the interfacial stress tensor, σ, on the surface velocity gradients, ∇svs, and 
on the physicochemical parameters of the inter-phase is a constitutive law found 
experimentally for each liquid from interfacial rheology experiments. A number of non-
Newtonian interfacial rheological models (Maxwell and Voight type viscoelastic models) have 
been described in the literature (Edwards et al. 1991, Tambe and Sharma 1991-1994). 
Following the general principles of non-equilibrium thermodynamics and the Onsager 
equations one can prove the form of the two-dimensional Newtonian interfacial law (Danov et 
al. 1997). The interfacial stress tensor contains an isotropic part coming from the 
thermodynamic adsorption interfacial tension, σa, an isotropic part corresponding to the 
dilatational surface stress, σdil, and a shear viscous stress, which defines the shear surface 
viscosity, ηsh: 
 

σ ])()([ sss
tr

ssssshsdilsa IvvvII ⋅∇−∇+∇++= ησσ  ,      (9) 
 
where Is is the unit surface idemfactor (Slattery 1990, Edwards et al. 1991). In the simplest 
case when the dilatational surface stress is proportional to the surface deformation with 
dilatational surface viscosity coefficient ηdil, i.e. )( ssdildil v⋅∇=ησ , equation (9) is called the 
Boussinesq-Scriven constitutive law. 
 In view of the term σaIs in Eq. (9), the Marangoni effects are hidden in the left-hand side of 
the interfacial momentum balance equation (8) through the surface gradients of σa. The 
thermodynamic surface tension, σa, depends on the adsorption and temperature. The 
derivatives of σa with respect to iΓln  and lnT define the Gibbs elasticity for the i-th surfactant 
species, Ei, and the thermal analogue of the Gibbs elasticity, ET: 
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The isotropic term ∇s⋅(σdilIs) takes into account the role of the disjoining pressure, Π, if the 
second interface is situated close to the given one (at distance smaller than 200 nm). Other 
contribution in ∇s⋅(σdilIs) is the dilatational surface viscous stress, τdiln. 

 To understand the main difficulty in the 
definition of the surface dilatational viscosity, 
ηdil, let us consider a simple case of uniform 
expansion of an air/water adsorption layer (see 
Fig. 2). The surface element with an area A is 
extended to a new area A + δA for a time 
interval from t to t + δt (see Fig. 2). The total 
deformation, α, and the rate of deformation, α& , 
are defined as: 
 

t
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A δ
δα 1
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δ

αα
0
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In the case of single surface-active species 
during the same time, δt, the adsorption 
changes from Γ to Γ + δΓ and the area per 
molecule in the adsorption layer – from a to a + 
δa (see Fig. 2). Then, in an analogous way the 
local deformation, ε, and the rate of local 
deformation, ε& , can be introduced: 
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The Boussinesq-Scriven constitutive law postulates that αητ &dildil = . The surface viscosity, 
however, being a property of the adsorption layer itself, should be related to the relative 
displacement of the adsorbed molecules. As a result the dilatational surface viscous stress 
should be proportional to the rate of local deformation, i.e. εητ &dildil = . For insoluble 
surfactants the both deformations α and ε are equal and the both models are equivalent. For 
soluble surfactants always the local deformation is smaller than the total deformation, αε < , 

 Figure 2. Expansion of a surfactant
adsorption layer and definitions of the
total, α, and the local, ε, deformations. 
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because of the bulk diffusion flux (see Fig. 2). The constitutive equation, εητ &dildil = , suggests 
that viscous dissipation of energy is possible even at a constant area ( 0=α& ) if the adsorption 
layer is out of equilibrium ( 0≠ε& ). For surface layer containing a mixture of surfactants the 
local deformations corresponding to each kind of adsorbed molecules give contribution to the 
surface dilatational viscous stress and more than one dilatational surface viscosity coefficient 
appear in the rheological law (Danov et al. 1997). 
 When the distances between particles are large enough the hydrodynamic interaction 
between them can be neglected. In this case the solutions of the problems of the steady-state 
motion of individual droplets (bubbles) in uniform and shear flows are of great importance for 
the modeling of the bulk viscosity of emulsions. At small distances between particles the 
magnitude of the hydrodynamic interaction force increases significantly. For particles with 
tangentially immobile interfaces the hydrodynamic friction has much higher values than for 
approaching fluid particles. Because of the small thickness of the liquid layer between the 
interfaces the solution of the problems in the film phase can be considerably simplified – this 
asymptotic method is called the lubrication approximation (Ivanov and Dimitrov 1988, Leal 
1992). 
 
3  Lubrication approximation. Disjoining pressure and body force approach 
 
 The lubrication approximation can be applied to the case when the Reynolds number is 
small and when the distances between the particle surfaces are much smaller than their radii of 
curvature (Reynolds 1886). When the role of surfactants is investigated an additional 
assumption is made – the Peclet number in the gap is small. Below the equations of lubrication 
approximation are formulated in a cylindrical coordinate system, Orz, where the droplet 
interface, S, is defined as z = H(t,r)/2 and H is the local film thickness (see Fig. 1). In 
additional only axial symmetric flows are considered when all parameters do not depend on the 
meridian angle. The middle plane is z = 0 and the unit normal at the surface S pointed to the 
drop phase is n. The solution in the film (continuous phase) is assumed to be a mixture of 
nonionic and ionic surfactants and background electrolyte with relative dielectric permittivity 
εf. The general formulation can be found in Kralchevsky et al. (2002). 
 After integrating Eq. (4) from 0 to H/2 along the vertical coordinate z, using the kinematic 
boundary condition at the interface, and summating the result with Eq. (5) the transport 
equation of each species is obtained 
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The integrated mass balance equation (13) expresses the fact that the local change of the mass 
of molecules across the film is compensated by the bulk and surface convection and diffusion 
fluxes. In the case of lubrication approximation for small Peclet numbers the solution of the 
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leading order of the diffusion equations (4) and (6) gives the Boltzmann type of the non-
equilibrium concentration distribution in the bulk phase: 
 

)exp()](exp[
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The concentration and the electric potential in the middle plane z = 0 are ci,m(t,r) and ψm(t,r), 
respectively, and the concentration ci,n ≡ ci,mexp[Zieψm/(kBT)] can be interpreted as the limit of 
the concentration when the electric potential vanishes. In the case of nonionic surfactant 
solution (Zie = 0) ci,n(t,r) is exactly the concentration of the nonionic components in the film. 
 The electric potential is related to the bulk charge density through the Poisson equation 
(Landau and Lifshitz 1960). If the Boltzmann type distribution (14) is substituted into the 
Poisson equation and the result is integrated with respect to z, starting from the middle plane, 
the following first integral in the lubrication approximation takes place: 
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In Eq. (15) ε0 is the vacuum dielectric constant. The condition for electroneutrality of the 
solution as a whole is equivalent to the Gauss law, which determines the surface charge 
density, qs. In the lubrication approximation it reads (Kralchevsky et al. 1999): 
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 For ionic surfactant solution the body force tensor, Pb, is not isotropic – it is the Maxwell 
electric stress tensor, i.e. Pb = εfε0EE − εfε0E2I/2, where E = −∇ψ is the electric field (Landau 
and Lifshitz 1960). The density of the electric force plays the role of a spatial body force, f, in 
the Navier-Stokes equation of motion (3). In the lubrication approximation the pressure in the 
continuous phase depends on the vertical coordinate, z, only through its osmotic part generated 
from the electric potential and the pressure in the middle plane pm (or the pressure, pn, 
corresponding to the case of zero potential): 
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Knowing the pressure distribution, Eq. (17), and the radial component of the surface velocity, 
vs,r, the distribution of the radial component of the bulk velocity is derived from the solution of 
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the Navier-Stokes equation (3) in the lubrication approximation to be (Valkovska and Danov 
2001): 
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The functions, mik, account for the distribution of i-th ion in the solution and they are defined as 
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 To close the system of equations for the fluid motion the tangential stress boundary 
condition and the force balance equation are used. The boundary condition for the balance of 
the surface excess linear momentum, see equations (8) and (9), takes into account the influence 
of the surface tension gradient, surface viscosity, and the electric part of the bulk pressure 
stress tensor. In the lubrication approximation the tangential stress boundary condition at the 
interface, using Eqs. (17) and (18), is simplified to 
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written at z = H(r,t)/2. The gradient of the interfacial tension in Eq. (20) is calculated using 
only the adsorption part of the interfacial tension, σa, because the diffuse electric part of σ is 
already included in the Maxwell electric stress tensor, Pb (Kralchevsky et al. 1999). The formal 
limit (ψ → 0) transforms equation (20) into the tangential stress boundary condition for 
nonionic surfactants widely used in the literature (Ivanov and Dimitrov 1988, Slattery 1990, 
Singh et al. 1996). 
 The film between the interfaces thins due to the action of the external force, Fz. For small 
Reynolds number the external force is balanced by the sum of the hydrodynamic drag force 
and the intermolecular forces – it is the so-called steady-state approach. In the lubrication 
approximation from Eq. (17) it follows that: 
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where p∞ is the pressure at infinity in the meniscus region and Πnel is the disjoining pressure. 
The disjoining pressure Πnel takes into account all non-electric types of intermolecular 
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interactions, i.e. van der Waals, steric, hydrophobic, oscillatory, etc., except the electrostatic 
disjoining pressure component (Israelachvili 1992). 
 There are two ways to take into account the molecular interactions – the first is called the 
body force approach and the second is known as the disjoining pressure approach. In the case 
of body force approach, the molecular forces are included in the body force, f, see Eq. (3). 
They give contribution into the normal and tangential stress boundary conditions. Felderhof 
(1968) and Sche and Fijnaut (1976) modeled the van der Waals interactions as an interaction 
potential bulk force. In the disjoining pressure approach the body force, f, in the equation of 
fluid motion (3) is omitted, and the disjoining pressure, Π, is added in the normal stress 
boundary condition – the hydrodynamic motion does not influences the surface forces. When 
the body force is potential, i.e. f = ∇U and Pb = UI, the both approaches are equivalent 
(Maldarelli and Jain 1988). If the body force tensor has anisotropy, e.g. the Maxwell electric 
stress tensor described above, then the interactions between the film surfaces in dynamic and 
static conditions are different. The electric part of the disjoining pressure is strictly valid only 
for static conditions and the electrostatic disjoining pressure described in the next section is 
applicable for a very slow motion of particles. 
 
4  Surface forces 
 

 Thin liquid films can be formed between two colliding 
emulsion droplets or between the bubbles in foams. The 
formation of thin films accompanies the particle-particle 
and particle-wall interactions in colloids. From a 
mathematical viewpoint a film is thin when its thickness is 
much smaller than its lateral dimension. From a physical 
viewpoint a liquid film formed between two macroscopic 
phases is thin when the energy of interaction between the 
two phases across the film is not negligible. The specific 
forces causing the interactions in a thin liquid film are 
called surface forces. The repulsive surface forces 
stabilize the films and dispersions, whereas the attractive 
surface forces cause film rupture and coagulation. The 
molecular theory of surface forces gives expressions for 
the disjoining pressure corresponding to different types of 
molecular interactions: van der Waals, electrostatic, steric, 
oscillatory, hydrophobic, etc. In the recent review by 
Klitzing and Müller (2002) the factors, which determine 
the stability of foam films and emulsion films, are 

considered. 
 The van der Waals forces represent an averaged dipole-dipole interaction, which is a 
superposition of orientation interactions (between two permanent dipoles, Keesom 1913), 
induction interaction (between one permanent dipole and one induced dipole, Debye 1920) and 

 Figure 3. Thin liquid film
with radius R between two
attached fluid particles. 



 12

dispersion interaction (between two induced dipoles, London 1930). The interaction between 
two macroscopic bodies depends on the geometry of the system (see Fig. 3). For a plane-
parallel film with uniform thickness, h, from component 3 located between two semi-infinite 
phases composed from components 1 and 2, the disjoining pressure, ΠVW, is calculated from 
the expression (Hamaker 1937): 
 

3
H

VW 6 h
A
π

−=Π  ,   23131233H AAAAA −−+=  .     (22) 

 
The compound Hamaker constant, AH, depends on the properties of the phases 1, 2 and 3 
through the Hamaker constants, Aij, of hypothetical phase built up from components i and j. If 
the Hamaker constants Aii and Ajj are known the constant Aij can be well approximated as 
(AiiAjj)1/2. For films between two symmetric phases AH is positive and the disjoining pressure 
corresponds to an attraction between film interfaces. In the case of wetting films the van der 
Waals disjoining pressure can be positive or negative. For the particular example of aqueous 
films on polystyrene or polyvinylchloride (PVC) plates we have APVC/water/air = −1.15×10−20 J. 
The negative value means that the van der Waals forces are repulsive. In contrast, if 
polytetrafluoroethylene (PTFE) is taken as a solid substrate, then a positive compound 
Hamaker constant is observed APFTE/water/air = +2.65×10−21 J. In the latter case there is van der 
Waals attraction. 
 For two identical spherical particles with radiuses, Rd, and a minimal distance between 
them, h, the disjoining pressure is calculated from the relationship: 
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It is well illustrated that at small distances between particles the disjoining pressure, Eq. (23), 
obeys the same dependence as for plane-parallel films, Eq. (22). Another geometrical 
configuration, which corresponds to two colliding deformable emulsion droplets, is sketched in 
Fig. 3. In this case the exact expression for the van der Waals interaction energy is given in 
Danov et al. (1993). The asymptotic form for the disjoining pressure valid at small film 
thickness (h << Rd) and small film radiuses (R << Rd) is: 
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Equation (24) demonstrates that the role of Plateau border (see Fig. 3) becomes considerable 
for calculation of the disjoining pressure for large film radiuses, i.e. R2 >> Rdh. 
 Lifshitz (1956) and Dzyaloshinskii et al. (1961) developed an approach to the calculation of 
the Hamaker constant AH in condensed phases, called the macroscopic theory. The latter is not 
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limited by the assumption for pairwise additivity of the van der Waals interaction. The authors 
treat each phase as a continuous medium characterized by a given uniform dielectric 
permittivity, which depends on the frequency, ν, of the propagating electromagnetic waves. 
For the symmetric configuration of two identical phases i interacting across a medium j the 
macroscopic theory provides the expression (Russel et al. 1989) 
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where: hP = 6.63 × 10−34 is the Planck constant; νe ≈ 3.0 × 1015 Hz is the main electronic 
absorption frequency; ni and nj are the refractive indexes, respectively, of the outer phase and 
inner phase; εi and εj are the relative dielectric permittivities; the dimensionless thickness h

~
 is 

defined by the expression 0
2/122

e /)(2
~

cnnnhh jij += πν ; c0 = 3.0 × 108 m/s is the speed of light 

in vacuum; ξ is an integration variable. The last term in equation (25) takes into account the 
electromagnetic retardation effect. 
 The electrostatic interaction between film interfaces becomes operative at distances when 
the both electric double layers overlap each other. If the particles collide at small velocity of 
motion the lateral distribution of the ions is approximately uniform and from Eq. (21) an 
electrostatic disjoining pressure, Πel, can be defined: 
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where ci,∞ is the bulk concentration of the i-th ion. As pointed out by Langmuir (1938) the 
electrostatic disjoining pressure can be identified with the excess osmotic pressure in the 
middle plane of the film. The magnitude of Πel depends on the dimensionless distance, κh, 
where κ is the Debye screening parameter defined with respect to the ionic strength I as: 
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To find the exact value of Πel applying Eq. (26) the adsorption isotherms of ions are needed. 
Combining the isotherms and the Gauss law, Eqs. (15) and (16) written using the surface 
potential ψs in the form 
 

∑∑
=

∞
=

−−−=Γ
N

i

ii
i

N

i
ii Tk

eZ
Tk

eZcZ
I 1 B

m

B

s
,

2

1

2
)]exp()[exp()(

4
ψψκ  ,    (28) 

 



 14

the value of the electric potential in the middle plane is obtained. A list of simple equations for 
Πel, valid for different kind of ionic solutions, is reported in Kralchevsky et al. (2002). For 
particular case of symmetric electrolytes (Z:Z and c1,∞ = c2,∞ = c∞) and small values of the 
electric potential in the middle plane one finds (Verwey and Overbeek 1948): 
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 In principle, it is neither possible the surface potential nor the surface charge to be constant. 
In such case a condition for charge regulation is applied, which in fact represents the condition 
for dynamic equilibrium of the counterion exchange between the Stern and the diffuse parts of 
the electric double layer. Contrary to the case of two identically charged surfaces, which 
always repel each other, the electrostatic interaction between two plane-parallel surfaces of 
different potentials, ψs1 and ψs2, or of different charges, σs1 and σs2, can be either repulsive or 
attractive (Derjaguin et al. 1987). In the case of low surface potentials, when the Poisson-
Boltzmann equation can be linearized, the exact expressions for Πel are derived. The formula 
for the disjoining pressure at constant surface potentials reads: 
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and at constant surface charges the following relationship takes place: 
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 When the two surface potentials have opposite signs, i.e. ψs1ψs2 < 0, the electrostatic 
disjoining pressure, Πel

ψ, is negative for all h and corresponds to electrostatic attraction (see 
Fig. 4a). This result could have been anticipated, since two charges of opposite sign attract 
each other. More interesting is the case, when ψs1ψs2 > 0, but ψs1 ≠ ψs2. In the latter case, the 
two surfaces repel each other for h > h0, whereas they attract each other for h < h0 (see Fig. 4a) 
and the electrostatic repulsion has a maximum value. When σs1σs2 > 0 the electrostatic 
repulsion takes place, Πel

σ > 0 for all thicknesses h (see Fig. 4b). However, when σs1σs2 < 0, 
Πel

σ is repulsive for small thickness, h < h0 and attractive for larger separations. The 
electrostatic disjoining pressure in this case has a minimum value (see Fig. 4b). 
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        a)             b) 
 
 Figure 4. Electrostatic disjoining pressure versus the film thickness, h: a) Πel

ψ at fixed 
surface potential ψs1 and ψs2; b) Πel

σ at fixed surface charges σs1 and σs2. 
 
 The first quantitative theory of interactions in 
thin liquid films and dispersions is the DLVO 
theory. In this theory, the total interaction is 
supposed to be a superposition of van der Waals 
and double layer (electrostatic) interactions. The 
total disjoining pressure is presented in the form, Π 
= ΠVW + Πel. A typical disjoining pressure 
isotherm, Π vs. h, exhibits a maximum 
representing a barrier against coagulation, and a 
minimum, called the secondary minimum. With 
small particles, the depth of the secondary 
minimum is usually small. If the particles cannot 
overcome the barrier, coagulation (flocculation) 
does not take place, and the dispersion is stable due 
to the electrostatic repulsion, which gives rise to 
the barrier. With larger colloidal particles the 

secondary minimum could be deep enough to cause coagulation and even formation of ordered 
structures of particles. In the case of small Brownian deformable droplets the interaction 
energy depends on the thickness, h, and on the film radius, R (Fig. 3). The typical contour plot 
of the interaction energy is plotted in Fig. 5, where the parameters corresponds to micro-
emulsions Rd = 1 µm, AH = 2×10−20 J, σ = 1 mN/m and ψs = 100 mV. One sees that the 
minimum of interaction energy (−60 kBT, the point in Fig. 5) corresponds to a deformed state 
with equilibrium values of the film radius and thickness (Denkov et al. 1993). 
 

 Figure 5. Contour plot of the
interaction energy between two
deformable charged droplets. 
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         a)                           b)                             c)                             d)                                 e) 

 Figure 6. Polymeric chains adsorbed at an interface: a) terminally anchored polymer chain 
of mean end-to-end distance L; b) a brush of anchored chains; c) adsorbed polymer coils; d) 
configuration with a loop, trains and tails; e) bridging of two surfaces at distance h by adsorbed 
polymer chains. 
 
 Steric interactions can be observed in foam or emulsion films stabilized with nonionic 
surfactants or with various polymers, including protein blends. The usual nonionic surfactant 
molecules are anchored (grafted) to the liquid interface by their hydrophobic moieties. When 
the surface concentration of adsorbed molecules is high enough, the hydrophilic chains are 
called to form a brush (see Fig. 6b). The coils of macromolecules, like proteins, can also adsorb 
at a liquid surface (see Fig. 6c). Sometimes the configurations of the adsorbed polymers are 
very different from the statistical coil: loops, trains, and tails can be distinguished (see Fig. 6d). 
The steric interaction between two surfaces appears when chain molecules, attached at some 
points to a surface, dangle out into the solution. When two such surfaces approach each other, 
the following three effects take place. First, the entropy decreases due to the confining of the 
dangling chains which results in a repulsive osmotic force known as steric or overlap 
repulsion. Second, in a poor solvent, the segments of the chain molecules attract each other; 
hence the overlap of the two approaching layers of polymer molecules will be accompanied 
with some inter-segment attraction. Another effect, known as the bridging attraction, occurs 
when two opposite ends of chain molecule can adsorb to the opposite approaching surfaces, 
thus forming a bridge between them (see Fig. 6e). The steric interaction takes place also in 
films containing micelles that are pressed (and deformed) between the surfaces when the 
separation distance is very small. 
 The steric interaction between two approaching surfaces appears when the film thickness 
becomes smaller than 2L, where L is the mean-square end-to-end distance of the hydrophilic 
portion of the chain. If the chain is entirely extended then L is equal to Nl, with l being the 
length of a segment and N being the number of segments in the polymer chain. However, due 
to the Brownian motion L < Nl. In the case of a good solvent, the disjoining pressure due to the 
steric interactions, Πst, can be calculated by means of the Alexander-de Gennes theory as 
(Alexander 1977, de Gennes 1985 and 1987): 
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where Γ is the surface concentration and Lg is the thickness of a brush in a good solvent. The 
role of the steric interaction on the film stability is reviewed in Klitzing and Muller (2002). 
 Oscillatory structural forces appear in thin films of pure solvent between two smooth solid 
surfaces and in thin liquid films containing colloidal particles including macromolecules and 
surfactant micelles (Israelachvili 1992). In the first case, the oscillatory forces are called the 
solvation forces and they are important for the short-range interactions between solid particles 
and dispersions. In the second case, the structural forces affect the stability of foam and 
emulsion films as well as the flocculation processes in various colloids. At lower particle 
concentrations, the structural forces degenerate into the so-called depletion attraction, which is 
found to destabilize various dispersions. 
 An illustration of the dependence of the oscillatory disjoining pressure, Πosc(h), and its 
connection with the partial ordering of spheres in the film is shown in Fig. 7. The oscillatory 
surface forces appear when monodisperse spherical (in some cases, ellipsoidal or cylindrical) 
particles are confined between two surfaces of a thin film. Even one “hard wall” can induce 
ordering among the neighboring molecules. The oscillatory structural force is a result of 
overlap of the structured zones at two approaching surfaces. Rigorous theoretical studies of the 
phenomenon were carried out by computer simulations and numerical solutions of the integral 
equations of statistical mechanics. For the sake of estimates, Israelachvili (1992) proposed an 
analytical expression in which both the oscillatory period and the decay length of the forces 
were set equal to the particle diameter, d. This oversimplified expression was proved to be 
unsatisfactory (Kralchevsky and Denkov 1995), as the experimental data with stratifying films 
give indications of an appreciable dependence of the oscillatory period, d1, and decay length, 
d2, on the particle volume fraction, φ. Kralchevsky and Denkov (1995) succeeded in 
construction a convenient explicit equation for the calculation of the oscillatory structural 
contribution to the disjoining pressure, Πosc: 
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Here Posm is the osmotic pressure in the film interior calculated from the Carnahan-Starling 
equation. The maximum solid content with three-dimensional close packing of rigid spheres is 
φmax = π/(3×21/2) ≈ 0.7405 and the oscillatory period, d1, and the decay length, d2, are 
determined by empirical relationships: 
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Some discussion is needed for the case of ionic surfactants. The charged micelles 

experience electrostatic interactions and they are not exactly hard spheres. They can be 
represented as such by taking into account the Debye counterion atmosphere. In this case the 
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effective diameter, deff = dcore + 2κ−1, is identified with d in equations (33) and (34), where dcore 
denotes the hydrodynamic diameter of the micelles themselves, measured, for instance, by 
dynamic light scattering (Richetti and Kékicheff 1992, Schmitz 1996). The inverse Debye 
screening length, κ, is defined by Eq. (27). 

 
 
 
 In the case of small Brownian 
deformable droplets the interaction energy, 
when the continuous phase is a micellar 
surfactant solution of sodium nonylphenol 
polyoxy-ethylene-25 (SNP-25S), is 
illustrated in Fig. 8 as a function of the 
thickness, h, and film radius, R (see Fig. 3 
for the definition of the geometry). The 
parameters of the micro-emulsion system 
are: Rd = 2 µm, d = 9.8 nm, φ = 0.38, AH = 
5×10−21 J, σ = 7.5 mN/m, ψs = −135 mV, 
κ−1 = 1.91 nm, the electrolyte concentration 
25 mM. The points on the contour plot 
(Fig. 8) correspond to tree local minima of 
−406 kBT, −140 kBT and −37 kBT 
corresponding to film containing 0, 1 and 2 
micellar layers, respectively (Ivanov et al. 
1999). These three possible films are 
thermodynamically stable and they act like 
barriers against the closer approach and 
flocculation (or coalescence) of the droplets 
in emulsions.  
 
 

 
 Figure 8. Contour 
plot of the interaction 
energy between two 
oil drops of radius, Rd 
= 2 µm, in the 
presence of ionic 
micelles in the water. 
The parameters 
correspond to a 
micellar solution of 

 Figure 7. Sketch of the consecutive
stages of the thinning of the liquid film
containing spherical particles. The related
oscillatory structural component of the
disjoining pressure, Πosc, vs. the film
thickness, h, is plotted. 
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sodium nonylphenol polyoxy-ethylene-25 (SNP-25S). The points on the plot correspond to 
three local minima of 0, 1 and 2 micellar layers, respectively. 
 The accumulated experimental and theoretical results imply that there are at least two kind 
of hydrophobic surface forces of non-electrostatic physical origin. The first one is due to 
gaseous capillary bridges (cavitation) between the hydrophobic surfaces (Yushchenko et al. 
1983, Pashley et al. 1985, Christenson and Claesson 1988). The formation of gaseous capillary 
bridges leads to jumps in the experimental force-distance dependence and, moreover, the 
strength of the interaction increases with the concentration of gas dissolved in water. The 
second is due to hydrogen-bond-propagated ordering of water molecules in the vicinity of such 
surfaces (Eriksson et al. 1989, Israelachvili 1992, Paunov et al. 2001). A review was recently 
published by Christenson and Claesson (2001). In this case the attraction is monotonic and 
decays exponentially at long distances, with a decay length about 15.8 nm. In principle, the two 
kinds of hydrophobic surface forces could act simultaneously, and it is not easy to differentiate 
their effects. If we have a hydrophobic interface, rather than a separate hydrocarbon chain, the 
ordering of the subsurface water molecules will propagate into the bulk of the aqueous phase. 
Such ordering is entropically unfavorable. When two hydrophobic surfaces approach each 
other, the entropically unfavored water is ejected into the bulk, thereby reducing the total free 
energy of the system. The resulting attraction can in principle explain the hydrophobic surface 
force of the second kind. For the hydrophobic part of the disjoining pressure, Πhb, Eriksson et 
al. (1989) derived the following expression: 
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The parameters B and λ characterize, respectively, the strength of the hydrophobic interaction 
and its decay length. According to Eriksson et al. (1989), B should increase with the degree of 
hydrophobicity of the surfaces, whereas the decaylength λ should be the same for all 
hydrophobic surfaces under identical solution conditions. Equation (35) was successfully 
applied by Paunov et al. (2001) to interpret emulsification data. 
 Many effects can contribute to the energy of interaction between two fluid particles and the 
total disjoining pressure, Π, becomes a superposition of all of them, Π = ΠVW + Πel + Πst + Πosc 
+ Πhb + … (for other contributions in Π see Kralchevsky et al. 2002). For each specified 
system an estimate may reveal, which of the contributions in the disjoining pressure are 
predominant, and which of them can be neglected. The analysis shows that the same approach 
can be applied to describe the multi-droplet interactions in flocs, because in most cases the 
interaction energy is pair-wise additive. 
 
5  Hydrodynamic interactions in thin liquid films 
 
 It is now generally recognized that the presence of surfactants plays an important role for 
the drainage velocity of thin liquid films and the hydrodynamic forces in these films. The 
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surfactants change not only the disjoining pressure, but also the tangential mobility of the 
interface of the droplet or bubble. This affects the flocculation and coalescence rate constants, 
which determine the rates of reversible and irreversible coagulation of the dispersions and 
emulsions. When two colloidal particles come close to each other, they experience 
hydrodynamic forces, which originate from the interplay of the hydrodynamic flows around 
two moving colloidal particles or two film surfaces. It becomes important when the separation 
between the particle surfaces is of the order of the particle radius and increases rapidly with the 
decrease of the gap width. The simultaneous action of disjoining pressure and hydrodynamic 
forces determines the stages of the formation and evolution of a liquid film of fluid surfaces 
(Ivanov et al. 1975, Ivanov and Dimitrov 1988). 
 

 
 Figure 9. Consecutive stages of evolution of a thin liquid film between two bubbles or 
drops: a) mutual approach of slightly deformed surfaces; b) the curvature at the film center 
inverts its sign and a "dimple" arises; c) the dimple disappears and an almost plane-parallel 
film forms; d) due to thermal fluctuations or other disturbances the film either ruptures or 
transforms into a thinner Newton black film; e) Newton black film expands; f) the final 
equilibrium state of the Newton black film is reached. 
 
 At large distances the fluid particles approach each other and the hydrodynamic interaction 
is so small that they are slightly deformed (see Fig. 9a). A dimple is formed at a certain small 
separation between the fluid particles – the dimple initially grows, but latter becomes unstable 
and quickly outflows (see Fig. 9b). At a given thickness (called the inversion thickness, hit) a 
plane-parallel film of radius R and typical thickness from 15 to 200 nm forms (see Fig. 9c). 
When the long-range repulsive forces are strong enough an equilibrium (but 
thermodynamically metastable) primary film (called the common black film) can form. The 
film surface corrugations, caused by thermal fluctuations or other disturbances and amplified 
by attractive disjoining pressure, may increase their amplitude so much that the film either 
ruptures or a spot of thinner Newton black film (NBF) forms (see Fig. 9d). If the short-range 
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repulsive disjoining pressure is large enough the black spots (secondary films of very low 
thickness, h2 ≈ 5÷10 nm, and a radius Rsp) are stable. They either coalescence or grow in 
diameter, forming an equilibrium secondary (NBF) thin film (see Fig. 9e). After the whole film 
area is occupied by the Newton black film, the equilibrium between the film and the meniscus 
is violated and the NBF expands until reaching its final equilibrium radius, RNBF, 
corresponding to an equilibrium contact angle θ  (see Fig. 9f). 

The time limiting factor for the approach of two fluid particles determines from the process 
of mutual approach at large distances (see Fig. 9a) and from the drainage time of the plane-
parallel film between deformed interfaces (see Fig. 9c). The solution of the problem about the 
hydrodynamic interaction between two rigid spherical particles, approaching each other across 
a viscous fluid, was obtained by Taylor. In fact, this solution does not appear in any G.I. 
Taylor’s publications but in the article by Hardy and Bircumshaw (1925) it was published (see 
Horn et al. 2000). Two spherical emulsion drops of tangentially immobile surfaces are 
hydrodynamically equivalent to the two rigid particles considered by Taylor. The 
hydrodynamic interaction is due to the viscous dissipation of energy when the liquid is 
expelled from the gap between the spheres. The geometry of the system is illustrated in Fig. 10. 
The friction force decreases the approaching velocity of spherical particles, VTa, proportionally 
to the decrease of the surface-to-surface distance h in accordance with the equation: 
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where F is the external force exerted on each drop, Fs is the surface force originating from the 
intermolecular interactions between the two drops across the liquid medium and Rd is the mean 
radius of the droplets. Equation (36) is derived using the lubrication approximation and the 
disjoining pressure approach described in Sec. 3. 

 When surfactant is present in the 
continuous phase at not too high 
concentration, then the surfactant 
adsorption monolayers, covering the 
emulsion drops, are tangentially 
mobile, rather than immobile. The 
adsorbed surfactant can be dragged 
along by the fluid flow in the gap 
between two colliding drops thus 
affecting the hydrodynamic 
interaction between them. The 
appearance of gradients of surfactant 
adsorption is opposed by the Gibbs 
elasticity, surface viscosity, surface 
and bulk diffusion. If the driving 

 Figure 10. Sketch of two approaching droplets
of radii Rd1 and Rd2 at a distance h. Possible dimple
and pimple formations are illustrated. 
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force F (say the Brownian or the buoyancy force) is small compared to the capillary pressure of 
the droplets, the deformation of two spherical droplets upon collision will be only a small 
perturbation in the zone of contact. Then the film thickness and the pressure within the gap can 
be presented as a sum of a non-perturbed part and a small perturbation. Solving the resulting 
hydrodynamic problem for negligible interfacial viscosity, an analytical formula for the 
velocity of drop approaching, V = −dh/dt, is derived for nonionic surfactants (Ivanov and 
Dimitrov 1988): 
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Here the parameter b accounts for the effect of bulk diffusion, hs has a dimension of length and 
takes into account the effect of surface diffusion, EG is the Gibbs elasticity and ha is the 
adsorption length. In the limiting case of very large Gibbs elasticity EG (tangentially immobile 
interface) the parameter d tends to zero and then Eq. (37) yields V → VTa. When the distance 
between droplets, h, decreases the role of the interfacial mobility increases. The hydrodynamic 
friction in the gap is much higher that that in the droplets and a small amount of surfactant is 
enough to prevent the mobility of film interfaces. 
 In the case without surfactants the energy dissipates also in the drop phases and the 
viscosity of the disperse phase, ηd, becomes important. A number of solutions, generalizing the 
Taylor equation (36), have been obtained. In particular, the velocity of central approach of two 
spherical drops in pure liquid, V, is related to the Taylor velocity, VTa, through the following 
expression 
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derived by Davis et al. (1989) by means of a Padé-type approximation. Note that in the case of 
close approach of two drops, h → 0, the velocity V is proportional to h1/2 and the two drops can 
come into contact in a finite period of time. The role of surface viscosity, type of the disperse 
phase and surfactants are widely studied in the literature (Cristini et al. 1998, Valkovska et al. 
1999, Chesters and Bazhlekov 2000, Danov et al. 2001, etc.). 
 Experimental data (Dickinson et al. 1988) shows that the emulsion stability correlates well 
with the lifetime of separate thin emulsion films or of drops coalescing with their homophase. 
The lifetime of oil drops pressed against their homophase by the buoyancy force measured by 
Dickinson et al. (1988) is plotted in Fig. 11. In the experiments the droplets were so small that 
the plain-parallel films were not form. To define the lifetime, τ, the film thickness at initial 
moment, hin, and at the final moment, hfin, are assumed to be known and 
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 For the calculation of the velocity, V, in 
Eq. (39) equations (36) and (37) are used. It 
is well illustrated that the lifetime is larger 
for the smaller droplets. The lifetime for 
slightly deformed droplets decreases with 
the increase of the driving force, F, and the 
drop radius, Rd. Note, that for large drops 
when a plane-parallel film is formed the 
dependence, τ vs. Rd, is exactly the opposite 
(see below). 
 The formation of a dimple (see Fig. 9b) 
is observed when there is no significant 
attractive disjoining pressure and the 
capillary pressure is not large enough to 
counteract the normal viscous stress and the 
positive component of the disjoining 
pressure. Then it may happen that at a given 
gap width (called inversion thickness, hit, 
Ivanov et al. 1975 and Ivanov and Dimitrov 
1988), the droplets deform considerably and 
their caps becomes flat. Since the flat 
surface cannot sustain the viscous stress, the 

interfacial shape in the gap changes suddenly from convex to concave, i.e. a dimple forms. If 
the disjoining pressure, Π, is negative, the two film surfaces will attract each other, i.e. the 
disjoining pressure will counteract the hydrodynamic pressure thus decreasing the deformation. 
Because of the different dependence of these pressures on the thickness, h, (see Sec. 4 where it 
is shown that Π depends very strong on h), it may happen that at a given thickness, hpt, the 
disjoining pressure effect totally eliminates the viscous deformation of the caps of the droplets 
(Fig. 10). At this moment the sum of the dynamic pressure and the disjoining pressure becomes 
zero. At smaller thickness it will become negative and then protrusions will form at the drop 
caps. Because of its shape (this protrusions are opposite to the dimple) hpt is called pimple 
thickness. In the case of nonionic surfactants and negligible surface viscosity effect hit and hpt 
become solutions of the following equations (Valkovska et al. 1999 and Danov et al. 2001): 
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 Figure 11. Experimental data of
Dickinson et al. (1988) for the lifetime of
small drops vs. their radius, Rd. 
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where the dimensionless mobility function G(h) is defined as 
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In the case of tangentially immobile interfaces (in Eq. 41 G → 1 when d/h → 0, which 
corresponds to the limit of a large Gibbs elasticity) and negligible effect of the disjoining 
pressure one can estimate from Eq. (40) that the inversion thickness obeys the simple 
expression hit = F/(2πσ). For mobile surfaces hit decreases. In contrast the pimple thickness 
does not depend on the interfacial tension and for tangentially immobile surfaces and van der 
Waals disjoining pressure (see Eq. 23) hpt = [AHRd/(12F)]1/2. 

 The above conclusions are 
illustrated in Fig. 12. The 
experimental data for a system of 
two approaching small droplets of 
soybean oil in water are used as 
physical parameters. The aqueous 
film is stabilized by bovine serum 
albumin (BSA) with 0.15 M sodium 
chloride to suppress the electrostatic 
interactions. The density difference 
is 0.072×103 kg/m3, and the 
experimentally determined 
interfacial tension was 7, 15 and 30 
mN/m for different concentrations of 
BSA. In the expression for the van 
der Waals attraction at small and 
large distances the Hamaker constant 

was calculated from Eq. (25). One sees (Fig. 12) that the larger the drop radius the earlier the 
film forms. The inversion thickness reaches 500 nm for drop radii of 200 µm. The equation 
(40) for hit has no solution for drop radii smaller than 80 µm. The pimple thickness decreases 
with the increase of the drop radius, i.e. with the larger driving force. Drops below 80 µm will 
coalescence or will form a very thin film (NBF) if the steric interaction takes place. 
 The formation of pimple has been found out by Yanitsios and Davis (1991) in computer 
calculations for emulsion drops from pure liquids, without any surfactant. Next, by means of 
numerical calculations Cristini et al. (1998) established the formation of pimple for emulsion 
drops covered with insoluble surfactant in the case of negligible surface diffusion; their 
computations showed that a rapid coalescence took part for h < hpt. A complete treatment of the 
problem for the formation of pimple was given by Valkovska et al. (1999), where the effects of 
surface and bulk diffusion of surfactant, as well as the surface elasticity and viscosity, were 
taken into account. 

 Figure 12. Effect of the drop radius, Rd, on the
inversion, hit, and pimple thickness, hpt. 
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 In the case when h < hit a liquid film is formed in the zone of contact of two emulsion drops 
(see Fig. 3 and Fig. 9c). Such configuration appears between drops in flocs and in concentrated 
emulsions, including creams. In a first approximation, one can assume that the viscous 
dissipation of energy happens mostly in the thin liquid film intervening between two drops. 
Some energy dissipates also in the Plateau border. If the interfaces are tangentially immobile 
(owing to adsorbed surfactant) then the velocity of approach of the two drops can be estimated 
by means of the Reynolds formula for the velocity of approach of two parallel solid discs of 
radius R, equal to the film radius (Reynolds 1886): VRe = 2h3(F − Fs)/(3πηR4). The Reynolds 
velocity is used as a scaling factor of the drainage velocity of deformed drops. 
 When the surfactant is soluble only in the continuous phase the respective rate of film 
thinning V is affected by the surface mobility mainly by through the Gibbs elasticity EG, just as 
it is for foam films (Radoev et al. 1974, Traykov et al. 1977 and 1977a, Ivanov 1980, Ivanov 
and Dimitrov 1988, Danov et al. 1999a). The solution of the lubrication approximation 
problem for the drainage velocity in the case of nonionic surfactants for the geometry given in 
Fig. 3 reads (Danov et al. 1999a): 
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The interfacial parameters b, hs and d are defined with Eq. (37). Note that the bulk and surface 
diffusion fluxes, which tend to damp the surface tension gradients and to restore the uniformity 
of the adsorption monolayers, accelerate the film thinning, see Eqs. (37) and (42). Moreover, 
since Ds in Eq. (37) is divided by the film thickness h, the effect of surface diffusion dominates 
that of bulk diffusion for small values of the film thickness. On the other hand, the Gibbs 
elasticity EG (the Marangoni effect) decelerates the thinning. Equation (42) predicts that the 
circulation of liquid in the droplets does not affect the rate of thinning. The role of the Plateau 
border is well illustrated in Eq. (42). For instance, if the Gibbs elasticity is large enough to 
prevent the mobility of the film interfaces equation (42) is simplified to: 
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For R → 0 (non-deformed spherical drops) equation (43) reduces to V = VTa. On the contrary, 
for h → 0 one has 1/VTa << 1/VRe, and then Eq. (43) yields V → VRe. 
 Direct measurements of the lifetime of the drops pressed by buoyancy against a large 
interface in both Taylor and Reynolds regimes are reported in Basheva et al. (1999) and 
Gurkov and Basheva (2002) for a wide range of systems. In Fig. 13 the experimental data and 
the theoretical curve calculated from Eqs. (39) and (43) are presented. The system consists of 
soybean oil and aqueous solution of 4×10-4 wt% BSA + 0.15 M NaCl. The films were detected 
for droplets above 120 µm in size. Small (micrometer size) droplets are unstable when their 
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radius is larger (Taylor regime). Just the opposite is the case of big drops (above 300 µm) – the 
lifetime increases with the size (Reynolds regime). 
 

 In the case when the film radius, 
R, is much larger than Rdh the 
second term in Eq. (42) is negligible 
and the Radoev et al. (1974) 
equation takes place: V = VRe(1 + b 
+ hs/h). This equation gives a linear 
dependence of the ratio, V/VRe, on 
the inverse thickness, 1/h (see Fig. 
14). From the slope and intersection 
the values of the bulk and surface 
diffusion coefficients are 
determined. The experimental data 
for nitrobenzene films stabilized by 
dodecanol (Manev et al. 1977) are 
processed (Valkovska and Danov 
2000). The bulk diffusion 
coefficient is calculated to be 
7.32×10-10 m2/s. The individual 
surface diffusion coefficient, Ds0, is 
obtained to be a constant 2.90×10-9 
m2/s. Note, that the collective 
surface diffusion coefficient (see Eq. 
7) depends on the dodecanol 
concentration and it changes from 
3.55×10-9 m2/s (at 11 mM) to 
13.4×10-9 m2/s (at 178 mM). The 
parameters of the surface tension 
isotherm at the air/nitrobenzene 
interface versus the dodecanol 
concentration are used to determine 
the adsorption length, ha, and the 
Gibbs elasticity, EG. 
 It is proved that the role of 
surface viscosity on the drainage 
velocity is small (Ivanov and 

Dimitrov 1988, Singh et al. 1996 and Danov et al. 1999a). In fact, in the dimensionless form of 
Eq. (20) the surface viscosity term is scaled with the Marangoni term, which is proportional to 
the Gibbs elasticity. The interfacial properties of all liquids in the presence of surfactants show 
that if the surface viscosity is not small then the Gibbs elasticity is extremely large and the 

 Figure 13. Measured lifetime, τ, plotted vs.
droplet radius, Rd. Note the existence of shallow and
broad minimum. Both Taylor and Reynolds regimes
predict very unstable medium-size droplets. 

 Figure 14. A typical plot of V/VRe versus 1/h for
nitrobenzene foam films stabilized by various
concentrations of dodecanol: 11, 44 and 178 mM. 
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interfaces become immobile. Therefore, the surface viscosity term can be neglected when the 
drainage velocity is studied – this term can be important for investigation of the stability of the 
liquid films. 
 In the opposite case, when the surfactants are soluble only in the disperse phase, the process 
of convective bulk diffusion is so fast that the liquids behave as pure liquids (Traykov et al. 
1977 and 1977a, Ivanov 1980, Ivanov and Dimitrov 1988, Danov et al. 2001). The surfactants 
remain uniformly distributed throughout the drop surface during the film thinning and 
interfacial tension gradients do not appear. For that reason, the drainage of the film surfaces is 
not opposed by surface tension gradients and the rate of film thinning, V, is the same as in the 
case of pure liquid phases. For an intensive drainage of films with large radii, R, the velocity, 
V, is calculate from the approximate expression (Ivanov and Dimitrov 1988): 
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where εe is called emulsion parameter, δ is the thickness of the hydrodynamic boundary layer 
inside the drops, ρ is the mass density of the continuous phase and ηd is the dynamic shear 
viscosity of the disperse phase. The validity of Eq. (44) was confirmed experimentally 
(Traykov et al. 1977a, Ivanov 1980, Ivanov and Dimitrov 1988). 
 In the beginning stages of mixing in the processes of emulsification large masses of the 
dispersed phase are embedded in a continuous phase – the large masses of fluids are stretched 
and folded over. At this stage the capillary number, which is the ration of the viscous forces to 
the interfacial forces, is very large and the interfacial forces do not play a significant role. As 
the process evolves, the capillary number decreases and the extended blobs break into many 
smaller drops. Concurrently, smaller drops begin to collide with each other and may 
coalescence into larger drops, which may in turn break again. The breakup and coalescence 
processes complete against each other and it is the result of this competition, which determines 
the final drop size distribution or morphology. In this case the both phases behave as pure 
liquids and the drainage velocity of two approaching drops depends considerably from the 
viscosity of the dispersed and continuous phases and the distance between drops. It leads to a 
complex hydrodynamic problem, which can be solved only numerically. A list of some 
approximations is given in Fig. 15 (Chesters 1991 and de Roussel et al. 2001). It is well 
illustrated that the viscous dissipation of energy in the drops can be important for pure liquids. 
De Roussel et al. (2001) confirmed experimentally this fact and investigated the mixing of 
viscous immiscible liquids. 
 If the thickness of a free liquid film gradually decreases owing to the drainage of liquid, the 
film typically breaks when it reaches a sufficiently small thickness, called the critical 
thickness, unless some repulsive surface forces are able to provide stabilization (see Fig. 9d – 
9f). The mechanism of breakage (in the absence of repulsive forces) was proposed by de Vries 
(1958) and developed in subsequent studies (Scheludko 1962, Vrij 1966, Ivanov et al. 1974, 
Ivanov and Dimitrov 1974, Ivanov 1980). According to this mechanism, the film rupture 
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results from the growth of capillary waves at the film surfaces (see Fig. 9d) promoted by 
attractive surface forces (say, the van der Waals forces), which are operative in the film. 
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 Figure 15. Rate of drainage of the continuous film between two drops (pure liquids) is 
determined by the rigidity and mobility of the drops. 
 
 In fact, thermally excited fluctuation capillary waves are always present on the film 
surfaces. With the decrease of the average film thickness, h, the attractive surface force 
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enhances the amplitude of some modes of the fluctuation waves. At the critical thickness, hcr, 
the two film surfaces locally touch each other due to the surface corrugations, and then the film 
breaks. A recent version of this capillary-wave model (Danov et al. 2001 and Valkovska et al. 
2002), which takes into account all essential physicochemical and hydrodynamic factors, show 
an excellent agreement with the experiments for the critical thickness of foam and emulsion 
films (Manev et al. 1984). 
 

 For experimental observation of the 
drainage and stability of liquid films the 
capillary cell illustrated in Fig. 16 is widely 
used (Scheludko and Exerowa 1959). First, 
the cylindrical glass cell is filled with the 
working liquid (say, water solution); next, a 
portion of the liquid is sucked out from the 
cell through the orifice in the glass wall. 
Thus, in the central part of the cell a liquid 
film is formed, which is encircled by a 
Plateau border. By adjustment of the 
capillary pressure the film radius, R, is 
controlled. The arrow (see Fig. 16) denotes 
the direction of illumination and 
microscope observation. The optical 
microscopic observations and the 

measurements of h are carried out in reflected monochromatic light of wavelength λ0 = 551 
nm. In particular, h, is determined from the registered intensity, I, of the light reflected from 
the film, by means of the formula  
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where ∆ = (I − Imin)/(Imax − Imin), h is calculated assuming a homogeneous refractive index equal 
to the bulk solution value; Q = (n − 1)2/(n + 1)2; I is the instantaneous value of the reflected 
intensity, while Imax and Imin refer to the last interference maximum and minimum values. The 
intensity, I, is registered by means of a photo-multiplier, whose electric signal is recorded as a 
function of time. 
 Typical photos of thinning films are illustrated in Fig. 17. The investigated films behaved in 
the following way. After the initial dynamic stages of film thinning (see Fig. 9a and 9b), almost 
plane-parallel films formed (see Fig. 9c), whose thickness was gradually decreasing. At 0.3 M 
NaCl the film looks dark gray in reflected light just before it ruptures (see Fig. 9d). At 0.1 M 
NaCl formation of black spots, corresponding to a secondary film, is seen (Fig. 9e). In both 
photos the film is encircled by Newton interference rings located in the Plateau border. 

 Figure 16. Sketch of the experimental
capillary cell. 
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      a)                b) 
 
 Figure 17. Photos of thinning films of radius R = 155 µm formed from solutions of 10 µM 
SDS and background electrolyte: a) 0.3 M NaCl; b) 0.1 M NaCl. 
 

 To describe mathematically the 
process of thin liquid film instability 
the shape of the corrugated film 
surfaces is presented as a 
superposition of Fourier-Bessel 
modes, proportional to J0(kr/R), for 
all possible values of the 
dimensionless wave number k (J0 is 
the zeroth order Bessel function). 
The mode, which has the greatest 
amplitude at the moment of film 
breakage, and which causes the 
breakage itself, is called the critical 
mode, and its wave number is 
denoted by kcr. The stability-
instability transition for this critical 
mode happens at an earlier stage of 
the film evolution, when the film 
thickness is equal to htr − the so-
called transitional thickness, htr > hcr 
(Ivanov 1980). The theory provides a 

system of three equations for determining the three unknown parameters: hcr, kcr and htr. 
According to Valkovska et al. 2002, where the most complete theoretical description of the 

 Figure 18. Plot of the critical thickness, hcr, vs.
the film radius, R, at 0.3 M fixed concentration of
NaCl, for three SDS concentrations, denoted in the
figure. 
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process of simultaneous film drainage and perturbation growth is given, the equations for 
determining kcr and htr are: 
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The critical thickness, hcr, becomes a solution of the following equation: 
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Note, that the problem (46) and (47) describes the case of tangentially immobile interfaces. 
One proves that the mobility of interfaces changes only slightly the values of hcr – it affects the 
value of the critical wave number, kcr. 
 The data points in Fig. 18 are processed using equations (46) and (47). The disjoining 
pressure is presented as a sum of the van der Waals attraction due to Eqs. (22) and (25) and the 
hydrophobic attraction described by Eq. (35). All parameters for the calculation of ΠVW are 
known. The only adjustable parameters are B and λ, which characterize the hydrophobic 
interaction, Eq. (35). As B characterizes the interfacial hydrophobicity, while λ is a bulk 
property related to the propagating hydrogen-bonding of water molecules, from the fit of the 
data three different values of B (denoted by B1, B2 and B3) for the three experimental SDS 
concentrations, and a single value of λ, the same for the whole set of data are obtained. Note, 
that the used SDS concentrations are extremely small and they cannot affect the hydrogen 
bonding in the bulk (and the value of λ), while the adsorption of SDS is material and can affect 
the interfacial hydrophobicity (and the value of B). The results are: B1 = 6.56 × 10−4 (for 0.5 
µM SDS + 0.3 M NaCl); B2 = 4.71 × 10−4 (for 1.0 µM SDS + 0.3 M NaCl); B3 = 3.34 × 10−5 
(for 10 µM SDS + 0.3 M NaCl) and λ = 15.85 nm. The determined decay length of the 
hydrophobic force in foam films, λ = 15.85 nm, practically coincides with the value λ = 15.8 
obtained in Eriksson et al. (1989) for mica covered with hydrocarbon monolayer (DDOA = 
dimethyl-dioctadecyl-ammonium bromide) and with monolayer from fluorinated cationic 
surfactant. The lower two curves in Fig. 18, are calculated substituting B = 0, which means that 
the hydrophobic surface force is set zero (Πhb = 0). In this case, all parameters of the theory are 
known, and the theoretical curves are drawn without using any adjustable parameters. The 
respective computed curve for 1 µM SDS practically coincides with that for 0.5 µM SDS in 
Fig. 18. The curves calculated for Πhb = 0 lay far away from the experimental points for 0.5 
and 1 µM SDS – this fact can be interpreted as a consequence of the action of the hydrophobic 
force in the film. Note also that hcr(10 µM SDS) > hcr(1 µM SDS) for the curves calculated 
assuming Πhb = 0, whereas exactly the opposite tendency holds for the respective experimental 
points. 
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6  Concluding remarks 
 
 There have been numerous attempts to formulate simple rules connecting the emulsion 
stability with the surfactant properties. Historically, the first one was the Bancroft rule (1913), 
which states that “in order to have a stable emulsion the surfactant must be soluble in the 
continuous phase”. A more sophisticated criterion was proposed by Griffin (1954) who 
introduced the concept of hydrophilic-lipophilic balance (HLB). As far as emulsification is 
concerned, surfactants with an HLB number in the range 3 to 6 must form water-in-oil (W/O) 
emulsions, whereas those with HLB numbers from 8 to 18 are expected to form oil-in-water 
(O/W) emulsions. Different formulae for calculating the HLB numbers are available; for 
example, the Davies’ expression (1957) reads: HLB = 7 + (hydrophilic group number) − 
0.475ng, where ng is the number of -CH2- groups in the lipophilic part of the molecule. 
Schinoda and Friberg (1986) proved that the HLB number is not a property of the surfactant 
molecules only, but it also depends strongly on the temperature (for nonionic surfactants), on 
the type and concentration of added electrolytes, on the type of oil phase, etc. They proposed 
using the phase inversion temperature (PIT) instead of HLB for characterization of the 
emulsion stability. Davis (1993) summarized the concepts about HLB, PIT and Windsor's 
ternary phase diagrams for the case of microemulsions and reported topological ordered 
models connected with the Helfrich membrane bending energy. 
 Ivanov (1980) have proposed a semi-quantitative theoretical approach that provides a 
straightforward explanation of the Bancroft rule for emulsions. This approach is based on the 
idea of Davies and Rideal (1963) that both types of emulsions are formed during the 
homogenization process, but only the one with lower coalescence rate survives. If the initial 
drop concentration for the two emulsions (System I and II, see Figs. 19 and 20) is the same, the 
corresponding coalescence rates for the two emulsions will be proportional to the respective 
velocities of film thinning, VI and VII [163]: Rate I/RateII ≈ VII/VI. In the case of deforming 
drops, using Eqs. (42) and (44) one derives: 
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where hcr,I and hcr,II denote the critical thickness of film rupture for the two emulsion systems in 
Fig. 19, ΠI and ΠII denote the disjoining pressure of the respective films and the indexes 1 and 
2 corresponds to the phase 1 and 2, respectively. The product of the first three multipliers in the 
right-hand side of Eq. (48), which are related to the hydrodynamic stability, is c.a. 8×10−5 
dyn2/3cm−1/3 for typical parameter values (Ivanov and Kralchevsky 1997). The last multiplier in 
Eq. (48) accounts for the thermodynamic stability of the two types of emulsion films. Many 
conclusions can be drawn from Eq. (48). 
 In thick films the disjoining pressures, ΠI and ΠII, are zero, and then the ratio in Eq. (48) 
will be very small. Consequently, emulsion I (surfactant soluble in the continuous phase) will 
coalesce much more slowly than emulsion II; hence emulsion I will survive. Thus we get an 
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explanation of the empirical Bancroft rule. The emulsion behavior in this case is controlled 
mostly by the hydrodynamic factors, i.e. the factors related to the kinetic stability. 

 The Gibbs elasticity, EG, favors 
the formation of emulsion I, because 
it slows down the film thinning. On 
the other hand, increased surface 
diffusivity, D1s, decreases this 
effect, because it helps the 
interfacial tension gradients to relax 
thus facilitating the formation of 
emulsion II. 
 The film radius, R, increases, 
whereas the capillary pressure, 
2σ/Rd, decreases with the rise of the 
drop radius. Therefore, larger drops 
will tend to form emulsion I, 
although the effect is not very 
pronounced, see Eq. (48). The 
difference between the critical 
thicknesses of the two emulsions 
affects only slightly the rate ratio. 
 The viscosity of the surfactant-

containing phase, η1, does not appear in Eq. (48) and there is only a weak dependence on η2. 
This fact is consonant with the experimental findings about a negligible effect of viscosity 
(Davies and Rideal 1963, p. 381). The interfacial tension, σ, affects directly the rate ratio 
through the capillary pressure. The addition of electrolyte would affect mostly the electrostatic 
component of the disjoining pressure, see Eq. (26), which is suppressed by the electrolyte – the 
latter has a destabilizing effect on O/W emulsions. 
 Surface-active additives (such as cosurfactants, demulsifiers, etc.) may affect the emulsifier 
partitioning between the phases and its adsorption, thereby changing the Gibbs elasticity and 
the interfacial tension. The surface-active additive may change also the surface charge (mainly 
through increasing the spacing among the emulsifier ionic headgroups) thus decreasing the 
electrostatic disjoining pressure and favoring the W/O emulsion. Polymeric surfactants and 
adsorbed proteins increase the steric repulsion between the film surfaces; they may favor either 
of the emulsions O/W or W/O depending on their conformation at the interface and their 
surface activity (Danov et al. 2001, Kralchevsky et al. 2002). The temperature affects strongly 
both the solubility and the surface activity of non-ionic surfactants (Adamson and Gast 1997). 
It is well known that at higher temperature non-ionic surfactants become more oil-soluble, 
which favors the W/O emulsion. These effects may change the type of emulsion formed at the 
phase inversion temperature (PIT). The temperature effect has numerous implications, some of 
them being the change of the Gibbs elasticity, EG, and the interfacial tension, σ. 

 Figure 19. Two possible types of emulsions
obtained just after homogenization for deformed
drops: the surfactants are soluble in phase 1. 



 34

 The disjoining pressure, Π, can substantially change, and even reverse, the behavior of the 
system if it is comparable by magnitude with the capillary pressure, 2σ/Rd. For instance, if 
(2σ/Rd − ΠII) → 0 at finite value of (2σ/Rd − ΠI), then the ratio in Eq. (48) may become much 
larger than unity, which means that System II will become thermodynamically stable. This fact 
can explain some exclusion from the Bancroft rule, like that established by Binks (1993 and 
1998). 

 Equation (48) is derived for 
deforming emulsion drops, which 
can approach each other at a 
surface-to-surface distance smaller 
than the inversion thickness, hit, see 
Eq. (40). Other possibility is the 
case of micro-emulsions when the 
drops remain spherical during their 
collision, up to their eventual 
coalescence at h = hcr. In such a case 
the expressions for the rate ratio is 
different. 
 Let us first consider the case of 
System II (surfactant inside the 
drops, Fig. 20) in which case the 
two drops approach each other like 
drops from pure liquid phases (if 
only the surface viscosity effect is 
negligible). Therefore, to estimate 
the velocity of approach of such two 

aqueous droplets one can use equation (38). On the other hand, the velocity VI of droplet 
approach in System I can be expressed by means of Eq. (37). Note that the Taylor velocities for 
System I and System II are different because of differences in viscosity and droplet-droplet 
interaction. Then the following criterion for formation of emulsion of type I and II is obtained 
(Ivanov and Kralchevsky 1997 and Danov et al. 2001): 
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For typical emulsion systems one has Rd >> hcr, and equation (49) yields Rate I/Rate II << 1. 
Therefore, System I (with surfactant in the continuous phase, Fig. 20) will survive. This 
prediction for spherical drops is analogous to the conclusion for deformable drops. Both these 
predictions essentially coincide with the Bancroft rule and are valid for cases, in which the 
hydrodynamic stability factors prevail over the thermodynamic ones. The latter become 

 Figure 20. Two possible types of mini-
emulsions obtained just after homogenization for
spherical drops: the surfactant is soluble in phase 1. 



 35

significant close to the equilibrium state, Fs ≈ F, and could bring about exclusions from the 
Bancroft rule, especially when (F − Fs)II → 0. 
 The increase of the bulk and surface diffusivities, D1 and D1s, which tend to damp the 
surface tension gradients, leads to an increase of the parameters b and d (see Eq. 37), which 
decreases the difference between Rate I and Rate II. In contrast, the increase of the Gibbs 
elasticity, EG, leads to decrease of d (see Eq. 37) and thus favors the survival of System I. 
These are the same tendencies as for deforming drops. 
 Equations (48) and (49) lead to some more general conclusions than the original Bancroft 
rule (e.g. the possibility for inversion of the emulsion stability due to disjoining pressure 
effects). We neither claim that Bancroft rule, or its extension based on Eqs. (48) and (49), have 
general validity, nor that we have given a general explanation of the emulsion stability. The 
coagulation in emulsions is such a complex phenomenon, influenced by too many different 
factors, that according to us any attempt for formulating a general explanation (or criterion) is 
hopeless. Our treatment is theoretical and it has limitations inherent to the model used and 
therefore is valid only under specific conditions. It should not be applied to system where these 
conditions are not fulfilled. The main assumptions and limitations of the model are: the 
fluctuation-wave mechanism for coalescence is assumed to be operative; the surfactant transfer 
onto the surface is under diffusion or electro-diffusion control; parameter b defined by Eq. (37) 
does not account for the demicellization kinetics; etc. Only small perturbations in the surfactant 
distribution, which are due to the flow, have been considered; however, under strongly non-
equilibrium conditions (like turbulent flows) we could find that new effects come into play, 
which may significantly alter the trend of the phenomenon. 
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