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We report experimental results which show that the interfacial deformation around glass particles
(radius, 200-300 µm) at an oil-water (or air-water) interface is dominated by an electric force, rather
than by gravity. It turns out that this force, called for brevity “electrodipping,” is independent of the
electrolyte concentration in the water phase. The force is greater for oil-water than for air-water interfaces.
Under our experimental conditions, it is due to charges at the particle-oil (instead of particle-water)
boundary. The derived theoretical expressions, and the experiment, indicate that this electric force pushes
the particles into water. To compute exactly the electric stresses, we solved numerically the electrostatic
boundary problem, which reduces to a set of differential equations. Convenient analytical expressions are
also derived. Both the experimental and the calculated meniscus profile, which are in excellent agreement,
exhibit a logarithmic dependence at long distances. This gives rise to a long-range electric-field-induced
capillary attraction between the particles, detected by other authors. Deviation from the logarithmic
dependence is observed at short distances from the particle surface due to the electric pressure difference
across the meniscus. The latter effect gives rise to an additional short-range contribution to the capillary
interaction between two floating particles. The above conclusions are valid for either planar or spherical
fluid interfaces, including emulsion drops. The electrodipping force, and the related long-range capillary
attraction, can engender two-dimensional aggregation and self-assembly of colloidal particles. These effects
could have implications for colloid science and the development of new materials.

1. Introduction

The weight of a particle attached to a fluid surface
creates interfacial deformation (Figure 1). If the distortions
around two such particles overlap, the latter experience
a strong capillary attraction that forces them to ag-
gregate.1,2 Interfacial deformations appear also when
particles are captured in a liquid film of a thickness smaller
than their diameter. The resulting capillary forces3 have
been found to cause self-assembly and aggregation of
particles of various sizes, including viruses and protein
macromolecules.4-7 In general, the magnitude of the
interfacial deformation, characterized by the slope angle,
ψ, is determined from the condition 2πrcγ sin ψ ) F; that
is, the surface tension force exactly counterbalances the
applied normal external force, F; γ is the interfacial tension
(see Figure 1 for the other notation).

If the normal force is due to gravity, then F ∝ R3 (R )
particle radius), and the magnitude of the surface distor-
tion decreases fast with the diminishment of particle size.
Typically, for R < 10 µm, the deformation is so small that
the energy of the gravity-driven capillary attraction
becomes negligible.4,6,7 However, as suggested by Ni-

kolaides et al.,8 for such small particles (including nano-
particles), the normal force, F, could be of electric (rather
than gravitational) origin, and then, interfacial distortions
and lateral capillary forces will appear, as in the case of
bigger heavy particles.

Long-range attractive forces between micrometer-sized
particles at a fluid interface were experimentally detect-
ed8-12 and attributed8 to capillary interaction, which orig-
inates from interfacial distortions created by the particle
electric field. The latter explanation was called into ques-
tion13 on the argument that the pressure difference, pro-
duced by the electric stresses, engenders a distortion and
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Figure 1. Sketch of a particle at the interface between water
and a nonpolar fluid (oil, air, etc.). γ is the interfacial tension;
R and rc are the radii of the particle and the three-phase contact
line; R and θ are the central and contact angle; ψ is the meniscus
slope angle at the contact line; F is a normal force acting on the
particle, which can be of electric or gravitational origin (weight
and buoyancy); and z ) ú(r) describes the meniscus profile.
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capillary force of much shorter range than necessary to
explain the data reported in ref 8.

Our purpose here is to verify experimentally whether
the electric field around a charged particle at a fluid
interface can really cause a significant interfacial defor-
mation and to investigate whether the latter deformation
is sufficiently long-ranged to cause the experimentally
detected attractive force.8 We established that the electric-
field-induced deformation could be observed with larger
particles, say R ≈ 200-300 µm, for which the meniscus
profile can be directly investigated by optical microscope.

The paper is organized as follows. In section 2, we
describe the experiment and present data for the defor-
mation caused by glass spheres at oil-water and air-
water interfaces. Next, we discuss the experimental data,
the theoretical predictions about the meniscus shape, and
the related lateral capillary force between two particles.
In the subsequent three sections, we develop theoretical
approaches which allow one to calculate the electric forces
acting on the three interfaces in the considered system:
particle-water, particle-oil, and water-oil. The results
are valid for any dielectric solid particle (not necessarily
glass) and for any nonpolar fluid (not necessarily oil).

The obtained experimental results provide direct proof
for the existence of strong normal electric forces experi-
enced by charged solid particles at the water-nonpolar
fluid boundary. Our data and theoretical analysis indicate
that a long-range (logarithmic) meniscus deformation
always exists (in addition to the short-range electric
deformation) and engenders the long-range attractive
capillary force, which gives explanation to the experi-
mental findings in ref 8. We observed also short-range
meniscus deformations due to an electrically induced
pressure difference, which had been previously dis-
cussed.8,13 These results could have important implications
for colloid science, including particle-stabilized Pickering
emulsions14 and development of new materials.15-20

2. Experiments and Data Analysis

2.1. Experimental System and Results. In our experiments,
the water phase was pure deionized water or an aqueous NaCl
solution of concentration C. The oil phase was tetradecane, which
has a density of Fn ) 0.763 g/cm3, a dielectric constant of εn )
2.04, and an interfacial tension against water of γ ) 52.2 mN/m.
The experiments were carried out at 23 °C.

As solid particles, we used silanized glass spheres of density
Fp ) 2.62 g/cm3 and dielectric constant εp ) 3.97; see Tables 1
and 2 for data about the sphere radius, R, and the contact angle,
θ, at the tetradecane-water and air-water interfaces (Figure
1).

Before the silanization, the glass particles were kept for 2 h
in sulfochromic acid to clean their surfaces. After that, the acid
was poured out and the particles were rinsed abundantly by
pure deionized water. Next, the particles were kept for 6 h in a
0.01 M solution of NaOH, and subsequently, they were rinsed
again by deionized water. Further, the particles were dried for
10 h at 80 °C. Next, we dropped ∼40 µL of hexamethyldisilazane
(HMDS) in the Petri dish, which contained the particles. The
dish was kept for 1 h in a vacuum dryer until the complete

evaporation of HMDS occurred. After this silanization procedure,
the glass spheres were stored in pure ethanol. Before each
experiment, the sphere was first dried at room temperature and
then placed at the fluid interface.

The experimental cell is a rectangular glass box of sides from
optical plane-parallel plates. The height of the cell is 55 mm. The
horizontal cross section of the cell has dimensions of 80 × 25
mm2, both of them being markedly greater than the characteristic
capillary length, (∆Fg/γ)-1/2; the latter is 4.7 and 2.7 mm,
respectively, for the tetradecane-waterandair-water interfaces;
∆F is the difference between the mass densities of the two fluid
phases and g is the acceleration due to gravity. The inner walls
of the cell are moderately hydrophobized (contact angle, ≈80°
across water). Thus, a slightly concave tetradecane-water or
air-water meniscus is formed, which decays exponentially at a
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Table 1. Tetradecane-Water Interface: Data for Glass
Spheres of Radius R at Various NaCl Concentrations, C

C
(M)

rc
(µm)

θ
(deg)

ψ
(deg)

ψ(g)

(deg)
F(g)

(µN)
F(el)

(µN)
σpn

(µC/m2)

R ) 240.61 µm
0.0000 235.13 115.21 12.97 0.7548 1.0159 16.023 70.89
0.0033 236.29 112.95 12.09 0.7494 1.0136 15.673 70.19
0.0099 236.32 112.93 12.11 0.7492 1.0135 15.562 70.31
0.0164 235.72 114.08 12.52 0.7521 1.0148 15.686 70.50
0.0259 236.18 113.79 12.79 0.7499 1.0138 16.076 71.09
0.0415 236.76 113.05 12.80 0.7471 1.0126 16.022 71.24
0.0566 236.56 113.12 12.61 0.7481 1.0130 15.858 70.87
0.0627 236.98 112.23 12.28 0.7461 1.0121 15.672 71.12

R ) 210.23 µm
0.0867 198.82 121.36 12.42 0.6014 0.6845 13.296 69.19
0.1216 200.21 120.59 12.86 0.5962 0.6833 13.886 69.55
0.1552 200.37 120.35 12.76 0.5956 0.6831 13.787 69.41

R ) 231.02 µm
0.0000 220.65 120.46 13.24 0.7174 0.9062 15.616 69.58
0.0033a 226.00 114.88 12.90 0.6946 0.8986 15.590 70.91

R ) 263.24 µm
0.0000 253.20 122.53 16.68 0.9230 1.3377 22.395 71.16
0.0033 252.90 122.77 16.69 0.9244 1.3382 22.372 70.90

R ) 214.44 µm
0.0000 200.00 126.04 14.89 0.6368 0.7291 16.077 70.97
0.0066 206.10 119.11 12.98 0.6137 0.7237 14.405 70.78
0.0456 203.20 122.34 13.54 0.6253 0.7266 14.814 69.62

R ) 210.61 µm
0.9677 205.14 114.33 11.24 0.5811 0.6823 12.392 69.80
1.0000 204.16 115.84 11.62 0.5849 0.6836 12.763 69.63

R ) 200.59 µm
0.9677 183.25 128.55 14.55 0.5711 0.5990 14.462 70.49
1.0000 179.35 131.89 15.28 0.5854 0.6010 14.863 70.52

a This row of the table corresponds to the photo in Figure 2.

Table 2. Air-Water Interface: Data for Glass Spheres of
Radius R at Various NaCl Concentrations, C

C
(M)

rc
(µm)

θ
(deg)

ψ
(deg)

ψ(g)

(deg)
F(g)

(µN)
F(el)

(µN)
σpn

(µC/m2)

R ) 232.52 µm
0.0000 207.73 119.08 2.385 0.7643 1.2570 2.6337 25.60
0.0019 208.63 118.72 2.521 0.7595 1.2546 2.8754 26.80
0.0038 207.45 119.26 2.404 0.7658 1.2577 2.6587 25.70
0.0083 207.00 119.68 2.584 0.7681 1.2589 2.9416 27.01
0.0120 205.04 120.63 2.497 0.7785 1.2638 2.7574 26.06
0.0170 205.64 120.15 2.329 0.7753 1.2623 2.4993 24.83

R ) 228.05 µm
1.0000 204.25 118.77 2.365 0.7325 1.1846 2.6097 26.01

R ) 294.23 µm
1.0000 271.23 115.73 2.921 1.1675 2.5070 3.6873 24.46

R ) 288.79 µm
1.0000 272.20 112.26 2.741 1.0839 2.3360 3.4973 24.94

R ) 272.52 µm
1.0000 253.65 114.20 2.749 0.9861 1.9802 3.4785 25.91
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relatively short distance from the walls. Thus, the meniscus
around the central part of the cell is horizontal.

Before the experiments, the glass cell was subjected to the
following cleaning procedure. First, the cell was rinsed by ethanol.
Then, it was kept for 5 min in boiling deionized water. After
cooling, the cell was filled with a 1:1:5 mixture of 25% NH3 +
30% H2O2 + H2O and heated in a water bath for 25 min at 60-80
°C. The same procedure was then repeated but with 25% HCl
solution instead of the 25% NH3 solution. Finally, the cell was
rinsed again with deionized water and dried for 2 h at 30 °C.

The observations were carried out by means of a horizontal
microscope, equipped with a long-focus objective and connected
to a monitor and video-recording system. In the absence of the
particle, a horizontal interface was seen. After inserting the
particle, we observed deformations of the interface (deviations
from planarity), as in the photo in Figure 2.

By computer image analysis of the video frames, like that in
Figure 2, we measured directly the particle radius, R, the contact-
line radius, rc, and the meniscus slope angle at the contact line,
ψ (see the data in Tables 1 and 2). The value of each parameter
is an average of at least 10 measurements. The measurements
were accurate and reproducible; the standard error of mean was
typically on the order of 0.1% for R and rc, while the absolute
error of the angle ψ was not greater than 0.2°. From the measured
parameters, we calculated the contact angle: θ ) ψ + R, where
R is a central angle and R ) arcsin(rc/R); see Figure 1. (As the
arcsine is a two-valued function, one should keep in mind whether
the angle R is acute or obtuse.)

In some experiments, after the particle was placed at the
interface, by micropipet we added small consecutive portions of
concentrated NaCl solution to increase the ionic strength, C, of
the aqueous phase. The purpose was to check whether C
influences the angle ψ. The addition of NaCl slightly disturbs
the interface, which leads to some small scattering of the values
of rc, ψ, and θ, obtained for the same particle (the same R) at

different steps of this procedure (at different C); see Tables 1
and 2. This data scattering can be attributed to a small contact
angle hysteresis, rather than to a systematic effect of C.

Tables 1 and 2 show the obtained results for a number of glass
spheres (identified by their radius, R) at the tetradecane-water
and air-water boundaries. The information in each row is
extracted from a photo, like that in Figure 2. From the measured
R, rc, and ψ values, we further calculate other parameters of the
system, such as the gravitational and electric forces acting on
the particle, F(g) and F(el), the surface electric charge density, σpn,
at the particle-nonpolar fluid (oil, air, etc.) boundary, etc.; the
obtained values are also given in Tables 1 and 2. The next
subsection explains how the latter parameters have been
determined.

2.2.ParametersCalculatedfromtheExperimentalData.
The gravity force, F(g), is equal to the difference between the
particle weight and the buoyancy (Archimedes) force. For a sphere
at a fluid interface, we have (see, e.g., eq 32 in ref 21)

where, as usual, Fp, Fw, and Fn are the mass densities of the
particle, water, and nonpolar fluid (oil, air, etc.); Vw and Vn are
the portions of the particle volume immersed, respectively, in
water and in the nonpolar fluid; and hc is the vertical distance
between the plane of the contact line and the plane of the
horizontal fluid interface far from the particle. Geometrical
considerations give

Although the term with hc in eq 2.1 is usually negligible, it was
taken into account in our computations, where the Derjaguin
formula22 was used:

Here, ∆F ) Fw - Fn; γe ) 1.781 072 418... is the Euler-Masceroni
constant. The Derjaguin formula is valid for (qrc)2 , 1, which is
fulfilled for our particles (200 µm < R < 300 µm). From the
calculated F(g) value, we can determine how large the meniscus
slope angle would be at the contact line if only F(g) were acting
on the particle:

In Tables 1 and 2, the values of ψ(g), calculated from the latter
equation, are compared with the experimental angle ψ, measured
directly from the photos. For the tetradecane-water interface
(Table 1), the experimental ψ angle is much greater than the
calculated ψ(g) angle. This is the biggest and most important
effect reported in the present study, which indicates that the
gravitational force, alone, cannot explain the observed deforma-
tion of the fluid interface around the particle. The same effect,
although of smaller magnitude, is observed for the air-water
interface (Table 2); the difference between ψ and ψ(g) is smaller
but systematic.

It is natural to hypothesize that the difference between ψ and
ψ(g) is due to an electric force, F(el), that pushes the particles into
water. F(el) can be calculated from the balance of forces exerted
on the particle:

The values of F(el), calculated from eq 2.5, are given in Tables 1
and 2. It is interesting to note, that the obtained values of F(el)

are insensitive to the NaCl concentration in water,C. To illustrate
this, in Figure 3, we have plotted the data for the first particle
in Table 1 (with R ) 240.6 µm). In the same figure, we compare

(21) Ivanov, I. B.; Kralchevsky, P. A.; Nikolov, A. D.J. Colloid Interface
Sci. 1986, 112, 97.

(22) Derjaguin, B. V. Dokl. Akad. Nauk SSSR 1946, 51, 517.

Figure 2. Side-view photo of a spherical glass particle at the
water-tetradecane interface. From the photo, we measure ψ
) 12.9°. If the interfacial deformation were produced by the
gravity force alone, ψ would be only 0.75°. The difference can
be attributed to the electrodipping force. Coordinates of points
from the meniscus profile, z ) ú(r), are digitized and plotted vs
log(r) in the inset. Close to the contact line, the plot ú vs log(r)
deviates from the straight line; this is a result of the action of
electric stresses. The continuous curve in the inset, which
excellently agrees with the data points, is the meniscus profile
computed by numerical solution of the electrostatic boundary
problem with no adjustable parameters (details in the text).

F(g) ) g[(Fp - Fw)Vw + (Fp - Fn)Vn - (Fw - Fn)πrc
2hc] (2.1)

Vn ) (4/3)πR3 - Vw

Vw ) (1/3)πR3(2 + 3 cos R - cos3 R) (2.2)

hc ) -rc sin ψ ln[qrcγe(1 + cos ψ)/4] q ) (∆Fg/γ)1/2 (2.3)

sin ψ(g) ) F(g)/(2πγrc) (2.4)

F(el) ) 2πrcγ sin ψ - F(g) (2.5)
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the values of F(el) and F(g) for this particle. The independence of
F(el) from C indicates that F(el) is caused by charges, of density
σpn, at the oil-water (or air-water) interface. The existence of
such surface charges has been identified as the reason for the
observed strong lateral repulsion between colloidal particles at
an oil-water interface.23,24 We proved our hypothesis, that the
found difference between ψ and ψ(g) is due to an electric force
engendered by σpn, in the following way. From the values of F(el)

(Tables 1 and 2), we first calculated σpn; see the last columns of
Tables 1 and 2. Then, using the determined σpn value, we
computed the electric pressure, pel, exerted at the oil-water
interface in the vicinity of the particle. Further, taking into
account the effect of pel, we solved the Laplace equation of
capillarity and determined the meniscus shape around the
particle, z ) ú(r), which is seen in the experimental video frames.
The computed ú(r) curve compares excellently with the experi-
mental points; see the inset in Figure 2; there are no adjustable
parameters. In particular, the meniscus deviates from the ln(r)
dependence close to the particle surface (inset of Figure 2) due
to the effect of pel (details in sections 3.5 and 6.1 below). This
perfect agreement between theory and experiment proves our
hypothesis about the existence of F(el) and its origin. The
realization of this program demanded considerable theoretical
work, which is described in the rest of this paper.

Before continuing with the theory, let us note that the values
of σpn, calculated from F(el) (Tables 1 and 2), are practically the
same for all investigated particles and NaCl concentrations. The
average values are σpn ) 25.7 ( 0.8 µC/m2 for the glass-air
interface and σpn ) 70.4 ( 0.7 µC/m2 for the glass-tetradecane
interface. The latter value is close to the value σpn ≈ 80 µC/m2

reported24 for the silanized silica-hydrocarbon boundary.
Our experiments showed that the effect of F(el) is present not

only for tetradecane but also for other liquid hydrocarbons,
including dodecane, xylene, and triglycerides.

3. Theoretical Background

3.1. Electric Force at the Particle-Water Inter-
face. Let us consider a charged spherical particle in the
bulk of an aqueous solution. At equilibrium, the tangential
and normal components of the pressure tensor (with
respect to the surface of the colloidal sphere), PT and PN,
obey the relationship25

where r is the radial coordinate. Substituting in eq 3.1
available expressions for PT and PN for an electric double
layer,6,26 one can check that dPN/dr > 0 (details in section
4). In other words, the normal pressure close to the particle
surface, PN(R), is lower than the bulk pressure, PN(∞). In
the case of a particle at an oil-water interface (Figure 1),
the derived pressure difference, ∆PN ) PN(∞) - PN(R), is
exerted on the portion of the particle surface which is
immersed in water. This leads to a normal force, F(w) )
πrc

2∆PN, which pulls the particle into the aqueous phase.
When the thickness of the electric double layer, κ-1, is
much smaller than the particle radius (κR . 1), we derive
(section 4)

where p is independent of R, k is the Boltzmann constant,
T is the temperature, κ is the Debye screening parameter
and κ2 ) (2e2C/ε0εwkT), e is the elementary charge, ε0 is
the dielectric permittivity of vacuum, εw is the dielectric
constant of water, and σpw is the electric charge density
at the particle-water boundary.

To estimate F(w) for the particle in Figure 3 (R ) 240.6
µm, rc ) 236 µm), let us take a typical experimental value,
σpw ) 1780 µC/m2 (90 nm2 per surface charge), at the glass-
water interface (C ) 0.1 mM, pH ) 5.8).27 From eqs 3.2
and 3.3, we estimate F(w) ) 0.07 µN, which is much smaller
than the values of F(el) in Tables 1 and 2 and in Figure 3,
in agreement with the conclusion that in our case F(el) is
dominated by the electric force exerted at the particle-oil
(rather than particle-water) interface. On the other hand,
for the smaller particles in the experiments by Nikolaides
et al.,8 F(w) certainly has an essential effect in view of the
influence of electrolyte concentration on the particle
ordering established in ref 8; see section 3.7 below.

3.2. Electric Force at the Particle-Nonpolar Fluid
Interface. Electric charges present at the particle-
nonpolar fluid (oil, air, etc.) boundary give rise to an
additional contribution to the normal force (details in
section 5):

F(n) (just like F(w)) pushes the particles into water; as before,
sin R ) rc/R and σpn is the electric charge density at the
particle-nonpolar phase boundary; εp and εn are the
dielectric constants of the particle and nonpolar fluid; and
f is a universal dimensionless function of the ratio εp/εn
and the angle R. The bulk charge density in the nonpolar
fluid is zero; therefore, the electrostatic interactions
therein are long-ranged and F(n) is sensitive to the
geometry of the system, accounted for by the dependence
on the angle R (eq 3.4). We computed f (see Figure 4) by
solving numerically the respective electrostatic boundary
problem. In the Appendix, we present a convenient way
to obtain numerical values of the function f(R, εp/εn) by
polynomial interpolation. Note that eq 3.4 gives the leading
term in F(n); the full expression can be found in section 5.

(23) Aveyard, R.; Binks, B. P.; Clint, J. H.; Fletcher, P. D. I.; Horozov,
T. S.; Neumann, B.; Paunov, V. N.; Annesley, J.; Botchway, S. W.; Nees,
D.; Parker, A. W.; Ward, A. D.; Burgess, A. Phys. Rev. Lett. 2002, 88,
246102-1-4.

(24) Horozov, T. S.; Aveyard, R.; Clint, J. H.; Binks, B. P. Langmuir
2003, 19, 2822.

(25) Kirkwood, J. G.; Buff, F. P. J. Chem. Phys. 1949, 17, 338.

(26) Felderhof, B. U. J. Chem. Phys. 1968, 49, 44.
(27) Poptoshev, E.; Rutland, M. W.; Claesson, P. M. Langmuir 1999,

15, 7789.

Figure 3. Plot of the normal force vs the NaCl concentration,
C, which is varied by adding consecutive portions of NaCl into
water: results for a single glass particle at the tetradecane-
water interface. R, rc, and ψ are measured from photos, like in
Figure 2. Then, F(g) and F(el) are calculated from eqs 2.1 and 2.5.
One sees that F(el) . F(g) and that F(el) is independent of C.

dPN

dr
) 2

r
(PT(r) - PN(r)) (3.1)

F(w) ) πrc
2 p
κR

(3.2)

p ≡ 16CkT{[(κσpw)2/(4eC)2 + 1]1/2 - 1} (3.3)

F(n) )
σpn

2 R2

ε0εn
(1 - cos R) f(R, εp/εn) (3.4)
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3.3. The Normal Balance of Forces Exerted on the
Particle. This balance reads

where F(g) is the contribution of gravity; see eq 2.1.
Combining eqs 3.2-3.5, we obtain

where â ) (1 - cos R)/sin R. The first term on the right-
hand side of eq 3.6, which is independent of R, originates
from the electric field in the water phase and depends on
the electrolyte concentration, C, through κ. The second
term, accounting for the electric charges at the particle-
oil interface, is independent of C; it grows proportionally
to the particle radius, R, and could dominate ψ for R )
200-300 µm, as indicated by our experiments (see Figure
3 and the related discussion). The last, gravitational term
in eq 3.6 is proportional to R2, and it dominates ψ for
millimeter-sized (and larger) particles. Additional results
about the relative importance of F(g), F(n), and F(w) are given
in section 3.7.

3.4. Electric Pressure Difference across the Fluid
Interface. As mentioned above, to determine theoretically
F(n) and f(R, εp/εn) (see eq 3.4 and Figure 4), we solved
numerically the electrostatic boundary problem (section
5) for the case of a small meniscus slope (sin2 ψ , 1) and
a thin electric double layer in the aqueous phase (κR <
1). Once the numerical solution is obtained, one can
calculate also the electric pressure difference across the
oil-water (or air-water) interface, pel. We found that the
obtained numerical data for pel(r) can be described, almost
perfectly, by the following semiempirical expression
(section 6):

where, as usual, r is the radial coordinate (Figure 1) and
0 < µ < 1. In general, the parameter µ depends on the

contact angle, θ, and on the ratio of the two dielectric
constants: µ ) µ(θ, εp/εn). On the other hand, µ is
independent of σpn and R. For example, for the particle in
Figure 2, from the fit of the numerical data for pel(r), we
obtained µ ) 0.690, which, in view of eq 3.8, yields λ )
0.482. Equation 3.7 is applicable for 50° e θ e 130°. In
the Appendix, we present numerical data for the function
µ(θ, εp/εn) as well as a convenient way to obtain the values
of this function by polynomial interpolation.

For large distances from the particle, the asymptotic
form of eq 3.7 reads

This is in agreement with the estimate in ref 8 that
asymptotically pel ∝ 1/r6.

3.5. Particles at the Horizontal Fluid Interface:
Meniscus Shape and Capillary Force. The profile of
the oil-water (air-water) interface, ú(r), obeys the Laplace
equation of capillarity, which (in the considered case of
a small meniscus slope) reduces to2,3,6

As before, q2 ) ∆Fg/γ. Note that, in the absence of any
particle, the interface is a horizontal plane, thanks to the
action of gravity. The terms with q2 and pel in eq 3.10
account, respectively, for the contributions of the gravi-
tational and electric forces to the pressure difference across
the fluid interface. Equation 3.10 represents an inhomo-
geneous modified Bessel equation, whose solution can be
expressed in the following general form:28

where I0 and K0 are the modified Bessel functions of the
first and second kind and r̂ and A are the integration
variable and constant. A boundary condition at the contact
line is

For sufficiently small particles, including our glass spheres
(Tables 1 and 2), we have (qrc)2 , 1, and then we can use
the asymptotic expressions for I0 and K0:29-31

where, as before, γe is the Euler-Masceroni constant
[ln(γe) ) 0.577...]. With the help of eqs 3.12 and 3.13, one
can represent eq 3.11 in the form

(28) Kamke, E. Differential Equations. Solution Methods and Solu-
tions; Teubner: Stuttgart, Germany, 1983.

(29) Janke, E.; Emde, F.; Lösch, F. Tables of Higher Functions;
McGraw-Hill: New York, 1960.

(30) Dwight, H. B. Tables of Integrals and Other Mathematical Data;
Macmillan Co.: New York, 1961.

(31) Abramowitz, M.; Stegun, I. A. Handbook of Mathematical
Functions; Dover: New York, 1965.

Figure 4. Plot of the universal function f in eq 3.4 vs the angle
R for various εp/εn values denoted in the figure. f determines the
magnitude of the force, F(n), which is due to the electric charges
at the particle-nonpolar fluid boundary. For the particle in
Figure 2, we have εp/εn ) 1.95 and the central angle is R ) 102°;
the corresponding value of f is 0.807. Using data tabulated in
the Appendix, one can reproduce numerically the curves in the
figure.

2πrcγ sin ψ ) F ) F(w) + F(n) + F(g) (3.5)

sin ψ ) p sin R
2γκ

+
σpn

2 âf
2πγε0εn

R + F(g)

2πγrc
(3.6)

pel(r) ) -
2λrc

4F(el)

π(r - rc)
1-µr5+µ

(3.7)

λ ) (3 + µ)(2 + µ)(1 + µ)µ/24 (3.8)

pel(r) ≈ -
2λrc

4F(el)

πr6
(r/rc . 1) (3.9)

1
r

d
dr(r dú

dr ) - q2ú ) 1
γ

pel (3.10)

ú ) I0(qr)∫rc

rpel

γ
K0(qr̂)r̂ dr̂ - K0(qr)∫rc

rpel

γ
I0(qr̂)r̂ dr̂ +

AK0(qr) (3.11)

dú/dr ≈ sin ψ ) F/(2πγrc) at r ) rc (3.12)

I0(qr) ≈ 1 and K0(qr) ≈ -ln(γeqr/2) for (qr)2 , 1
(3.13)
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where r0 is a constant and r1 and r2 are integration
variables; pel is to be substituted from eq 3.7. An
approximate form of eq 3.14 can be obtained if the
asymptotic expression, eq 3.9, is substituted for pel:

For λ ) F/F(el) ≈ 1, eq 3.15 reduces to the respective
expression in ref 13. If this were the case, the logarithmic
term (which gives rise to the long-range capillary attrac-
tion8) would disappear. However, our experimental data
for ú versus log(r) (inset in Figure 2) show a well-
pronounced linear portion (confirming the presence of the
log term in eq 3.15) from whose slope we determine λ )
0.484. (F(el), obtained from eq 2.5, is given in Table 1.) The
latter value of λ is very close to λ ) 0.482, calculated from
eq 3.8 with the theoretically computed value of µ; see
section 3.4. The small difference between the two values
of λ is probably due to the approximate character of the
used eq 3.9. For the same reason, eq 3.15 is not accurate
for r f rc; to describe quantitatively the meniscus shape
very close to the particle, one should use eq 3.14 along
with eq 3.7 and solve the integrals numerically.

For a small meniscus slope, we can express the energy
of capillary interaction between two particles, U(r), using
the superposition approximation,1,2,6,32 which gives U(r)
) Fú(r). Thus, from eq 3.15 we obtain

Hence, at not-too-small distances, U(r) is dominated by
the logarithmic term, which gives rise to a long-range
attraction, as detected in ref 8. In other words, it turns
out that Nikolaides et al.8 are right to attribute the
experimentally observed attraction to the long-range log
term in U(r). Moreover, the effect of the electric field on
the meniscus shape (the effect of pel) leads to the
appearance of an additional short-range attractive term
(∝1/r4) in eq 3.16. Let us recall that the direct electrostatic
repulsion between the two like-charged particles8,23,24 also
contributes to the total interaction energy, but this effect
is not a subject of the present article.

Finally, we should note again that, because of the use
of the approximate eq 3.9, the first term on the right-
hand side of eq 3.16 is not accurate for r f rc. For
quantitatively accurate results, one can use the expression

which follows from eq 3.14, with pel given by eq 3.7; the
integrals have to be solved numerically.

3.6. Particle at the Surface of a Spherical Drop. In
fact, Nikolaides et al.8 detected the long-range attractive
force between particles at the surface of a spherical
emulsion drop, for which the effects of the gravity force
are certainly negligible. Then, a question arises of whether

there will be a logarithmic term in the expressions for ú(r)
and U(r) for the case of a spherical drop, as it is in eqs
3.14-3.17.

To answer this question, we will consider a particle
that is much smaller than the emulsion drop, which
corresponds to the experimental situation. Introducing
spherical coordinates, (F̂, θ̂, φ̂), one can express the
meniscus shape around the particle in the form

where R0 is the radius of the spherical fluid interface (of
the drop) in the hypothetic case when no electric (or other
external) force is acting on the particle. (In the latter case,
the forces, originating from the surface tension and the
capillary pressure difference, exactly counterbalance each
other for a spherical fluid interface; see, e.g., refs 6 and
32.) In this respect, ú in eq 3.18 accounts for the deviation
of the meniscus from the spherical shape due to the
presence of a normal electric force exerted on the charged
particle, as well as on the surrounding oil-water interface.
For small deformations, |ú/R0| , 1 and |∇sú|2 , 1, where
∇s is the surface gradient operator, the linearized Laplace
equation of capillarity acquires the form6,33,34

where P1 and P2 are the constant (independent of the
spatial coordinates) pressures inside and outside the drop
and pel is the same as that in section 3.4. (If the effect of
electric forces were missing, then ú ) 0, pel ) 0, and eq
3.19 reduces to the familiar Laplace equation.) Equation
3.19 can be expressed in the following equivalent form:

where ∆H ) [(P1 - P2)/(2γ) - 1/R0] is a constant. For a
small particle, the configuration particle/interface looks
like that in Figure 1, and one can use the same coordinates,
(r, z), as those in the latter figure, to describe the meniscus
shape; in such a case, eq 3.20 becomes

where ú̃ ) ú - 2q-2∆H. Note that eq 3.21 resembles eq
3.10, with the major difference being that the sign before
q2 is opposite and that the definitions of q in the two cases
are also different. In analogy with eq 3.11, the solution
of eq 3.21 can be expressed in the following general form:

where J0 and Y0 are the Bessel functions of the first and
second kind and A and B are integration constants. The
asymptotic expressions for J0 and Y0 are29-31

(32) Kralchevsky, P. A.; Nagayama, K. Adv. Colloid Interface Sci.
2000, 85, 145.

(33) Landau, L. D.; Lifshitz, E. M. Fluid Mechanics; Pergamon
Press: Oxford, U.K., 1984.

(34) Kralchevsky, P. A.; Paunov, V. N.; Nagayama, K. J. Fluid Mech.
1995, 299, 105.

ú ) 1
γ∫rc

rdr2

r2
∫rc

r2pelr1 dr1 + F
2πγ

ln( r
r0

) for (qr)2 , 1

(3.14)

ú(r) ) - λF(el)

8πγ
rc

4

r4
+ (F - λF(el)

2πγ ) ln(r/r0) (3.15)

U(r) ) - λFF(el)

8πγ
rc

4

r4
- F

2πγ
(F - λF(el)) ln(r0/r) (3.16)

U(r) ) F
γ∫rc

rdr2

r2
∫rc

r2pelr1 dr1 - F2

2πγ
ln(r0

r ) for

(qr)2 , 1 (3.17)

F̂ ) R0 - ú(θ̂) (3.18)

γ( 2
R0

+ 2ú
R0

2
+ ∇s

2ú) ) P1 - P2 + pel (3.19)

∇s
2ú + q2ú ) 2∆H + pel/γ (q2 ) 2/R0

2) (3.20)

1
r

d
dr(r dú̃

dr) + q2ú̃ ) 1
γ

pel (3.21)

ú̃ ) π
2

Y0(qr)∫rc

rpel

γ
J0(qr̂)r̂ dr̂ -

π
2

J0(qr)∫rc

rpel

γ
Y0(qr̂)r̂ dr̂ + AY0(qr) + BJ0(qr) (3.22)
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With the help of eq 3.23 and the boundary condition 3.12,
the latter with F ) F(el), we represent eq 3.22 in the form

Equation 3.24 can be easily represented in the form of eq
3.14, if the constant r0 in the latter equation is redefined
to include the multiplier γeq/2 and the additive constants
B and 2q-2∆H, the latter coming from the definition of ú̃;
see eq 3.21. In other words, eqs 3.14-3.17, and the
conclusion drawn from them, are valid also in the case of
particles at the surface of a spherical drop. The only
consequence of the absence of gravitational force for a
spherical drop is that the total normal force becomes
identical with the electrodipping force; that is, one has to
substitute F ) F(el) everywhere in eqs 3.14-3.17.

3.7. Numerical Results and Discussion. The theo-
retical expressions derived in the present article can be
applied to a wide range of particle sizes, not only to the
200-300 µm beads in our experiments (section 2). As an
example, let us consider the energy of capillary interaction,
U(r), between two identical particles of radius R, which
are attached to a horizontal fluid interface. To obtain
numerical results, we have to first determine the additive
constant in eqs 3.15 and 3.16, which is related to the term
ln(r0). For this purpose, we can apply the method of the
matched “inner” and “outer” asymptotic expansions.35

Equation3.15represents the inner asymptotics (valid close
to the contact line). The outer asymptotics are ú ∝ K0(qr),
that is, the solution of eq 3.10 for negligible pel. Matching
the inner and outer asymptotics, in accordance with the
Prandtl procedure,35 yields r0 ) 2/(γeq). Further, following
the standard procedure in ref 35, we obtain generalized
versions of eqs 3.15 and 3.16 in the form of “compound”
solution:

The additive constant in eq 3.26 is determined in such a
way that U(r) f 0 for r f ∞. If the particle has no electric
charge, that is, F(el) ) 0, then eq 3.26 reduces to the known
expression U ) -[F2K0(qr)]/(2πγ) for the energy of capillary
attraction between two floating heavy particles (F )
F(g)).2,6,32 In the limit qr , 1, eqs 3.25 and 3.26 reduce,
respectively, to eqs 3.15 and 3.16; see also eq 3.13.

Here, our aim is to compare the relative contributions
in U(r) of the gravity force, F(g), of the electric force at the
particle-nonpolar fluid boundary, F(n), and of the electric
force at the particle-water boundary, F(w). To do that, we
will use parameter values for the experimental systems
in section 2.

Thus, for the central angle, we use typical experimental
values, R ) 102 and 117°, respectively, for the oil-water
and air-water interfaces. To calculate F(g) from eq 2.1, we
use Fp ) 2.62 g/cm3, Fw ) 1 g/cm3, and Fn ) 0.763 for the

oil phase. The corresponding dielectric constants are εp )
3.97, εw ) 80.1, and εn ) 2.04. To calculate F(n) from eq 3.4,
we use average values of the surface charge density from
Tables 1 and 2, σpn ) 70.4 and 25.7 µC/m2, respectively,
for the particle-oil and particle-air interfaces. Finally,
to calculate F(w) from eqs 3.2 and 3.3, we specify C ) 5 ×
10-5 M (κ-1 ) 43.0 nm) and σpw ) 1780 µC/m2 (90 nm2 per
surface charge).27 We recall that F(g) ∝ R3 and F(n) ∝ R2,
while F(w) ∝ R.

In Figure 5, we illustrate how the energy of lateral
capillary attraction between two identical spherical
particles depends on their radius, R. We show plots of U(r
) 3R) versus R calculated by means of eq 3.26. Parts a
and b of Figure 5 represent results for the oil-water and
air-water interfaces, respectively. The dashed-dotted
line is calculated for F ) F(g) and corresponds to the case
when the interfacial deformations are due only to the
gravitational effect (particle weight and buoyancy force).
In this case, for R < 6 µm, the capillary interaction becomes
negligible: -U/kT < 1.

The dashed lines in Figure 5a and b are calculated for
F ) F(g) + F(n). Physically, this corresponds to larger
particles (section 2) or to sufficiently high electrolyte
concentrations, C, in the water phase, which lead to a
negligible F(w) value. Now, due to the effect of F(n), the
capillary attraction is considerably stronger than that in
the previous case (see the dashed and dashed-dotted
lines). The effect of F(n) is greater for the oil-water(35) Nayfeh, A. H. Perturbation Methods; Wiley: New York, 1973.

J0(qr) ≈ 1 and Y0(qr) ≈ 2
π

ln(γeqr
2 ) for (qr)2 , 1

(3.23)

ú̃ ) 1
γ∫rc

rdr2

r2
∫rc

r2pelr1 dr1 + F(el)

2πγ
ln(γeqr

2 ) + B for

(qr)2 , 1 (3.24)

ú(r) ) - λF(el)

8πγ
rc

4

r4
- (F - λF(el)

2πγ )K0(qr) (3.25)

U(r) ) - λFF(el)

8πγ
rc

4

r4
- F

2πγ
(F - λF(el))K0(qr) (3.26)

Figure 5. Dependence of the energy of lateral capillary
attraction, U, on the particle radius, R, calculated from eq 3.26
for two particles separated at a center-to-center distance of r
) 3R (see the inset). U is scaled by the thermal energy, kT. (a)
Oil-water interface. (b) Air-water interface. The parameter
values are specified in the text. The three curves correspond
to F ) F(g), F ) F(g) + F(n), and F ) F(g) + F(n) + F(w), as denoted
in the figure.
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interface. In particular, for F ) F(g) + F(n), the capillary
attraction becomes significant (-U/kT > 1) at R > 300
and 800 nm, respectively, for the oil-water and air-water
interfaces.

Finally, the solid lines in Figure 5a and b are calculated
for F ) F(g) + F(n) + F(w). In this case, thanks to the effect
of F(w), the lateral capillary attraction becomes significant
even for particles of radius R ) 40-50 nm. Figure 5a
indicates that, for an emulsion system (like that in ref 8)
at R ≈ 1 µm, we have comparable contributions from F(n)

and F(w). In contrast, for the air-water interface, the
contribution of F(w) is predominant at R ≈ 1 µm.

In Table 3, we give the special value, R*, of the particle
radius for which F(n) ) F(w). For R > R*, we have F(n) >
F(w), whereas, for R < R*, we have F(n) < F(w). Analogous
values of R* are given for the cases F(g) ) F(w) and F(g) )
F(n). The data in Table 3, which are calculated for the
same parameter values as those in Figure 5, indicate which
force for which particle sizes is predominant. In particular,
it is impressive that we have F(g) > F(n) for R > 3.5 mm;
that is, the electric force F(n) can be significant even for
millimeter-sized particles.

Of course, the data in Figure 5 and Table 3 depend on
the specific choice of the parameter values. If we use a
greater surface charge density, σpw, at the particle-water
interface and a lower ionic strength, C < 5 × 10-5 M, in
the water, then the magnitude of F(w) would increase and
the capillary attraction could become significant even for
particles of radii R < 40-50 nm. However, for such small
particles and low ionic strengths, R becomes comparable
to κ-1, and consequently, eq 3.2 cannot be used to calculate
F(w). In the latter case, one has to apply a numerical
solution of the electrostatic problem; see section 5.3 below.

4. Electric Force at the Particle-Water
Boundary

In this section, we derive eqs 3.2 and 3.3, which allow
one to calculate the electric force F(w). Because of the
theoretical character of our considerations, in sections4-6,
it is convenient to use the CGSE system of units.36 In
these units, the general expression for the Maxwell
pressure tensor, P, in an electric double layer reads6,26

where E ) -∇æ is the electric field intensity, æ is the
electric potential, E2 ) E‚E; U is the unit tensor; and Po
is the osmotic pressure.

P∞ is the pressure in the bulk; the summation is carried
out over all ionic species; Zi is their valence; ai∞ ) γ(ci∞
are the bulk activities of the ions, whose bulk concentra-
tions are ci∞; and γ( is the activity coefficient.

Let us consider a charged sphere in the bulk of an
electrolyte solution. Because of the spherical symmetry,
we have E ) erEr ) -er ∂æ/∂r, where r is the radial
coordinate ander is the respective unit vector. Substituting
the latter expression in eq 4.1, in view of eq 4.2, one can
check that the condition for mechanical equilibrium, ∇‚P
) 0, which is equivalent to eq 3.1, gives

which is a form of the Poisson-Boltzmann equation. From
eq 4.1, the following expressions for the normal and
tangential components of the pressure tensor follow:

Substituting eq 4.4 into eq 3.1 and integrating, we derive

Equation 4.5 shows that ∆PN > 0, which means that the
pressure in the bulk of the solution is greater than that
at the surface of the charged particle. For a thin electric
double layer, that is, for κR . 1, one can prove that

where æpw is the electric potential at the particle-water
boundary; as before, C is the bulk concentration of a 1:1
electrolyte; and, at the last step, eq 4.3 has been also
employed (details in refs 6 and 37). The Gouy equation,
connecting the surface charge, σpw, and potential, æpw, for
an electric double layer reads6,36,38

Finally, eliminating æpw between eqs 4.6 and 4.7 and using
the relationship F(w) ) πrc

2∆PN, we obtain eqs 3.2 and 3.3.

5. Electric Force at the Particle-Oil Boundary
5.1. Basic Equations. The electrostatic boundary

conditionsat theparticle-waterandnonpolar fluid-water
interfaces can be expressed in the form

Here, we use the standard notation ∂/∂n for the directional
derivative along the normal to the respective surface; as
before, the subscripts “p”, “w”, and “n” refer to “particle”,
“water”, and “nonpolar fluid” (oil, air, etc.); σpw and σnw
are the surface charge densities at the respective phase
boundaries. For a thin electric double layer in water, κR

(36) Landau, L. D.; Lifshitz, E. M. Electrodynamics of Continuous
Medium; Pergamon Press: Oxford, U.K., 1960.

(37) Kralchevsky, P. A.; Danov, K. D.; Broze, G.; Mehreteab, A.
Langmuir 1999, 15, 2351.

(38) Gouy, G. J. Phys. Radium 1910, 9, 457.

Table 3. Values of the Particle Radius, R*, for Which F(n)

) F(w), F(g) ) F(w), or F(g) ) F(n)

interface
F(n) ) F(w)

R* (µm)
F(g) ) F(w)

R* (µm)
F(g) ) F(n)

R* (mm)

oil-water 1.37 69.5 3.50
air-water 7.18 54.0 0.411

∂
2æ

∂r2
+

2

r

∂æ

∂r
) -

4π

εw
∑

i

Zieai∞ exp(-
Zieæ

kT ) (4.3)

PN ≡ Prr ) Po -
εw

8π(dæ
dr )2

PT ) Po +
εw

8π(dæ
dr )2

(4.4)

∆PN ) PN(∞) - PN(R) )
εw

2π∫R

∞(dæ
dr )2 dr

r
(4.5)

∆PN ≈ εw

2πR∫R

∞(dæ
dr)2

dr ≈ 16kTC
κR [cosh(eæpw

2kT) - 1]
(4.6)

σpw ) 4eC
κ

sinh(eæpw

2kT) (κR . 1) (4.7)

εp

∂æp

∂n
- εw

∂æw

∂n
) 4πσpw

εn

∂æn

∂n
- εw

∂æw

∂n
) 4πσnw (5.1)

P ) (Po +
εw

8π
E2)U -

εw

4π
EE (4.1)

Po ) P∞ + kT∑
i

ai∞[exp(-
Zieæ

kT ) - 1] (4.2)
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. 1, the term proportional to εw, is predominant, and then,
eq 5.1 reduces to

In principle, eq 5.2 allows one to solve the Poisson-
Boltzmann equation in the water phase and to determine
the æw(r) value for given σpw and σnw values. Then, at a
second step, the values of æw at the particle-water and
nonpolar fluid-water interfaces can be computed and used
as boundary conditions for the Poisson equation in the
nonpolar fluid and inside the particle. The surface
potentials can be calculated from the following equations:

In eq 5.3, and below, we use dimensionless electric
potentials:

For a thin electric double layer (κR . 1), we have the
following boundary conditions:

where the surfaces Spw and Snw represent the respective
phaseboundaries.At theparticle-nonpolar fluid interface,
we will use the boundary condition

where ∇̃≡ rc∇and n is the outer unit normal to the particle
surface. The electric field in the nonaqueous phases
(particle and oil) depends on three constant parameters,
Φpw, Φnw, and σpn, which enter the boundary conditions
5.5 and 5.6. Because we are dealing with a linear boundary
problem, its solution inside the particle, Φp, and inside
the nonpolar fluid, Φn, can be presented as a superposition
of two functions, Φæ and Φσ, which satisfy the boundary
conditions shown in parts a and b of Figures 6, respectively:

where ∆Φ ) Φpw - Φnw. All the functions, Φp
æ, Φn

æ, Φp
σ, and

Φn
σ, obey the Laplace equation, ∇2Φ ) 0. The boundary

conditions for the functions Φp
æ and Φn

æ, which are
illustrated in Figure 6a, are

The boundary conditions for Φp
σ and Φn

σ, which are

illustrated in Figure 6b, are

In view of eqs 4.1 and 5.4, the electric force F(n), acting on
the particle from the nonpolar fluid, can be expressed in
the form

where dS̃ is a dimensionless surface element, scaled with
rc

2. Substituting eqs 5.7 and 5.8 into eq 5.13, we derive

where ∆æ ) (kT/e)∆Φ; the dimensionless functions fææ,
fæσ, and fσσ depend only on the central angle, R, and on the
ratio εp/εn. The latter three functions are defined as follows:

Because the electric potentials satisfy the Laplace equa-
tion, ∇2Φ ) 0, in the nonpolar and particle phases, one
can prove that ∇‚T ) 0, where T is any of the tensors in
the brackets in eqs 5.15-5.17. Then, with the help of the
Gauss-Ostrogradskytheorem,wecanrepresenteqs5.15-
5.17 as integrals over the water-nonpolar fluid interface,
which in first approximation is considered to be flat:

We have introduced the dimensionless coordinates r̃ )
r/rc and z̃ ) z/rc. Equation 5.18 indicates that the

Figure 6. Two auxiliary boundary problems: (a) The functions
Φp

æ and Φn
æ satisfy the boundary condition Φæ ) 1 at the

particle-water interface, while the surface charge is σ ) 0 at
the particle-nonpolar fluid interface. (b) The functions Φp

σ and
Φn

σ correspond to a nonzero surface charge at the particle-
nonpolar fluid interface, σ ) σpn, while the potential Φσ is zero
at the particle-water interface. In both cases, the potential is
zero at the particle-nonpolar fluid interface.

Φp
σ ) 0 at Spw Φn

σ ) 0 at Snw (5.11)

(εp

εn
∇̃Φp

σ - ∇̃Φn
σ)‚n ) 1 Φp

σ ) Φn
σ at Spn (5.12)

F(n) )
εn

4π(kT
e )2∫Spn[∇Φ̃n∇Φ̃n - 1

2
(∇Φ̃n)2U]‚n dS̃ (5.13)

F(n) ) -[ εn

4π
(∆æ)2 fææ + 2rcσpn(∆æ)fæσ + 4π

εn
rc

2σpn
2 fσσ]ez

(5.14)

fææ ) -ez‚∫Spn[∇̃Φn
æ∇̃Φn

æ - 1
2

(∇̃Φn
æ)2U]‚n dS̃ (5.15)

fæσ ) - 1
2
ez‚∫Spn

[∇̃Φn
æ∇̃Φn

σ + ∇̃Φn
σ∇̃Φn

æ -

(∇̃Φn
æ‚∇̃Φn

σ)U]‚n dS̃ (5.16)

fσσ ) -ez‚∫Spn[∇̃Φn
σ∇̃Φn

σ - 1
2

(∇̃Φn
σ)2U]‚n dS̃ (5.17)

fææ ) π∫1

∞(∂Φn
æ

∂z̃ )2

r̃ dr̃ fæσ ) π∫1

∞∂Φn
æ

∂z̃
∂Φn

σ

∂z̃
r̃ dr̃

fσσ ) π∫1

∞(∂Φn
σ

∂z̃ )2

r̃ dr̃ (5.18)

-εw

∂æw

∂n
) 4πσpw -εw

∂æw

∂n
) 4πσnw (κR . 1) (5.2)

sinh(Φpw

2 ) )
κσpw

4eC
sinh(Φnw

2 ) )
κσnw

4eC
(5.3)

Φw ≡ eæw

kT
Φp ≡ eæp

kT
Φn ≡ eæn

kT
(5.4)

Φp ) Φpw ) constant at Spw and

Φn ) Φnw ) constant at Snw (5.5)

(εp

εn
∇̃Φp - ∇̃Φn)‚n ) 4πe

kTεn
rcσpn (5.6)

Φp ≡ Φnw + (∆Φ)Φp
æ + 4πe

kTεn
rcσpnΦp

σ (5.7)

Φn ≡ Φnw + (∆Φ)Φn
æ + 4πe

kTεn
rcσpnΦn

σ (5.8)

Φp
æ ) 1 at Swp Φn

æ ) 0 at Snw (5.9)

(εp

εn
∇̃Φp

æ - ∇̃Φn
æ)‚n ) 0 Φp

æ ) Φn
æ at Spn (5.10)
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dimensionless functions fææ, fæσ, and fσσ are always positive.
Let us substitute typical parameter values to estimate
the relative importance of the terms in eq 5.14: εn ) 2,
rc ) 200 µm, σpn ) 80 µC/m2 (2000 nm2 per charge), and
∆æ ) 60 mV. (Note that ∆æ in eq 5.14 must be substituted
in CGSE units; i.e., the value of ∆æ in volts must be divided
by 300.) Thus, we estimate the magnitude of the terms in
eq 5.14:

The term with fσσ is the leading term in F(n). Finally,
keeping only the last term in eq 5.14 and substituting fσσ
) (1 - cos R) f(R, εp/εn)/sin2 R, we obtain eq 3.4.

5.2. Numerical Solution. As already mentioned, the
dimensionless potentials Φp

æ, Φn
æ, Φp

σ, and Φn
σ obey the

Laplace equation:

To solve numerically the above equations, along with the
respective boundary conditions (Figure 6), it is convenient
to introduce the toroidal coordinates x1 and x2 (Figure 7):

In toroidal coordinates, the Laplace operator, ∇2, acquires
the form

The boundary problem A, corresponding to Figure 6a, is
to solve the Laplace equations for Φp

æ and Φn
æ, along with

the boundary conditions

The boundary problem B, corresponding to Figure 6b, is
to solve the Laplace equations for Φp

σ and Φn
σ, along with

the boundary conditions

To obtain numerical solution of the problem, we divided
the rectangular area [0, 1] × [R, π + R], corresponding to
the interior of the spherical particle, on 101 × 101
subdomains with steps ∆x1 ) 0.01 and ∆x2p ) 0.01π. The
domain [0, 1] × [π + R, 2π], corresponding to the nonpolar
phase, is also divided on 101 × 101 subdomains with
uniform steps ∆x1 ) 0.01 and ∆x2n ) 0.01(π - R). The
respective derivatives in the Laplace operator, eq 5.22,
are interpolated using second order difference schemes:

For the first derivatives in the boundary conditions, the
second order backward and forward interpolation formulas
are used; that is,

with precision (∆x2)2. As a result, each of the two boundary
problems (A and B) is reduced to a linear system of 20 301
equations for the values of the functions in each numerical
node. The matrix of the system is spear. In our computer
program, this matrix is solved exactly (no iterations or
approximations) with the help of an upgraded version of
the method for solving “band diagonal systems of equa-
tions”; see p 43 in ref 39.

The numerical solution gives the values of the functions
Φp

æ, Φn
æ, Φp

σ, and Φn
σ. Further, the force coefficients in eq

(39) Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B.
P. Numerical Recipes in FORTRAN: The Art of Scientific Computing,
2nd ed.; Cambridge University Press: Cambridge, U.K., 1992.

Figure 7. Orthogonal toroidal coordinates used in the nu-
merical solution. z̃ is the axis of revolution. The coordinate
surfaces x1 ) constant are toroids, while the surfaces x2 )
constant are spheres. In particular, the particle-water and
particle-nonpolar fluid boundaries correspond to x2 ) R and
x2 ) π + R (sin R ) rc/R); the water-nonpolar fluid interface
corresponds to x2 ) 2π; the line of three-phase contact at the
particle surface is at x1 ) 1.

F(n) ) [6.37 × 10-9fææ + 1.92 × 10-4fæσ + 1.45fσσ]
(dynes) (5.19)

∇2Φp
æ ) 0 ∇2Φn

æ ) 0 ∇2Φp
σ ) 0 ∇2Φn

σ ) 0 (5.20)

r̃ ≡ 2x1

h
z̃ ≡ x1

2 - 1
h

sin x2

h ≡ (x1
2 + 1) + (x1

2 - 1) cos x2 (5.21)

∇2Φ ) h2

4
∂

2Φ
∂x1

2
+ h2

(x1
2 - 1)2

∂
2Φ

∂x2
2

+

( h2

4x1
+

x1h

x1
2 - 1) ∂Φ

∂x1
+

h sin x2

x1
2 - 1

∂Φ
∂x2

(5.22)

εp

εn

∂Φp
æ

∂x2
-

∂Φn
æ

∂x2
) 0 at x2 ) π + R (5.23)

Φp
æ ) 1 at x2 ) R Φn

æ ) 0 at x2 ) 2π (5.24)

εp

εn

∂Φp
σ

∂x2
-

∂Φn
σ

∂x2
)

1 - x1
2

(x1
2 + 1) - (x1

2 - 1) cos R
at

x2 ) π + R (5.25)

Φp
σ ) 0 at x2 ) R Φn

σ ) 0 at x2 ) 2π (5.26)

∂Φi,j

∂x1
)

Φi+1,j - Φi-1,j

2∆x1
and

∂
2Φi,j

∂x1
2

)
Φi+1,j - 2Φi,j + Φi-1,j

(∆x1)
2

with precision (∆x1)
2

∂Φi,j

∂x2
)

Φi,j+1 - Φi,j-1

2∆x2
and

∂
2Φi,j

∂x2
2

)
Φi,j+1 - 2Φi,j + Φi,j-1

(∆x2)
2

with precision (∆x2)
2

∂Φi,j

∂x2
)

3Φi,j - 4Φi,j-1 + Φi,j-2

2∆x2
and

∂Φi,j

∂x2
)

-3Φi,j + 4Φi,j+1 - Φi,j+2

2∆x2
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5.14 are calculated by using a version of eq 5.18 in toroidal
coordinates:

For the first derivatives in eqs 5.27 and 5.28, we again
apply the second order backward interpolation formula
(see above). The integrals are taken numerically, using
the standard Simpson rule (five order precision), as given
in ref 39, p 126. This scheme does not give an additional
error because it is of higher order than the numerical
scheme for solving the boundary problems A and B. In
particular, from the computed fσσ value, we determine the
function f in eqs 3.4 and 3.6: f ) (sin R)2fσσ/(1 - cos R).

5.3. Numerical Procedure for Calculations in the
Case of KR e 1. In this case, the procedure is similar to
that described above (for κR . 1). The main difference is
that now the boundary problem for the electric field in the
water phase cannot be separated from those in the other
two phases (particle and nonpolar fluid). As a result, in
the water phase, we have additionally 101 × 101 grid
points, which increases the number of equations up to
30 401. The resulting linear system of equations can be
solved exactly, by means of the same numerical method;
see the text after eq 5.26.

6. Electric Force at the Water-Nonpolar Fluid
Interface

6.1. Computation of the Meniscus Profile. The
electric-field-induced pressure difference across the water-
nonpolar fluid interface,pel, isdeterminedbytherespective
Maxwell stress:

Note that, in the two boundary problems (Figure 6), the
potential along the water-nonpolar fluid interface is
constant, and therefore, only the z-derivative appears in
eq 6.1. As in eq 5.19, the main contribution to ∆pel is that
originating from the nonzero surface charge, σpn. For this
reason, in eq 6.1, we keep only the leading term,
proportional to σpn

2 . In view of Figure 7, the oil-water
(air-water) interface is described by x2 ) 2π at varying
x1 values; in this case, r̃ ) 1/x1.

In toroidal coordinates, the Laplace equation of capil-
larity, eq 3.10, acquires the form

where z ) ú(x1) is the deviation of the meniscus profile
from planarity, the last term in eq 6.2 accounts for the
gravitational hydrostatic pressure, ú∞ is the meniscus level
at infinity, g is the acceleration due to gravity, and Fw and
Fn are the mass densities of the respective phases. It turns
out that, in the vicinity of the particle, the gravitational

hydrostatic term in eq 6.2 is completely negligible and
can be omitted. The theoretical curve in the inset in Figure
2 is computed by numerical solution of eq 6.2, at known
pel values, given by eq 6.1. In particular, eq 6.2 is
represented as a system of two first order differential
equations (for the function and its derivative), with known
boundary conditions at the contact line. The latter system
is solved numerically using the second order Runge-Kutta
midpoint method given on p 704 in ref 39.

6.2. Analytical Expression for pel. The numerical
solution of the boundary problem along with eq 6.1 allowed
us to calculate pel(r) curves for various parameter values.
For all of them, the double logarithmic plots of pel versus
r represent parallel straight lines of slope -6 in the
asymptotic case r f ∞. Consequently, pel ∝ 1/r6 for r f ∞,
as estimated in ref 8.

A useful relationship follows from the fact that at
equilibrium the pressure tensor obeys the relationship
∇‚P ) 0. For the nonpolar fluid, one can write

Consequently,

Likewise, for the water phase one can deduce

Summing up eqs 6.4 and 6.5, we obtain

where F(el) ) F(n) + F(w) and pel ) ez‚[P(n) - P(w)]‚ez.
Having in mind the asymptotic behavior of pel(r), we

search this function in the form

where A1 is a constant. Indeed, for r f ∞, eq 6.7 gives pel
∝ 1/r6. The unknown multiplier A1 is determined by
substituting eq 6.7 into eq 6.6. In this way, we get

where λ ) (3 + µ)(2 + µ)(1 + µ)µ/24. Thus, as a result, we
obtain eq 3.7. We have used the integral40,41

(in our case, η ) 4 + µ). Here, Β is the beta function; see,
for example, refs 31, 41, and 42.

(40) Prudnikov, A. P.; Brychkov, Yu. A.; Marichev, O. I. Integrals
and Series, Vol. 1: Elementary Functions; Gordon and Breach: New
York, 1986.

(41) Gradshteyn, I. S.; Ryzhik, I. M. Table of Integrals, Series, and
Products; 6th ed.; Academic Press: London, 2000.

(42) Korn, G. A.; Korn, T. M. Mathematical Handbook; McGraw-
Hill: New York, 1968.

fææ ) 4π∫0

1(∂Φn
æ

∂x2
)2 x1

(1 - x1
2)2

dx1

fæσ ) 4π∫0

1∂Φn
æ

∂x2

∂Φn
σ

∂x2

x1

(1 - x1
2)2

dx1 (5.27)

fσσ ) 4π∫0

1(∂Φn
σ

∂x2
)2 x1

(1 - x1
2)2

dx1 (5.28)

pel ) Pzz
(n) ) -

εn

8π(∂æn

∂z )2

≈ -
2πσpn

2

εn [∂Φn
σ

∂x2

2x1
2

x1
2 - 1]

x2 ) 2π

2

(6.1)

γ
rc

2( 1
x1

4
∂

2ú
∂x1

2
- 3

x1
5

∂ú
∂x1) ) pel + (Fw - Fn)g(ú - ú∞) (6.2)

∫Vn
dV ∇‚P(n) ) ∫Spn

ds (-n)‚P(n) + ∫Snw
ds (-ez)‚P

(n)

(6.3)

-ezF
(n) ≡ ∫Spn

ds (-n)‚P(n) ) ∫Snw
ds ez‚P

(n) (6.4)

-ezF
(w) ≡ ∫Spw

ds (-n)‚P(w) ) ∫Snw
ds (-ez)‚P

(w) (6.5)

F(el) ) -2π∫rc

∞
dr rpel(r) (6.6)

pel(r) )
A1

(r - rc)
1-µr5+µ

(6.7)

A1 ) -
2λrc

4F(el)

π
(6.8)

∫rc

∞
r-η(r - rc)

µ-1 dr )

rc
µ-η Β(η - µ, µ) (η > µ > 0) (6.9)
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6.3. Test of the Analytical Expression. Finally, to
test eq 3.7 against the exact numerical solution, we
represent eq 6.1 in the form

In addition, from eqs 5.14-5.19, we get

Having in mind that in our case F(el) ≈ F(n), we define the
dimensionless pel variable as follows:

It turns out that the dimensionless electric pressure, p̃el,
as defined by eq 6.12, depends on a single parameter, µ:
p̃el ) p̃el(r, µ), where µ is the same as that in eq 6.7. In its
own turn, µ depends on the angle θ and the ratio εp/εn but
is independent of σpn and R.

Figure 8 illustrates the fit of numerical data for p̃el(r)
with the analytical formula, eq 3.7. The three curves
correspond to different values of the contact angle θ (60,
90, and 120°), while εp/εn ) 2 is fixed. The symbols are
calculated points, obtained by solving numerically the
electrostatic boundary problem and using eqs 6.10 and
6.11. (The density of the computed points is greater than
that shown in Figure 8, but we have plotted only a part
of them to avoid overloading of the graph.) The continuous
lines represent the best fits of the numerical data with eq
3.7, where µ has been determined as an adjustable
parameter. Its values, corresponding to the fits, are given
in the figure. One sees that the semiempirical eq 3.7 agrees
very well with the numerical solution. Additional infor-
mation about the computation of µ ) µ(θ, εp/εn) can be
found in the Appendix.

7. Summary and Conclusions
The reported experimental results (Tables 1 and 2,

Figures 2 and 3) show that the interfacial deformation

around glass particles (R ) 200-300 µm), situated at an
oil-water (or air-water) interface, is dominated by the
electrodipping force, F(el), rather than by gravity. The
experimentally determined F(el) value (see eq 2.5 and the
tables) does not depend on the NaCl concentration in the
water phase. F(el) is greater for an oil-water interface
than for an air-water interface.

Under our experimental conditions,F(el) is due to charges
at the particle-oil (instead of particle-water) boundary.
In other words, the integral electric force at the particle-
oil interface, F(n), is much greater than the analogous force
at the particle-water interface, F(w).

Theoretical expressions for F(w) and F(n) are derived (eqs
3.2 and 3.4), which indicate that each of these forces pushes
the particle into water. From the experimentally deter-
mined F(n) value, which is practically equal to F(el), we
calculated the surface charge density at the particle-oil
(particle-air) interface, σpn; see Tables 1 and 2. The
obtained values of σpn are constant (independent of the
specific experiment) and are close to the values of σpn
independently determined for a similar system.24 On the
other hand, irrespective of the much higher charge density
at the particle-water interface, σpw . σpn, the electric
force exerted on the latter boundary is much smaller, F(w)

, F(n); see section 3.1. However, F(w) can be important for
smaller particles (50 nm < R < 1 µm); see section 3.7 and
Figure 5.

The electrostatic boundary problem is reduced to an
appropriate set of differential equations in toroidal
coordinates, which is solved numerically. This approach
enables us to compute exactly the electric forces acting on
the particle-oil and oil-water interfaces; see sections 5
and 6.

Analytical expression for the electric pressure difference
across the oil-water (air-water) interface, pel, is obtained,
eq 3.7, and tested against the exact numerical solution
(Figure 8). Knowing pel, we computed the shape of the
liquid meniscus, ú(r), using the experimental σpn value,
determined from F(el). The experimental and computed
profiles of ú(r) are in excellent agreement (inset in Figure
2), without using any adjustable parameters. In particular,
both the experimental and the calculated meniscus profile
exhibit a logarithmic dependence, ú(r) ∝ ln(r), at long
distances from the particle. This result is in conformity
with the explanation of the long-range interparticle
attraction given by Nikolaides et al.8 Deviation from the
latter dependence is observed at short distances from the
particle surface because of the effect of pel; see eqs 3.14
and 3.15. Such an effect was discussed in refs 8 and 13.
This effect leads to a short-range capillary attraction
between two particles (eqs 3.16 and 3.17).

The above conclusions are valid not only for a large
fluid interface, which is horizontal thanks to the action
of gravity, but also for a spherical emulsion drop, whose
shape is unaffected by gravity; see section 3.6. Expressions
for the energy of capillary interaction between two
particles are derived in the framework of the superposition
approximation; see eq 3.17.

The electrodipping force, and the related long-range
capillary attraction, can produce two-dimensional ag-
gregation and self-assembly of colloid particles. These
phenomena could be rather universal; they could appear
for particles, whose characteristic size can be from dozens
of nanometers to millimeters. The investigated effects
could have important implications for colloid science and
the development of new materials.7,15-20
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Figure 8. Plot of the dimensionless electric pressure, p̃el, vs
ln(r/rc). The symbols are obtained by numerical solution of the
electrostatic boundary problem, along with eqs 6.9-6.11, for
three different values of θ denoted in the figure; for all curves,
εp/εn ) 2. The continuous lines are drawn by substituting eq 3.7
into eq 6.11; µ is an adjustable parameter determined from the
best fit. The inset shows the upper left part of the curves in an
enlarged scale.
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Appendix: Computation of the Functions
f(r, Ep/En) and µ(θ, Ep/En)

To calculate F(n) and pel by means of eqs 3.4 and 3.7, one
needs to know the values of the dimensionless quantities
f(R, εp/εn) and µ(θ, εp/εn). The latter two functions are
universal in the sense that they are independent of the
particle radius, R, and of the surface electric charges and
potentials. We computed f and µ by solving numerically
the electrostatic boundary problem, as described in
sections 5 and 6. The obtained f(R) and µ(θ) curves are
plotted, respectively, in Figures 4 and 9 for seven different
values of the ratio εp/εn. Furthermore, we fitted the curves
in Figures 4 and 9 by simple polynomial regressions, whose
coefficients are given in Tables 4 and 5, respectively. The
data in these tables enable one to reproduce relatively
easily all curves in Figures 4 and 9, in both numerical and
graphic form. Next, by interpolation, one can determine
f and/or µ for a given couple of values, (R, εp/εn) or (θ, εp/εn).

We interpolated the computed f(R) curves in Figure 4
by means of the following regression:

where 10° e R e 170°. The computed coefficients b0, ... ,
b3 are listed in Table 4. For all interpolating fits, the
correlation coefficient is at least 0.999.

The values of µ are obtained from fits of numerical data,
like those in Figure 8, by means of eq 3.7. The parameter
µ accounts for the electrostatic interactions in the very
narrow vicinity of the contact line. Therefore, µ is sensitive
to the angle θ subtended by the interfaces at the contact
line. For this reason, to compute the basic numerical data
(like the points in Figure 8), we ran the computer program
by formally setting R ) θ in the boundary conditions; see
Figure 7. The obtained µ(θ) curves are shown in Figure
9. These curves can be excellently fitted (correlation
coefficient better than 0.9999) by means of the following
regression:

The computed coefficients c0, ... , c3 are listed in Table 5.
Equation A2, along with the coefficients in Table 5, is
applicable for the calculation of µ(θ, εp/εn) for all values of
θ and εp/εn, for which 0 < µ < 1. We found that, for all other
values of θ and εp/εn, for which the fit gives either µ < 0
or µ > 1, eq 3.7 does not describe well the exact computed
pel(r) curves. Consequently, as seen in Figure 9, eqs 3.7
and A2 can be used for 50° < θ < 130°, where 0 < µ < 1.
Fortunately, the latter interval of θ values covers the
practically important range of particle contact angles,
which provide the formation of stable Pickering emul-
sions.14

LA0497090

Figure 9. Plot of the universal function µ in eq 3.7 vs the angle
θ for various fixed εp/εn values denoted in the figure. For the
particle in Figure 2, we have εp/εn ) 1.95; the contact angle is
θ ) 114.9°; the corresponding value of µ is 0.690. The curves
in the figure can be reproduced using eq A2 and Table 5.

ln(f) ) b0 + b1 cos R + b2 cos2 R + b3 cos3 R (A1)

Table 4. Coefficients in eq A1 Which Allow One to
Reproduce the f(r) Curves in Figure 4

εp/εn b0 b1 b2 b3

0.125 0.3840 0.1281 -0.1309 -0.0515
0.250 0.3302 0.0319 -0.1502 -0.0707
0.500 0.2208 -0.1396 -0.1668 -0.1049
1.000 4.465 × 10-3 -0.4123 -0.1470 -0.1708
2.000 -0.3936 -0.7697 -0.0240 -0.3155
4.000a -1.0437 -1.1201 0.2672 -0.6198
8.000a -1.9633 -1.3468 0.7172 -1.1275

a At this value of εp/εn, eq A1 is applicable for 10° e R e 160°.

Table 5. Coefficients in eq A2 Which Allow One to
Reproduce the µ(θ) Curves in Figure 9

εp/εn c0 c1 c2 c3

0.125 0.4155 -0.8675 0.5818 -0.2869
0.250 0.4020 -0.8361 0.5507 -0.2711
0.500 0.3790 -0.7825 0.5428 -0.3171
1.000 0.3518 -0.7163 0.4652 -0.2676
2.000 0.3206 -0.6319 0.4022 -0.2757
4.000 0.2968 -0.5713 0.3106 -0.1982
8.000 0.2802 -0.5281 0.2404 -0.1359

µ ) c0 + c1 cos θ + c2 cos2 θ + c3 cos3 θ (A2)
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