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Abstract

We investigate the effect of surfactant on the hydrodynamic stability of a thin liquid film formed between two emulsion drops or gas
bubbles, which are moving along a narrow capillary. A ganglion (deformed drop or bubble in a pore) is covered by an adsorption monolayer
of surfactant. Due to the hydrodynamic viscous friction, the surfactant is dragged from the front part of a moving ganglion toward its rear
part. Consequently, the front and rear parts are, respectively, depleted and enriched in adsorbed surfactant. When such two ganglia move or
after another, surfactant molecules desorb from the rear part of the first ganglion and are transferred by diffusion, across the intermediate
liquid film, to the front part of the second ganglion. This leads to the appearance of a diffusion-driven hydrodynamic instability, which
may cause coalescence of the two neighboring drops or bubbles. The coalescence occurs through a dimple-like perturbation in the film
thickness, which is due to a local lowering in the pressure caused by a faster circulation of the liquid inside the film, which in turn is
engendered by the accelerated surfactant diffusion across the thinner parts of the film. The developed theory predicts the critical distance
between the two ganglia, which corresponds to the onset of coalescence, and its dependence on the radius of the capillary channel, velocity ¢
motion, surfactant concentration and type of the operative surface forces. The results can be useful for a better understanding and quantitative
description of the processes accompanying the flow of emulsions and foams though porous media.
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1. Introduction ness of the liquid film intervening between the solid wall
and the fluid particle, have been investigated in a number of

The motion of emulsion drops or foam bubbles through theore.tical and experimental studies [13,17-28]. In particu-
cylindrical capillaries and porous media play an important lar, Fairbrother and Stubbs [17] and Bretherton [18] showed
role in processes such as enhanced oil recovery and aquifef1at the thickness of the film between a bubble and the cap-
remediation [1-5], as well as in membrane emulsification illary wall is related to the capillary radius and the caplllary_
[6,7] and emulsion filtration [8-12]. Sometimes, the trans- NuMper. Chen [21], Schwartz et al. [22], and Ratulowski
port of drops/bubbles along the pores leads to their splitting @nd Chang [24] further examined the bubble-wall film thick-
to smaller fluid particles [6,13]. In other cases, the collisions "€SS- Experiments with trains of bubbles have been carried
of the drops/bubbles in channels lead to their coalescence?Ut Py Hirasaki and Lawson [20] and by Ratulowski and
and to the formation of larger particles [9,14]. The knowl- Chang [23]. Concerning the film between two neighboring

edge about the two-phase flow in porous media can be usedPubbles, the latter authors have calculated the departure of

for the experimental modeling and computer simulation of such a film from a plane perpendicular to the capillary wall
the respective processes [15,16] when a train of bubbles is in motion [23]. Joye et al. [29]

The shape of a drop or bubble moving along a capillary examined the asymmetric thinning of the film between two

tube, the variation of the applied pressure, and the thick- bubbles and derived a criterion for the transition from asym-
metric to symmetric regime of film drainage.

An important role is played by the surfactant, which is
* Corresponding author. adsorbed at the surfaces of the drops/bubbles and stabilizes
E-mail address: pk@Icpe.uni-sofia.bg (P.A. Kralchevsky). the respective emulsions and foams [29-33]. Ginley and
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7 i d linear instability analysis and derive a full set of equations
( V. OO X )(’ L DG (a) which describe the perturbations of the basic physical pa-
%7 7 rameters. In Section 5, we deduce a characteristic equation

determining the value of the “critical” distance between two
fluid particles, which corresponds to the stability—instability
transition. Finally, in Section 6, we present numerical results
and discussion about the influence of various factors (such
as the velocity of drop/bubble motion, the radius of the cap-
illary channel, the surfactant concentration, and the action of
surface forces) on the stability—instability transition.

(b) 2. Physical background

As a rule, the surfaces of the drops in an emulsion, or
the bubbles in a foam, are covered by adsorption monolay-
ers of surfactant molecules, which stabilize the respective
dispersion. For the sake of brevity, following Ref. [1] we
will call “ganglion” a deformed emulsion drop or gas bub-
Fig. 1. (a) A train of drops (or bubbles) moving with a constant veloeity ble ".1 a pore. As mentioned qbove’ When such a gang“qn IS
along a cylindrical tubeL. is the length of the cylindrical film of thickness mov!ng thro,“g,h a_ narrow cap|!lary (Fig. 1), the viscous fric-
d intervening between the drop (bubble) and the wall. (b) Sketch of the tion in the liquid film, intervening between the drop/bubble
distribution of surfactant moleculegi; and jp; are the fluxes of surfactant ~ and the inner capillary’s wall, influences the surface density
along the surfaces of the front and rear drgy;is the bulk diffusion flux of (adsorption) ", of the surfactant molecules in the adsorbed
surfactant across the film (of radi® separating the two drops (bubbles). monolayer. Roughly speaking, in the front part of the gan-

glion, the surface density decreases with, whereas in the
Radke [34] examined the influence of soluble surfactants rear part it increases with/"(a more detailed description is
on the flow oflong bubbles through a cylindrical capillary. given in Section 3).
Park [35] described theoretically the effect of surfactants To estimatesI”, let us consider the liquid film be-
on the motion of dinite bubble in a capillary. In particu- tween the ganglion and the solid wall. As demonstrated in
lar, it was established [35] that due to the viscous friction, Refs. [25,35], this wetting film is somewhat thicker in its
adsorbed surfactantis accumulated at the rear end of the bubfront part and thinner in its rear part. Here, for the sake
ble/drop, whereas its front surface is depleted of surfactantof simplicity, we denote byl the average thickness of the
(Fig. 1). The respective pattern of fluid motion, accompanied wetting film, that is the mean distance between the ganglion
with a surface-tension gradient, to some extent resembles thesurface and the capillary wall. Under steady-state conditions,

process of thermocapillary migration [36,37]. the stress balance at the ganglion surface reads [39]
In the present paper, we make the next step by consider- -
ing a train of bubbles/drops, which is moving steadily along P gvo, (1)

a cylindrical capillary. In such a case, one may expect that ] o ] o ]
surfactant molecules (i) desorb from the rear end of the front Whereo is the respective interfacial tensiom;is the vis-
drop, (ii) cross the gap between the two drops by diffu- cosity of the continuous (film) phase; thecoordinate is

sion, and (iii) adsorb at the front surface of the second drop. dirécted along the axis of the capillary (Fig. j;is the ve-
As shown in Ref. [38], such a pattern of surfactant trans- locity of the ganglion surface relative to the capillary wall. In

fer across a liquid film gives rise to an instability, which the case of a liquid drop (rather than a bubble), Eq. (1) con-
leads to film rupturing and coalescence of the two neigh- tains an additional term, accounting for the viscous friction

boring drops/bubbles. Our aim in this paper is to investigate INSide the drop; however, this term scales withk. <« 1
theoretically the conditions for the appearance of a stability- (R is the mnerlradlus of the capillary), and can be omitted.
instability transition driven by a diffusion transfer of surfac- 1€ left-hand side of Eq. (1) can be transformed as
tant between neighboring drops/bubbles. do  do oI’ ainr

The paper is structured as follows. In Section 2, we 3; ~ 37 9z % 9z ° (2)
present the physical background of the investigated process,nare denotes surfactant adsorption and
and identify the factors which govern the difference between
the surfactant adsorptions at the front and rear surface of ag c=— Fa_“ 3)
fluid particle moving along a capillary tube. Section 3 de- or

scribes the stationary contact region (liquid film) between is the surface dilatational (Gibbs) elasticity of the surfactant
two neighboring fluid particles. In Section 4, we apply a adsorption monolayer. Combining Egs. (1) and (2), and in-
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tegrating, we get wherev, andv, are the velocity components along the re-
spective axes. A double integration of Eq. (7) yields
1nv0
28F=—I»~1 1—exp(——L) , 4) P
|: Egd vrzi(z—h)—p—i-iul-i- 1-2 u, )
2n ar h h

wherel; and I are the values of the surfactant adsorption
at the right and left surfaces of the film between two drops
(see Fig. 1b)L is the length of the wetting film along the
capillary axis (Fig. 1a). Taking typical parameter valugs;

1 mPas,L =10 um,vg = 1 mny/s, Eg = 10 mN/m, and

d =100 nm, we obtain

whereu1 anduy are the values of,, respectively, at the
right and left film surfaces. Hereafter, we will use the in-
dices 1 and 2 to denote quantities related, respectively, to the
right and left film surfaces (Fig. 1b). Under steady-state con-
ditions, the distance between the two drops does not change,
and consequently

102
Fod = 1072 () Vg |z=h = v;|;=0 = 0. (10)
WhennuoL /(Egd) is a small parameter, Eq. (4) can be lin- Next, we substitute Eqg. (9) into the continuity equation (8),
earized and we get integrate with respect te, and apply Eq. (10); the result
L reads
V|
ST~ [0 ®  p2g
2Eqgd — — =u1 + uo. (11)
6n or

whereT, is the undisturbed (equilibrium) value of the sur-
factant adsorption at the surface of the fluid particle. Equa- 3.2, Coupling of diffusion and convection
tion (6) shows the dependence&f on the basic physical - ping

parameters. In the case of drops, we assume that the surfactant is sol-

¢ NOV\.” ftt) us fo(cjus o% att)tk(:.lntlc_)n t?]t trt1e _fllmA(gapt) t(;etw?.en uble only in the continuous (film) phase, but not in the drop
WO Neighboring drops/bubbies in the train. AS noted eartier, phase. Moreover, we assume that the surfactant is nonionic,
the difference between the surfactant concentrations at the

N ;  this film i ise o a diffusion t of and its bulk concentration is below the critical micelle con-
WO surfaces ot this Tim gives nse 1o a aifiusion ransport ot .o yation. The “bulk” diffusion problem, which describes
surfactant from the right film surface to the left one (Fig. 1b).

For that in the fi b q dent the distribution of surfactant molecules in the film interior,
or that reason, In fne |m.zon&F ecomes dependenton i pe solved under the following assumptions [32,33,40]:
the radial coordinate;. This dependence, and the related

hvdrod il dered in th t secti (i) the Peclet number is small, and consequently, the convec-
ydrodynamic fiuxes, are consideredin the NextSeCton. e terms in the diffusion equation are negligible; (ii) the de-

viations from equilibrium of the surfactant adsorptibrare
small, see Egs. (5) and (6); and (iii) the adsorption occurs un-
der diffusion control. As demonstrated in Appendix A, under
these assumptions, the surfactant concentrationy), is

a linear function ot

3. Thefilm between two drops (bubbles)
3.1. The basic (nonperturbed) state of the film

We consider a plane-parallel film of constant thickness, ¢(z, r) = co; + (c15 — 625)57 (12)
h, and radius,R, situated between two ganglia (drops or h
bubbles) in the train (Fig. 1b). As before, we will use a cylin- wherecy,(r) = ¢(r,z = h) andcps(r) = ¢(r, z = 0) are the
drical coordinate syster®rz, whose origin is placed in the  subsurface concentrations at the right and left film surfaces.
center of the left film surface (Fig. 1b). The left and right Inaccordance with the assumption for small deviations from
film surfaces correspond tp= 0 andz = &, respectively. equilibrium, we present the surfactant concentration and ad-
Typically, the film radius,R, is large compared to the film  sorptions at the two film surfaces,
thickness/:. In addition, we assume that the motion of the
train of ganglia is slow enough to ensure a small value o
the Reynolds number. Therefore, we can use the lubrica-I1 =1, + 61 (r), nn="rI,—58I), (13)
tion approximation to solve the hydrodynamic problem. In
this approximation, the pressugein the continuous phase
depends only on the radial coordinate,and the timey:
p = p(r,1). Then the Navier—Stokes and continuity equa-
tions can be expressed in the form [30,39]

fc=ce+b‘c,

where the subscripte® denotes the equilibrium values of
the respective quantities afidymbolizes a small increment.
The fact that the deviations of adsorption from equilibrium
at the two film surfaces have the same magnitude, but the op-
posite signs, stems from the presumption for a steady-state

op 92v, regime of drop/bubble motion. Under such regime, the in-
ar - 120 (7 coming flux of surfactant at the right film surface must be
19 v, equal to the outgoing flux at the left film surface. In other
S v+ i 0, (8) words, ji, = — jos; atr = R, see Fig. 1b and Appendix A for
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the proof. Having in mind thaty, = ¢, + 8¢y, c2s = ¢, — 8¢,
andsI” = h,d8cy, wheredc, is the increment of the sub-
surface concentration ang, = (01"/dc). is the so called
adsorption length, we bring Eq. (12) into the form

§I(r)

(25 - 1).
he \“h

Under stationary conditions, the linearized balance of sur-
factant at the two film surfaces reads [30,40]

c(z,r)=ce+ (14)

10 06" d

2 (rur-p, 28 ) | ==p%E atz=h,  (15)
ror or 9z

10 06" 0

=2 (ruz+ 0,25 ) | = D% atz=o, (16)
ror or 0z

whereD and Dy are the coefficients of bulk and surface dif-
fusion. The boundary condition at the periphery of the right
film surface (Fig. 1b) is

= Tmax=1,+8(R) atr =R, (17)

where, for the sake of an estimatd;(R) can be identi-
fied with 6" in Eqg. (6). Next, we substitute Eq. (14) into
Egs. (15) and (16), and sum up the latter two equations; thus,
we obtain

Ul =—uz2=—Uu. (18)

The comparison of Egs. (11) and (18) shows that in the ba-
sic (nonperturbed) state we ha¥g/dr = 0. Then, Eq. (9),
expressing the radial component of velocity, reduces to

Z
v = (1— 2E>u

(19)

To close the system of equations, we have to write the bound-

ary condition for tangential stress balance at the film surfaces
[30,40],

vy do Eg oI’
& 0z or I, or ‘ (20)

dv, do  Egdél’
Tor Tar T ar O (21)

where the Gibbs elasticity refers to the equilibrium state; see
Eq. (3). In Egs. (20) and (21), the effect of surface viscosity
is neglected, insofar as it is usually very small compared to
the effect of surface elasticity [32,41]. Substituting Eq. (19)

into Eq. (20) or (21), one deduces

hEg 9(8T)
u = .

2nl, or
Finally, having in mind that;y = —u» = —u, we substitute
Egs. (14) and (22) into Eq. (15) and obtain a second or-

der differential equation for the deviatio®y", of adsorption
from equilibrium,

10 9(8IN)
——|r
ror ar

(22)

}—q%rzq (23)
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where
M
" 3h2+ hsh’
The parameters andhg, related the coefficients of bulk and
surface diffusion, are defined as follows [31,40]:

_ ﬂ he = 6Ds1

haEG’ ' Eg

The solution of Eq. (23), along with the boundary condition,
Eq. (17), reads

q (24)

(25)

(26)

Equation (26) describes the variation of surfactant adsorp-
tion throughout the right-hand side surface of the film
(Fig. 1b): 8I" is maximal at the film periphery, where
8I'(R) = I'max — I'», while it is minimal in the center of
the film: §I"(0) = 8I'(R)/Io(g R). The variation of adsorp-
tion through the left-hand side film surface is just the mirror
image: the variatiodI" has to be taken with the negative
sign there.

3.3. Estimates and numerical examples

To estimategR, we use data for the nonionic surfac-
tant Triton X-100 from Ref. [42]. The equilibrium sur-
face tension isothermg = o(c), of this surfactant at a
dodecane—water interface is fitted by means of the Langmuir
model [43],

r
I'oo—T

whereoy is the surface tension of pure watdf, is an ad-
sorption parameter anfly, is the maximum possible ad-
sorption. The parameters of the model, determined from
the best fit, are as follows [42]K = 0.132 n?/pmol
and I's, = 1.75 umoymZ. In addition,n = 1 mPas,D =

2.6 x 1078 cm?/s [42]; for the sake of our estimate we take
D, = D; E¢ is computed using Eq. (3).

Figure 2 shows the plot af R vs ¢ computed with the
help of Egs. (24) and (25) for three values of the film radius:
R =5, 10, and 50 pum. The used parameter values for Triton
X-100 are specified after Eq. (27). One sees that in a wide
range of concentrations we hay® < 2, which means that
in this range the Bessel functides(gr) can be approximated
with a parabola:

Io(gr) ~ 1+ (qr)%/4, (28)

For the instability analysis, presented in Section 5, we will
use Eq. (28), which much simplifies the mathematical trans-
formations. In other words, we will work in the range of
surfactant concentrations, and film radii, R, for which

Eq. (28) is valid. In such a case, Egs. (26) and (22) acquire
the forms

1— —

1 )
, Kc=

e¢]

. (27

6=60+FookT|n<

r < R.

r2 r
ﬁ’ ur)=o—,

SI'(r)y=ay1+as R

(29)
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Surfactant concentration, ¢ (mM) Film radius, R (um)

Fig. 2. The argumeny R, of the modified Bessel functiorlg in Eq. (26), @

as a function of the surfactant concentratien,at fixed film thickness, 1 et\é—\__i____i“i ’ ’ ’
h =50 nm, for three different values of the film radiug, specified in - T
the figure (1 mM= 0.001 mo)dm3). The parameter values are estimated
for the nonionic surfactant Triton X-100, see the text.
1'0 1 1 1 1 - .
< s x
N 03] L I
[ o —_—
Q / r e
g 0.6 2 5 o1
2 04] L
© r
L2 \ r
‘g 0.2 ] -
> r
0.0 : : : = : } . . : . . -
0.0 0.2 04 0.6 0.8 1.0 0 10 20 30 40 50 60 70
Radial Distance, riR Film ’("b‘)"“s’ R (um)

Fig. 3. The streamlines of the flow inside the film between two drops/
bubbles (Fig. 1b), calculated with the help of Egs. (8), (19), and (29). The Fig. 4. Adsorption at the film cente8,/"(0), scaled with the adsorption
coordinates:/R = 0 andr/R = 1, correspond to the film center and periph- ~ at the film peripherysI"(R), plotted vs the film radiusR: (a) for con-

ery, respectively. stant surfactant (Triton X-100) concentration at two fixed values of the film
thickness:; (b) for constant: = 20 nm at three different fixed surfactant
concentrations.
8T (R) (qR)?
ap = 5> az = ] ai, i . . . .
1+(qR/2) of film thickness. In other words, the adsorption gradient is
__hEgaz greater for thinner films with larger radii, at higher surfactant

(30) concentrations. For example Jat 20 nm,c = 0.1 mM, and

R =35 um, 81" in the film center is about 10 times lower
than at the film periphery.

nleR
Figure 3 illustrates the streamlines of the flow inside the
film between two drops/bubbles (Fig. 1b), calculated with
the help of Egs. (8), (19), and (29). As could be expected, at
the surface of the front ganglion & #) the velocity is di-

rected from the periphery = R) toward the centefr = 0), 4. Perturbations: linear stability analysis
whereas at the surface of the rear ganglioa- 0), the ve- . _
locity is directed from the center toward the periphery. 4.1. Connections between the perturbations of

Figure 4 shows the variation of the adsorption at the film various parameters

centerg " (0), scaled with the respective quantity at the film

periphery I (R). To specify the material parameters, such Due to the inevitable thermal fluctuations or mechanical

asl,, Eg, ha, D, etc., we have used the same set of data perturbations, the basic stationary state of the film between
for Triton X-100, as for Fig. 2. Figure 4 demonstrates that two moving ganglia can be disturbed. Depending on the
8I'(0)/6I"'(R) decreases (the nonuniformity of the surfac- specific conditions (surfactant concentration, film thickness,
tant interfacial distribution increases) with the rise of film velocity of motion), the perturbation either could be sup-

radius and surfactant concentration, and with the decreasepressed, or could spontaneously grow until the film broke
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and the two ganglia coalesced. To describe this transitionwhere at the last step we have employed Eqgs. (8) and (10).

from stability to instability theoretically, we will apply a lin-
ear stability analysis.

We present each physical parameter as a sum of its valuey, |
in the basic state plus a small perturbation, the latter denoted

by a tilde:

v — Uy + Uy, v, = v; + U,

u1— —u+ i, up — u + o, (31)
h—h+h, — hi—h+h,

hy—h2,  p—p+p. (32)
c—c+c, F1—>F1~|—1:1,

- N+ (33)

The substitution of Egs. (31)—(33) into the hydrodynamic

equations, which represent either stress and mass balance§,V 1= pa — p — I1(h),
or kinematic relationships, leads to a full set of equations oV2?hy = p + I1(h) — pa,
determining the perturbations of the physical parameters. As

before, the subscripts 1 and 2 refer to quantities related to th
film surfaces at = & andz = 0, respectively; see Fig. 1b.
Here we outline the principles of the theoretical derivations,
while the details are given in Appendix B.

In general, we deal with 14 perturbations of physical pa-
rameters:

h, p, i1, iig, I, I, (34)

hi, ha, Elz:h, E|Z:Oa ﬁr |z:h, ﬁr |z:0, ﬁz|z:h, ﬁzlz:O- (35)

e

On the other hand, we have

3?11 351 351 ale

S T T R
Combining Egs. (40) and (41) we derive
3 oh1 10, -

- =————\(ruh 42
Uz lz=h 5 " o (ruhy) (42)
Likewise, for the other film surface we obtain
. dha , -

—0=—+ ——(ruh 4
Uele=o=—=+ -7 (ruh2) (43)

Two additional equations follow from the normal stress bal-
ances at the film surfaces, that is from the respective Laplace
equations [38,39],

(44)
(45)
wherep, is the pressure inside the drops, gni the pres-
sure in the film. For the basic state of a plane-parallel film,
we havep, — p = I1(h). By using Eq. (32) and the relation-
shipI1(h + h) ~ I[1(h) + 'k, from Eqgs. (44) and (45) we
deduce

i 22 (22 2o, (46)
r or ar

-2 9 r—ahz =0. (47)
r or ar

Six equations provide relationships between these perturba1n view of Eq. (36), taking the sum and the difference of

tions, as follows: the Navier—Stokes equation (7), the conti-

Egs. (46) and (47), we get

nuity equation (8), the two surface mass balance equations,

(15) and (16), and the two surface stress balances, Egs. (20)p~ i
and (21). We need eight additional equations to close the

system. One of them is the geometric relationship
h=hi—hy. (36)

Other equations are derived as kinematic relationships:

- - av ~
urFur=vrl,_y = Vrle=h + Urle=n + g ~l o h1 (37)

2 lz=h
Substituting Egs. (18) and (19) into Eq. (37), we derive

- - 2u ~
Ur|;=p =1 + 7}11- (38)

The latter equation shows the difference betwegn—;
andi;. Likewise, for the other film surface one can deduce

- - 2u ~
Url=0 =u2+ th. (39)
Analogous expressions can be obtainedifor
. v, ~
UZ'z:lz+ﬁl = Vzlz=h + Vzlz=n + a_Z z=hhl
. 19 ~
= VUzlz=p + ——(ru)ha, (40)
ror

- o 9 [ oh
mh+ ——(r—1)=0 48
+2r or (rar) ’ (48)
- - h
1=—h2=7. (49)

According to Eq. (49), the normal stress balance implies
that the deviations in the two film surfaces from planarity
are symmetrical, that is we are dealing with the so-called
squeezing (peristaltic) mode of film-surface deformation
[44—-46]. The bulk diffusion equation,

dc
ar
provides an additional connection between the perturbations
of the physical parameters, see Appendix B. In summary,

the eight equations needed to close the system are Eqs. (36),
(38), (39), (42), (43), (48), (49), and (50).

+V-Ve=DVZ, (50)

4.2. Ingtability analysis

As we consider fluctuational capillary waves, we will
seek the perturbations of the physical parameters in the
form [41]

y=Y(r)expwr), (51)
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wherey can be every of the parametersin Egs. (34) and (35), (disjoining pressure) is completely negligible, see below.
Y (r) is the respective amplitude andl is the exponent of For this reason, when a diffusion-driven instability appears,
growth of the capillary waves. Indeed, fas > O the cap- the effect of [T plays a secondary role with respect to the
illary waves grow until break the liquid film, whereas for occurrence of the stability—instability transition. Therefore,
o < 0 the capillary waves decay with time. Therefore, the to simplify our mathematical derivations, below we will
conditionw = 0 corresponds to the stability—instability tran-  restrict our considerations to the case when only van der
sition. Our aim below is to investigate how this transition Waals forces are operative between the film surfaces; in this
depends on the physical parameters of the system. Equacase [51-53]

tion (51) implies that in transitional regimi@ = 0) we have Ay
- = —, 58
9y =0 (52) 2’ ©9
M |y—g whereAy is the Hamaker constant. (Up to here we have not

In Appendix B it is shown that the perturbations given by specified the expression fd@r.) In principle, it is possible
Eq. (35) can be eliminated and one arrives at a system oft® generalize our approach also to the other colloidal surface

six equations for the remaining six parameters, specified byforces, but'as already not.ed, the major source of instability
Eq. (34). In the latter equations, we set the time derivatives in the considered system is the surfactant transfer across the

equal to zero, in accordance with Eq. (52), to obtain a system IM. rather than the surface fclJlrcehs. Inﬁsomef of our gomplg
determining thetransitional regime. This system involves tations, to compare numerically the effect of attractive an

Eq. (48) and the following five equations (see Appendix B): repulsive surface forces, we formally worked with positive
a- (48) g q ( PP ) and negative values of iy, and found that this results only

h%ap - 53 in a slight shift of the boundary between the domains of sta-
6por 1 T u2, (53) ble and unstable films, see below.

. EG , ~ ~
hp=——(F1+ 1), (54)

e . . .
5. Characteristic equation

dun- 2n,. - EGd ,~ ~
—h+ — (1 —it2) = —— (12— 1), 55

S h+ (it — ii2) T, 8r( 2 —1I1) (55)

5 The system determining the stability—instability transi-
M(fz _ fl) iy (;,l +ii2) — Dy— (Fl + Fz) =0, (56) tion, Eqs. (48) .and (53).—(57), consists qf three algebraic apd
ar three differential equations. In Appendix C we show that it
d ~ . ars is possible to eliminate four of the unknown variables, and
rlul>+ l,up — Dg——

ror to obtain a system of two differential equations,

M-I N - 10 ( oh
=B<F1 F2—28Fh>. (57) p+Ah+—a—<x—>=0, 0<x <1, (59)

AU hha xox " ax

. . . . _ 1 Sy _
When two identical fluid particles (drops, bubbles) ap- 9 X d (_2_1’) + Nyx2i — Nzxzﬁ:|
X 0X

proach each other, and the liquid is expelled from the gap 9x |~ 9x
between them, at a given stage the hydrodynamic viscous

force counterbalances the capillary pressure, and an almost = (qR)Za—p - <i2 +x2> Naxh, (60)
plane-parallel film forms [40,47]. This film continues to dx (qR)

thin, remaining nearly planar. For film thickness< 50— where we have introduced the following dimensionless pa-
100 nm, the effect of disjoining pressurg, shows up. If rameters:

the attractive surface force (say the van der Waals interac- oR2 i

. . . . . . . _ - - r

tion) is predominantif < 0), the thinning film looses its  p=—p, h=—, x=—,

stability at a given critical thickness,,, the corrugations oh ) h R

of the film surfaces grow until the film ruptures; see, e.g., 4 = AnR (61)
Refs. [48,49]. For foam films (between two bubbles) the noht’

critical thickness is Wpically in the'rangetr = 25-50 nm o 9EGh(qR)%a1 B oh?N;

[49,50]. In.contrast, if some repulsive for.ces (electrostatic, V1= W 2= 4EGR?

steric, oscillatory—structural) are predominait > 0), the )

thinning film reaches an equilibrium thicknessg, see, e.g.,  y, — Zb_RNl, (62)
Refs. [47,51-53]. For example, the equilibrium thickness of 3n2

a foam film stabilized by an ionic surfactantisq~ 25 nm In general, the solution of Egs. (59)—(60) depends on five

for 0.01 M background ionic strength. The diffusion-driven integration constants. Two of them are determined from nat-
instability, investigated in the present paper, may lead to ural boundary conditions at the axis of rotational symme-
film rupturing at considerably greater film thicknesses, say try, x = 0; the remaining three constants are to be deter-
h > 200 nm, where the effect of the colloidal surface forces mined from the boundary conditions at the film periphery.
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To demonstrate this, we apply the Frobenius method. Owing the factors promoting thgrowth of the capillary waves are
to the rotational symmetry, the functiohéx) and p(x) can operative only inside the liquid film [40]. The boundary con-

be expanded in series including only even powers:of ditions for the derivatives of; and I in Eqg. (70) can be
o ~ transformed in terms of derivatives ¢f with the help of
= Z Hex 2, 5= Z Pk, (63) Egs. _(54) and (C.1), the latter in Appendix C. Thus, Eq. (70)
= = acquires the form
To determine the coefficientd, and P, we substitute the  _ ap 32p
expansions, Eq. (63), into Egs. (59) and (60). After some hlx=1=0, ox x—1: 0, ax2|,_, =0, (71)
transformations, we obtain the following relationships be- . o T .
tween the coefficient&, and P;: see Appendlx C for details. The substltut!on of Egs. (69).|n.to
(71) gives a system of three linear equations for determining
Po=—AHy—4H,, Py =—AH1— 16H>, (64) C1, Co, andCs,
1 2N3
Py=_ [NzPo — N1Ho+ (qR)?P1 — —Ho] (65) 3
8 (@R)? > a;jCj=0, i=123, (72)
1 j=1
Hi1=———S (P +AHy), k=23,..., (66)
! Ak + 1) where
1

Pr13

N3
= | NoPiuy—NiHp 1 — —H
4(k+2)(k+3)[ 20kl = ALk k

o o
k+2 alj=ZHk,j, azj=ZkPk,j,
2N. = =
: )sz+1}, k=0,1,.... o =0

k+2)(gR s
67)  as;=) kP (73)

The latter result has the following advantages: (i) the re- k=0

cursive relations (64)—(67) provide convenient explicit ex- Because the linear system (72) is homogeneous, the neces-
pressions for all coefficients in the expansions (63); (ii) the sary condition for existence of a nontrivial solution is
recursive relations lead to the fact thdf and P, dimin-

+(qR)?Pri2 —

ish o (k!)~2, and consequently, the series are well conver- del[“ij (h)] =0. (74)
gent; (iii) the. three constants of integratip!’l, which remain Equation (74) is the sought-for characteristic equation,
to be determined from the boundary conditions, He¢ H1, which determines the value of the film thicknesss= Ay,
and Hy. To find them, we construct three pairs of functions  ¢orresponding to the transition from stable to unstable films.
(j=1223), Following Refs. [41,49], we call this thicknes=nsitional.
) 00 Note thatin Eq. (74) we have ax33 determinant, which can
Fi(x)= Z Hk’sz", Gi(x)= Z Pk’sz", (68) be presented by a simple algebraic expression. Equation (73)
k=0 k=0 gives its elementsy;;, as infinite sums of the coefficients
where the coefficient&l ; and P ; are the coefficientsly Hy j and P ; which, in their turn, are simply expressed by
and P, calculated from Egs. (64)—(67) by settinglo, H1, the recursive fprmulas (64)—(@7), as explame.d after EqQ. (68).
Ho) = (1,0,0), (0,1,0), and(0, 0, 1), respectively, forj = Ourcomputatlons,Fiescrlbed in the next section, showed that
1, 2, and 3. Then, the general solution of Egs. (59) and (60) Ed- (74) has a maximum physical root farfor all used sets
can be presented in the form of input parameters. We did not encounter any difficulties
related to existence of several roots.
h=C1F1(x) + C2F2(x) + C3Fa(x), Some remarks about the used mathematical approach
5= C1G1(x) + C2G2(x) + C3G3(x), (69) are following. The spectral problem, Egs. (59), (60), (71),

and (72), contains differential equations withriable co-
where the constantS;, C2, andCs have to be determined  efficients, and for that reason we cannot seek a solution
from the boundary conditions at the film periphery. Gumer- « expk -r), k is the wave vector, following the conven-
man and Homsy [54] have found that the results of the insta- tional approach [41,45]. In such a case, one could apply a
bility analysis are not so sensitive to the type of the boundary numerical, finite-differences approach, which is based on a
condition imposed at the periphery of a liquid film. To spec- splitting of the interval 0< x < 1 on many subintervals.
ify this boundary condition, in our case we will require the Say, if we introduce 100 subintervals, we get a system of

perturbations to vanish at the film periphery; that s, 100 equations, which has 100 roots. As a result, it is very

B I % difficult to identify the physical root corresponding to the

h|x:1 =0, — =— =0. (70) stability—instability transition. Alternatively, one can follow
or =g Or =g an analytical approach, which is based on finding of the

The latter boundary conditions, which are currently used to spectral functions of the problem. Unfortunately, in our case
solve film-instability problems, are related to the fact that these are not the standard Bessel functions. For that reason,
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0.060 } t t t t

we found the spectral functions in the form of series expan-  o.050
sions, following the Frobenius method, see Egs. (63)—(67). %04 unstable films ?
In fact, this is an exact solution of the problem. 0.030 ‘
0.020 - Z
o =
6. Numerical results and discussions = R
5 0.01 + O// 20 T
. . B 00081 A =102y T A=10
6.1. Principles of the computational procedure © oo W % "
0.006 o A,=0 stable films
0.005 d
1. The input parameters are the surfactant concentra- 0004 i
tion, c; the film radius,R; the adsorption parameteks and 0.003 R=50pum, c¢=0.01mM
I'so; the Hamaker constant ; the bulk viscosity,;, the 0.002 : : : : :
deviation of adsorption from equilibrium at the film periph- 60 80 100 120 140
ery,8I'(R), and the surfactant diffusivity); as before, for Film thickness, h (nm)

the surface diffusivity we seb; = D. Note that Egs. (29) (@
and (30) provide a simple connection betw&dn(R) and = f
u(R), the latter being the radial surface velocity at the film
periphery:

hEG (qR/2)?
nl,R 1+ (gR/2)?

2. With the help of Egs. (3) and (27), for each givewe
calculate the surface tensian, the equilibrium adsorption,
I, the adsorption parametky = (31" /dc)., and the Gibbs
elasticity, Eg. Next, the parametefsandh; are determined
from Eq. (25).

3. For a tentative value of the film thickneds, from
Egs. (24) and (30) we calculate the parameteiand a1,
and then we findVy, N2, andN3 from Eq. (62). Further, the

0.020 - unstable films

u(R) = SI'(R). (75)

0.010 +
0.009 -
0.008 -
0.007 -

0.006 I~

0.005 4 stable films

0.004 4
R=50 um, ¢=0.01 mM

Peripheral surface velocity, u(R) (m/s)

60 80 100 120 140
Film thickness, h (nm)

coefficientsHy ; and P, ; are computed as explained after ()
Eq. (68), and the summation in Eq. (73) is carried out to de-
termineaij (h). Fig. 5. Stability—instability diagrams calculated for three different fixed val-

4. Equation (74), considered as an implicit equatiorkfor ~ ues of the Hamaker constant;, denoted in the figure; for all curves
is solved numerically, with the help of the bisection method, X =50 um,c =001 mM, and; =1 mPas. Each curve represents the

. . . boundary between the regions of stable and unstable films, vihergy,.
and thus the value of the transitional thickne’sss A, is (a) Diagram in coordinate8I"(R)/I, vs h. (b) Diagram in coordinates

determined. u(R) vs h; see Eq. (75).
6.2. Stability—instability diagrams In addition, Fig. 5b shows the same diagram, but with the
peripheral surface velocity;(R), computed by means of
In our computations, the values of the parametérs$ o, Eq. (75) from the respectiv®" (R). Each curve, represent-

and D were taken for the nonionic surfactant Triton X-100, ing the boundary between stable and unstable films/ganglia,
as specified after Eq. (27). In fact, the procedure describedcorresponds to a given fixed value of the Hamaker con-
in the previous section allowed us to calculate the transi- stant,A . The region of unstable films corresponds to larger
tional value of one among the six parametérs.l"(R), Ay, 8I'(R) andu(R), but to smaller film thicknesg; (Fig. 5).
R, ¢, andp, for given values of the remaining five parame- One sees that the boundary between the stable and unstable
ters. The numerical results shown in Figs. 5-9 illustrate the films is not so sensitive tal ;. Note that the conventional
influence of various parameters on the stability—instability theory of liquid film breakage due to the growth of capil-
transition, related to coalescence of neighboring drops (or lary waves [49,55], predicts instability only in the case of
bubbles) in the train (Fig. 1). Note that the nonperturbed attractive surface forces, that is, fdry > 0; see Eq. (77)
plane-parallel film could be either equilibrium or slowly below. Figure 5 demonstrates thatin our case instabilities ap-
thinning, see the comments after Eq. (57) above. In the latterpear also when surface forces are abgdnt = 0) and even
case, the stability—instability diagram shows at which tran- when they are repulsiveAy < 0). The weak effect of the
sitional thicknessh = hy, the thinning film will loose its colloidal surface forces is not surprising because, in our sys-
stability. tem, the diffusion transfer of surfactant across the film is the
The curves in Fig. 5a show calculated transitional val- major source of instability. Similar system was investigated
ues of the film thicknesd; = iy, as a function oBI'(R). in Ref. [38]. The respective physical mechanism of sponta-
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014 . ( )‘ . . Fig. 7. Stability—instability diagramy(R) vs R, calculated for two differ-
) ' 3 ' ' ' ent fixed values of the film thicknesis, denoted in the figure; for all curves
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3 I ' ]
Sonl  “Beet g An=0; c=0.01mM T 0.025 : : : : : : :
g / 5
3 0.08 - /- 1 E Ay=0, c=0.01mM
s é g 00201 h=100 nm, R =50 ym 1
§006,_ V/R=10um 1 =1
5 J & ]
n ¢ ‘9 0.015 + +
= 0041 : T S
i / g
Q unstable films
2002+ /) S 0010 L 1
[ S L .|
a O/o 3
0.00 i } f . i
0 50 100 150 200 8 00051 1
Film thickness, h (nm) g
(b) o stable films
) _ o . ) 0.000 : : . . . . .
Fig. 6. Stability—instability diagrams calculated for two different fixed val- 0.002 0.004 0.006 0008 0010 0012 0.014
ues of the film radiusR, denoted in the figure; for all curvesy =0, o
¢ =0.01 mM, andy = 1 mPas. Each curve represents the boundary be- Bulk viscosity, 77 (Pa.s)

tween the regions of stable and unstable films. (a) Diagram in coordinates

) ¢ h Fig. 8. Stability—instability diagramy(R) vs n, calculated forAg = 0,
8I'(R)/I. vsh. (b) Diagram in coordinates(R) vs h.

¢ =0.01 mM, 2 =100 nm, andR = 50 um. The curve represents the
boundary between the regions of stable and unstable films.

neous growth of alocal perturbational concavity in the liquid  yence, in Fig. 8 we present a stability diagram in coordinates
film is described in Section 6.3 below. _ u(R) vs 1. In this case, the boundary between the regions of
Figure 6 illustrates the effect of the film radiug, onthe  stapility and instability is nonmonotonic: at lowgithe sta-
position boundary separating the regions of stable and unstay)jjity decreases with the rise of viscosity, whereas the oppo-
ble films. One sees that the stability markedly decreases withgite trend is observed at highgrThis could be attributed to
the increase oR. This is a result from the higher adsorption  the competition of two effects: (i) the increasegfromotes
gradient for films of larger radii. Fok = 50 um, even very  the transfer of momentum from the moving adsorption lay-
thick films (2 = 200 nm) may become unstable due to the ers at the film surfaces to the film interior, which enhances

diffusion transfer of surfactant across the film. the development of instability; (ii) at sufficiently highthe
Additional results for the effect ok are shownin Fig. 7, viscous dissipation damps the hydrodynamic flows and, con-

where the stability diagram is plotted in coordinates) sequently, hinders the mutual approach of the two film sur-

Vs R. As it could be expected, the region of unstable films faces.

corresponds to the greater valuesiofnd R. The stability Last but not least, the transition from stable to unstable

of the films (and of the drops/bubbles in Fig. 1) increases film is affected also by the bulk surfactant concentratign,
with the rise of the thicknesg;, of the film between two  see Fig. 9. The increase ofleads to an increase df, and
neighboring drops/bubbles. Eg,to a decrease af andh,, and to variations ob andr;,

The film stability depends also on the viscosifyof the see Egs. (3), (25), and (27). The interplay of all aforemen-
continuous (outer) fluid phase because it influences the bulktioned effects leads to a relatively simple result: the stability
and surface hydrodynamic fluxes. To elucidate this depen-increases with the rise of surfactant concentration (Fig. 9).
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Fig. 9. Stability—instability diagramy(R) vs ¢, calculated forAy = 0,
h =40 nm,R =50 pm, andy = 1 mPas. The curve represents the bound-
ary between the regions of stable and unstable films.

One possible explanation stems from Fig. 4b, which indi-

cates that the differenced 2'(0), between the adsorptions at
the front and rear drop surface, decreases with the rise of

253

corresponding to the domain of unstable films (Fig. 5a). One
sees that the small decrease in the the film thickness at the
film center,h(0)/e = —1, leads to the appearance of a well
pronounced local minimum of deptt(0.62)/¢ ~ —4 for

D =3 x 1071% m?/s in Fig. 10a. In other words, an occa-
sional concavitys(0) = —¢, is spontaneously amplified by
the unstable system (for whi¢h< hy).

In contrast, Fig. 10c shows that there is no such ampli-
fication of the perturbation(0)/e = —1 when the system
is stable: forh = 70 nm> hy. In the latter case, the per-
turbational thicknesk(x) /s decays monotonically from 1
to 0, and a development of a local minimum in thickness at
0 < x < 1 (like that in Fig. 10a) is not observed. Moreover,
the magnitude of the fluctuational pressyséy), is negligi-
bly small in Fig. 10d as compared to Fig. 10b.

It should be also noted that the depth of the local minima
in Figs. 10a and 10b increases with the rise of the diffusion
coefficientsD and D;. Moreover, the “dimple-like” shape
of the perturbed film profile (Fig. 10a) is nontrivial: the film
thickness is minimal somewhere in the interior of the interval
0 < x < 1, rather than at the film center, where the thickness

This decrease in the concentration polarization leads to a deurns out to be maximal. This shape of the perturbed film
celeration in the diffusion transfer of surfactant across the Surfaces is accompanied by a corresponding variation in the

film, and to a suppression of the diffusion-driven instabili-
ties.

6.3. Mechanism of film destabilization

To investigate how the diffusion-driven instability devel-

perturbational pressur@g(x), which exhibits a local depres-
sion in the vicinity of the region where the perturbed film has
its minimal thickness, see Figs. 10a and 10b. We recall that
in the nonperturbed film, the pressure is unifobm/or = 0,
see Eq. (18).

The calculated curves in Fig. 10 can be interpreted in

ops, we applied a computer modeling based on numerical in-the following way. If occasionally a local perturbational de-
tegration of Egs. (59) and (60). Because our aim is to demon-crease of the thickness witf{0) = —¢ happens at the central
strate the effect of the bulk and surface diffusion, in the part of the film, it leads to an acceleration of the surfac-
computations we set the disjoining pressure equal to zero,tant diffusion across the film and of the related surfactant
that isAy = 0. To specify the state of the system, we chose transport along the film surfaces (Fig. 1b). The latter, in its

the point corresponding " (R) /I, = 0.003 in Fig. 5a. For
diffusivity valuesD = D; = 2.6, 2.8, and 30 x 108 cn?/s

own turn, accelerates the circulation of the fluid inside the
film (Fig. 3) and gives rise to a local lowering of the pres-

(all other parameters being the same as for the continuoussure somewhere in the interior of the regior:@ < 1. For
curve in Fig. 5a) we calculated the transitional thickness to & < hy the system amplifies the perturbation, the surfactant-

be, respectivelyyy = 615,62.9, and 64.3 nm.

driven fluid circulation causes a considerable local minimum

To find the shape of the perturbed film surfaces, we con- of the pressure (Fig. 10b), that forces the film surfaces to
sider an axisymmetric perturbation, described by the func- bend in (Fig. 10a), and eventually to touch each other, which

tions i(x) and p(x); see Egs. (59)-(61). Equations (59)

would lead to film rupturing. In contrast, far> Ay the sys-

and (60) are integrated numerically using the boundary con-tem does not amplify the perturbation and the film remains

ditions
_ h D
h(0) = —e, 8_ = a—p =0,
dx x=0 dx x=0
h(1)=p(1)=0, (76)

where, as beforex = 0 andx = 1 denote the film center

stable: see Fig. 10c whefk(x)/¢| < 1, and Fig. 10d where
the perturbational pressure is relatively small.

Thus, the major reason for film breakage is the surfactant
diffusion across the film, engendered by the different adsorp-
tions at the two film surfaces, which causes the circulation of
the liquid inside the film, and leads to the development of an

and periphery, respectively. One sees, that the perturbation ignstability when the film thickness is sufficiently small.

specified by a given small valug(0) = —¢, of the change

Note that the above mechanism of film breakage is es-

in thickness at the film center. Indeed, all other boundary sentially different from that proposed by Vries [56] and
conditions in Eq. (76) are trivial. Results of the integration developed in subsequent studies [48,49,57-59], where the

are shown in Fig. 10.

instability is due to the action of an attractive disjoining

Figures 10a and 10b present the calculated axisymmetricpressure/I (k). The latter mechanism provides a simple cri-

perturbations:(x) and p(x) for the caser = 50 nm< hy,

terion for rupturing of an axisymmetric film of radius see,
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Fig. 10. Dimensionless axisymmetric perturbations in film thicknégs)/e, and pressurep(x), calculated by solving numerically Egs. (59)—(60), along
with the boundary conditions, Eq. (76);is scaled withi, and p—with oh/(2R2), see Eq. (61). Plots of (&@)(x)/e and (b) 5(x) for h = 50 nm< hyr,
corresponding tanstable films. Plots of (c)i(x)/e and (d)p(x) for h =70 nm> hy, corresponding tetable films; see the text for details.

e.g., Ref. [55], uid film, intervening between the drop/bubble and the inner
oR2 /91T capillary wall, influences the surface density, of the ad-
— (—) > j12 ~5.783 (77) sorbed surfactant molecules.increases at the rear part of

o \dh the front drop, but decreases at the front part of the rear drop,
where j1 is the first zero of the Bessel functiofy. How- see Fig. 1b and Eq. (6). This “polarization” in the surface

ever, if a sufficiently strong repulsive force is present (say concentrations gives rise to a diffusion transfer of surfactant
a double-layer or steric-overlap repulsion), it can counter- molecules across the liquid film separating the two neighbor-
balance the van del’ Waa|S attraction and the film can reaching drops (bubb'es) So|ving the respective hydrodynamic
an equilibrium state. In such a case, the derivaiiVk/dh problem, we derived expressions describing the variations of
is negative, the criterion, Eq. (77), is not satisfied, and the adsorption and velocity along the drop surfaces in the zone
films should be stable. The latter prediction of the de Vries of their contact: see Egs. (22), (26), and (29), and Figs. 3
model contradicts to the experiment, insofar as liquid films, g4 4.
in which electrostatic or steric forces are operative (flms  The diffusion of surfactant across the film between two
stabilized by ionic or nonionic surfactants) also exhibitinsta- gangiia (drops, bubbles) may promote its destabilization and
pilitieg and rupture. Note that the diffusion-driven ir)stability, rupturing, which is equivalent to coalescence of the two gan-
investigated in the present paper, can lead to film break-4jia To analyze the conditions for such destabilization, we
age irrespective of whether the derivatd@/dh is positive,  gppjied a linear stability analysis (Section 4). Small pertur-
negative or zero; see Figs. 5 and 10. bations in all physical parameters were introduced and the
full set of equations is linearized. After some transforma-
tions, the problem was reduced to a set of six equations,
Egs. (48) and (53)—(57). Further transformations lead to a
When an emulsion drop or gas bubble is moving through system of two differential equations, Egs. (59) and (60).
a narrow capillary (Fig. 1a), the viscous friction in the lig- The solution of the latter system depends on three integra-

7. Summary and concluding remarks
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tion constantsHy, H1, and H> which are determined from

255

D is the diffusivity of the surfactant molecules. The bound-

a linear homogeneous system of equations, Eq. (72). Equa-ary conditions at the two film surfaces are

tion (74), which expresses the condition for existence of a
nontrivial solution to the perturbation problem, represents — =D —

a criterion for transition from stable to unstable films. This

criterion implies that the boundary between the regions of -1
stability and instability depends on a number of parameters,

whose influence have been investigated.

dc

atz=0, A.2

ot 0z ¢ (A-2)
)

— DX atz=h. (A.3)
9z

For small perturbations, the relation between the adsorption

The computations (Figs. 5-9) show that the increase and subsurface concentration are given by the linearized ad-

of the thickness}:, between two neighboring bubbles (or
drops) and of the surfactant concentrationhave a sta-
bilizing effect, whereas the increase of the film radiRs,
and surface velocity, lead to destabilization. The effect of

the colloidal surface forces, characterized by the Hamaker

constant, was found to be insignificant for the stability—
instability transition (Fig. 5). The diffusion mechanism for
film rupturing, described in this paper, may lead to break-
age of liquid films of thickness 200 nm (Fig. 6), for which
the effect of the surface forces is negligible. The film rup-
turing occurs through a dimple-like perturbation in the film
thickness (Fig. 10a), which is due to a local lowering in

the pressure (Fig. 10b) caused by a faster circulation of thetar(xkh) _

liquid inside the film (Fig. 3), which in its own turn is en-

sorption isotherm
I =hycl=0 and In= haClz=h,

whereh, = (aI"/dc).. We seeke(z, t) in the form

c=_ Brexp(—A{ Dt)[—dxha SiN(Aez) + COSi2)],
k

(A.5)
which satisfies the boundary condition, Eq. (A.2). Substitut-
ing Eq. (A.5) into the other boundary condition, Eq. (A.3),
we determine the eigenvalugg, which are given by the
roots of the characteristic equation

Zkkha
(Mcha)2 =1

(A.4)

(A.6)

gendered by the accelerated surfactant diffusion across therhe slowest relaxation of the surfactant concentratianr)

thinner parts of the film.

It should be noted that the above hydrodynamic mech-

corresponds to the lowest eigenvalug,If #,/h < 1, from
Eq. (A.6) we get? = 2/(hh,). Substituting the latter value

anism involves many dimensionless groups of parameters,into Eq. (A.5) we obtain

so it is practically impossible to specify a single dimen-

sionless group providing a simple criterion about whether co<exp<—

or not this mode of instability will occur for a given sys-

2Dt
hh,

)(ZZ/h -D. (A7)

tem. For this reason, we have specified the surfactant (TritonEquation (A.7) shows that the surfactant concentration is

X-100), for which the computations have been carried out.

a linear function ofz, and decays exponentially with the

Likewise, for another given system, the occurrence of suchtime, .

a diffusion-driven instability can de predicted numerically,
by computation of a stability—instability diagram, like one
of those in Figs. 5-9.
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Appendix A. Surfactant distribution acrossthefilm

We consider a liquid film of thicknessg, which is stabi-

lized by a surfactant that is soluble only in the phase of the j

film. The adsorption at the left film surfa¢e= 0) is I'> and
at the right film surfacez = h) it is I'y; see Fig. 1b. The

difference between the adsorptions at the two film surfaces I, (u1 + u2) +
gives rise to a diffusion across the film, where the surfactant

concentrationg, obeys the equation

92c

972"

8c_

== (A1)

we consider small deviations from equilibrium which are,
in general, different at the two film surfaces, and will be de-
noted by subscripts 1 and 2. For such a small deviation, using
the lubrication approximation, from the basic equations (7),
(8), (12), (15), (16), (20), and (21), one can derive the fol-
lowing relationships:

p 1ldo 9
= — I+, A.9
or ol oy OTitory) (A-9)
h
zce(’/ll"‘MZ)
h3, dp Dh d GI+80)
12y or  2h, Or ! 2
3
= Dy5-(8I1+807) =0, (A.10)
r
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Eliminatingdp/ar between Egs. (A.9) and (11), we get
U +ug= i8—(7—(81—'1-1-51"2)
6n ol or
Furthermore, we substituta + u» from Eq. (A.11) into the
first two terms of Eq. (A.10). The result reads
Dh hEg
<%;*‘+%?

Equation (A.12) impliessIn = —381%, which confirms the
validity of the expressions faf, and /% in Eq. (13).

(A.11)

>%@n+n@=o (A.12)

Appendix B. Relationships between the perturbations
of the physical parameters

Our aim here is to derive Egs. (53)—(57). Substituting the
perturbations, defined by Egs. (31)—(33), into the Navier—
Stokes and continuity equations, (7) and (8), we obtain

ap 9%,
— = B.1
ar =152 (B.1)
1 0 v,

—=0. B.2
ror ( ) + 0z (B-2)

Next, we integrate Eq. (B.1) twice with respect:tand use
the boundary conditions, Egs. (38) and (39); thus we get

2(z—h)op 2u -
= h
v 2n or <h L1t
h —

(B.3)

2
; ( Mhz-i-uz)

To determinev, we substitute Eq. (B.3) into Eq. (B.2), in-
tegrate with respect te, and use the boundary condition,
Eq. (43); the result reads

22:-3mdp -
L L uhp

12y or
2
z 2u -~ 2u -
—h + —h
2h<ul+h 1>+ ( A 2)]}
(B.4)

Substitutingz = & in Eqg. (B.4), and employing Egs. (42)

and (49), we obtain
h3 ap uy+uo
rl———h )
12y or 2

In the transitional regime we apply Eq. (52), and from

z(2h —2)
2h

oh
ot

10
r8r

(B.5)

Eq. (B.5) deduce Eq. (53); we have used that the expression

in the parentheses in Eq. (B.5) must be regularfer 0.

Further, we introduce perturbations in the surface stress

balance, Eq. (20):

EGoln  Egdlh _ dv

r, ar T, or _"az i=h-+is
v 3% Bh;

=n— N——| hi+n— (B.6)
9z z=h 9z z=h 9z z=h
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Equation (19) implies thab?v,/dz2 = 0. Utilizing again
Eq. (20), from Eq. (B.6) we derive

EDy Eg oI
n a”’ =621 (B.7)
7 |=p I, or
Likewise, from Eq. (21) we deduce
5D Eg 3T
e ©.8)
Z =g [Te Or

The differentiation of Eq. (B.3) yields

n

vy h\ap u~ n{ u-~ .
—(z-2)22 40 ( %5 Y .

9z (Z 2>8r+h<h +”1> AN
(B.9)

Next, in Eq. (B.9) we set = h andz = 0 and apply Egs.
(B.7) and (B.8):

n

hap n{2u- EG3F1

(g i —ip) =200 B.10
20r h(h i =i . or (8.10)
hop 2u ~ E(;E)I"z
_19 fi i — B.11
28r+h<h i “2) T, ar (B.11)

Taking the sum and the difference of Egs. (B.10) and (B.11)
we derive Egs. (54) and (55).

To derive Egs. (56) and (57), we first apply the lubrication
approximationk/R « 1) in the diffusion equation (50):

ac
at 972’
With the help of Eq. (14), in the steady state lingit>>
h?/D) we bring Eq. (B.12) in the form

(B.12)

(B.13)

where we have used the relationsldip/h, = dc;. Next,

we introduce perturbations in the boundary conditions,
Egs. (15) and (16). Taking into account thef:/9z2 = 0
(see Eq. (12)), we derive

an 19 ar 3¢
_— 4+ - —Tu+ iy — Dy— ) |=—D—
at  ror ar 0z |,y
) (B.14)
alb 19 A aé
—2+Z—|r(Du+riz—D;—=)|=D—| .
at r ar ar 07 |,—0
) (B.15)

Summing up the latter two equations, we get

d 19
Py (F1+F2)+—8—{r[M(F2—F1)+F (1 + ii2)

(B.16)

_ DS%(FH Fz)” =
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To estimate the right-hand side of Eq. (B.16), we employ In Eqg. (B.24) we substitute, from Eq. (B.4), carry out
Eqg. (B.13): the integration, and finally substitute the expression for
dhp/0t = —(dh/0t)/2 from Eq. (B.5). The result reads

h h
3%¢ Scy =
D/a—gd2=2%/52dz- (B.17) 36 =B<F1—F2_2%h>
s 92 4 Dol ™ 7\ Tk h
In Eq. (B.17) we substituté, from Eq. (B.4), integrate, and + des 0 . Mﬁ h_38_p _hay (B.25)
substitute the expression fan,/dt = —(dh/3t)/2 from roor 6077 or 6 )|
Eq. (B.5). After some transformations, we obtain Then, Eq. (B.25) is substituted into the right-hand side of
] .
i : e e 2] Ea. (B.15):
8_12 Z—_Tg r E(MZ—M]_)"‘? . ( . ) &_B I—vl_Fz_ZSﬁh
0 ot h ha
The term proportional téc,uh is of the third order of mag- 19 - B s
nitude and it is negligible. Moreover, having in mind that t oo V<F2” + etz — Dsg)
8¢y =8I/ h, andh/h, < 1 (see Appendix A), we get
sc 2u- h®9p h
héI” L -~ P T
(i1 + iiz) > GT(uz—ul) (B.19) > a,[ ( h+ 307 9r 3ul>}- (B.26)

Hence, in view of Eq. (B.18), we may conclude that the Next, we substitute the derivativep/or, from Eq. (B.5) in
right-hand side of Eq. (B.16) is of a higher order of mag- (B.26); the result can be expressed in the form
nitude and can be neglected. Then, imposing the condition , <F Sc, ~> D <f1_ o sc, ~>

for transitional regime, Eq. (52), from Eq. (B.16) we deduce — —-2—
ot 5 h hq h
Eq. (56).
Furthermore, we introduce small perturbations into the }i Tou+ Lty — D, ﬂ
relation, Eq. (A.4), between the subsurface concentration of r U Lell2 ar
surfactant and its adsorption: se. s 4 A
~ Cs u ~ ~ ~
~ dc ~ I, T =—7 r(—h——ul——uz>:|. (B.27)
el =clotilmot 5| hp=124 2 (B20) roor [ 3 15 10
] =0 ¢ ¢ . Using again estimates related to Eq. (B.19), we establish that
With the help of Eq. (14), from Eq. (B.20) we derive the right-hand side of Eq. (B.27) is negligible. Finally, im-
o s posing the condition for transitional regime, Eq. (52), from
&li=0= =+ —h. (B.21) Eg. (B.27) we obtain Eq. (57), where we have substituted
heg h
Scs =8I/ hy.

Likewise, for the other film surface we get
F]_ 8¢ ~ . ) .
Glyp = — — —h. (B.22) Appendix C. Final set of equationsand
ha h boundary conditions
Further, our aim is to estimate the right-hand side of Eq.
(B.15). With this end in view, we integrate twice Eq. (B.13)  Our purpose is to derive Egs. (59) and (60) starting from
with respect ta; and obtain an expression fér Egs. (48) and (53)—(57). With this end in view, in Eq. (56) we
substituteiy + ii» from Eq. (53) and’ + I from Eq. (54).

. 25 As a result, we bring Eq. (56) into the form
g= 2% /dm/dzz U, + A1z + A, (B.23) 2 Y
5= p
—-I= ‘(1+ -2 c1
2 ! 6n < + h )(u Br) (€1

wherezi1 andz, are integration variables, whilé, and A»
are constants of integration. At the next step, we first deter- Where, as beford,, = 61D,/ E¢. Next, we eliminatd’ be-
mine A1 and A, from the boundary conditions, Egs. (B.21) tween Egs. (54) and (C.1), and get

and (B.22), and then differentiate to derive _ Wl n2r h\ 95
ulp=— ey Loy 28) 22 (C.2)
8 8 [ 2Eg 12y h ) or
C C 1 C
=-2— /dZ1/dzz vz + ( - h) Likewise, we eliminatdi; between Eqgs. (53) and (55), and
aZ 7=0 a h :
obtain
D(I» e - . W°r,dp Eghd ,~ ~. T, -
——|—=+—h). B.24 r,= Io— T —uh. C.3
h<ha h ) ( ) Hale 12y or 4p ar(z 1)+hu (C.3)
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Next, we divide Eqg. (C.2) by and differentiate; the result

can be expressed in the form
hg 10p
+ h ) (u ar )

9l hI.Dydp  h%T.Dy <
(C.4)

ar  2Eg or

d
or

s

12y

We sum up Egs. (C.2), (C.3), and (C.4), and substitute the

resultinto Eq. (57), where we further exprdss— I'1 using
Eq. (C.1). Thus, we obtain an equation containing only two
unknown functionsk andp:

19 EGh®T, h hs\ 0 (10p
SO B ey B3 s ) O (20P
ror 7212 h h ) or\u or
I, - hl, .
“Cuh—
+ hu 2EGMP
DhT, he\ (10p 2D -
=143 ) (=22 - = s (C.5)
6h.n h u or hgh?

Equations (48) and (C.5) form a set of two equations for
determiningh and p. Next, in Egs. (48) and (C.5) we sub-
stitutes I" andu from Eq. (29), and1’ from Eq. (58). Then,

introducing the dimensionless variables defined by Egs. (61)

and (62), we transform Eqgs. (48) and (C.5) into Eqgs. (59)
and (60).

Finally, we note that the differentiation of Eq. (54), in
view of Eqgs. (61) and (70), yields

(0p/0x)x=1=0, (C.6)

which is one of the relationships in Eqg. (71). Likewise,
the differentiation of Eq. (C.1), in view of Egs. (29), (61),
and (70), gives

23] o
ox \ x d0x -1

Combining Egs. (C.6) and (C.7), we géfp/dx?)—1 =0,
which is also used in Eq. (71).

(C.7)
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