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CHAPTER  12 

CAPILLARY FORCES BETWEEN  PARTICLES  OF  IRREGULAR  CONTACT LINE 

Solid particles attached to a fluid interface often exhibit irregular wetting perimeter. The latter 
induces interfacial deformations, which are theoretically found to engender a strong lateral 
capillary force between the particles. For the time being this force is not investigated 
experimentally, although there are some indications about its existence. 

A quantitative theoretical description of such capillary interactions can be achieved for 
irregularities of a given characteristic amplitude and period, which can be approximated with a 
model sinusoidal contact line. The latter disturbs the smoothness of the fluid interface creating 
a wave-like profile. The overlap of the disturbances produced by two particles gives rise to the 
capillary interaction, which becomes significant for distances comparable with, or smaller 
than, the wavelength of the contact-line undulation. If the phase shift between the two 
sinusoidal contact lines is not too large, the interaction is always attractive at long distances 
between the particles. On the other hand, at short distances the interaction is always repulsive. 
Only in the special case of coinciding wavelengths and amplitudes the particles attract each 
other at all distances. The interaction energy exhibits a minimum at some interparticle 
separation. The depth of the minimum could be greater than the thermal energy kT even if the 
contact-line undulations have nanometer amplitude. The latter fact implies that this type of 
capillary force could be significant even for colloid nano-particles and protein 
macromolecules. 

Any deformation of a particulate adsorption monolayer, either by dilatation or by shear, which 
takes the particles out of the potential minimum, is resisted. As a result, the particle monolayer 
exhibits dilatational and shear elasticity. These elastic properties can be estimated if the 
average value and the dispersion of the amplitude of the contact-line undulations are known. 
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Fig. 12.1. Electron micrographs: ordered monolayers made of µm-sized crystals (a) from hexahedral 
silver bromide, (b) from octahedral silver bromide. The monolayers were initially formed at 
the water-air interface, then transferred to a mica support and observed by a scanning 
electron microscope by Heki and Inoue [2] (reprinted with permission).  
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12.1.  SURFACE CORRUGATIONS AND INTERACTION BETWEEN TWO PARTICLES 

12.1.1.  INTERFACIAL DEFORMATION DUE TO IRREGULAR CONTACT LINE 

As discussed in Chapter 8, if the weight of a floating particle is smaller than 5-10 µm, it is not 

able to create any physically significant interfacial deformation; therefore the lateral flotation 

force is negligible for such particles. This conclusion holds for spherical particles of regular 

(smooth) wetting perimeter. Lucassen [1] pointed out that even submicrometer floating 

particles can create interfacial deformation if the wetting perimeter is not fully located in the 

plane of the surface, i.e. there are some irregularities of the contact line. Often this is the 

practical situation with solid particles having some surface roughness and/or inhomogeneity. In 

the case of crystal particles the contact line can be attached to some jagged edge on the particle 

surface. Qualitatively, it is to be expected that capillary interaction will appear as soon as the 

deformed zones around two such particles overlap.  

Capillary interaction of this type seems to be rather universal and significant, and it astonishes 

that for the time being the only study in this area is the work by Lucassen [1]. At least in part, 

this can be attributed to the impossibility to obtain a quantitative theoretical description, or 

reproducible experimental data, for particles of completely irregular periphery. Lucassen has 

overcome this difficulty considering irregularities of given characteristic amplitude and period, 

and approximating them with a model sinusoidal contact line. This treatment provides a 

complete theoretical description of the meniscus shape and the interparticle force and gives a 

physical insight about the sign and magnitude of the interaction energy in more complicated 

cases. In the present chapter we follow the approach from Ref. [1]. 

Before the theoretical considerations, let us mention some experimental facts, which could be 

related to the action of the aforementioned capillary force. Heki and Inoue [2] observed the 

formation of 2-dimensional ordered arrays of µm-sized crystals of silver bromide floating at 

the air-water interface, see Fig. 12.1. Arrays from hexahedral (cubic) and octahedral crystals 

were produced, which were separated by areas of bare interface. The latter fact implies that 

some attractive force has collected the floating microcrystals, which could be  the  Lucassen’s  

lateral 
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Fig. 12.2. Copolymer latex particles made of polystyrene + 2-hydroxyethyl-metacrylate (PS/HEMA): 

Secondary electron images of the surface of a colloid crystal obtained by ultra high-
resolution-field-emission scanning electron microscope. From Cardoso et al [3], © American 
Chemical Society; with permission. 

 

capillary force. Other possible explanation could be the attraction due to van der Waals and 

hydrophobic forces, or the simultaneous action of several kinds of forces.  

A contact line of approximately sinusoidal shape can also appear when particles with 

“undulated” surface are attached to a fluid phase boundary. The spontaneous formation of such 

particles was observed in the experiments by Cardoso et al. [3], who synthesized latex particles 

by batch surfactant-free emulsion copolymerization of styrene and 2-hydroxyethyl-metacrylate 

(PS/HEMA particles), see Fig. 12.2. The properties of 3-dimensional colloid crystals from 

such particles have been studied by means of electron-microscopic techniques [3]. 

The model particles used in the theoretical approach of Lucassen, shown in Fig. 12.3, much 

resemble the cubic microcrystals of silver bromide in Fig. 12.1a. It is assumed that a sinusoidal 

contact line creates small interfacial deformations,  qζ << 1,  where  q−1 is the capillary length. 
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Fig. 12.3. Sketch of a solid particle with sinusoidal contact line located in a plane, which is 

perpendicular to the x-axis. The undulation of the contact line creates interfacial 
corrugations, which decay with the increase of the distance x from the particle.  

 

In such case, the right-hand side of the linearized Laplace equation (7.6) can be neglected and 

one obtains [1] 
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ζ∂

∂
ζ∂      (qζ << 1)   (12.1) 

As known, the general solution of Eq. (12.1) can be presented in the form 

ζ(x,y) = ∑
k

( Ak e−kx + Bk e kx)(Ck sin ky + Dk cos ky)     (12.2) 

The constants Ak, Bk, Ck and Dk are to be determined from the boundary conditions. For 

example, if the contact line in Fig. 12.3 has equation z = ζ1 cos k1y, then the meniscus shape 

exhibits oscillations, which decay with the distance x from the contact line: 

ζ(x,y) = ζ1 exp(−k1x) cos k1y        (12.3) 

Here ζ1 and λ ≡ 2π/k1 characterize the amplitude and the wavelength of the contact-line 

undulations. The interfacial corrugations caused by the sinusoidal contact line decay 

exponentially with the distance x from the edge of the particle. The surface deformation and 

the capillary interaction are physically significant at distances of the order of, or shorter than, 

the wavelength λ = 2π 1
1
−k , see below.  

Next, after Lucassen [1], we consider two solid particles floating on a fluid interface (Fig. 

12.4) assuming that their sinusoidal edges are parallel to each other and to the y-axis.  
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Fig. 12.4. Sketch of two model particles with 
sinusoidal contact lines belonging to two 
parallel vertical planes separated at a 
distance L; λ1 and λ2 are the wavelengths 
of oscillation of the respective contact 
lines. 

 

The coordinate origin is chosen in the middle between the two particles; in this way their edges 

are situated at  x = −L/2 and x = +L/2. The equations of the respective contact lines are taken in 

the form z = ζ1 cos k1y and z = ζ2 cos(k2y + ϕ), where ϕ represents a phase difference. Then in 

view of Eq. (12.2) the shape of the meniscus between the particles is [1] 

ζ(x,y) = ζ1 Lk
xLk

1

1

sinh
)2/(sinh − cos k1 y + ζ2 Lk

xLk

2

2

sinh
)2/(sinh + cos(k2 y + ϕ)    (12.4) 

Equation (12.4) corresponds to the general case of two different amplitudes, ζ1, ζ2, and wave 

numbers, k1, k2, in the presence of phase shift ϕ. On the other hand, the validity of Eq. (12.4) is 

limited to contact lines lying in two parallel vertical planes (Fig. 12.4).  

12.1.2. ENERGY AND FORCE OF CAPILLARY INTERACTION 

As mentioned above, we consider small particles and neglect the gravitational effects. 

Moreover, the contact lines are fixed to the respective sinusoidal edges (Fig. 12.4), and 

therefore the energy of wetting does not vary with the interparticle distance L. Then the only 

nontrivial contribution to the grand thermodynamic potential, Eq. (7.16), originates from the 

increased area of the corrugated meniscus [1]: 
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cf. Eq. (7.68). The substitution of Eq. (12.4) into Eq. (12.5) in general gives an explicit 

analytical expression for Ω. Below we will restrict our considerations to the simpler case of 
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equal wave numbers, k2 = k1, and integer number of wave-lengths along the y-axis, k1y0 = 2πn; 

n = 1,2,3,... . In this case the interaction energy is [1]: 

∆Ω ≡ Ω(L) − Ω(∞) = 

= 4
1 πnσ 
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The asymptotic form of Eq. (12.6) for long distances, k1L >> 1, reads: 

∆Ω(L) = −πnσ  [(2ζ1ζ2 cosϕ) Lk 1e −  − (ζ1
2 + ζ2

2 ) Lk12e−  + O( Lk13e− )]   (12.7) 

Equation (12.7) shows that at long distances the interaction is attractive (∆Ω < 0) if ϕ < 90°, 

but it is repulsive (∆Ω > 0) if ϕ ≥ 90°. On the other hand, at short distances, k1L << 1, 

Eq. (12.6) is dominated by the hyperbolic cotangent: 

∆Ω(L) = 2
1 πnσ  [(ζ 1

2 + ζ2
2  − 2ζ1ζ2 cosϕ)

Lk1

1   − )( 2
2

2
1 ζζ +  + O(k1L)]  (12.8) 

Equation (12.8) implies that at short distances the capillary interaction is always repulsive 

(∆Ω > 0). An exception is the very special case, in which simultaneously ζ1 = ζ2, ϕ = 0 and the 

terms with hyperbolic cotangents cancel each other; in this case the interaction is attractive for 

all distances. 

The above analysis implies that for ϕ < 90° ∆Ω(L) has a minimum at a certain distance Lmin , 

which can be found from Eq. (12.7) [1]: 
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This minimum, corresponding to equilibrium interparticle separation, exists for −90° < ϕ < 90°, 

but it disappears for larger phase shift, 90° ≤ ϕ ≤ 270°. Special cases of Eq. (12.9) are  

Lmin = 
1

1
k

| ln(ζ1/ζ2) |     for  ϕ = 0    (12.10) 
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Fig. 12.5. Plots of (a) energy ∆Ω and (b) force Fx vs. distance L, calculated by means of Eqs. (12.6) and 

(12.12) for λ = 1 µm, n = 1, σ = 40 mN/m and ζ1 = ζ2 = 60 nm; the separate curves 
correspond to the following values of the phase-shift angle: (A) ϕ = 0, (B) ϕ = 15°, 
(C) ϕ = 35°, (D) ϕ = 60° and (E) ϕ = 90°. 

 

The force between the two particles can be deduced by differentiation of Eq. (12.6) [1]: 
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The dependence of ∆Ω on the phase angle ϕ leads to the appearance of a force component also 

along the y-axis [1]: 

Fy = 
∂ϕ

∂
1
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−
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 = − 2
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Fy is a force which tends to make the particles slide with respect to one another in a direction 

parallel to the y-axis. The action of this force will eventually bring the particles in a position 

without phase shift, i.e. with ϕ = 0. In the latter case the expression for the interaction energy, 

Eq. (12.6), reduces to 

∆Ω = 4
1 πnσ [(ζ1 + ζ2)2 tanh(k1L/2) + (ζ1 − ζ2)2 coth(k1L/2) − 2 )( 2

2
2

1 ζζ + ]  (12.14) 
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The minimum value of ∆Ω can be obtained substituting Eq. (12.10) into Eq. (12.14). Let us 

specify that ζ2 ≤ ζ1. Then one obtains 

tanh(k1Lmin /2) = 
21

21

ζζ
ζζ

+
−  = [coth(k1Lmin /2)]−1      (ϕ = 0,  ζ2 ≤ ζ1)  (12.15) 

∆Ωmin ≡ ∆Ω(Lmin) = −πnσ 2
2ζ          (ϕ = 0,  ζ2 ≤ ζ1)  (12.16) 

Let us check whether the depth of the minimum, |∆Ωmin|, is significant compared with the 

energy of the thermal motion of a Brownian particle, which is approximately equal to kT. The 

value of the amplitude ζ2 , which provides ∆Ωmin ≈ kT, is ζ2  = (kT/πnσ)1/2; taking surface 

tension σ = 40 mN/m, temperature 25°C and n =1 (the length of the particle equals 1 wave-

length) one calculates ζ2 = 1.8 Å. This result is really astonishing: it turns out that even edge 

irregularities of angstrom amplitude may lead to physically significant attraction between the 

particles! However, in the angstrom scale the fluid interfaces are no longer smooth: they are 

naturally corrugated by thermally excited fluctuation capillary waves, whose amplitude is 

typically between 3 and 6 Å [4]. Then one can expect that the effect of the undulated particle 

contact lines becomes significant when the amplitude of the undulations is greater than this 

stochastic noise, that is for nanometer and larger amplitudes. In any case, one may expect that 

such capillary interactions could be important even for large adsorbed macromolecules of 

irregular shape, like the proteins. 

Figure 12.5a shows the dependence of the interaction energy ∆Ω on the distance L calculated 

by means of Eq. (12.6) for four different values of the phase angle ϕ; for all curves n = 1, 

λ ≡ 2π/k1 = 1 µm and the amplitudes of the two sinusoidal contact lines are equal: ζ1 = ζ2 = 

60 nm.   As  noted  above,  the  interaction  is  monotonic  attraction  at  all  distances  only  if 

simultaneously ϕ = 0 and ζ1 = ζ2.  For 0 < ϕ < 90° the curves exhibit minima at L = Lmin, see 

Eq. (12.11) and Fig. 12.5a.  For 90° ≤ ϕ ≤ 270° the interaction is monotonic repulsion. The 

magnitude of interaction at short separations (L < 500 nm) is much larger than the thermal 

energy kT.  For example, for the curve with ϕ = 0 the magnitude of the energy |∆Ω| is equal to 

1.1 × 105 kT at close contact (L = 0), and it drops down to 1 kT at a separation L ≈ 2.0 µm = 2λ. 
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Fig. 12.6. Plots of the lateral capillary force Fx vs. distance L, calculated by means of Eq. (12.12) for 

λ = 1 µm, n = 1, σ = 40 mN/m and ϕ = 0; the separate curves correspond to (A) ζ1 = 60 nm, 
ζ2 = 60 nm;  (B) ζ1 = 56 nm, ζ2 = 64 nm;  (C) ζ1 = 50 nm, ζ2 = 70 nm;  (D) ζ1 = 40 nm, 
ζ2 = 80 nm. 

 
Figure 12.5b presents the dependence of force Fx on distance L calculated by means of 
Eq. (12.12) for the same values of the parameters as in Fig. 12.5a. The points with Fx = 0 
correspond to the equilibrium separation between two particles. One sees again that the 

interaction becomes more repulsive with the rise of the phase shift ϕ. 

Figure 12.6 illustrates the tendency the interaction to become more repulsive when the 

difference between the amplitudes ζ1 and ζ2 increases. For example, a difference ζ1 − ζ2 ≈ 5 

nm produces the same effect as a phase shift ϕ ≈ 10°. In Fig. 12.6 we have fixed ϕ = 0, and 

consequently, the interaction is attractive at long distances for every values of ζ1 and ζ2. 

12.2. ELASTIC PROPERTIES OF PARTICULATE ADSORPTION MONOLAYERS 

The fact that the capillary interaction energy ∆Ω(L) has a minimum leads to the appearance of 

elastic behavior of a fluid interface covered by “rough-edged” particles (i.e. particles with 
corrugated contact line). As noted by Lucassen [1], any deformation of this surface, either by 
dilatation or by shear, will take the particles out of their equilibrium positions and will, 
therefore, be resisted. As a consequence, the particulate monolayer will exhibit dilatational and 
shear elastic properties. 
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12.2.1.  SURFACE DILATATIONAL ELASTICITY 

Let us consider a fluid surface covered with square particles of edge length y0 = λ = 2π/k1. It is 

natural to assume that the particles spontaneously adjust their lateral positions so that Fy = 0 

and consequently, ϕ = 0. Let us denote the area per particle in the monolayer with a. Then the 

surface dilatational elasticity of the particulate monolayer can be defined in the same way as 
for surfactant molecules: 

da
d

aEG
apσ

=           (12.17) 

cf. Eq. (1.45); here σap is the apparent surface tension of the particulate monolayer. For our 

rectangular particles of edge-length λ separated at edge-to-edge distance L one has a = (λ + 

L)2. Then da = 2(λ + L)dL and Eq. (12.17) acquires the form 

dL
d

dL
d

LEG
ap

2
1ap

2
1 )(

σ
λ

σ
λ ≈+=  ≈ 

dL
dFx

2
1    (L << λ)  (12.18) 

where at the last step we have identified the variation of the apparent surface tension with the 

increment of Fx per unit length, i.e. dσap ≈ |dFx
 | /λ. Setting ϕ = 0 in Eq. (12.12) and 

differentiating one obtains 
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As already mentioned, we consider small deviations from the equilibrium position of the 
particles. Then setting L = Lmin in Eq. (12.19) and using Eqs. (12.15) and (12.18) we derive 

dL
dFx  = −2πσ 2
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ζζ
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−
k    (L = Lmin)    (12.20) 

Let us denote by ζ0 and ∆ζ, respectively, the average value and the dispersion of the amplitude 

of the contact-line undulations for the particles from the adsorption monolayer; we will assume 

∆ζ << ζ0. Then combining Eqs. (12.18) and (12.20) we obtain an estimate for the surface 

dilatational elasticity: 

ζλ
σζπ
∆

≈ 2

3
0

32
GE          (12.21) 
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where the identity k1 = 2π/λ has been used. Note that the surface dilatational elasticity EG is 

sensitive to both ζ0 and ∆ζ. With values σ = 40 mN/m, λ = 1 µm, ζ0 = 60 nm and ∆ζ = 6 nm 

Eq. (12.21) gives EG ≈ 89 mN/m; this is a considerable value, which is comparable with the 

surface elasticity of surfactant adsorption monolayers. 

The divergence of EG for ∆ζ → 0 is related to the fact that in the limit ∆ζ → 0 the particles 

come into direct contact (Lmin = 0). Indeed, with ∆ζ = ζ1
 − ζ2 Eq. (12.10) yields 

Lmin ≈ ∆ζ /ζ0     (∆ζ << ζ0)    (12.22) 

12.2.2.  SURFACE SHEAR ELASTICITY 

Let us consider again an equilibrium monolayer of square “rough-edged” particles having side-

length λ. A small shear deformation along the y-axis (Fig. 12.4) is accompanied by the 

appearance of a shear stress: 

τsh = Esh x
uy

∆

∆
 ≈ Esh

min

1/
L

kϕ         (12.23) 

where Esh is the surface shear elasticity, ∆uy ≈ ϕ / k1 is a small relative particle displacement 

along the y-axis, and ∆x = Lmin is the equilibrium separation between the edges of the two 

particles along the x-axis; see e.g. Ref. [5]. For small displacements (small ϕ) one can estimate 

the surface shear stress τsh with the help of Eq. (12.13): 

τsh = −Fy /λ =  2
1 πσ k1ϕ ζ1ζ2 






 −

2
tanh

2
coth min1min1 LkLk     (12.24) 

Combining Eqs. (12.23) and (12.24), along with Eqs. (12.10), (12.15) and (12.22), after some 
transformations we obtain the following expression for the surface shear elasticity: 

Esh ≈ 2π2σ (ζ0/λ)2         (12.25) 

where the meaning of ζ0 and λ is the same as in Eq. (12.21). The comparison of Eqs. (12.21) 

and (12.25) shows that, unlike the dilatational elasticity EG, the shear elasticity Esh does not 

depend on the dispersion ∆ζ of the amplitudes of the particle edge roughness. With σ = 

40 mN/m and ζ0/λ = 0.1 Eq. (12.25) yields Esh ≈ 8 mN/m.  

Equation (12.25) has been derived for the case of small shear displacements, for which we can 

substitute sinϕ ≈ ϕ in Eq. (12.13); i.e. we have dealt with small deviations from the state of 
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minimum energy. For larger shear displacements the interaction energy ∆Ω passes through a 

maximum (barrier) at ϕ = π, which should be overcome by the particles in order to have a 

viscous shear flow in the interface [6]. The height of this barrier, Um, can be estimated by 
means of Eq. (12.6) 

Um ≡ ∆Ω(ϕ = π) − ∆Ω(ϕ = 0) = πσ ζ1ζ2 





 −

2
tanh

2
coth 11 LkLk    (12.26) 

The coverage of the fluid interface with square particles of edge λ is α ≡ λ2/(λ + L)2. Using the 

latter relationship and k1 = 2π/λ one obtains 

k1L = π(α−1/2 − 1)         (12.27) 

Using Eqs. (12.26), (12.27) and the values α = 0.8, ζ1 = ζ2 = 60 nm and σ = 40 mN/m one 

calculates Um ≈ 2.7 × 105 kT. It seems that such a high energy barrier will prevent any surface 

shear flow (the surface viscosity is ηs ∝ exp(Um /kT), see Ref. [6]), and consequently, the 

particulate monolayer will behave as an elastic two-dimensional continuum. Note however, 
that the expression for the height of the barrier Eq. (12.26), is obtained assuming a 
translational slip along the y-axis. However, in reality each particle is free to rotate around its 
axis, and this fact certainly increases the interfacial fluidity. The estimate of the surface shear 
viscosity based on account for the particle rotation is out of the applicability range of the 
present simple model with square particles. 
 

12.3. SUMMARY 
The contact line of a solid particle attached to a fluid interface may have irregular shape due to 
surface roughness or inhomogeneity. Such an irregular contact line corrugates the surrounding 
fluid interface. The overlap of the corrugations around two particles gives rise to a lateral 
capillary force between them. A quantitative theoretical description of this effect was given by 
Lucassen [1] who considered irregularities of a given characteristic amplitude and period, and 
approximated them with a model sinusoidal contact line, Fig. 12.3 and Eq. (12.3). Assuming 
that the sinusoidal contact lines of the two interacting particles belong to two parallel vertical 
planes, one can derive an analytical expression for the meniscus shape, Eq. (12.4).  

In general, the corrugations increase the interfacial area. When the approaching of two 
particles causes decreasing of the interfacial area, the interparticle force is attractive; in the 
opposite case (increasing of the area) the particles repel each other. The latter effects are 

quantified by Eq. (12.6). If the phase shift ϕ between the two sinusoidal contact lines is not too 
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large (0 ≤ ϕ < 90°) the interaction is always attractive at long distances between the particles, 

see Eq. (12.7). On the other hand, at short distances the interaction is always repulsive, see Eq. 
(12.8) and Figs. 12.5 and 12.6. The only exclusion (monotonic attraction at all distances) is the 

case, in which there is no phase shift (ϕ = 0), and moreover, the amplitudes are identical (ζ1 = 

ζ2).  

The interaction energy exhibits a minimum at some interparticle separation Lmin, given by Eqs. 

(12.9)−(12.11). The depth of the minimum turns out to be greater than the thermal energy kT 

even for contact-line undulations of nanometer amplitude, see Eq. (12.16). This striking fact 
implies that the considered type of capillary force could be significant even between nano-
particles and protein macromolecules, and that its physical importance should not be neglected. 

Any deformation of a particulate adsorption monolayer, either by dilatation or by shear, which 
takes the particles out of their equilibrium positions, is resisted. As a result the particle 
monolayer exhibits dilatational and shear elasticity, which can be estimated by means of Eqs. 

(12.21) and (12.25) knowing the average value, ζ0, and the dispersion, ∆ζ, of the amplitude of 

the contact-line undulations. 
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