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CHAPTER  8 

LATERAL  CAPILLARY  FORCES  BETWEEN  FLOATING  PARTICLES 

This chapter contains theoretical and experimental results about the lateral capillary interaction 
between two floating particles, and between a floating particle and a vertical wall. The origin 
of this “flotation” force is the overlap of the interfacial deformations created by the separate 
floating particles. The difference between the “flotation” and “immersion” forces is manifested 
through the distinct physical origin of the respective “capillary charge” Q, which results in a 
different dependence of Q on the interfacial tension σ and particle radius R. In some aspect 
these two kinds of capillary interactions resemble the electrostatic and gravitational forces, 
which obey the same power law, but differ in the physical meaning and magnitude of the force 
constants (charges, masses). Theoretical expressions for calculating the capillary charges and 
interaction energy of two floating particles are obtained. Numerical results for the dependence 
of the interaction energy on the interparticle distance, particle radius, density and contact angle 
are presented and discussed. In all cases the dependence of force vs. distance is a monotonic 
attraction or repulsion depending on whether the particles are similar or dissimilar. 

A single particle floating in a vicinity of a vertical wall experiences the action of a “capillary 
image force”. The latter can be formally considered as an interaction between the particle and 
its mirror image. This force can be attractive or repulsive depending on whether the contact 
angle or contact line is fixed at the wall. The presence of an inclined meniscus in a 
neighborhood of the wall may lead to a non-monotonic dependence of the interaction energy 
on the particle-wall separation. This dependence is derived by means of both energy and force 
approaches. A convenient asymptotic formula for the capillary force is obtained, which 
compares very well with the output of the more accurate theory. The derived expressions are in 
a very good agreement with experimental data for the equilibrium position of floating particles. 
The obtained theoretical results have been applied to determine the surface drag coefficient of 
floating particles and the surface shear viscosity of surfactant adsorption monolayers. 
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8.1. INTERACTION BETWEEN TWO FLOATING PARTICLES 

8.1.1. FLOTATION  FORCE: THEORETICAL EXPRESSION IN SUPERPOSITION APPROXIMATION 

Similarly to the derivation of the asymptotic formula for the immersion force (see Section 7.1.3 

above), one can apply the superposition approximation to derive an expression for the flotation 

force, which is valid for not-too-small distances between the particles. Following Nicolson [1] 

let us consider a floating spherical particle of mass mk, which creates an interfacial 

deformation, see Fig. 8.1. Equation (7.8) for k = 1, 2, which describes the meniscus profile 

ζk(r) around each of the two particles in isolation, holds again. The geometrical configuration 

and the meaning of the parameters is illustrated in Fig. 8.1 for k = 1. 

The force due to gravity (weight + buoyancy), Fg(k), which is exerted on the k-th particle 

(k = 1, 2) is counterbalanced by the vertically resolved surface tension force, acting per unit 

length of the three-phase contact line: 

Fg(k) = 2πσ rk sinψk = 2πσ Qk    (k = 1,2)   (8.1) 

see Fig. 8.1 and Eq. (2.2). Here Fg(k) = mk g − Fb with Fb being the buoyancy (Archimedes) 

force.; expression for Fb for floating particles can be found in Ref. [2]; see Eq. (8.8) below. 

 

Fig. 8.1. A heavy spherical particle creates a concave meniscus on an otherwise horizontal fluid 
interface of tension σ; Fg(1) is the net force due to gravity (a combination of particle weight 
and buoyancy); ψ1 is the meniscus slope at the particle contact line of radius r1.  
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Let us consider particle 2 situated at a horizontal distance L from particle 1. After Nicolson [1] 

we assume that due to the existence of a meniscus created by particle 1, the mass-center of 

particle 2 is situated at a distance ζ1(L) below the horizontal plane z = 0, see point 2 in Fig. 8.1. 

The work carried out by the gravitational force to bring particle 2 from level z = 0 (infinite 

interparticle separation) down to level z = −ζ1(L) is [1,3] 

∆Wg = − Fg(2)ζ1(L) = − 2πσQ1Q2K0(qL)      (8.2) 

where at the last step Eqs. (7.8) and (8.1) have been used. Having in mind that  
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−=       (8.3) 

one obtains that (at not-too-small distances) the flotation force, likewise the immersion force, 

obeys the asymptotic law [1,3] 

F = −2πσ Q1Q2qK1(qL),    rk << L.   (8.4) 

The above derivation of Eq. (8.4) makes use of several approximations − see the discussion 

after Eq. (7.13) above. Expressions, which are more accurate than Eq. (8.4) can be found in 

Section 8.1.4.  

As already noticed, the equation F = −2πσ Q1Q2qK1(qL) expresses the derivative of wetting 

energy in the case of immersion force, and the derivative of gravitational energy in the case of 

flotation force. The fact that the results are formally identical stems from the usage of the same 

expression for the meniscus shape, viz. Eq. (7.8). Indeed, the meniscus shape (the solution of 

Laplace equation) “feels” the interacting bodies only through the boundary condition that the 

meniscus slope is ψk at r = rk, irrespective of the physical cause of the interfacial deformation 

(the capillary rise in Fig. 7.3. or the particle weight in Fig. 8.1). As a result, we have F ∝ 

K1(qL) for both immersion and flotation lateral capillary forces; however, the coefficient of 

proportionality, Q1Q2 depends on the type of the capillary force, as demonstrated below. 
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Fig. 8.2. Sketch of two floating particles of radii R1 and R2 separated at a center-to-center distance L. (a) 
Two light particles. (b) Two heavy particles. r1 and r2 are the radii of the contact lines, α1 and 
α2 are three-phase contact angles, ψ1 and ψ2 are meniscus slope angles; h1 and h2 are the 
elevations of the contact lines with respect to the level z = 0 of the non-disturbed horizontal 
interface far from the floating particles.  

 

8.1.2. “CAPILLARY CHARGE” OF FLOATING PARTICLES 

First of all, let us specify the sign of the capillary charge, 

Qk ≡ rk sinψk,           (8.5) 

which is a matter of convention. We will use the convention that the angle ψk is positive for 

light particles (Fig. 8.2a) and negative for heavy particles (Fig. 8.2b). Correspondingly, Qk and 

hk are positive for light particles and negative for heavy particles. The parameter bk (k = 1,2) in 

Fig. 8.2 denotes the depth of immersion of the respective particle in the lower fluid (phase I). 

The volume of the part of the sphere, which is immersed in the lower fluid is  

Vl
(k) = πbk

2(Rk − bk/3),     k = 1,2,    (8.6) 

supposedly the contact line is horizontal. The radius of the contact line can be also expressed 

in terms of bk : 

rk = [(2Rk − bk)bk]1/2,     k = 1,2.   (8.7) 

As shown in Ref. [2], the gravitational force (particle weight + buoyancy force) exerted on a 

floating particle is  

Fg(k) = g[(ρ1 − ρk)Vl
(k) + (ρ1I − ρk)Vu

(k)  − ∆ρ πrk
2hk]     (8.8) 
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where Vu
(k) denotes the upper part of particle volume, that immersed in phase II; as before ρ1 

and ρ1I denote the mass densities of the fluid phases I and II, whereas ρk is the mass density of 

the k-th particle; ∆ρ ≡ ρ1 − ρII. Note that Eq. (8.8) can be used not only for solid spheres, but 

also for fluid particles (drops, bubbles), like that in Fig. 2.3, which are composed of two 

axisymmetric segments, but are not spherical as a whole.  

In the special case of spherical particle of radius Rk and volume Vs
(k) one can write 

Vu
(k) = Vs

(k) − Vl
(k),     Vs

(k) ≡ 3
3
4

kRπ    (8.9) 

Then Eq. (8.8) can be represented in the form [4] 

Fg(k) = σ q2(Vl
(k)  − DkVs

(k)  − πrk
2hk),   (q2 = ∆ρ g/σ)   (8.10) 

where 

III

II

ρρ
ρρ

−
−

≡ k
kD          (8.11) 

Combining Eqs. (8.1), (8.5), (8.6) and (8.10) one obtains an expression for the capillary charge 

[4]: 

Qk = ])3/([ 23
3
422

2
1

kkkkkkk hrRDbRbq −−−       (8.12) 

By means of geometrical considerations from Fig. 8.2 one can deduce 

k
k

k
k R

b
αψ −








−= 1arccos     (k = 1,2)   (8.13) 

Equations (7.56), (8.5), (8.7), (8.12) and (8.13) form a set of 10 equations for determining the 

10 unknown parameters: Qk, hk, rk, ψk and bk (k = 1,2) for every value of the distance L 

between the two floating particles.  

It turns out [3,4] that for small particles the capillary charge Qk is a rather weak function of the 

distance L. For that reason one can obtain a convenient approximate formula for Qk. With that 

end in view we first notice that the lower portion of particle volume can be expressed in the 

form 

Vl
(k) = ( ),coscos32 33

3
1

kkkR θθπ −+   θk = arcsin(rk/Rk) = αk + ψk.  (8.14) 
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Combining Eqs. (8.10) and (8.14) one derives 

Fg(k) ≈ ( ),coscos342 332
3
1

kkkk DRq θθπσ −+−   (qRk << 1)  (8.15) 

Here we have used the fact that for qRk << 1 the term πrk
2hk in Eq. (8.10) can be neglected. In 

addition, for qRk << 1 one can use the approximation θk ≈ αk. Then the combination of Eqs. 

(8.1) and (8.15) yields [3,4] 

( )[ ])(1coscos342 332
6
1

kkkkkkk qRODRqQQ +−+−=≈ ∞ αα    (8.16) 

Equation (8.16) allows one to calculate the capillary charge Qk directly from the particle radius 

Rk and contact angle αk.  

The capillary charge of a floating particle Qk is a quantity of bounded variation. Indeed, from 

Eqs. (8.5) and (8.14) one can deduce that Qk = Rk sin(αk + ψk) sinψk. The condition for 

extremum of Qk reads 

)2sin(]cos)sin(sin)[cos(0 kkkkkkkkkk
k

k RR
d
dQ

ψαψψαψψα
ψ

+=+++==  (8.17) 

Equation (8.17) has two roots of physical importance: ψk = − αk/2 and ψk = (π − αk)/2; they 

determine the minimum and maximum values of Qk [4,5]: 

− Rk sin2(αk/2) ≤ Qk ≤ Rk cos2(αk/2)       (8.18) 

For Qk < −Rk sin2(αk/2) the particle would sink into the lower phase I; on the other hand, for 

Qk > Rk cos2(αk/2) the particle would enter the upper phase II. In particular, if the contact angle 

is αk = 0, then Eq. (8.18) implies Qk ≥ 0, that is only light particles can attach to the interface 

(heavy particles with Qk < 0 would sink into phase I).  

8.1.3. COMPARISON BETWEEN THE CAPILLARY FLOTATION AND IMMERSION FORCES 

Equations (7.13) and (8.4), and their asymptotic form for qL << 1, 

L
QQF 212 σπ−=       rk << L << q−1   (8.19) 

(q−1 = 2.7 mm for water), show that the immersion and flotation forces exhibit the same 

functional dependence on the interparticle distance L.  On the other hand, the “capillary  
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Fig. 8.3. Energy of capillary attraction ∆W, in kT units, plotted vs. the radius R of two similar particles 
separated at a center-to-center distance L = 2R. If ∆W > kT, the capillary attraction is stronger 
than the Brownian force and can cause a two-dimensional aggregation of the particles [4,6]. 

 
charges”, Q1 and Q2, can be very different for these two kinds of capillary force. To 

demonstrate that let us consider the case of two identical particles, for which R1 = R2 = R and 

α1 = α2 = α; then using Eqs. (8.5) and (8.16) one can derive [4,6,7] 

( ) ( )
( ) forceimmersionforK

forceflotationforK/

1
2

1
6

LqRF

LqRF

σ

σ

∝

∝
      (8.20) 

Consequently, the flotation force decreases, while the immersion force increases, when the 

interfacial tension σ increases. Besides, the flotation force decreases much stronger with the 

decrease of particle radius R than the immersion force. Thus Fflotation is negligible for 

R < 5−10 µm, whereas Fimmersion can be significant even for R = 2 nm [4,6]. This is illustrated in 

Fig. 8.3, where the two types of capillary interaction are compared, with respect to their energy 

∆W(L) = ∫
∞

′′
L

LdLF )( , for a wide range of particle sizes. The values of the parameters used are: 

particle mass density ρp = 2 g/cm3, density difference between the two fluids ∆ρ = 1 g/cm3, 

surface tension σ = 40 mN/m, contact angle α = 60°, interparticle distance L = 2R, and 
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thickness of the non-disturbed planar film l0 = R. Protein molecules of nanometer size can be 

considered as “particles” insofar as they are much larger than the solvent (water) molecules. 

For example, the radius of a water molecule is about 0.12 nm; then a protein of radius 

R ≥ 1.2 nm can be considered as being much larger. 

The pronounced difference in the strength of the two types of capillary interactions, see 

Fig. 8.3, is due to the different magnitude of the interfacial deformation. The small floating 

particles are too light to create a substantial deformation of the liquid surface and then the 

lateral capillary force becomes negligible. In the case of immersion forces the particles are 

restricted in the vertical direction by the solid substrate (see Fig. 7.1b) or by the two surfaces 

of the liquid film (Fig. 7.1f). Therefore, as the film becomes thinner, the liquid surface 

deformation increases, thus giving rise to a strong interparticle attraction. For that reason, as 

already mentioned, the immersion forces may be one of the main factors causing the observed 

self assembly of µm-sized and sub-µm colloidal particles and protein macromolecules confined 

in thin liquid films or lipid bilayers. 

In conclusion, the different physical origin of the flotation and immersion lateral capillary 

forces results in different magnitudes of the "capillary charges" Qk, which depend in a different 

way on the interfacial tension σ and the particle radius R, see Eqs. (8.4) and (8.20). In this 

respect these two kinds of capillary force resemble the electrostatic and gravitational forces, 

which obey the same power law, but differ in the physical meaning and magnitude of the force 

constants (charges, masses) [7,8]. 

8.1.4. MORE ACCURATE CALCULATION OF THE CAPILLARY INTERACTION ENERGY 

To derive Eq. (8.2) we have used the superposition approximation, i.e. we approximately 

presented the meniscus around two floating particles as a superposition of the axisymmetric 

menisci around each particle in isolation. Although this approximation works well for long 

interparticle separations, at short distances it is not quantitatively correct; in particular, it leads 

to violation of the boundary condition for constancy of the contact angle at the particle surface 

(the Young equation). We can overcome this problem using the more rigorous expressions 

derived in Section 7.2 by means of bipolar coordinates. Second problem with the superposition  
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approximation is that the interaction energy is assumed to be identical to the gravitational 

energy of one of the two floating particles, thus apriori neglecting the contributions of the 

meniscus surface energy and the energy of wetting. The latter assumption needs to be verified 

and validated. The above two issues are elucidated below following Ref. [4]. 

 Gravitational, wetting and meniscus contributions. Our starting point are Eqs. 

(7.16)−(7.18) which express the energy of the system (the grand thermodynamic potential) Ω 

as a sum of gravitational, wetting and meniscus contributions, Ω = Wg + Ww + Wm. The 

meniscus surface energy is given again by Eq. (7.93), which can be represented in the form 

∆Wm = Wm − Wm∞ = πσ ( )∑
=

−
2,1

2

k
kkk rhQ  − ∆ρgIv − Wm∞ ,    (8.21) 

where Wm∞ is the limiting value of Wm for infinite interparticle separation (L→∞); Iv is given 

by Eq. (7.72). Substituting the geometrical expressions for the portions of the particle area wet 

by fluids I and II in Eq. (7.18) one obtains [4]:  

Ww = 2π )]2([ II,
2,1

I, kkkk
k

kkk bRRbR −+∑
=

σσ       (8.22) 

Using the Young equation, σk,II − σk,I = σ cosαk, and the fact that the particle radius Rk is 

independent of L from Eq. (8.22) one obtains 

∆Ww = −2πσ Rkbk cosα k
k =1,2
∑ − Ww∞       (8.23) 

where Ww∞ is the limiting value of the first term in the right-hand side of Eq. (8.23) for L→∞. 

∆Ww expresses the contribution of wetting to the capillary interaction energy. Finally, using 

Eq. (7.17) and geometrical considerations for the system depicted in Fig. 8.2 one can derive the 

gravitational contribution to the capillary interaction energy [4]: 

∆Wg = ∆ρg{Iv + [
k =1,2
∑ (DkVs

(k) − Vl
(k))Zk

(c) + π(rk
2 + 2hk

2)rk
2/4]} − Wg∞  (8.24) 

where Wg∞ is the limiting value of Wg for L→∞, and  

Zk
(c) = hk − bk + Rk     (k =1,2)   (8.25) 
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is the z-coordinate of the (mass) center of the k-th sphere. Note that when summing up 

Eqs. (8.21) and (8.24) the terms with Iv cancel each other. In view of Eq. (7.16) the total 

energy of capillary interaction between two floating particles can be expressed in the form [4] 

∆Ω = ∆Ww + m
~W∆  + g

~W∆         (8.26) 

where ∆Ww is given by Eq. (8.23); m
~W∆  and g

~W∆  are defined without the canceling Iv-term 

as follows 

m
~W∆  = πσ ( )∑

=

−
2,1

2

k
kkk rhQ  − ˜ W m∞                   (8.27) 

g
~W∆  = { }∑

=
∞−−+−+−−−

2,1
g

3
3
123

3
4222

4
12 ~)])(()2([2

k
kkkkkkkkkkkk WbRbbRRDrhrqhQπσ    (8.28) 

To obtain Eq. (8.28) from Eq. (8.24) we have used Eqs. (8.6), (8.9) and (8.25); the constants 

∞m
~W  and ∞g

~W  are defined in such a way that for L→∞ both m
~W∆  and g

~W∆  tend to zero.  

 Asymptotic expression for the capillary flotation force.  It has been proven by Chan et 

al. [3] that when the particles are small, the meniscus slope is also small, that is 

(qRk)2 << 1     ⇒     sin2ψk << 1   (k = 1,2)   (8.29) 

Combining the latter relationships with Eqs. (7.51) and (8.16) one can derive [4]: 

|Qk|/Rk  ~  (qRk)2 << 1,  |hk/Rk|  ~  (qRk)2 |ln (qRk)| << 1,  (k = 1,2) (8.30) 

As demonstrated in Appendix 8A Eqs. (8.29) and (8.30) imply 
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+=+−=−=
ψ

  (8.31) 

A differentiation of Eqs. (8.23), (8.27) and (8.28), along with Eqs. (8.7) and (8.31) yields [4]: 
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=

πσ       (8.34) 

Finally, in view of Eq. (8.26) we sum up Eqs. (8.32)−(8.34) to obtain an expression for the 

capillary flotation force between small particles [4]: 

)](1[ 22

2,1
k

k

k
k RqO

dL
dhQ

dL
dF +=

∆Ω
−= ∑

=

πσ       (8.35) 

The form of Eqs. (8.32)−(8.35) calls for some discussion. First, one sees that the contributions 

of the wetting, meniscus surface and gravitational energies have comparable magnitudes. 

However, when deriving the expression for F the derivative d(∆Ww)/dL is canceled by a part of 

d( m
~W∆ )/dL, and the result represents a half of the gravitational contribution d( g

~W∆ )/dL. Thus, 

in a final reckoning, F turns out to be (approximately) equal to the half of the gravitational 

contribution, just as assumed by Nicolson long ago [1], see Section 8.1.1.  

Equation (8.31) shows that the dependence of Qk on L is rather weak; then the integration of 

Eq. (8.35) can be formally carried out at constant Qk [4]: 

)](1)[( 22

2,1
kkkk

k
k RqOhQhQ +−−=∆Ω ∞∞

=
∑πσ       (8.36) 

The substitution of some of the expressions for hk derived in Section 7.2.2 in Eqs. (8.35) and 

(8.36) allow one to calculate the dependencies F(L) and ∆Ω(L). More details about the 

procedure of calculation are given in the next section 8.1.5. In particular, from Eqs. (8.35) and 

(8.36), along with Eq. (7.56), one recovers the asymptotic expressions 

F = − 2πσ Q1Q2qK1(qL)[1 + O(q2Rk
2)],  rk << L,   (8.37) 

∆Ω = − 2πσ Q1Q2K0(qL)[1 + O(q2Rk
2)],  rk << L.   (8.38) 

8.1.5. NUMERICAL RESULTS AND DISCUSSION 

 Procedure of calculations. The derived equations enable one to calculate the energy 

and force of capillary interaction between two floating particles, ∆Ω and F. The input 

parameters are usually the interfacial tension σ, the capillary length q−1, the density ratio Dk, 

the contact angle αk, the particle radius Rk (k = 1,2), and the interparticle distance L.  
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The remaining 10 parameters, Qk, hk, rk, ψk and bk (k = 1,2) can be determined for every value 

of the distance L between the two floating particles using the set of Eqs. (7.48), (8.5), (8.7), 

(8.12) and (8.13). For longer distances between the particles (L >> rk) the usage of Eq. (7.56) is 

recommended instead of Eq. (7.48). 

For Rk ≤ 850 µm one can use a much faster iteration procedure proposed in Ref. [4]. Since for 

small particles the meniscus slope is also small, sin2ψk << 1, cf. Eq. (8.29), one can write 

rk = Rk sin(αk + ψk) ≈ Rk cosαk sinψk + Rk sinαk      (8.39) 

In view of Eq. (8.5) one can substitute sinψk = Qk/rk and then Eq. (8.39) transforms into a 

quadratic equation for rk, whose solution reads 

rk = 2
1 [Rk sinαk + ( Rk

2 sin2αk + 4QkRk cosαk)1/2]     (8.40) 

Next, from Eq. (8.31) one obtains 

)()( )()1(2
2
1)()1( n

k
n

kk
n

k
n

k hhqrQQ −−= ++    (k = 1,2)  (8.41) 

where Qk
(n+1) and Qk

(n)  are two consecutive approximations for Qk, as well as hk
(n+1)  and hk

(n) are 

two consecutive approximations for hk; n = 0, 1, 2,... . The iteration procedure has the 

following steps [4]: 

(i) As a zeroth-order approximation one can use  

rk
(0) = rk∞ , Qk

(0) = Qk∞ , hk
(0) = hk∞ ,       (8.42) 

where Qk∞ is determined from Eq. (8.16), rk∞ is then calculated from Eq. (8.40) and hk∞ is 

determined from Eq. (7.51).  

(ii) hk
(n+1)  is calculated from Eq. (7.48)  [or Eq. (7.56) for L >> rk]  substituting Qk = Qk

(n)  and 

rk = rk
(n). 

(iii) Then from Eq. (8.41) one obtains the next approximation, Qk
(n+1), which is to be substituted 

in Eq. (7.40) to get rk
(n+1) . Next, step (ii) is repeated again to give hk

(n+2) , etc. 

This iteration procedure is quickly convergent when (qrk)2 in Eq. (8.41) is a small parameter. 

With the values of Qk, rk and hk thus obtained one next calculates ψk and bk: 
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ψk = arcsin(Qk/rk),   bk = Rk[1 + cos(αk + ψk)].   (8.43) 

Finally, from Eqs. (8.23) and (8.26)−(8.28) one determines the energy of capillary interaction 

∆Ω(L); the capillary flotation force can be obtained by differentiation: F = − d(∆Ω)/dL. For 

Rk ≤ 100 µm one can calculate ∆Ω and F from Eqs. (8.35) and (8.36). Note that the latter two 

equations are more general than Eqs. (8.37) and (8.38) which are subject to the additional 

restriction L >> rk.  

 Calculated energy and force of capillary interaction. The capillary force, 

F = −d(∆Ω)/dL, calculated by numerical differentiation of Eq. (8.26) [along with Eqs. (7.48), 

(8.23), (8.27) and (8.28)], can be compared with the capillary force calculated from the 

asymptotic formula, Eq. (8.37), along with Eq. (8.16). For that purpose the ratio, Φ, of the 

values of F calculated by means of the more rigorous and less rigorous equations, 

Φ = 
))37.8(Eq.(
))26.8(Eq.(

F
F  ,         (8.44) 

has been calculated as a function of the interparticle distance L. Figure 8.4 shows plots of Φ vs. 

L/2R obtained in Ref. [4] for two identical floating particles using the following parameter 

values: R1 = R2 = R = 10 µm, ρ1 = ρ2 = 3 g/cm3; water-air interface : ρI = 1 g/cm3, ρII = 0, 

σ = 70 mN/m. The three curves in Fig. 8.4 correspond to three different values of the particle 

contact angle: α1 = α2 = α = 30°, 60° and 90°. 

For L/2R > 3 one has Φ ≈ 1, that is the two equations predict practically identical values of the 

force F, see Fig. 8.4. This result could be anticipated, because Eq. (8.37) is an asymptotic 

expression for the capillary force derived for the case of large interparticle separations. On the 

other hand, Fig. 8.4 shows that for shorter distances (L/2R < 2) and for α > 30° the asymptotic 

formula, Eq. (8.37), considerably underestimates the capillary force; hence in such cases the 

usage of the more rigorous Eq. (8.26) has to be recommended for calculation of F.  

Figure 8.5 shows plot of ∆Ω/kT vs. L calculated by means of Eq. (8.26) for two identical 

particles. The temperature is 25°C; the values of the other parameters are shown in the figure. 
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Fig. 8.4. Plot of Φ vs. distance L scaled by the 
particle diameter 2R obtained in Ref. [4] for 
two identical particles; Φ is the ratio of the 
values of the capillary force calculated by 
means of the more rigorous Eq. (8.26) and 
the approximate Eq. (8.37).  

 

 

Fig. 8.5. Dependence of the capillary interaction 
energy ∆Ω/kT on the distance L between 
two identical floating particles calculated 
in Ref. [4] for three different values of 
the particle mass density ρk. 

 
The curves in Fig. 8.5 are close to straight lines, which can be explained with the fact that 

Eqs. (7.54) and (8.38) predict ∆Ω ∝ ln(qL) for qL << 1; note that L is plotted in log scale along 

the abscissa of Fig. 8.5. In addition, in Fig. 8.5 one sees that for such small particles 

(R = 10 µm) the energy of capillary attraction due to the flotation force is relatively small, not 

larger than several kT, and increases markedly with the rise of the particle density ρk. 

For the couple of particles, whose density (ρk = 1.05 g/cm3) is close to that of the lower fluid 

phase (ρI = 1 g/cm3) ∆Ω is smaller than the thermal energy kT, and in this case the capillary 

attraction between the particles is negligible. 

Figure 8.6 illustrates the fact that for two identical particles the dependence of the energy of 

capillary attraction, ∆Ω, on the particle mass density, ρk, is a non-monotonic one. 

Qualitatively, this can be easily anticipated, because for light and heavy particles one has the 

configurations depicted in Figs. 8.2a and 8.2b, respectively, corresponding to positive and 

negative meniscus slope angle ψk. Then for some intermediate value of the particle density ρk* 

the slope angle becomes ψk = 0, which means that there is no interfacial deformation and 

capillary attraction; the latter situation corresponds to the upper points (with ∆Ω = 0) of the 

curves in Fig. 8.6. 

( )( )
( )( )27.8.Eq

26.8.Eq
F
F

=Φ

σ=70 mN.m-1 
R=10.0 µm 
α=60° 
ρI=1.0g.cm-3 
ρII=0 

∆Ω/kT
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Fig. 8.6. Plot of the capillary interaction energy 
∆Ω/kT vs. particle mass density ρk 
calculated in Ref. [4] for three different 
values of the contact angle α of two 
identical spherical particles of radius R = 
10 µm separated at a distance L = 2R.  

 

Fig. 8.7. Plot of the capillary interaction energy 
∆Ω/kT vs. contact angle α calculated in 
Ref. [4] for three different values of the 
mass density ρk of two identical spherical 
particles of radius R = 10 µm separated at 
a distance L = 2R. 

 
Since for ψk = 0 one has Qk = 0, we can estimate the value of ρk* from Eqs. (8.11) and (8.16): 

4
1

III

II
*

=
−
−

ρρ
ρρ k (2 + 3cosαk − cos3αk)       (8.45) 

In particular, for αk = 90°, ρI = 1 g/cm3 and ρII = 0 Eq. (8.45) predicts ρk* = 0.5 g/cm3 which 

exactly corresponds to the maximum of the curve with α = 90° in Fig. 8.6. 

Figure 8.7 shows plots of ∆Ω/kT vs. α, calculated in Ref. [4], which illustrate the dependence 

of  the capillary interaction  energy on the contact angle;  the three  curves correspond  to  three 

different values of the particle mass density ρk (two identical particles, α ≡ αk). The values of 

the other parameters in Fig. 8.7 are the same as in Fig. 8.6. One sees in Fig. 8.7 that the 

dependence of ∆Ω on α is the most pronounced in the interval 45° < α < 135°, whereas outside 

this interval ∆Ω is almost constant. This behavior can be attributed to the fact that the capillary 

charge Qk depends on cosαk, see Eq. (8.16), and cosαk varies strongly in the interval 45° < α < 

135°, while it is almost constant (cosαk ≈ ±1) outside this interval.  

Figure 8.8 shows plots of ∆Ω/kT vs. σ, calculated in Ref. [4], which illustrate the dependence 

of the capillary interaction energy on the value of the interfacial tension  (case of two identical 

σ=70 mN.m-1 
R=10.0 µm 
L=2R 
α=60° 
ρI=1.0g.cm-3 
ρII=0 

∆Ω/kT

σ=70 mN.m-1 
R=10.0 µm 
L=2R 
α=60° 
ρI=1.0g.cm-3 
ρII=0 

∆Ω/kT
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Fig. 8.8. Plot of the capillary interaction energy 
∆Ω/kT vs. interfacial tension σ calculated in 
Ref. [4] for three different values of the mass 
density ρk of two identical spherical particles 
of radius R = 15 µm and contact angle αk = 
60° separated at a distance L = 2R.  

 

Fig. 8.9. Plot of the energy of capillary repulsion 
∆Ω/kT vs. distance L between a heavy 
particle of radius R1 and a light particle 
(bubble) of radius R2 = 20 µm; the 
curves are obtained in Ref. [4] for three 
different values of R1. 

 
particles). One sees that the lower the interfacial tension σ, the greater the magnitude of the 

interaction energy |∆Ω|. To understand this behavior one first notices that q2 ∝ 1/σ and then 

Eq. (8.16) gives Qk ∝ 1/σ. Then in accordance with Eq. (8.38) one can write ∆Ω ∝ σ Qk
2 ∝ 

1/σ, which explains the trend of the curves in Fig. 8.8. From a physical viewpoint this means 

that when the interfacial tension σ is smaller, a floating heavy (or light) particle creates a larger 

surface deformation (sinψk ∝ Qk), which gives rise to a stronger capillary attraction if the 

menisci formed around two such particles overlap. This behavior of the dependence ∆Ω vs. σ 

has been first theoretically established by Chan et al. [3] for the case of flotation forces. Note, 

however, that in the case of immersion force the trend is exactly the opposite: ∆Ω grows with 

the increase of σ,  i.e. ∆Ω ∝ σ , see Eq. (8.20) and Ref. [6]. 

Up to here, all considered numerical examples (Figs. 8.4−8.8) correspond to the case of two 

identical particles, which experience attractive capillary force. The derived equations enable 

one to obtain theoretical results also for the case of two non-identical particles, which may 

experience repulsive capillary force. As an example, in Fig. 8.9 we give the plot of ∆Ω/kT vs. L 

for a couple of dissimilar particles: a heavy particle of mass density ρ1 = 2 g/cm3 and a hollow 

sphere (bubble) of mass density ρ2 = 0; the values of the other parameters are shown in the 

R1=R2=R=15 µm 
L=2R 
α1=α2=α=60° 
ρI=1.0g.cm-3 
ρII=0 

∆Ω/kT

σ [mN.m-1] 

σ=35 mN.m-1 
R2=20 µm 
ρ1=2.0 g.cm-3, ρ2=0
α1=80°,  α2=15° 
ρI=1.0g.cm-3,  ρII=0

∆Ω/kT 
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figure. The configuration resembles that in Fig. 7.1c and one could expect that the interaction 

between the two dissimilar particles will be repulsive. The three curves in Fig. 8.9, calculated 

in Ref. [4] for three values of the radius of the heavy particle, R2 = 20, 30 and 40 µm, really 

correspond to ∆Ω > 0, i.e. to repulsion.  

Note also that the magnitude of the interaction energy in Fig. 8.9 is much greater that that in 

Fig. 8.5. The reason is that the particle radii in Fig. 8.9 are larger than those in Fig. 8.5, and 

that the capillary flotation force increases very strongly with the rise of the particle size: 

∆Ω ∝ Q1Q2 ∝ 3
2

3
1 RR , see Eqs. (8.16) and (8.38). Thus for two identical particles, R1 = R2 = R, 

one obtains ∆Ω ∝ R6 and F ∝ R6, cf. Eqs. (8.20) and (8.37). This strong dependence of the 

flotation force on the particle size makes it to vanish for Brownian particles of radius 

R ≤ 1 µm, see Fig. 8.3. In other words, the flotation force turns out to be an essentially 

macroscopic effect. On the other hand, the immersion force is operative between both sub-

micrometer (Brownian) and larger particles. 

8.2. PARTICLE-WALL INTERACTION: CAPILLARY IMAGE FORCES 

8.2.1. ATTRACTIVE AND REPULSIVE CAPILLARY IMAGE FORCES 

In this section we consider a particle of radius in the range between 5 µm and 1 mm, which is 

floating on a liquid surface in the vicinity of a vertical wall. The overlap of the meniscus 

around the floating particle with the meniscus on a vertical wall gives rise to a particle-wall 

interaction, which can be both repulsive and attractive, as explained below. We will use 

subscripts “1” and “2” to denote parameters characterizing the wall and particle, respectively. 

First, following Refs. [9,10], we consider the simplest case, when the contact angle at the wall 

is α1 = 90°. In such a case the meniscus would be flat if the floating particle (Fig. 8.10a) were 

removed. Let us denote by ζ0(x,y) the meniscus shape in the presence of particle. Since 

α1 = 90°, the function ζ0(x,y) must satisfy the boundary condition (∂ζ0/∂x)x=0 = 0 at the wall 

surface. Using considerations for symmetry one realizes that the meniscus shape ζ0(x,y) in Fig. 

8.10a would be the same if  (instead of a wall at a distance s)  one has a second particle (mirror 

image) floating at a distance 2s from the original particle.  The “image” must be identical to 

the original particle with respect to its size, weight and contact angle; in other words,  
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Fig. 8.10. Sketch of the meniscus profile, ζ0(r), around a particle floating in the vicinity of a vertical 
wall; α2 and r2 are the particle contact angle and contact line radius; ψ2 is the meniscus slope 
angle at the particle contact line; (a) fixed contact angle at the wall (α1 = 90°) corresponding 
to attractive capillary image force; (b) fixed contact line at the wall (ζ0 ≡ 0 for x = 0) which 
leads to repulsive capillary image force [9]. 

 

the particle and its image have identical “capillary charges”, equal to Q2. Note, that the 

capillary charge of the floating particle can be estimated by means of Eq. (8.16) above. As 

mentioned earlier, the lateral capillary force between two identical particles is always 

attractive. Hence, the particle and its mirror image depicted in Fig. 8.10a will attract each 

other, which in fact means that the wall will attract the floating particle; the resulting force will 

(asymptotically) obey Eq. (8.37) with Q1 = Q2. 

The boundary condition ζ0(x=0) = 0 represents a requirement for a zero elevation of the contact 

line at the wall. As noticed in Ref. [9] this can be experimentally realized if the contact line is 

attached to the edge of a vertical plate, as shown in Fig. 8.10b, or to the boundary between a 

hydrophobic and a hydrophilic domain on the wall. As before, we assume that the meniscus 

would be flat if the floating particle (Fig. 8.10b) were removed. Using again considerations for 

symmetry, one realizes that  the meniscus shape  ζ0(x,y)  in  Fig. 8.10b  would  be  the  same  if 
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(instead of a wall at a distance s) one has a second particle (image) of the opposite capillary 

charge (Q1 = −Q2) at a distance 2s from the original particle. In such a case the capillary force 

is repulsive, i.e. in reality the wall will repel the floating particle [9]. 

The above considerations imply that one can use Eq. (8.37) with L = 2s to describe the 

asymptotic behavior of the particle-wall interaction for the two configurations depicted in Figs. 

8.10a and 8.10b: 

F = (−1)λ 2πσ Q2
2 qK1(2qs)[1 + O(q2Rk

2)],  rk << L,   (8.46) 

where 

λ =
1 for fixed contact angle at the wall;
0 for fixed contact line at the wall.

 
 
 

      (8.47) 

Such capillary interactions between a floating particle and a vertical wall, which are equivalent 

to the interaction between the particle and its mirror image, are termed “capillary image 

forces” in Ref. [9]. In fact, they resemble the electrostatic image forces, appearing when an 

electric charge imbedded in a medium of dielectric permittivity ε1 is located in the 

neighborhood of a boundary with a second medium of permittivity ε2. The electrostatic image 

force is proportional to the difference (ε1 − ε2), see e.g. [11,12], and consequently, this force 

can be repulsive or attractive depending on whether ε1 > ε2 or ε1 < ε2. 

Coming back to the capillary image forces, we notice that the configurations depicted in 

Fig. 8.10 represent a very special case, insofar as we have assumed that the interface is 

horizontal in the absence of floating article (α1 = 90°). The usual experimental situation is that 

an inclined meniscus (α1 ≠ 90°) is formed in a vicinity of the vertical wall. Below, following 

Ref. [9], we consider that more general case. 

 

8.2.2. THE CASE OF INCLINED MENISCUS AT THE WALL 

 Qualitative dependence of energy vs. distance. Figure 8.11a shows the capillary 

meniscus formed in the neighborhood of a vertical planar wall. Now the contact angle α1 at the 

wall is different from 90°.  In such case,  the gravitational force  will  tend  to  slip  the  particle 
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Fig. 8.11. (a) Sketch of a heavy particle floating at a distance s from a vertical wall of fixed three-phase 
contact angle α1

 < 90°; ζ1(x) is the non-disturbed meniscus of the wall and ζ0(x,y) is the 
interfacial perturbation caused by the particle. (b) Typical dependence of the capillary 
interaction energy ∆Ω vs. distance s corresponding to the above configuration of floating 
particle and wall [9]. 

 

along the inclined meniscus. We will restrict our considerations to the case of small meniscus 

slope, 

sin2ψ1 << 1,     (ψ1  = 90° − α1)   (8.48) 

(otherwise the gravitational force will be predominant and the effect of the lateral capillary 

force becomes negligible). Equation (8.48) corresponds to the nontrivial case, in which the 

total force exerted on the particle is an interplay of the gravitational effect (particle weight + 

buoyancy force) and the effect of the capillary image force. Prior to any quantitative 

considerations one can anticipate qualitatively the trend of the particle-wall interaction: 

In Fig. 8.11a the contact angle α1 < 90° is assumed constant, but the contact line on the wall is 

mobile. In such a case (like in Fig. 8.10a) the capillary image force is attractive, whereas the 

gravitational force will push the particle away from the wall. If the particle is large enough, the 

capillary image force will prevail at short distances, whereas the gravitational force will prevail  
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Fig. 8.12. (a) Sketch of a heavy particle of radius R2 floating at a distance s from a vertical wall; the 
three-phase contact line is fixed at the edge of the wall, which is situated at the level z = H 
below the horizontal liquid surface z = 0 far from the wall. ζ1(x) is the non-disturbed meniscus 
of the wall and ζ0(x,y) is the interfacial perturbation caused by the particle. (b) Typical 
dependence of the capillary interaction energy ∆Ω vs. distance s corresponding to the above 
configuration of floating particle and wall [9]. 

 
at long distances. Therefore, one can expect that at some distance s = s* these two forces will 

counterbalance each other and the energy of the particle ∆Ω will exhibit a maximum when 

plotted vs. the distance s, see Fig. 8.11b. 

If the slope of the meniscus at the wall has the opposite sign, i.e. α1 > 90° and ψ1 < 0, then the 

plot of ∆Ω vs. s for a heavy particle (Q2 < 0) will be a monotonically increasing curve, because 

in this case both the gravitational and the capillary image force will have a tendency to bring 

the particle closer to the wall. 

From a physical (including experimental) viewpoint more interesting is the case presented in 

Fig. 8.12: the position of the contact line is fixed at the edge of a plate or to the boundary 

between hydrophilic and hydrophobic regions on the wall. As mentioned above, in this case 

the capillary image force is repulsive. Let us denote by H the z-coordinate of the contact line 

on the wall; the choice of the coordinate system is shown in Fig. 8.12a, where H < 0. In such a 

case, the gravitational force will tend to bring a floating heavy particle (with Q2 < 0) closer to 

the wall. Then at some separation s = s* the gravitational and the capillary image forces can 
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counterbalance each other and the particle will have a stable equilibrium position, 

corresponding to a minimum of the energy ∆Ω (Fig. 8.12b). The dependence of ∆Ω vs. s is 

similar if H > 0 and the particle is light (Q2 > 0). The existence of a minimum of ∆Ω at s = s* 

allows one to determine experimentally the dependence of s* on H and thus to verify the 

theoretical predictions, see Section 8.2.7 below. 

 Shape of the contact line on the particle surface. As in Chapter 7, to quantify the 

capillary interaction we have to solve the Laplace equation and to determine the meniscus 

shape. Since we assume small meniscus slope, the Laplace equation can be linearized, see 

Eq. (7.6), and the solution z = ζ(x,y) can be formally expressed as a sum of the meniscus ζ1(x) 

formed at the wall in the absence of a floating particle, and the deformation ζ0(x,y) created by 

the particle in the absence of inclined meniscus at the wall (ψ1 = 0, see Fig. 8.10) [9]: 

ζ(x,y) = ζ0(x,y) + ζ1(x).        (8.49) 

Both ζ0(x,y) and ζ1(x) satisfy the linearized Laplace equation of capillarity: 

1
2

2
1

2

0
2

2
0

2

2
0

2

, ζζζ
∂

ζ∂
∂

ζ∂ q
dx
dq

yx
==+      (8.50) 

The solution for ζ1(x), which levels off at infinity, has the form: 

ζ1(x) = q−1 tanψ1 exp(−qx)  (fixed contact angle α1 = 90° − ψ1)  (8.51) 

ζ1(x) = H exp(−qx)   (fixed contact line on the wall)  (8.52) 

On the other hand, ζ0(x,y) corresponds to the configurations depicted in Fig. 8.10, and 

consequently, ζ0(x,y) is determined by Eqs. (7.38)−(7.44) with Q1 = Q2 in the case of fixed 

contact angle and with Q1 = −Q2 in the case of fixed contact line. Further, in the case of fixed 

contact angle the shape of the contact line on the particle surface, ζ0(ω), is determined by 

Eq. (7.64), that is 









−

+= ∞ ω
ωζ

cos
2)(

2

2

0220 rs
qaKQh ,  (fixed contact angle α1)  (8.53) 

In Eq. (8.53) ω is bipolar coordinate, cf. Eq. (7.25); in addition, 
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2e
22

2ln
qr

Qh
γ

≈∞  ,    a = (s2 − r2
2)1/2.   (8.54) 

The validity of Eq. (8.53) is limited to small particles, (qr2)2 << 1, and small meniscus slope, 

|∇IIζ0|2 << 1, which is the case considered here. 

Next, our purpose is to derive a counterpart of Eq. (8.53) for the case of fixed contact line at 

the wall. As in Section 7.2.2 we will use the method of the matched (“outer” and “inner”) 

asymptotic expansions [13]. For large particle-wall separations, (qa)2 ≥ 1, one can use the 

superposition approximation representing the meniscus shape around a couple of particles (the 

particle and its mirror image) as a sum of the deformations, created by two isolated particles. 

Since the mirror image now has the opposite capillary charge (see Fig. 8.10b) the superposition 

approximation yields Eq. (7.59), but with “−” instead of “+” [9]: 

ζ0
out(ω) = Q2K0(qrr) − Q2K0(qrl),    (qa)2 ≥ 1  (8.55) 

where the superscript “out” means that Eq. (8.55) is valid in the outer asymptotic region of not-

too-small interparticle separations, (qa)2 ≥ 1, in which the superposition approximation can be 

applied; rl and rr are expressed again by Eq. (7.62). Taking into account the known asymptotic 

formula [14-16] 

K0(x) ≈ 
xe

2ln
γ

  for  x << 1       (8.56) 

and using Eq. (7.62) one obtains the “inner” limit of Eq. (8.55) for a→0 (rl, rr → 0): 

(ζ0
out)in = Q2ln(rl /rr) = Q2ln[(a + s)/r2] = Q2τ2     (8.57) 

Here τ2 is the value of the bipolar coordinate τ at the contact line, see Eq. (7.57). On the other 

hand, analytical expression corresponding to the inner asymptotic region, (qa)2 << 1, can be 

obtained setting τ = τ2 , Q1 = −Q2 and τ1 = τ2  in Eq. (7.42) [9]: 

ζ0
in(ω) = Q2 2

~τ (ω),     (qa)2 << 1,   (8.58) 

where 

2
~τ (ω) ≡ τ2 + ∑

∞

=1

2

n n
tanh(nτ2) exp(−nτ2) cos (nω)     (8.59) 
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For large separations τ2 →∞, 2
~τ  →τ2, and then with the help of Eqs. (8.57) and (8.58) one may 

check that 

(ζ0
in)out = (ζ0

out)in,         (8.60) 

as required by the method of the matched asymptotic expansions [13]. Equation (8.58) can be 

represented in the equivalent form 

ζ0
in(ω) = )(~exp)(~,

)(~
2ln2ln 222
2e

2
2e

2 ωτω
ωγγ

rr
rq

Q
qr

Q ≡−   (8.61) 

The compound solution, which is valid in both the “inner” and “outer” region reads [9]: 

ζ0(ω) = h2∞ − K0(q )(~
2 ωr )   (fixed contact line at the wall) (8.62) 

where h2∞  is defined by Eq. (8.54) and )(~
2 ωr  is defined by Eqs. (8.59) and (8.61). Having in 

mind Eq. (8.56) one sees that for small distances, (qa)2 << 1, Eq. (8.62) reduces to the “inner” 

expression Eq. (8.61), whereas for longer distances, (qa)2 ≥ 1, Eq. (8.62) asymptotically tends 

to the “outer” expression Eq. (8.55). 

Equations (8.53) and (8.62) will be used in Section 8.2.5 to quantify the particle−wall 

interaction in the framework of the force approach. 

8.2.3. ELEVATION OF THE CONTACT LINE ON THE SURFACE OF THE FLOATING PARTICLE 

Here we continue the theoretical description of the configurations of particle and wall depicted 

in Figs. 8.11 and 8.12. In Ref. [9] it has been established that the capillary charge of the 

floating particle is given by the expression 

Q2 = ])3/([ 2
2

2
3
223

4
22

2
2

2
2
1 hrRDbRbq −−−       (8.63) 

which is in fact Eq. (8.12) for k = 2, but the capillary elevation h2 now has contributions from 

both the particle meniscus ζ0 and the meniscus on the wall ζ1, see Figs. 8.11 and 8.12, and 

Eq. (8.49): 

h2 = h20 + h21          (8.64) 



Lateral Capillary Forces between Floating Particles 

 

375

Below we specify the expressions for h2 in the two alternative cases of fixed contact angle α1 

and fixed elevation H at the wall. 

 Fixed contact angle at the wall. As already discussed, in this case the shape of the 

meniscus ζ0 is identical to that around two similar floating particles of capillary charge Q2, see 

Fig. 8.10a. Consequently, h20 can be expressed by means of Eq. (7.55); in addition, h21 can be 

determined from Eq. (8.51): h21 = ζ1(s). Thus in view of Eq. (8.64) one obtains [9] 

h2 = q−1 tanψ1 exp(−qs) + h2∞ + Q2K0(q(s + a)) (fixed contact angle α1); (8.65) 

see also Eq. (8.54). 

 Fixed contact line at the wall. In this case h21 can be determined from Eq. (8.52): 

h21 = ζ1(s) = Hexp(−qs)        (8.66) 

To determine h20 we will employ again the method of the matched asymptotic expansions. The 

value of h20 in the inner asymptotic region of short particle-wall separations can be obtained by 

integration of Eqs. (8.58)−(8.59) in accordance with Eq. (7.47): 

22
in
0

2

in
20 ˆ

2
1

2

τζ
π

Qdl
r

h
C

=≡ ∫     (qa)2 << 1,    (8.67) 

where 

2τ̂  ≡ τ2 + ∑
∞

=1

2

n n
 tanh(nτ2) exp(−2nτ2),  τ2 = ln[(a + s)/r2].  (8.68) 

On the other hand, in the outer asymptotic region of longer particle-wall separations h20 can be 

expressed by means of Eq. (7.53) with Q = −Q2: 

h20
out = h2∞ − Q2K0 (2qs)    (qa)2 ≥1,    (8.69) 

Equation (8.67) can be rewritten in the form 

22e
2

2e
2

in
20 ˆexp

2ln2ln
τγγ qr

Q
qr

Qh −=   (qa)2 << 1   (8.70) 

The compound expression can be formally obtained if the logarithms in Eq.(8.70) are 

exchanged with K0-functions in agreement with Eq. (8.56) [9]: 
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)ˆexp( 2202220 τqrKQhh −= ∞        (8.71) 

see also Eq. (8.54). For short particle-wall separations Eq. (8.71) reduces to Eq. (8.70), 

whereas for longer separations 2τ̂ →τ2 and Eq. (8.71) transforms into Eq. (8.69). Finally, 

substituting Eqs. (8.66) and (8.71) into Eq. (8.64) one obtains the sought-for expression for the 

capillary elevation of the contact line on the particle surface: 

h2 = Hexp(−qs) + )ˆexp( 22022 τqrKQh −∞      (fixed elevation at the wall) (8.72) 

8.2.4. ENERGY OF CAPILLARY INTERACTION 

In accordance with Eq. (7.16) the energy and the force of capillary interaction can be presented 

in the form 

∆Ω = Ω(s) − Ω(∞) = ∆Ww + ∆Wm + ∆Wg,   F = −d(∆Ω)/ds,  (8.73) 

where the additive constant in the expression for ∆Ω is determined in such a way that ∆Ω→0 

for s→∞; the last three terms in the expression for ∆Ω represent the wetting, meniscus and 

gravitational contributions, respectively. Following the derivation of Eq. (8.23) one can deduce 

[9]: 

∆Ww = −2πσ [R2b2 cosα2 + λQ2q−1 tanψ1 exp(−qa)] − Ww∞ ,    (8.74) 

where λ is defined by Eq. (8.47) and the constant Ww∞  is defined in such a way that ∆Ww→0 

for s→∞; the two terms in the brackets represent, respectively, contributions from the wetting 

of the particle and the wall. Further, in Ref. [9] it is proven that the sum of the gravitational 

and the meniscus surface energy can be expressed in the form 

∆Wm + ∆Wg = m
~W∆  + g

~W∆         (8.75) 

where g
~W∆  is defined by a counterpart of Eq. (8.28),  

g
~W∆  = { } ∞−−+−+−−− gWbRbbRRDrhrqhQ ~)])(()2([2 22

3
23

12
22

3
223

42
2

2
2

2
24

12
22πσ        (8.76) 

and 

m
~W∆  = [ ])()()()1( 2

1
2

22
12

21222 sqrrsQhQ ζζπσ λ −−−−  − ∞∆ m
~W    (8.77) 
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Here λ is defined by Eq. (8.47);  ζ1(x) is to be calculated from Eq. (8.51) or (8.52) depending 

on whether the contact angle or contact line is fixed at the wall; likewise, h2 is to be calculated 

from either Eq. (8.65) or Eq. (8.72); the constant ∞∆ m
~W  is defined in such a way that m

~W∆ →0 

for s→∞. Equations (8.73)−(8.77) determine the dependence ∆Ω = ∆Ω(s). A convenient 

procedure of numerical calculations is described in Section 8.2.6 below. 

A relatively accurate and simple asymptotic formula for the force F experienced by the floating 

particle can be derived in the following way [9]. Equation (8.31) for k = 2 can be presented in 

the form: 

)](1[)()](1[ 2
2

222
22

12
2

222

22

22
2

2 RqO
ds

dh
qrRqO

ds
dQ

ds
dr

bR
r

ds
d

r
ds

db
+=+−=

−
=−=

ψ
,    (8.78) 

see also Eq. (8A.3) in Appendix 8A. The differentiation of Eq. (8.74), along with Eqs. (8.77), 

gives: 

)](1[etan2cos)( 2
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22
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2
22

2
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w RqO
ds

dhqrQ
ds

dhRqr
ds
Wd qs +




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


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
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∆ −ψλαπσ      (8.79) 

Next, differentiating Eq. (8.77) along with Eq. (8.78), and taking into account that  b2
 − R2 ≈ 

R2cosα2  and dζ1(s)/ds = −qζ1(s), see Eqs. (8.51)−(8.52), one obtains: 

[ ]
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      (8.80)  

The differentiation of Eq. (8.76) gives an expression analogous to Eq. (8.34): 

)](1[2
~

2
2

22

2,1
2

g RqO
ds

dhQ
ds
Wd

k
+−=

∆
∑
=

πσ       (8.81) 

Since our purpose is to obtain the long distance asymptotics, that for s >> r2, we notice that in 

this limit both Eq. (8.65) and Eq. (8.72) can be presented in the form  

h2 ≈ ζ1(s) + h2∞ + Q2K0(2qs),    s >> r2,    

 (8.82) 

Then in view of Eqs. (8.51)−(8.52) one obtains 
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ds
dh2  ≈ −qζ1(s) − 2qQ2K1(2qs),    s >> r2,   (8.83) 

Finally, in accordance with Eq. (8.73) we sum up Eqs. (8.79)−(8.81) and substitute Eq. (8.83) 

in the result; after some algebra we obtain [9]: 

( ) ( )[ ]( ))(12K)1(2)()(2)( 2
2

2
1

2
2

2
1212 RqOsqQsqrsQqsF +−−+−≈ λζζσπ       (s >> r2)     (8.84) 

ζ1(s) is to be substituted from Eq. (8.51) or (8.52) depending on the boundary condition on the 

wall; λ is defined by Eq. (8.47). The range of validity of Eq. (8.84) is verified in Fig. 8.15 

below. The meaning of the three terms in Eq. (8.84) is the following.  

First we notice that the gravitational force exerted on the particle is Fg ≈ 2πr2σ sinψ2 = 2πσ Q2, 

cf. Eq. (8.1). In addition, the slope of the interface is characterized by  

sinψ(s) ≈ tanψ(s) = dζ1(s)/ds = −qζ1(s).       (8.85) 

Then one obtains −2πσ Q2 qζ1(s) = Fg sinψ(s). Hence, the first term in the brackets in Eq. 

(8.84) expresses the effect of the gravitational force, Fg sinψ(s), which tends to “slide” the 

particle along the inclined meniscus. 

The second term in the brackets in Eq. (8.84), −πσq(qr2ζ1(s))2, is proportional to πr2
2, that is to 

the area encircled by the contact line. This term takes into account the pressure jump across the 

interface. The respective force can be estimated multiplying the area πr2
2 by the hydrostatic 

pressure ∆ρgh2 and by sinψ(s) ≈ −qζ1(s) to take a projection along the tangent to the meniscus. 

Taking into account the fact that h2 ≈ ζ1(s) and ∆ρg = σq2, one obtains (πr2
2)(∆ρgh2)sinψ(s) = 

−πσq(qr2ζ1(s))2. This term is always negative, i.e. it always corresponds to an effective 

particle-wall attraction [9]. 

The third term in the brackets in Eq. (8.84), ( )sqQq 2K)1(2 1
2
2

λπσ − , expresses the contribution 

of the capillary image force, see Eq. (8.37), which is attractive in the case of fixed contact 

angle at the wall (Fig. 8.10a), but repulsive in the case of fixed contact line at the wall (Fig. 

8.10b).  

Equation (8.84) has found applications for the interpretation of experimental data about the 

measurement of the surface drag coefficient of floating particles and surface shear viscosity of  
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surfactant adsorption monolayers, see Section 8.2.7 below. Note that Eq. (8.84) can be 

integrated at fixed Q2 to obtain an approximate expression for the interaction energy [9]:  

( ) ( ) ( )( ) ( ) ( ) ( )( )2
2

2
1

2
2

2
1212 12K1

2
12 RqOsqQsrqsQs +



 −−+−≈∆Ω λζζσπ ;    (s >> r2)   (8.86) 

The range of validity of Eq. (8.86) is verified in Fig. 8.14 below. 

8.2.5. APPLICATION OF THE FORCE APPROACH TO QUANTIFY THE PARTICLE−WALL INTERACTION 

 General equations. Our purpose is to directly calculate the x-component of the force 

exerted on the floating particle in Figs. 8.11 and 8.12. In agreement with Eqs. (7.21)−(7.23) 

one obtains 

Fx = Fx
(σ) + Fx

(p)         (8.87) 

Fx
(σ) = ex⋅ ∫

2L

dl  σ ,   Fx
(p) = ex⋅ ∫

2S

ds (−nP) ,    (8.88) 

where σ is the vector of surface tension, P is hydrostatic pressure, L2 denotes the contact line 

on the particle surface S2, the latter having a running unit normal n; dl and ds are linear and 

surface elements. The gravitational force is directed along the z-axis, and consequently, it does 

not (directly) contribute to Fx (although it contributes indirectly to Fx through Fx
(σ), see below). 

To calculate Fx
(p) one can use Eq. (7.137), that is  

∫∆=
π

ϕϕϕζρ
0

2
2

)( cos)( dgrF p
x        (8.89) 

Note that in view of Eq. (8.49) ζ = ζ0 + ζ1. Usually ζ0 is expressed in terms of the bipolar 

coordinate ω: ζ0 = ζ0(ω). Then to carry out the integration in Eq. (8.89) one can use the 

following relationships between the azimuthal angle ϕ and ω  [17]:  

ϕϕ
ω

ϕ
ϕω

cos
,

cos
coscos

22

2

rs
a

d
d

rs
rs

+
=

+
+

=      (8.90) 

where 0 ≤ ω ≤ π  and  0 ≤ ϕ ≤ π.  
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Fig. 8.13. Sketch of an auxiliary cylinder of radius r2, whose generatrix is orthogonal to the surface 

ζ1(x) of the non-disturbed meniscus at the wall and passes through the contact line on the 
particle surface. The angle between the running unit normal n to the surface of this cylinder 
and the vector of surface tension σ is equal to ψ2 in each point of the contact line; t is unit 
vector tangential to the contact line and b ≡ t × n.  

 

Next, we continue with the calculation of the force  Fx
(σ) which is due to the vector of surface 

tension σ integrated along the contact line. First, let us consider an auxiliary cylinder of radius 

r2, whose generatrix is orthogonal to the surface ζ1(x) and passes through the contact line on 

the particle surface, see Fig. 8.13. The angle between the running unit normal to the surface of 

this cylinder, n, and the surface tension vector σ is equal to ψ2 in each point of the contact line. 

Let us introduce a coordinate system ( ′ x , ′ y , ′ z ), whose ′ z -axis coincides with the axis of the 

cylinder in Fig. 8.13. The unit basis vectors of the new coordinate system are  

′ e x  = ex cosψ + ez sinψ,            ′ e y  = ey ,            ′ e z  = ez cosψ − ex sinψ.  (8.91) 

where ψ = ψ(s) is the local slope of the meniscus on the wall, see Eq. (8.85) and Fig. 8.13. The 

linear element dl along the contact line and its running unit tangent t are expressed as follows 

dl = r2χ dϕ,                               

2/12
0

2

11











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


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    (8.92) 
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The running unit normal to the surface of the cylinder n and the running binormal b are 

defined as follows (Fig. 8.13): 

n = ′ e x  cosϕ + ′ e y  sinϕ ,   b = t × n    (8.94) 

The vector of surface tension σ belongs to the plane formed by the vectors n and b: 

σ = σ (b sinψ2 + n cosψ2)        (8.95) 

Combining Eqs. (8.91)−(8.95) one obtains: 

σx ≡ ex⋅σ = 







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
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22
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2
2 d

d
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 (8.96) 

Finally, we combine Eqs. (8.88) with Eqs. (8.92) and (8.96) to derive [9] 
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where 
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In view of Eqs. (8.5), (8.85), (8.87), (8.89), (8.97) and (8.98) the net capillary force exerted on 

the floating particle in the vicinity of the wall is [9,18] 

F ≈ Fx = −2πσQ2qζ1(s) + (σ/r2) ∫
π

0

[ 2Q2ζ0(ϕ) + (dζ0/dϕ)2 + q2r2
2ζ2]cosϕ dϕ  (8.99) 

Note that ζ = ζ0 + ζ1 ; in the case of fixed contact angle ζ1 and ζ0  are given by Eqs. (8.51) and 

(8.53); in the case of fixed contact line ζ1 and ζ0  are given by Eqs. (8.52) and (8.62); to derive 

Eq. (8.99) we have used integration by parts in Eq. (8.97). The integral in Eq. (8.99) is to be 

taken numerically. In Ref. [18] Eq. (8.99) was applied to interpret experimental data for the 

equilibrium distance between floating particle and vertical wall, see Section 8.2.7 for details. 

 Asymptotic expression for long distances. For long distances (s >> r2) the last two 

terms in Eq. (8.97) yield Eq. (7.145), where L = 2s and Q1Q2 = (−1)λQ2
2, see Eq. (8.47) and 

Fig. 8.10; then in view of Eq. (8.85) we obtain the respective asymptotic form of Eq. (8.97): 
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Fx
(σ) = −2πσ [Q2qζ1(s) − (−1)λqQ2

2K1(2qs)]   (s >> r2)  (8.100) 

For not extremely small angle ψ1 and not-too-large capillary charge Q2 one can estimate Fx
(p) 

using the following approximation for the shape of the contact line: 

ϕζζϕζ cos)()( 2
1

1 r
dx

ds
sx =

+≈        (8.101) 

The substitution of Eq. (8.101) into Eq. (8.89), in view of Eq. (8.85), yields 

Fx
(p) ≈ πσ(qr2)2[ζ1(dζ1/dx)]x=s = −πσq[qr2ζ1(s)]2,   (s >> r2,  sin2ψ << 1) (8.102) 

Since F ≈ Fx = Fx
(σ) + Fx

(p), one sums up Eqs. (8.100) and (8.102) and as a result one arrives 

again at Eq. (8.84). In other words the energy and the force approaches give the same 

asymptotic expression for the capillary force, as it should be expected.  

8.2.6. NUMERICAL PREDICTIONS OF THE THEORY AND DISCUSSION 

 The procedure of numerical calculations, proposed in Ref. [9], is the following: 

(i) The input parameters are the mass densities of the phases, ρI, ρII and ρ2, the particle radius 

and contact angle, R2 and α2, and the distance s between the particle and wall. Then q = 

(∆ρg/σ)1/2 and from Eq. (8.11) one calculates D2. In addition, the parameters ψ1 and H are 

known in the case of fixed contact angle or line, respectively, see Fig. 8.10. Note that ψ1 and H 

can be both positive and negative; for example, in Fig. 8.11 ψ1 is positive, whereas in Fig 8.12 

H is negative.  

(ii) Equations (8.5), (8.63), (8.65) and the two geometrical relationships, 

b2 = R2[1 + cos(α2 + ψ2)],   r2 = [(2R2 − b2)b2]1/2    (8.103) 

form a set of five equations for determining the five unknown variables Q2, ψ2, h2, r2 and b2. 

Note that Eq. (8.72) must be used instead of Eq. (8.65) when the contact line (rather than the 

contact angle) is fixed at the wall. To solve the aforementioned system of five equations one 

may use the following procedure of iterations [9]: 

(1) As a zeroth-order approximation one may use r2
(0) = R2 sinα2, ψ2

(0) = 0 and Q2
(0) = 0; 

(2) Q2
(k+1) = r2

(k)sinψ2
(k), k = 0, 1, 2,...; cf. Eq. (8.5); 
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(3) h2
(k+1) is calculated from the values of r2

(k) and Q2
(k): in the case of fixed contact angle 

Eq. (8.65) is used; in the case of fixed contact line Eq. (8.72) is used; 

(4) b2
(k+1) and r2

(k+1)  are calculated from the value of ψ2
(k) using Eq. (8.103); 

(5) ψ2
(k+1) is calculated from Eq. (8.63), along with Eq. (8.5), substituting the values of h2

(k), 

b2
(k) and r2

(k); 

(6) If |1 − Q2
(k)/Q2

(k+1)| < ε the iteration process stops; otherwise the iterations continue from 

step (2). Here ε is a small parameter determining the accuracy of the numerical calculations; 

for example, one could set ε = 10−8. 

(iii) The limiting (for s→∞) values Q2∞, ψ2∞, h2∞, r2∞ and b2∞ are determined from the same set 

of five equations, in which Eq. (8.65) or (8.72) for h2 is exchanged with Eq. (8.54) for h2∞. 

(iv) Using Eq. (8.73), along with Eqs. (8.74)−(8.77) one calculates the energy ∆Ω and force F 

of capillary interaction by means of the energy approach. 

(v) Alternatively, one can use the force approach, i.e. Eq. (8.99) along with Eqs. (8.51) and 

(8.53) in case of fixed contact angle, or along with Eqs. (8.52) and (8.62) in case of fixed 

contact line; thus the force F can be calculated for each given distance s, and then the energy 

∆Ω can be obtained by means of numerical integration of the function F(s). 

In Ref. [9] it was established that the numerical procedures based on the energy and force 

approaches give very close results; small differences may originate from the used 

approximations for small particle and small meniscus slope.  

 Numerical results and discussion. As illustrative examples here we present numerical 

results obtained in Ref. [9]. The curves in Figs. 8.14a and 8.14b are calculated for the same 

particle (R2 = 500 µm, α2 = 70°) floating at air-water interface (σ = 72.4 mN/m, ∆ρ = 1.0 

g/cm3), but the boundary conditions at the wall are different: fixed contact angle α1 = 90° − ψ1 

(Fig. 8.14a) and fixed contact line (Fig. 8.14b). The solid lines are calculated using the 

procedure described above, whereas the dashed lines are obtained by means of the approximate 

expression Eq. (8.86),  where ζ1(s) is determined from  Eqs. (8.51) or (8.52).  One sees that the 
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Fig. 8.14. Plots of the interaction energy ∆Ω vs. separation s between a floating particle and a wall: (a) 

in the case of fixed contact angle at the wall (α1 = 90° − ψ1 = const.) and (b) in the case of 
fixed contact line at the wall (H = const). The different curves, calculated in Ref. [9], 
correspond to different values of particle mass density. The solid and dashed lines are 
obtained using Eqs. (8.73) and (8.86) respectively. 

 
approximate expression (8.86) is rather accurate, except for very short particle-wall 

separations. The different curves in Fig. 8.14, as well as in Fig. 8.15, are calculated for three 

different values of the particle mass density, corresponding to the densities of mercury, copper 

and titanium. The most important difference between the curves in Fig. 8.14a and 8.14b is that 

a maximum of ∆Ω (state of unstable equilibrium) exists in the case of fixed contact angle (cf. 

Fig. 8.11), whereas a minimum of ∆Ω (state of stable equilibrium) is present in the case of 

fixed contact line (cf. Fig. 8.12). The existence of such a state of stable equilibrium at some 

distance s = s* has been established experimentally in Ref. [18], see Section 8.2.7 below.  

Figure 8.15 shows the curves of the force F vs. distance s, corresponding to the curves ∆Ω vs. s 

in Fig. 8.14. The solid lines are calculated by means of the more rigorous set of equations, Eqs. 

(8.73)−(8.77), whereas the dashed lines are obtained by means of the approximate Eq. (8.84). 

One sees that the latter approximate formula gives amazingly good numerical results. 

Qualitatively the plots of F vs. s in Fig. 8.15 look similar to the plots of ∆Ω vs. s in Fig. 8.14; 

the points in which F = 0 correspond to the maxima or minima of the ∆Ω(s) curves. In the 

latter points the capillary image force, that is the term  

Fimage ≡ 2πσ (−1)λqQ2
2 K1(2qs)        (8.104) 

in Eq. (8.84)  is  exactly  counterbalanced  by  the  gravitational  force  exerted  on  the  particle 

∆Ω/kT × 10-11 ∆Ω/kT × 10-11 
ψ1=1° (fixed contact angle) H=-50 µm (fixed contact line) 

ρ(1)=13.5 g/cm3 
ρ(2)=  8.9 g/cm3 

ρ(3)=  5.4 g/cm3
1 2 3 

σ 

σ

ρ(1)=13.5 g/cm3

ρ(2)=  8.9 g/cm3 

ρ(3)=  5.4 g/cm3123

(b)(a)
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Fig. 8.15. Plots of the interaction force F vs. separation s between a floating particle and a wall: (a) in 

the case of fixed contact angle at the wall (α1 = 90° − ψ1 = const.) and (b) in the case of fixed 
contact line at the wall (H = const). The different curves, calculated in Ref. [9], correspond to 
different values of particle mass density. The solid and dashed lines are obtained using Eqs. 
(8.73) and (8.84) respectively. 

 
(weight + buoyancy force),  this is the term  

Fgravity ≡ −πσ q[2Q2ζ1(s) + (qr2ζ1(s))2]      (8.105) 

in Eq. (8.84),  i.e.  F = Fimage + Fgravity = 0.  

It should be noted that the plot of F vs. s is not always non-monotonic as it is in Fig. 8.15. 

Indeed, if the contact angle α1 in Fig. 8.11 were larger than 90°, or the contact line elevation H 

in Fig. 8.12 were positive, then Fimage and Fgravity would have the same sign and the net 

dependence F(s) would be monotonic.  

To examine the dependence of the force F on the particle contact angle α2 in Fig. 8.16 we plot 

the dependence of F vs. α2 for a fixed particle-wall separation: s = 5R2; the other parameter 

values are the same as in Figs 8.14 and 8.15. One sees that the dependence of F vs. α2 is rather 

weak in both cases: fixed contact angle (Fig. 8.16a) and fixed contact line (Fig. 8.16b). This 

fact implies that measurements of the capillary force, F, or of the equilibrium distance particle-

wall, s*, cannot be used as a method for determining contact angles of small particles. On the 

other hand, it turns out that the theoretical results for F give the possibility to determine the 

drag coefficient of particles sliding down an inclined meniscus and then to extract the 

coefficient of surface shear viscosity from the data, see Section 8.2.7. 

σ 

3 2 1

1 23

σ 

H=-50 µm (fixed contact line)F [N] × 107F [N] × 107 ψ1=1° (fixed contact angle)
ρ(1)=13.5 g/cm3

ρ(2)=  8.9 g/cm3 

ρ(3)=  5.4 g/cm3

(b)(a)
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Fig. 8.16. Capillary force F as a function of the particle contact angle α2 for a fixed value of the 

particle-wall separation, s = 5R2: (a) in the case of fixed contact angle at the wall 
(α1

 = 90° − ψ1 = const.) and (b) in the case of fixed contact line at the wall (H = const). The 
two curves, calculated in Ref. [9], correspond to particle mass density ρ(1) = 13.5 g/cm3 and 
ρ(2) = 8.9 g/cm3. 

 

8.2.7. EXPERIMENTAL MEASUREMENTS WITH FLOATING PARTICLES 

The configuration with repulsive capillary image force, which is depicted in Fig. 8.12, is 

realized experimentally in Refs. [18] and [19] as shown in Fig. 8.17. In these experiments the 

"wall" is a hydrophobic Teflon barrier, whose position along the vertical can be precisely 

varied and adjusted. The total lateral capillary force exerted on the particle depicted in Fig. 

8.17 can be described by the asymptotic expression Eq. (8.84) in which ζ1(s) is substituted 

from Eq. (8.52): 

( ) ( ) ( ))(12K22)( 2
2

2
1

2
2

2
22 RqOsqQeHqreHQqsF qsqs +



 −+−≈ −−σπ   (8.106) 

As before, H characterizes the position of the contact line on the wall with respect to the non-

disturbed horizontal liquid surface far from the vertical plate (Fig. 8.17) and s is the particle-

wall distance.  

 Equilibrium measurements. In keeping with the sign-convention accepted in the present 

chapter, both H and Q2 in Eq. (8.106) should be negative quantities. Then the first two terms in 

the  brackets  in  Eq. (8.106)  are  positive,  whereas  the  third  one  is  negative.  Therefore,  as 

H=-50 µm (fixed contact line)

σ

F [N] × 107F [N] × 107 
ψ1=1° (fixed contact angle)

ρ(1)=13.5 g/cm3

(b)(a)

ρ(2)=  8.9 g/cm3

σ ρ(2)=  8.9 g/cm3

ρ(1)=13.5 g/cm3
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Fig. 8.17. Experimental set up for studying capillary interactions [18], for measurement of surface drag 
coefficient [19], and surface shear viscosity of surfactant adsorption monolayers [23]. Particle 
1 is floating at a distance s from a hydrophobic plate 2, whose lower edge is located at a 
distance H below the level of the non-disturbed horizontal liquid surface; H can be varied by 
means of the micrometric table 3 and screw 4. 

discussed in the previous section, for each given H there will be a distance s = s*, 

corresponding to an equilibrium position of the particle, for which F(s*) = 0. In other words, 

one can expect that a particle floating in a vicinity of the vertical wall (Fig. 8.17) will stay at an 

equilibrium distance s* from the wall. The measurements carried out in Ref. [18] show that 

really this is the experimental situation. Varying H one can change the distance s*. Figure 8.18 

shows experimental points for H vs. s* measured with a hydrophobized copper bead floating 

on the surface of pure water. The radius of the bead is R2 = 700 ± 15 µm and its contact angle 

with pure water is α2 = 100°. The accuracy and the reproducibility of the measurement are 

about ±2 µm for H and ±20 µm for s*. The theoretical curve (the dashed line in Fig. 8.18) is 

drawn with R2 = 711 µm which agrees well with the optically measured radius of the bead; the 

more rigorous expression Eq. (8.99) is used in the calculations, instead of the asymptotic 

formula Eq. (8.106). One sees in Fig. 8.18 that the agreement between theory and experiment 

is very good. 

Figure 8.19 shows similar data as Fig. 8.18, however this time the floating particle is a mercury 

(Hg) drop.  Since the mercury is liquid, the shape of the Hg drop is composed of two spherical 
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Fig. 8.18. Experimental data (•) from Ref. [18] for the dependence of H on s* for a hydrophobized 
copper sphere, see the text for the notation. The line represents the theoretical dependence 
calculated by setting F = 0 in Eq. (8.99); experimental values of the contact angle α2 = 100° 
and sphere radius R2 = 711 µm are used. 

 

 

 
Fig. 8.19. Experimental data from Ref. [18] for the dependence of H on s* for two mercury drops of 

different size. The lines represent theoretical fits calculated by means of Eq. (8.99) using the 
experimental values of the radii Rw = 440 µm (the lower curve) and Rw = 512 µm (the upper 
curve); the three-phase contact angle mercury-water-air is α2

 = 86°. 
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segments of radii Rw and Ra, corresponding to the Hg-water and Hg-air regions. The values of 

Rw, Ra and of the contact angle α2 have been determined in Ref. [18] by means of optical 

measurements. Then the theoretical plot of H vs. s* has been calculated using Eq. (8.99) (see 

the dashed lines in Fig. 8.19) and compared with the experimental data (the symbols in Fig. 

8.19). Again, there is an excellent agreement between theory and experiment. It should be 

noted that with the exception of an unknown (instrumental) additive constant in the 

experimental data for H, the theoretical curves in Fig. 8.19 are drawn without using any other 

adjustable parameter [18].  

 Dynamic measurements. It was demonstrated in Ref. [19] that if the capillary force F is 

calculated by means of Eq. (8.106), and the particle velocity, s& , is measured in dynamic 

experiments, then one can determine the drag force, Fd : 

sfRFsmFF ddd &&& 26, ηπ≡−=       (8.107) 

where R2, m and s&&  are the particle radius, mass and acceleration, η is the viscosity of the liquid 

and fd is the drag coefficient. If the particle were entirely immersed in the bulk liquid, Fd would 

 
Fig. 8.20. Experimental data from Ref. [19] for the velocity s&  of a “sliding” glass sphere (Fig. 8.17) 

plotted vs. the capillary force F calculated from Eq. (8.106); the sphere is floating on the 
surface of pure water. The slope of the dashed line, drawn in accordance with Eq. (8.107) (the 
inertial term m s&&  neglected), gives drag coefficient fd = 0.68. The data are obtained in 3 runs 
corresponding to 3 fixed values of H denoted in the figure. 
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be given by the Stokes formula, Fd = 6πηR2 s& , and fd would be equal to 1. In the considered 

case, fd differs from unity because the particle is attached to the interface and protrudes from 

the underlying liquid phase. In Fig. 8.20 the experimentally measured velocity s&  of a particle 

approaching the wall is plotted vs. the capillary force F(s), calculated by means of Eq. (8.106) 

for the experimental values of the distance s. The particle is a glass sphere of radius R2 = 

229 µm and contact angle α2 = 48.7° at the surface of pure water, σ = 72 mN/m. The straight 

line in Fig. 8.20 corresponds to Fd = F(s), i.e. drag force equal to the capillary force; from the 

slope of the straight line one determines fd = 0.68. The slight deviation of the data from the 

straight line for the largest F(s) is not a discrepancy between theory and experiment: this 

deviation is due to the inertia term sm &&  in Eq. (8.107), which is not negligible for shorter 

particle−wall distances, for which the approximation Fd ≈ F(s) is not good enough. 

The hydrodynamic theory by Brenner and Leal [20,21], and Danov et al. [22], predicts that the 

drag coefficient fd of a particle attached to a planar fluid interface is a function only of the of 

the  viscosities  of the two  fluids and of the three-phase contact angle, α2.  The experiments in 

 
Fig. 8.21. Experimental data from Ref. [23] for the velocity s& of a glass sphere plotted vs. the capillary 

force F calculated from Eq. (8.106). The slope of each experimental line gives the value of 
the drag coefficient, fd . Data about the type of the solution, the determined fd and the particle 
radius R2 are given in the figure. The inset shows the experimental plot of s& vs. time, which 
becomes linear if plotted as s& vs. F. 
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Ref. [19] with particles on air−water interface give fd varying between 0.68 and 0.54 for 

particle contact angle α2 varying from 49° to 82° (the less the depth of particle immersion, the 

less the drag coefficient fd); these experimentally obtained data for fd are in a very good 

quantitative agreement with the hydrodynamic theory of the drag coefficient [22].  

If the floating particle is heavy enough, it creates a considerable deformation of the 

surrounding liquid surface; this deformation travels together with the particle thus increasing fd 

several times [19]; for the time being there is no quantitative hydrodynamic theory of the latter 

effect.  

The addition of surfactant in the solution strongly increases fd. The latter effect has been used 

in Ref. [23] to measure the surface viscosity of adsorption monolayers from low molecular 

weight surfactants exhibiting fast kinetics of adsorption. For these surfactants the surface 

viscosity is too low to be accessible to the conventional experimental methods, like the deep-

channel surface viscometer [24-30], or the disk viscometer [31-37]. Fortunately, the motion of 

a sphere of radius 200−300 µm along a slightly inclined meniscus turns out to be sensitive to 

the friction within the adsorption layer (thick no more than 2 nm) of surfactants such as sodium 

dodecyl sulfate (SDS) and hexadecyl-trimethyl-ammonium-bromide (HTAB). This fact is 

utilized by the sliding−particle method for measurement of surface viscosity, which has been 

proposed in Ref. [23].  In Fig. 8.21 we present experimental data from Ref. [23] for the 

velocity s& of a particle (Fig. 8.17) plotted vs. the capillary force F(s), calculated by means of 

Eq. (8.106). One sees in Fig. 8.21 that again the data for s& vs. F(s) comply with straight lines, 

whereas the plots of s&  vs. time t are non-linear (see the inset in Fig. 8.21). From the slopes of 

the straight lines in Fig. 8.21 the drag coefficient fd has been determined; the obtained values of 

fd are also shown in Fig. 8.21. Note, that the addition of surfactant increases fd from 0.66 (for 

pure water) up to 1.6. This effect, converted in terms of surface viscosity, gives respectively 

ηs = 1.5 and 2.0 × 10−6 kg/s for the surface viscosity of dense SDS and HTAB adsorption 

monolayers [23]. These results compare well with values of ηs obtained by means of knife-

edge surface viscometers [38-43]. 

If the kinetics of surfactant adsorption is not fast enough to damp the surface elastic effects, the 

drag coefficient fd can be influenced not only by the surface viscosity, but also by the surface 



Chapter 8 

 

392

(Gibbs) elasticity (see Chapter 1 about the definitions of and theoretical expressions for the 

Gibbs elasticity and adsorption relaxation times). The complete theoretical dynamic problem, 

involving the effects of surface viscosity, surface elasticity and dynamics of surfactant 

adsorption has not yet been solved. 

8.3. SUMMARY 

In this chapter we presented theoretical and experimental results about the lateral capillary 

interaction between two floating particles, and between a floating particle and a vertical wall. 

The origin of this “flotation” force, F, is the overlap of the interfacial deformations created by 

the separate floating particles. In this aspect the “floatation” force is similar to the “immersion” 

force (see Chapter 7) and it is described by the same asymptotic formula, Eq. (8.4). The 

difference between the  “flotation” and “immersion” forces is manifested through the different 

physical origin of the respective “capillary charge” Q, which results in a different dependence 

of Q on the interfacial tension σ and particle radius R. Thus in the case of “flotation” force 

F ∝ R6/σ, whereas in the case of “immersion” force F ∝ R2σ, see Eq. (8.20). The strong 

decrease of the “flotation” force with the diminishing of particle radius R leads to the 

consequence that this force becomes negligibly small for R < 5 µm, i.e. for Brownian particles, 

for which the “immersion” force is still rather powerful, see Fig. 8.3. In some aspect these two 

kinds of capillary interactions resemble the electrostatic and gravitational forces, which obey 

the same power law, but differ in the physical meaning and magnitude of the force constants 

(charges, masses). 

The capillary charge of a floating particle can be calculated by means of Eq. (8.12) or by 

means of the more convenient, but approximate, Eq. (8.16). The energy of capillary interaction 

between floating particles is composed of contributions from the gravitational potential energy 

of particles and fluid phases, from the wetting of the particle surface and from the deformation 

of the fluid interface caused by the particles, see Eq. (8.26). In the asymptotic case of small 

deformations and long interparticle separations the sum of the aforementioned three 

contributions turns out to be equal to the half of the particle gravitational potential energy, see 

Eqs. (8.32)−(8.34); the latter finding validates the usage of the popular superposition 

approximation, Section 8.1.1. A convenient numerical procedure for a precise calculation of 
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the lateral flotation force is described, Section 8.1.5. Numerical data about the dependence of 

the interaction energy ∆Ω on the interparticle distance L, particle radius Rk, density ρk and 

contact angle αk, are presented and discussed. In all cases the capillary interaction between 

floating particles, as a function of L, is a monotonic attraction or repulsion depending on the 

sign of the product of the capillary charges: Q1Q2 > 0 or Q1Q2 < 0, see Figs. 8.5−8.9. 

Next, we considered the case of a single particle floating in a vicinity of a vertical wall. Such a 

particle experiences the action of a capillary image force. The latter can be formally considered 

as interaction between the particle and its mirror image (with respect to the wall), which can be 

attraction or repulsion depending on whether the contact angle (Fig. 8.10a) or contact line 

(Fig. 8.10b) is fixed at the wall. If an inclined meniscus is formed in a neighborhood of the 

wall, then the interplay of the gravitational and capillary image forces can lead to a non-

monotonic dependence of the interaction energy on the particle-wall distance, see Figs. 8.11, 

8.12, 8.14 and 8.15. Analytical expressions for calculating the flotation interaction are obtained 

by means of both energy and force approaches, see Sections 8.2.4 and 8.2.5. A convenient 

asymptotic formula, Eq. (8.84), for the capillary force is obtained, which compares very well 

with the output of the more accurate theory, see Figs. 8.14 and 8.15. The derived expressions 

are in a very good agreement with experimental data for the equilibrium position of floating 

particles, Figs. 8.18 and 8.19. The obtained theoretical results have been applied to determine 

experimentally the drag coefficient of floating particles and the surface shear viscosity of 

surfactant adsorption monolayers, see Figs. 8.20 and 8.21. 

Finally, we should note that in this chapter our attention was focused on the capillary 

interactions of floating spherical particles. In Refs. [44-47] one can find theoretical 

expressions and numerical results for two floating parallel horizontal cylinders. 
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